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MIXED FINITE ELEMENT FORMULATION AND ERROR
ESTIMATES BASED ON PROPER ORTHOGONAL

DECOMPOSITION FOR THE NONSTATIONARY NAVIER–STOKES
EQUATIONS∗
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Abstract. In this paper, proper orthogonal decomposition (POD) is used for model reduction
of mixed finite element (MFE) for the nonstationary Navier–Stokes equations and error estimates
between a reference solution and the POD solution of reduced MFE formulation are derived. The
basic idea of this reduction technique is that ensembles of data are first compiled from transient
solutions computed equation system derived with the usual MFE method for the nonstationary
Navier–Stokes equations or from physics system trajectories by drawing samples of experiments and
interpolation (or data assimilation), and then the basis functions of the usual MFE method are
substituted with the POD basis functions reconstructed by the elements of the ensemble to derive
the POD-reduced MFE formulation for the nonstationary Navier–Stokes equations. It is shown by
considering numerical simulation results obtained for the illustrating example of cavity flows that the
error between POD solution of reduced MFE formulation and the reference solution is consistent with
theoretical results. Moreover, it is also shown that this result validates the feasibility and efficiency
of the POD method.
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1. Introduction. The mixed finite element (MFE) method is one of the im-
portant approaches for solving systems of partial differential equations, for example,
the nonstationary Navier–Stokes equations (see [1], [2], or [3]). However, the com-
putational model for the fully discrete system of MFE solutions of the nonstationary
Navier–Stokes equations yields very large systems that are computationally inten-
sive. Thus, an important problem is how to simplify the computational load and save
time-consuming calculations and resource demands in the actual computational pro-
cess in a way that guarantees a sufficiently accurate and efficient numerical solution.
Proper orthogonal decomposition (POD), also known as Karhunen–Loève expansions
in signal analysis and pattern recognition (see [4]), or principal component analysis
in statistics (see [5]), or the method of empirical orthogonal functions in geophysical
fluid dynamics (see [6], [7]) or meteorology (see [8]), is a technique offering adequate
approximation for representing fluid flow with reduced number of degrees of freedom,
i.e., with lower dimensional models (see [9]), so as to alleviate the computational load

∗Received by the editors April 25, 2007; accepted for publication (in revised form) May 19, 2008;
published electronically October 24, 2008.

http://www.siam.org/journals/sinum/47-1/68949.html
†School of Mathematics and Physics, North China Electric Power University, Beijing 102206,

China (zhdluo@163.com). This work was supported in part by the National Science Foundation of
China (NSF10871022 and 10771065).

‡Corresponding author. College of Science, China Agricultural University, Beijing 100083, China
(jing quchen@163.com). This author was supported in part by the National Science Foundation of
China (NSF10871022 and 10771213).

§Department of Scientific Computing, Florida State University, Dirac Sci. Lib. Bldg., #483, Tal-
lahassee, FL 32306-4120 (navon@scs.fsu.edu). This author was supported in part by NASA MAP
grant Modeling, Analysis and Prediction Program (NNG06GC67G).

1



2 Z. LUO, J. CHEN, I. M. NAVON, AND X. YANG

and provide CPU and memory requirements savings, and has found widespread ap-
plications in problems related to the approximation of large-scale models. Although
the basic properties of the POD method are well established and studies have been
conducted to evaluate the suitability of this technique for various fluid flows (see
[10]–[12]), its applicability and limitations for reduced MFE formulation for the non-
stationary Navier–Stokes equations are not well documented.

The POD method mainly provides a useful tool for efficiently approximating a
large amount of data. The method essentially provides an orthogonal basis for rep-
resenting the given data in a certain least squares optimal sense; that is, it provides
a way to find optimal lower dimensional approximations of the given data. In ad-
dition to being optimal in a least squares sense, POD has the property that it uses
a modal decomposition that is completely data dependent and does not assume any
prior knowledge of the process used to generate the data. This property is advanta-
geous in situations where a priori knowledge of the underlying process is insufficient
to warrant a certain choice of basis. Combined with the Galerkin projection proce-
dure, POD provides a powerful method for generating lower dimensional models of
dynamical systems that have a very large or even infinite dimensional phase space.
In many cases, the behavior of a dynamic system is governed by characteristics or
related structures, even though the ensemble is formed by a large number of different
instantaneous solutions. POD method can capture these temporal and spatial struc-
tures by applying a statistical analysis to the ensemble of data. In fluid dynamics,
Lumley first employed the POD technique to capture the large eddy coherent struc-
tures in a turbulent boundary layer (see [13]); this technique was further extended in
[14], where a link between the turbulent structure and dynamics of a chaotic system
was investigated. In Holmes, Lumley, and Berkooz [9], the overall properties of POD
are reviewed and extended to widen the applicability of the method. The method
of snapshots was introduced by Sirovich [15], and is widely used in applications to
reduce the order of POD eigenvalue problem. Examples of these are optimal flow
control problems [16]–[18] and turbulence [9, 13, 14, 19, 20]. In many applications
of POD, the method is used to generate basis functions for a reduced order model,
which can simplify and provide quicker assessment of the major features of the fluid
dynamics for the purpose of flow control as demonstrated by Ko et al. [18] or design
optimization as shown by Ly and Tran [17]. This application is used in a variety of
other physical applications, such as in [17], which demonstrates an effective use of
POD for a chemical vapor deposition reactor. Some reduced order finite difference
models and MFE formulations and error estimates based on POD for the upper trop-
ical Pacific Ocean model (see [21]–[25]), as well as a finite difference scheme based
on POD for the nonstationary Navier–Stokes equations (see [26]), have been derived.
However, to the best of our knowledge, there are no published results addressing the
use of POD to reduce the MFE formulation of the nonlinear nonstationary Navier–
Stokes equations and provide estimates of the error between reference solution and
the POD-reduced MFE solution.

In this paper, POD is used to reduce the MFE formulation for the nonstationary
Navier–Stokes equations and to derive error estimates between reference solution and
the POD-reduced MFE solution. It is shown by considering the results obtained for
numerical simulations of cavity flows that the error between POD solution of reduced
MFE formulation and reference solution is consistent with theoretically derived re-
sults. Moreover, it is also shown that this validates the feasibility and efficiency of the
POD method. Though Kunisch and Volkwein have presented some Galerkin POD
methods for parabolic problems and a general equation in fluid dynamics in [27], [28],
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our method is different from their approaches, whose methods consist of Galerkin pro-
jection where the original variables are substituted for a linear combination of POD
basis and the error estimates of the velocity field therein are only derived, their POD
basis being generated with the solution of the physical system at all time instances.
In particular, the velocity field is only approximated in [28], while both velocity and
pressure fields are simultaneously approximated in our present method. While the
singular value decomposition approach combined with POD methodology is used to
treat the Burgers equation in [29] and the cavity flow problem in [12], the error esti-
mates have not completely been derived, in particular, a reduced formulation of MFE
for the nonstationary Navier–Stokes has not yet been derived up to now. Therefore,
our method improves upon existing methods since our POD basis is generated with
the solution of the physical system only at time instances which are both useful and
of interest for us.

2. MFE approximation for the nonstationary Navier–Stokes equations
and snapshots generate. Let Ω ⊂ R2 be a bounded, connected, and polygonal
domain. Consider the following nonstationary Navier–Stokes equations.

Problem (I) Find u = (u1, u2), p such that, for T > 0,

(2.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − ν�u+ (u · ∇)u +∇p = f in Ω× (0, T ),
divu = 0 in Ω× (0, T ),
u(x, y, t) = ϕ(x, y, t) on ∂Ω× (0, T ),
u(x, y, 0) = ϕ(x, y, 0) in Ω,

where u represents the velocity vector, p the pressure, ν the constant inverse Reynolds
number, f = (f1, f2) the given body force, and ϕ(x, y, t) the given vector function.
For the sake of convenience, without lost generality, we may as well suppose that
ϕ(x, y, t) is a zero vector in the following theoretical analysis.

The Sobolev spaces used in this context are standard (see [30]). For example, for
a bounded domain Ω, we denote by Hm(Ω) (m ≥ 0) and L2(Ω) = H0(Ω) the usual
Sobolev spaces equipped with the seminorm and the norm, respectively,

|v|m,Ω =

⎧⎨
⎩

∑
|α|=m

∫
Ω

|Dαv|2dxdy
⎫⎬
⎭

1/2

and ‖v‖m,Ω =

{
m∑
i=0

|v|2i,Ω
}1/2

∀v ∈ Hm(Ω),

where α = (α1, α2), α1 and α2 are two nonnegative integers, and |α| = α1 + α2.
Especially, the subspace H1

0 (Ω) of H1(Ω) is denoted by

H1
0 (Ω) =

{
v ∈ H1(Ω);u|∂Ω = 0

}
.

Note that ‖·‖1 is equivalent to |·|1 inH1
0 (Ω). Let L2

0(Ω) =
{
q ∈ L2(Ω);

∫
Ω qdxdy = 0

}
,

which is a subspace of L2(Ω). It is necessary to introduce the Sobolev spaces depen-
dent on time t in order to discuss the generalized solution for Problem (I). Let Φ be
a Hilbert space. For all T > 0 and integer n ≥ 0, for t ∈ [0, T ], define

Hn(0, T ; Φ) =

{
v(t) ∈ Φ;

∫ T

0

n∑
i=0

∥∥∥∥ di

dti
v(t)

∥∥∥∥
2

Φ

dt <∞
}
,

which is endowed with the norm

‖v‖Hn(Φ) =

[
n∑
i=0

∫ T

0

∥∥∥∥ di

dti
v(t)

∥∥∥∥
2

Φ

dt

] 1
2

for v ∈ Hn(Φ),
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where ‖ · ‖Φ is the norm of space Φ. Especially, if n = 0,

‖v‖L2(Φ) =

(∫ T

0

‖v(t)‖2Φdt

) 1
2

.

And define

L∞(0, T ; Φ) =
{
v(t) ∈ Φ; esssup

0≤t≤T
‖v(t)‖Φ <∞

}
,

which is endowed with the norm

‖v‖L∞(Φ) = esssup
0≤t≤T

‖v(t)‖Φ.

The variational formulation for Problem (I) is written as:
Problem (II) Find (u, p) ∈ H1(0, T ;X)×L2(0, T ;M) such that, for all t ∈ (0, T ),

(2.2)

⎧⎨
⎩

(ut,v) + a(u,v) + a1(u,u,v)− b(p,v) = (f ,v) ∀v ∈ X,
b(q,u) = 0 ∀q ∈M,
u(x, 0) = 0 in Ω,

where X = H1
0 (Ω)2, M = L2

0(Ω), a(u,v) = ν
∫
Ω
∇u · ∇vdxdy, a1(u,v,w) = 1

2

∫
Ω∑2

i,j=1[ui
∂vj

∂xi
wj −ui ∂wj

∂xi
vj ]dxdy (u,v,w ∈ X), and b(q,v) =

∫
Ω q divvdxdy.

Throughout the paper, C indicates a positive constant which is possibly different
at different occurrences, being independent of the spatial and temporal mesh sizes,
but may depend on Ω, the Reynolds number, and other parameters introduced in this
paper.

The following property for trilinear form a1(·, ·, ·) is often used (see [1], [2], or [3]).

(2.3) a1(u,v,w) = −a1(u,w,v), a1(u,v,v) = 0 ∀u,v,w ∈ X.
The bilinear forms a(·, ·) and b(·, ·) have the following properties:

(2.4) a(v,v) ≥ ν|v|21 ∀v ∈ H1
0 (Ω)2,

(2.5) |a(u,v)| ≤ ν|u|1|v|1 ∀u, v ∈ H1
0 (Ω)2,

and

(2.6) sup
v∈H1

0 (Ω)2

b(q,v)
|v|1 ≥ β‖q‖0 ∀q ∈ L2

0(Ω),

where β is a positive constant. Define

(2.7) N = sup
u,v,w∈X

a1(u,v,w)
|u|1|v|1|w|1 ; ‖f‖−1 = sup

v∈X

(f ,v)
|v|1 .

The following result is classical (see [1], [2], or [3]).
Theorem 2.1. If f ∈ L2(0, T ;H−1(Ω)2), then Problem (II) has at least a solution

which, in addition, is unique provided that ν−2N‖f‖L2(H−1) < 1, and there is the
following prior estimate:

‖∇u‖L2(L2) ≤ ν−1‖f‖L2(H−1) ≡ R, ‖u‖0 ≤ ν−1/2‖f‖L2(H−1) = Rν−1/2.
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Let {�h} be a uniformly regular family of triangulation of Ω̄ (see [31], [32], or
[33]), indexed by a parameter h = maxK∈�h

{hK ; hK =diam(K)}; i.e., there exists a
constant C, independent of h, such that h ≤ ChK ∀K ∈ �h.

We introduce the following finite element spaces Xh and Mh of X and M , re-
spectively. Let Xh ⊂ X (which is at least the piecewise polynomial vector space of
mth degree, where m > 0 is integer) and Mh ⊂M (which is the piecewise polynomial
space of (m− 1)th degree). Write X̂h = Xh ×Mh.

We assume that (Xh,Mh) satisfies the following approximate properties: ∀v ∈
Hm+1(Ω)2 ∩X and ∀q ∈M ∩Hm(Ω),

(2.8) inf
vh∈Xh

‖∇(v − vh)‖0 ≤ Chm|v|m+1, inf
qh∈Mh

‖q − qh‖0 ≤ Chm|q|m,

together the so-called discrete LBB condition, i.e.,

(2.9) sup
vh∈Xh

b(qh,vh)
‖∇vh‖0 ≥ β‖qh‖0 ∀qh ∈Mh,

where β is a positive constant independent of h.
There are many spaces Xh and Mh satisfying the discrete LBB conditions (see

[33]). Here, we provide some examples as follows.
Example 2.1. The first-order finite element space Xh × Mh can be taken as

Bernardi–Fortin–Raugel’s element (see [33]), i.e.,

(2.10)
Xh =

{
vh ∈ X ∩ C0(Ω̄)2; vh|K ∈ PK ∀K ∈ �h

}
,

Mh =
{
ϕh ∈M ; ϕh|K ∈ P0(K) ∀K ∈ �h

}
,

where PK = P1(K)2 ⊕ span{ni
∏3
j=1,j �=i λKj , i = 1, 2, 3}, ni are the unit normal

vector to side Fi opposite the vertex Ai of triangle K, λKi’s are the barycenter
coordinates corresponding to the vertex Ai (i = 1, 2, 3) on K (see [31], [32]), and
Pm(K) is the space of piecewise polynomials of degree m on K.

Example 2.2. The first-order finite element space Xh ×Mh can also be taken as
Mini’s element, i.e.,

(2.11)
Xh =

{
vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ �h

}
,

Mh =
{
qh ∈M ∩ C0(Ω); qh|K ∈ P1(K) ∀K ∈ �h

}
,

where PK = P1(K)2 ⊕ span{λK1λK2λK3}2.
Example 2.3. The second-order finite element space Xh ×Mh can be taken as

(2.12)
Xh =

{
vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ �h

}
,

Mh =
{
qh ∈M ∩ C0(Ω); qh|K ∈ P1(K) ∀K ∈ �h

}
,

where PK = P2(K)2 ⊕ span{λK1λK2λK3}2.
Example 2.4. The third-order finite element space Xh ×Mh can be taken as

(2.13)
Xh =

{
vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ �h

}
,

Mh =
{
qh ∈M ∩ C0(Ω); qh|K ∈ P2(K) ∀K ∈ �h

}
,

where PK = P3(K)2 ⊕ span{λK1λK2λK3λKi, i = 1, 2, 3}2.
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It has been proved (see [33]) that, for the finite element space Xh ×Mh in Ex-
amples 2.1–2.4, there exists a restriction operator rh: X → Xh such that, for any
v ∈ X ,

(2.14)
b(qh,v − rhv) = 0 ∀qh ∈Mh, ‖∇rhv‖0 ≤ C‖∇v‖0,
‖∇(v − rhv)‖0 ≤ Chk|v|k+1 if v ∈ Hk+1(Ω)2, k = 1, 2, 3.

The spaces Xh ×Mh used throughout the next part in this paper mean those in
Examples 2.1–2.4, which satisfy the discrete LBB condition (2.9) (see [33] for a more
detailed proof).

In order to find a numerical solution for Problem (II), it is necessary to discretize
Problem (II). We introduce a MFE approximation for the spatial variable and FDS
(finite difference scheme) for the time derivative. Let L be the positive integer, denote
the time step increment by k = T/L (T being the total time), t(n) = nk, 0 ≤ n ≤ L;
(unh, p

n
h) ∈ Xh × Mh the MFE approximation corresponding to (u(t(n)), p(t(n))) ≡

(un, pn). Then, applying a semi-implicit Euler scheme for the time integration, the
fully discrete MFE solution for Problem (I) may be written as:

Problem (III) Find (unh, p
n
h) ∈ Xh ×Mh such that

(2.15)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(unh ,vh) + ka(unh,vh) + ka1

(
un−1
h ,unh,vh

)− kb(pnh,vh)
= k(fn,vh) +

(
un−1
h ,vh

) ∀vh ∈ Xh,

b(qh,unh) = 0 ∀qh ∈Mh,

u0
h = 0 in Ω,

where 1 ≤ n ≤ L.
Put A(unh,vh) = (unh,vh) + ka(unh,vh) + ka1(un−1

h ,unh,vh). Since A(unh,u
n
h) =

(unh,u
n
h)+ka(unh,u

n
h)+ka1(un−1

h ,unh,u
n
h) = ‖unh‖0 +kν‖∇unh‖0, A(·, ·) is coercive in

Xh×Xh. And kb(·, ·) also satisfies the discrete LBB condition in Xh×Mh; therefore,
by MFE theory (see [1], [32], or [33]), we obtain the following result.

Theorem 2.2. Under the assumptions (2.8), (2.9), if f ∈ H−1(Ω)2 satisfies
N

∑n
i=1 ‖f i‖−1 < ν2, then Problem (III) has a unique solution (unh, p

n
h) ∈ Xh ×Mh

and satisfies

(2.16) ‖unh‖20 + kν
n∑
i=1

‖∇uih‖20 ≤ kν−1
n∑
i=1

‖f i‖2−1,

if k = O(h2),

(2.17) ‖un − unh‖0 + k1/2
n∑
i=1

‖∇(ui − uih)‖0 + k1/2
n∑
i=1

‖pi − pih‖0 ≤ C(hm + k),

where (u, p) ∈ [H1
0 (Ω) ∩ Hm+1(Ω)]2 × [Hm(Ω) ∩ M ] is the exact solution for the

problem (I), C is a constant dependent on |un|m+1 and |pn|m, and 1 ≤ n ≤ L.
If Reynolds number Re = ν−1, triangulation parameter h, finite element space

Xh × Mh, the time step increment k, and f are given, by solving Problem (III),
we can obtain a solution ensemble {un1h, un2h, pnh}Ln=1 for Problem (III). Then we
choose � (for example, � = 20, or 30, in general, � � L) instantaneous solutions
Ui(x, y) = (uni

1h, u
ni

2h, p
ni

h )T (1 ≤ n1 < n2 < · · · < n� ≤ L) (which are useful and
of interest for us) from the L group of solutions (un1h, u

n
2h, p

n
h)
T (1 ≤ n ≤ L) for

Problem (III), which are referred to as snapshots.
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3. A reduced MFE formulation based POD technique for the nonsta-
tionary Navier–Stokes equations. In this section, we use the POD technique to
deal with the snapshots in section 2 and produce an optimal representation in an
average sense.

Recall X̂h = Xh×Mh. ForUi(x, y) = (uni

1h, u
ni

2h, p
ni

h )T (i = 1, 2, . . . , �) in section 2,
we set

(3.1) V = span{U1,U2, . . . ,U�},
and refer to V as the ensemble consisting of the snapshots {Ui}�i=1, at least one of
which is assumed to be nonzero. Let {ψj}lj=1 denote an orthonormal basis of V with
l = dimV . Then each member of the ensemble can expressed as

(3.2) Ui =
l∑

j=1

(Ui,ψj)X̂ψj for i = 1, 2, . . . , �,

where (Ui,ψj)X̂ψj = ((∇uni

h ,∇ψuj)0ψuj , (pni

h , ψpj)0ψpj), (·, ·)0 is L2-inner product,
and ψuj and ψpj are orthonormal bases corresponding to u and p, respectively.

Since V = span{U1,U2, . . . ,U�} = span{ψ1,ψ2, . . . ,ψl}, b(pni

h ,u
nj

h ) = 0 (1 ≤
i, j ≤ �) implies b(ψpi,ψuj) = 0 (1 ≤ i, j ≤ l).

Definition 3.1. The method of POD consists in finding the orthonormal basis
such that for every d (1 ≤ d ≤ l) the mean square error between the elements Ui
(1 ≤ i ≤ �) and corresponding dth partial sum of (3.2) is minimized on average:

(3.3) min
{ψj}d

j=1

1
�

�∑
i=1

‖Ui −
d∑
j=1

(Ui,ψj)X̂ψj‖2X̂

such that

(3.4) (ψi,ψj)X̂ = δij for 1 ≤ i ≤ d, 1 ≤ j ≤ i,
where ‖Ui‖X̂ = [‖∇uni

1h‖20 + ‖∇uni

2h‖20 + ‖pni

h ‖20]
1
2 . A solution {ψj}dj=1 of (3.3) and

(3.4) is known as a POD basis of rank d.
We introduce the correlation matrix K = (Kij)�×� ∈ R�×� corresponding to the

snapshots {Ui}�i=1 by

(3.5) Kij =
1
�
(Ui,Uj)X̂ .

The matrix K is positive semidefinite and has rank l. The solutions of (3.3) and (3.4)
can be found in [10], [15], or [28], for example.

Proposition 3.2. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 denote the positive eigenvalues of
K and v1, v2, . . . ,vl the associated orthonormal eigenvectors. Then a POD basis of
rank d ≤ l is given by

(3.6) ψi =
1√
λi

�∑
j=1

(vi)jUj ,

where (vi)j denotes the jth component of the eigenvector vi. Furthermore, the fol-
lowing error formula holds:

(3.7)
1
�

�∑
i=1

∥∥∥∥∥∥Ui −
d∑
j=1

(Ui,ψj)X̂ψj

∥∥∥∥∥∥
2

X̂

=
l∑

j=d+1

λj .
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Let Vd = span {ψ1,ψ2, . . . ,ψd} and Xd ×Md = Vd with Xd ⊂ Xh ⊂ X and
Md ⊂ Mh ⊂ M . Set the Ritz-projection P h: X → Xh (if P h is restricted to Ritz-
projection from Xh to Xd, it is written as P d) such that P h|Xh

= P d : Xh → Xd and
P h : X\Xh → Xh\Xd and L2-projection ρd: M →Md denoted by, respectively,

(3.8) a(P hu,vh) = a(u,vh) ∀vh ∈ Xh

and

(3.9) (ρdp, qd)0 = (p, qd)0 ∀qd ∈Md,

where u ∈ X and p ∈ M . Due to (3.8) and (3.9) the linear operators P h and ρd are
well-defined and bounded:

(3.10) ‖∇(P du)‖0 ≤ ‖∇u‖0, ‖ρdp‖0 ≤ ‖p‖0 ∀u ∈ X and p ∈M.

Lemma 3.3. For every d (1 ≤ d ≤ l) the projection operators P d and ρd satisfy,
respectively,

(3.11)
1
�

�∑
i=1

‖∇(uni

h − P duni

h )‖20 ≤
l∑

j=d+1

λj ,

(3.12)
1
�

�∑
i=1

‖uni

h − P duni

h ‖20 ≤ Ch2
l∑

j=d+1

λj ,

and

(3.13)
1
�

�∑
i=1

‖pni

h − ρdpni

h ‖20 ≤
l∑

j=d+1

λj ,

where uni

h = (uni

1h, u
ni

2h) and (uni

1h, u
ni

2h, p
ni

h )T ∈ V.
Proof. For any u ∈ X we deduce from (3.8) that

ν‖∇(u − P hu)‖20 = a(u− P hu,u− P hu)

= a(u− P hu,u− vh)
≤ ν‖∇(u− P hu)‖0‖∇(u− vh)‖0 ∀vh ∈ Xh.

Therefore, we obtain that

(3.14) ‖∇(u− P hu)‖0 ≤ ‖∇(u− vh)‖0 ∀vh ∈ Xh.

If u = uni

h , and P h is restricted to Ritz-projection from Xh to Xd, i.e., P huni

h =
P duni

h ∈ Xd, taking vh =
∑d

j=1(u
ni

h ,ψuj)Xψuj ∈ Xd ⊂ Xh (where ψuj is the
component of ψj corresponding to u) in (3.14), we can obtain (3.11) from (3.7).

In order to prove (3.12), we consider the following variational problem:

(3.15) (∇w,∇v) = (u − P hu,v) ∀v ∈ X.
Thus, w∈ [H1

0 (Ω)∩H2(Ω)]2 and satisfies ‖w‖2 ≤ C‖u−P hu‖0. Taking v = u−P hu
in (3.15), from (3.14) we obtain that

(3.16)

‖u− P hu‖20 = (∇w,∇(u − P hu))

= (∇(w −wh),∇(u− P hu))

≤ ‖∇(w −wh)‖0‖∇(u− P du)‖0 ∀wh ∈ Xh.
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Taking wh = rhw, from (2.14) and (3.16) we have

‖u− P hu‖20 ≤ Ch‖w‖2‖∇(u− P hu)‖0
≤ Ch‖u− P hu‖0‖∇(u− P hu)‖0.

Thus, we obtain that

(3.17) ‖u− P hu‖0 ≤ Ch‖∇(u− P hu)‖0.

Therefore, if u = uni

h and P h is restricted to Ritz-projection from Xh to Xd, i.e.,
P huni

h = P duni

h ∈ Xd, by (3.17) and (3.11) we obtain (3.12).
Using Hölder inequality and (3.9) can yield

‖pni

h − ρdpni

h ‖20 = (pni

h − ρdpni

h , p
ni

h − ρdpni

h )

= (pni

h − ρdpni

h , p
ni

h − qd)
≤ ‖pni

h − ρdpni

h ‖0‖pni

h − qd‖0 ∀qd ∈Md,

and consequently,

(3.18) ‖pni

h − ρdpni

h ‖0 ≤ ‖pni

h − qd‖0 ∀qd ∈Md.

Taking qd =
∑d

j=1(p
ni

h , ψpj)0ψpj (where ψpj is the component of ψj correspond-
ing to p) in (3.18), from (3.7) we can obtain (3.13), which completes the proof of
Lemma 3.3.

Thus, using Vd = Xd ×Md, we can obtain the reduced formulation for Problem
(III) as follows.

Problem (IV) Find (und , p
n
d ) ∈ Vd such that

(3.19)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(und ,vd) + ka(und ,vd) + ka1

(
un−1
d ,und ,vd

)− kb(pnd ,vd)
= k(fn,vd) +

(
un−1
d ,vd

) ∀vd ∈ Xd,

b(qd,und) = 0 ∀qd ∈Md,

u0
d = 0,

where 1 ≤ n ≤ L.
Remark 3.4. Problem (IV) is a reduced MFE formulation based on the POD

technique for Problem (III), since it includes only 3d (d � l ≤ � � L) degrees of
freedom and is independent of the spatial grid scale h, while Problem (III) includes
3Np+NK ≈ 5Np for Mini’s element of Example 2.2 (whereNp is the number of vertices
in �h and NK the number of elements in �h) and 3d� 5Np (for example, in section 5,
d ≤ 7, while Np = 32×32 = 1024). The number of degrees of freedom of Example 2.1
is also approximately 5Np, but Example 2.3 and Example 2.4 are more. When one
computes actual problems, one may obtain the ensemble of snapshots from physical
system trajectories by drawing samples from experiments and interpolation (or data
assimilation). For example, for weather forecast, one can use the previous weather
prediction results to construct the ensemble of snapshots, and then restructure the
POD basis for the ensemble of snapshots by above (3.3)–(3.6), and finally combine
it with a Galerkin projection to derive a reduced order dynamical system; i.e., one
needs only to solve the above Problem (IV), which has only 3d degrees of freedom,
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but it is unnecessary to solve Problem (III). Thus, the forecast of future weather
change can be quickly simulated, which is a result of major importance for real-
life applications. Since the development and change of a large number of future
nature phenomena are closely related to previous results (for example, weather change,
biology anagenesis, and so on), using existing results as snapshots in order to structure
POD basis, by solving corresponding PDEs, one may truly capture the laws of change
of natural phenomena. Therefore, these POD methods provide useful and important
applications.

4. Existence and error analysis of the solution of the reduced MFE
formulation based on POD technique for the nonstationary Navier–Stokes
equations. This section is devoted to discussing the existence and error estimates
for Problem (IV).

We see from (3.6) that Vd = Xd×Md ⊂ V ⊂ Xh×Mh ⊂ X ×M , where Xh×Mh

is one of those spaces in Examples 2.1–2.4. Therefore, we have in the following result.
Lemma 4.1. There exists also an operator rd: Xh → Xd such that, for all

uh ∈ Xh,

(4.1) b(qd,uh − rduh) = 0 ∀qd ∈Md, ‖∇rduh‖0 ≤ c‖∇uh‖0,
and, for every d (1 ≤ d ≤ l),

(4.2)
1
�

�∑
i=1

‖∇(uni

h − rduni

h )‖20 ≤ C
l∑

j=d+1

λj .

Proof. We use the Mini’s and the second finite element as examples. Noting that
for any qd ∈Md and K ∈ �h, ∇qd|K ∈ P0(K), using Green formula, we have

b(qd,uh − rduh) = −
∫

Ω

∇qd(uh − rduh)dxdy

= −
∑
K∈�h

∇qd|K
∫
K

(uh − rduh)dxdy.

Define rd as follows:

(4.3) rduh|K = P duh|K + γKλK1λK2λK3 ∀vh ∈ Xh and K ∈ �h,
where γK =

∫
K(uh − P duh)dx/

∫
K λK1λK2λK3dx. Thus, the first equality of (4.1)

holds. Using (3.10)–(3.12) yields the inequality of (4.1). Then, if uh = uni

h , using
(3.11)–(3.12), by simply computing we deduce (4.2).

Set

V = {v ∈ X ; b(q,v) = 0 ∀q ∈M},
Vh = {vh ∈ Xh; b(qh,vh) = 0 ∀qh ∈Mh},
V d = {vd ∈ Xd; b(qd,vd) = 0 ∀qd ∈Md}.

Using dual principle and inequalities (3.11) and (3.12), we deduce the following
result (see [1], [31]–[33]).

Lemma 4.2. There exists an operator Rd: V ∪ Vh → V d such that, for all
v ∈ V ∪ Vh,

(v −Rdv,vd) = 0 ∀vd ∈ V d, ‖∇Rdv‖0 ≤ C‖∇v‖0,
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and, for every d (1 ≤ d ≤ l),

(4.4)
1
�

�∑
i=1

‖uni

h −Rduni

h ‖2−1 ≤
Ch2

�

�∑
i=1

‖∇(uni

h −Rduni

h )‖20 ≤ Ch2
l∑

j=d+1

λj ,

where ‖ · ‖−1 denotes the normal of space H−1(Ω)2 (see (2.7)).
We have the following result for the solution of Problem (IV).
Theorem 4.3. Under the hypotheses of Theorem 2.2, Problem (IV) has a unique

solution (und , p
n
d ) ∈ Xd ×Md and satisfies

(4.5) ‖und‖20 + kν

n∑
i=1

‖∇uid‖20 ≤ kν−1
n∑
i=1

‖f i‖2−1.

Proof. Using the same technique as the proof of Theorem 2.2, we could prove
that Problem (IV) has a unique solution (und , p

n
d ) ∈ Xd×Md and satisfies (4.5).

In the following theorem, error estimates of the solution for Problem (IV) are
derived.

Theorem 4.4. Under the hypotheses of Theorem 2.2, if h2 = O(k), k = O(�−2),
snapshots are equably taken, and f ∈ H−1(Ω)2 satisfies 2ν−2N

∑n
i=1 ‖f i‖−1 < 1, then

the error between the solution (und , p
n
d ) for Problem (IV) and the solution (unh, p

n
h) for

Problem (III) has the following error estimates, for n = 1, 2, . . . , L,

(4.6)

‖uni

h − uni

d ‖0 + k1/2‖pni

h − pni

d ‖0 + k1/2‖∇(uni

h − uni

d )‖0

≤ C
⎛
⎝k1/2

l∑
j=d+1

λj

⎞
⎠

1/2

, i = 1, 2, . . . , �;

‖unh − und‖0 + k1/2‖pnh − pnd‖0 + k1/2‖∇(unh − und )‖0

≤ Ck + C

⎛
⎝k1/2

l∑
j=d+1

λj

⎞
⎠

1/2

, n �∈ {n1, n2, . . . , n�}.

Proof. Subtracting Problem (IV) from Problem (III), taking vh = vd ∈ Xd and
qh = qd ∈Md, can yield

(4.7)
(unh − und ,vd) + ka(unh − und ,vd)− kb(pnh − pnd ,vd) + ka1

(
un−1
h ,unh,vd

)
−ka1

(
un−1
d ,und ,vd

)
=

(
un−1
h − un−1

d ,vd
) ∀vd ∈ Xd,

(4.8) b(qd,unh − und ) = 0 ∀qd ∈Md,

(4.9) u0
h − u0

d = 0.

We obtain, from (2.3), (2.7), Theorem 2.2, and Theorem 4.3, by Hölder inequality,
that

(4.10)

|a1

(
un−1
h ,unh,vd

)− a1

(
un−1
d ,und ,vd

) |
= |a1

(
un−1
h − un−1

d ,unh,vd
)

+ a1

(
un−1
d ,unh − und ,vd

) |
≤ C[‖∇ (

un−1
h − un−1

d

) ‖0 + ‖∇(unh − und )‖0]‖∇vd‖0,
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especially, if vd = P dunh − und , then

(4.11)

|a1

(
un−1
h ,unh, P

dunh − und
)− a1

(
un−1
d ,und , P

dunh − und
) |

= |a1

(
un−1
h − un−1

d ,unh, P
dunh − und

)
+ a1

(
un−1
d ,unh − und , P dunh − und

) |
= |a1

(
un−1
h − un−1

d ,unh, P
dunh − unh

)
+ a1

(
un−1
h − un−1

d ,unh,u
n
h − und

)
+ a1

(
un−1
d ,unh − und , P dunh − unh

) |
≤ C‖∇(unh − P dunh)‖20 + ε[‖∇ (

un−1
h − un−1

d

) ‖20 + ‖∇(unh − und )‖20]
+ N‖∇unh‖0‖∇

(
un−1
h − un−1

d

) ‖0‖∇(unh − und )‖0,
where ε is a small positive constant which can be chosen arbitrarily.

Write ∂̄tunh = [unh − un−1
h ]/k and note that ∂̄tund ∈ V d and ∂̄tRdu

n
n ∈ V d. From

Lemma 4.2, (4.7), and (4.10), we have that

(4.12)

‖∂̄tunh − ∂̄tund‖−1 ≤ ‖∂̄tunh − ∂̄tRdunh‖−1 + ‖∂̄tRhunh − ∂̄tund‖−1

≤ ‖∂̄tunh − ∂̄tRdunh‖−1 + sup
v∈V

(
∂̄tRdu

n
h − ∂̄tund ,v

)
‖∇v‖0

= ‖∂̄tunh − ∂̄tRdunh‖−1 + sup
v∈V

(
∂̄tu

n
h − ∂̄tund , Rdv

)
‖∇v‖0

= ‖∂̄tunh − ∂̄tRdunh‖−1 + sup
v∈V

1
‖∇v‖0

[
b (pnh − pnd , Rdv)

−a(unh − und , Rdv)− a1

(
un−1
h ,unh, Rdv

)
+ a1

(
un−1
d ,und , Rdv

) ]
= ‖∂̄tunh − ∂̄tRdunh‖−1 + sup

v∈V

1
‖∇v‖0

[
b
(
pnh − ρdpnh, Rdv

)
−a(unh − und , Rdv)− a1

(
un−1
h ,unh, Rdv

)
+ a1

(
un−1
d ,und , Rdv

) ]
≤ ‖∂̄tunh − ∂̄tRdunh‖−1 + C

[‖pnh − ρdpnh‖0
+ ‖∇ (

un−1
h − un−1

d

) ‖0 + ‖∇(unh − und )‖0
]
.

By using (2.9), (4.7), (4.10), (4.12), and Lemma 4.1, we have that

(4.13)

β‖ρdpnh − pnd‖0 ≤ sup
vh∈Xh

b(ρdpnh − pnd ,vh)
‖∇vh‖0 = sup

vh∈Xh

b(pnh − pnd , rdvh)
‖∇vh‖0

= sup
vh∈Xh

1
‖∇vh‖0

[ (
∂̄tu

n
h − ∂̄tund , rdvh

)
+ a(unh − und , rdv)

+ a1

(
un−1
h ,unh, rdv

)− a1

(
un−1
d ,und , rdv

) ]
≤ C [‖∂̄tunh − ∂̄tund‖−1 + ‖∇ (

un−1
h − un−1

d

) ‖0 + ‖∇(unh − und)‖0
]

≤ C[‖∂̄tunh − ∂̄tRdunh‖−1 + ‖pnh − ρdpnh‖0
+ ‖∇ (

un−1
h − un−1

d

) ‖0 + ‖∇(unh − und)‖0
]
.

Thus, we obtain that

(4.14)
‖pnh − pnd‖0 ≤ ‖pnh − ρdpnh‖0 + ‖ρdpnh − pnd‖0 ≤ C[‖∇ (

un−1
h − un−1

d

) ‖0
+ ‖∇(unh − und)‖0 + ‖∂̄tunh − ∂̄tRdunh‖−1 + ‖pnh − ρdpnh‖0].
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Taking vd = P dunh − und in (4.7), it follows from (4.8) that

(4.15)
(unh − und ,unh − und)−

(
un−1
h − un−1

d ,unh − und
)

+ ka(unh − und ,unh − und )
=

(
unh − und −

(
un−1
h − un−1

d

)
,unh − P dunh

)
+ ka

(
unh − P dunh,unh − P dunh

)
+ kb

(
pnh − ρdpnh,unh − und

)
+ kb

(
pnh − pnd ,unh − P dunh

)
− ka1

(
un−1
h ,unh, P

dunh − und
)

+ ka1

(
un−1
d ,und , P

dunh − und
)
.

Thus, noting that a(a− b) = [a2 − b2 + (a − b)2]/2 (for a ≥ 0 and b ≥ 0), by (4.11),
(4.14), Hölder inequality, Cauchy inequality, and Proposition 3.2, we obtain that

(4.16)
1
2
[‖unh − und‖20 − ‖un−1

h − un−1
d ‖20 + ‖unh − und −

(
un−1
h − un−1

d

) ‖20]
+ νk‖∇(unh − und )‖20 ≤

1
2
‖unh − und −

(
un−1
h − un−1

d

) ‖20 +
1
2
‖unh − P dunh‖20

+ Ck‖∇ (
unh − P dunh

) ‖20 + Ck‖pnh − ρdpnh‖20 + C‖∂̄tunh − ∂̄tRdunh‖2−1

+ (ε1 + Cε2 + ε)k[‖∇(unh − und )‖20 + ‖∇ (
un−1
h − un−1

d

) ‖20]
+

1
2
k[N2γ−1‖∇unh‖20‖∇(un−1

h − un−1
d )‖20 + γ‖∇(unh − und )‖20],

where ε1 and ε2 are two small positive constants which can be chosen arbitrarily.
Taking ε+ ε1 + Cε2 = ν/4, it follows from (4.16) that

(4.17)

[‖unh − und‖20 − ‖un−1
h − un−1

d ‖20
]
+ νk‖∇(unh − und )‖20

≤ ‖unh − P dunh‖20 + Ck‖∇(unh − P dunh)‖20 + Ck‖pnh − ρdpnh‖20
+ C‖∂̄tunh − ∂̄tRdunh‖2−1 +

1
2
kγ‖∇ (

un−1
h − un−1

d

) ‖20
+ kN2γ−1‖∇unh‖20‖∇

(
un−1
h − un−1

d

) ‖20, 1 ≤ n ≤ L.

If h2 = O(k) , 2ν−2N
∑n

j=1 ‖f j‖−1 < 1, n = ni (i = 1, 2, . . . , �), summing (4.17)
from n = n1, n2, . . . , ni (i = 1, 2, . . . , �), let n0 = 0, and noting that u0

h − u0
d = 0 and

� ≤ L, from Lemmas 3.3, 4.1, and 4.2, we obtain that

(4.18)

‖uni

h − uni

d ‖20 + νk‖∇(uni

h − uni

d )‖20 ≤ C
i∑

j=1

‖unj

h − P dunj

h ‖20

+ Ck

i∑
j=1

[‖∇(unj

h − P dunj

h )‖20 + ‖pnj

h − ρdpnj

h ‖20]

+ C

i∑
j=1

[‖unj

h −Rdunj

h ‖2−1 + ‖unj−1
h −Rdunj−1

h ‖2−1]

≤ Ck
l∑

j=d+1

λj , i = 1, 2, . . . , �.
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Thus, we obtain that

(4.19)

‖uni

h − uni

d ‖0 + (νk)1/2‖∇(uni

h − uni

d )‖0

≤ C
⎛
⎝k1/2

l∑
j=d+1

λj

⎞
⎠

1/2

, i = 1, 2, . . . , �.

Combining (4.19) and (4.14), by Lemmas 3.3, 4.1, and 4.2, we obtain the first inequal-
ity of (4.6).

If n �= ni (i = 1, 2, . . . , �), we may as well let t(n) ∈ (t(ni−1), t(ni)) and t(n) be the
nearest point to t(ni). Expanding un and pn into Taylor series with respect to t(ni)

yields that

(4.20)
un = uni − ηik∂u(ξ1)

∂t
, t(n) ≤ ξ1 ≤ t(ni),

pn = pni − ηik∂p(ξ2)
∂t

, t(n) ≤ ξ2 ≤ t(ni),

where ηi is the step number from t(n) to t(ni). If h2 = O(k) , 2ν−2N
∑n

j=1 ‖f j‖−1

< 1, k = O(�−2), summing (4.17) for n1, . . . , ni−1, n, let n0 = 0, and noting that
u0
h − u0

d = 0, from Lemmas 4.1 and 4.2 and Lemma 3.3, we obtain that

(4.21) ‖unh − und‖20 + kγ‖∇(unh − und )‖20 ≤ Cη2k3 + Ck1/2
l∑

j=d+1

λj .

Since snapshots are equably taken, ηi ≤ L/(2�). If k = O(�−2), we obtain that

(4.22) ‖unh − und‖0 + k1/2‖∇(unh − und )‖0 ≤ Ck + C

⎛
⎝k1/2

l∑
j=d+1

λj

⎞
⎠

1/2

.

Combining (4.22) and (4.14), by Lemmas 3.3, 4.1, and 4.2, we obtain the second
inequality of (4.6).

Combining Theorem 2.2 and Theorem 4.4 yields the following result.
Theorem 4.5. Under Theorem 2.2 and Theorem 4.4 hypotheses, the error esti-

mate between the solutions for Problem (II) and the solutions for the reduced order
basic Problem (IV) is, for n = 1, 2, . . . , L, m = 1, 2, 3,

(4.23)

‖un − und‖0 + k1/2‖pn − pnd‖0 + k1/2‖∇(un − und )‖0

≤ Ck + Chm + C

⎛
⎝k1/2

l∑
j=d+1

λj

⎞
⎠

1/2

.

Remark 4.6. Though the constants C in Theorems 4.4 and 4.5 are directly
independent on k, they are indirectly dependent on L. Therefore, if k → 0, that
implies L→∞. The condition k = O(�−2), which implies L = O(�2), in Theorem 4.4
shows the relation between the number � of snapshots and the number L at all time
instances. Therefore, it is unnecessary to take total transient solutions at all time
instances t(n) as snapshots (see, for instance, in [27]–[29]). Theorems 4.4 and 4.5 have
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Fig. 1. Physical model of the cavity flows: t = 0; i.e., n = 0 initial values on boundary.

presented the error estimates between the solution of the reduced MFE formulation
Problem (IV) and the solution of usual MFE formulation Problem (III) and Problem
(II), respectively. Since our methods employ some MFE solutions (unh, p

n
h) (n =

1, 2, . . . , L) for Problem (III) as assistant analysis, the error estimates in Theorem 4.5
are correlated to the spatial grid scale h and time step size k. However, when one
computes actual problems, one may obtain the ensemble of snapshots from physical
system trajectories by drawing samples from experiments and interpolation (or data
assimilation). Therefore, the assistant (unh, p

n
h) (n = 1, 2, . . . , L) could be replaced

with the interpolation functions of experimental and previous results, thus rendering
it unnecessary to solve Problem (III), and requiring only to directly solve Problem
(IV) such that Theorem 4.4 is satisfied.

5. Some numerical experiments. In this section, we present some numeri-
cal examples of the physical model of cavity flows for Mini’s element and different
Reynolds numbers by the reduced formulation Problem (IV), thus validating the fea-
sibility and efficiency of the POD method.

Let the side length of the cavity be 1 (see Figure 1). We first divide the cavity
into 32× 32 = 1024 small squares with side length �x = �y = 1

32 , and then link the
diagonal of the square to divide each square into two triangles in the same direction,
which consists of triangularization �h. Take time step increment as k = 0.001. Except
that u1 is equal to 1 on upper boundary, all other initial value, boundary values, and
(f1, f2) are all taken as 0 (see Figure 1).

We obtain 20 values (i.e., snapshots) at time t = 10, 20, 30, . . . , 200 by solving the
usual MFE formulation, i.e., Problem (III). It is shown by computing that eigenvalues
satisfy [k1/2

∑20
i=7 λi]

1/2 ≤ 10−3. When t = 200, we obtain the solutions of the reduced
formulation Problem (IV) based on the POD method of MFE depicted graphically
in Figures 2 to 5 on the right-hand side employed six POD bases for Re = 750 and
required six POD bases for Re = 1500, while the solutions obtained with usual MFE
formulation Problem (III) are depicted graphically in Figures 2 to 5 on the left-hand
side. (Since these figures are equal to solutions obtained with 20 bases, they are also
referred to as the figures of the solution with full bases.)

Figure 6 shows the errors between solutions obtained with a different number of
POD bases and solutions obtained with full bases. Comparing the usual MFE for-
mulation Problem (III) with the reduced MFE formulation Problem (IV) containing
six POD bases implementing 3000 times the numerical simulation computations, we
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Fig. 2. When Re = 750, velocity stream line figure for usual MFE solutions (on left-hand side
figure) and d = 6, the solution of the reduced MFE formulation (on right-hand side figure).

Fig. 3. When Re = 1500, velocity stream line figure for usual MFE solutions (on left-hand side
figure) and d = 6, the solution of the reduced MFE formulation (on right-hand side figure).

Fig. 4. When Re = 750, pressure figure for usual MFE solution (on left-hand side figure) and
d = 6 solution of reduced MFE formulation (on right-hand side figure).

find that for usual MFE formulation Problem (III) the required CPU time is 6 min-
utes, while for the reduced MFE formulation Problem (IV) with 6 POD bases the
corresponding time is only three seconds; i.e., the usual MFE formulation Problem
(III) required a CPU time which is by a factor of 120 larger than that required by
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Fig. 5. When Re = 1500, the pressure figure for usual MFE solution (on left-hand side figure)
and d = 6 solution of reduced MFE formulation (on right-hand side figure).

Fig. 6. Error for Re = 750 on left-hand side; error for Re = 1500 on right-hand side.

the reduced MFE formulation Problem (IV) with 6 POD bases, while the error be-
tween their respective solutions does not exceed 10−3. It is also shown that finding
the approximate solutions for the nonstationary Navier–Stokes equations with the re-
duced MFE formulation Problem (IV) is computationally very effective. The results
for numerical examples are consistent with those obtained for the theoretical case.

6. Conclusions. In this paper, we have employed the POD technique to de-
rive a reduced formulation for the nonstationary Navier–Stokes equations. We first
reconstruct optimal orthogonal bases of ensembles of data which are compiled from
transient solutions derived by using the usual MFE equation system, while in ac-
tual applications, one may obtain the ensemble of snapshots from physical system
trajectories by drawing samples from experiments and interpolation (or data assimi-
lation). For example, for weather forecast, one may use previous weather prediction
results to construct the ensemble of snapshots to restructure the POD basis for the
ensemble of snapshots by methods of the above section 3. We have also combined
the optimal orthogonal bases with a Galerkin projection procedure, thus yielding a
new reduced MFE formulation of lower dimensional order and of high accuracy for
the nonstationary Navier–Stokes equations. We have then proceeded to derive er-
ror estimates between our reduced MFE approximate solutions and the usual MFE
approximate solutions, and have shown, using numerical examples, that the error
between the reduced MFE approximate solution and the usual MFE solution is con-
sistent with the theoretical error results, thus validating both feasibility and efficiency
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of our reduced MFE formulation. Future research work in this area will aim to ex-
tend the reduced MFE formulation, applying it to a realistic operational atmospheric
numerical weather forecast system and to more complicated PDEs. We have shown
both by theoretical analysis as well as by numerical examples that the reduced MFE
formulation presented herein has extensive potential applications.

Though Kunisch and Volkwein have presented some Galerkin proper orthogonal
decomposition methods for a general equation in fluid dynamics, i.e., for the nonsta-
tionary Navier–Stokes equations in [28], our method is different from their approaches,
whose methods consist of Galerkin projection approaches where the original variables
are substituted for linear combination of POD basis and the error estimates of the
velocity field therein are only derived, their POD basis being generated with the so-
lutions of the physical system at all time instances, while our POD basis is generated
with only few solutions of the physical system which are useful and of interest for us.
Especially, only the velocity field is approximated in [28], while both the velocity field
and the pressure are all synchronously approximated in our present method, and error
estimates of velocity field and pressure approximate solutions are also synchronously
derived. Thus, our method appears to be more optimal than that in [28].

Acknowledgments. The authors thank all referees and Professor Karl Kunisch
for their valued suggestions to this paper very much.
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Abstract. In this paper we present a new, composite, method for the construction of shape-
preserving surfaces approximating a set of spatial data, obtained by combining together: a scheme
for detecting the shape of the data, a new class of tensor-product splines, and a suitable linear
least-squares strategy. This method is mainly conceived for the reconstruction of objects in reverse
engineering.
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1. Introduction. The construction of a mathematical model reproducing given
objects plays an important role in many practical fields (medicine, geology, engineer-
ing, fine arts) essentially because it allows the possibility both of storing them in
archives, databases, or electronic museum catalogs and of analyzing their physical,
mechanical, aesthetic, etc., characteristics. Typically, such a construction is obtained
computing a surface approximating a set of data points taken from the object it-
self; moreover, the measurements often involve a huge amount of data and are (very)
accurate, so that the points furnish a good representation of the shape of the object.

It is clear that the surface must reproduce the main visual features (corners,
ridges, patches with “visually uniform” curvature, etc.), and this requirement pushes
our construction within the frame of the so-called shape-preserving approximation.
It is worthwhile to recall that, despite its importance in practical applications and
in contrast to the contiguous field of shape-preserving interpolation, shape-preserving
approximation has not received a considerable attention. Indeed, the few available
methods concern the construction of parametric curves and, to the best of our knowl-
edge, only the paper [15] has been published on data approximation using parametric
surfaces with shape constraints. The motivation is twofold: first, multivariate ap-
proximation is not an easy problem and becomes very hard when shape constraints
are added,1 and, second, it is intrinsically difficult to define the shape of the data and
thus to properly set the shape constraints.

Suppose we are given a set of points {(tμ,P μ) , μ = 0, . . . ,M} where P μ ∈ R
d,

d = 2, 3, and tμ ∈ R is the associated value of the parameter. In order to bet-
ter understand our strategy, consider for the moment the simpler and better known
problem of constructing interpolating curves. A typical scheme is usually composed
of the following steps. First we compute the piecewise linear curve interpolating the
data points, and, second, we use it for extracting their geometric characteristics (e.g.,
discrete curvature and torsion). Then we construct an interpolating curve using some

∗Received by the editors June 19, 2007; accepted for publication (in revised form) June 4, 2008;
published electronically October 24, 2008. This work was supported by MIUR under project FIRB,
contract RBAU0128CL.
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1Note that also for the much easier problem of functional bivariate interpolation there are few

effective methods.
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kind of splines in tension, that is, splines which depend on a set of tension param-
eters and which can be modified (stretched) so that their shape tends to the shape
of the piecewise linear curve. In other words (a) we construct a reference curve, (b)
define the shape of the data as the shape of the reference curve, and (c) construct an
interpolating (smoother) curve which can reproduce as far as we want the shape of
the reference curve.

The method we have recently proposed for the construction of shape-preserving
approximating curves ([3],[4],[5]) follows essentially the above steps.

If we want to proceed as in (a) we need at first (a.1) to define a knot sequence in
the parameter interval [t0, tM ], extracting from the parameter values {t0, . . . , tM} a
subsequence {u0, . . . , um} (typically m�M), and then (a.2) to construct a piecewise
reference curve which gives a good reproduction of the shape of the data. For (a.1)
we have used the so-called zero moment approach ([1] and references quoted therein,
[18]; see also section 2), which provides an efficient tool for selecting the significant
knots, where the data exhibit a change in the shape. Starting with our experiences
on spatial shape-preserving interpolating curves, in [3] and [4] we used piecewise
linear splines as reference curves, but we soon realized that they were not completely
satisfactory for these purposes. Therefore, on the basis of experimental evidence (see,
e.g., [5], Figure 3) we have used the space S0

2 of C0 piecewise quadratic splines for
constructing the reference curve required in (a.2). We have then (b) defined the shape
of the data as the shape of the selected reference curve and for (c) we have used a new
spline space, isomorphic to the space S2

4 of C2, four degree splines, which “tends” to
S0

2 for limit values of the tension parameters.
We remark that the advantages of using a curve from this new space instead of

the (C0) reference curve itself are in the possibility of locally modifying the shape and
thus in reproducing either smooth sections or sharp corners of the underlying object.

The aim of the present paper is to describe a similar scheme for the construction
of parametric surfaces, approximating a set of spatial data. Such surfaces are given
by tensor product, variable degree polynomial splines, whose parameters are defined
on rectangular grids of the form {u0, . . . , um}⊗{v0, . . . , vn}. The sections in which
this paper is subdivided follow essentially the constructive steps given above.

More specifically, in the next one we present an algorithm for the selection of the
knot lines, describe the construction of the reference surface, and define the shape of
the data. We anticipate that the shape will be defined in terms of the zero moment
of the reference surface. This choice (which does not involve the Gaussian curvature
and only indirectly the mean curvature) is motivated by the good performance in
detecting the shape of the data,2 by the simplicity in the theoretical definition of
the shape constraints, and in the acceptable complexity of their practical implemen-
tation. In order to avoid possible misunderstandings, we remark that the reference
surface is given by a C0 quadratic tensor-product spline, and we cannot expect the
classical shape preserving properties of bilinear splines; therefore, in this paper (as
well as in [5], which deals with approximating curves) there are no standard tension
type theorems, which typically provide conditions for the elimination of extraneous
oscillations. Indeed, our choice is motivated by the good flexibility of the biquadratic
patches which gives a good reproduction of the changes in the shape of the data.

In section 3 we briefly recall some preliminary results, define the space of tensor-
product variable degree splines together with their convergence properties, and then

2A graphical comparison of the zero moments with respect to the mean and Gaussian curvature
for the approximating surface is given in Figures 9 and 10.
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we present a global and a local algorithm for the construction of the final shape
preserving surface.

In section 4 we report the graphical examples, and we close the paper with final
comments, remarks, and anticipations of related works in section 5.

2. The shape of the data. In this section we want to define the shape of the
data. Starting with the experimental observation that several data sets derived from
profiles or sections of real objects are well represented by C0 piecewise quadratic
curves (see [5]), we develop the natural extension of this idea for surface data.

2.1. The zero moment analysis. We assume we are given a set of spatial
data, together with the corresponding parameter values.3 In order to cover the main
practical applications, we will consider data—taken from a function P = P(t, r)—
both with a tensor product topology

P =
{
(tμ, rν ,P μ,ν) : P μ,ν ∈ R

3; μ = 0, . . . ,M ; ν = 0, . . . , N
}

(2.1)

or scattered

P =
{
(tμ, rμ,P μ) : P μ ∈ R

3; μ = 0, . . . , L
}
.(2.2)

In any case we assume that the parameter values are contained in a rectangular
domain D, where, setting T := {t0, t1, . . .} , R := {r0, r1, . . .}

D = [min(T ),max(T )]× [min(R),max(R)] .

As already said in the introduction, the first step of our construction is the detec-
tion of proper sequences of grid lines, taken in the parameter domain. In other words,
we extract from the data parameters two subsequences of knots, U = {u0, . . . , um},
with ui = tμi and V = {v0, . . . , vn} with vj = rνj and subdivide D using the rectangles

Di,j := [ui, ui+1]× [rj , rj+1]

such that the corresponding subsets of points Pi,j define subregions of uniform shape.
In the following subsection we will also use U and V for defining the knot sequences

of the tensor product splines.
The method we propose for such selection is based on some results on zero mo-

ments, described in [1]. First we briefly summarize the basic results of [1], and then
we recall how to use them in order to select the knot sequences (for details see [17]).

Let x : T → R
3 be a parametric surface from the parameter manifold T ⊂ R

2.
In accordance with [1], [18], we state the following.

Definition 1. For any (u, v) ∈ T the zero moment of x at (u, v) is given by the
barycenter M0

ε (x(u, v)) of x(T ) ∩Θε(x(u, v)):

M 0
ε(x(u, v)) :=

1
|x(T ) ∩Θε|

∫
Iε

x dA,(2.3)

where dA is the area element; Θε := Θε(x(u, v)) is the Euclidean ball in R
3 of radius

ε, centered at x(u, v), and the domain of the integral is defined as Iε := {(t, r) ∈ T :
x(t, r) ∈ Θε(x(u, v))}.

3This heavy assumption will be discussed in section 5.
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Using the zero moment we can define difference vector

nε(u, v;x) := M0
ε(x(u, v)) − x(u, v),(2.4)

which will be called the ε-normal; the main result of [1] relates such a vector with the
mean curvature of x(u, v) and the normal vector of the surface at (u, v).

Theorem 1. Let x : T → R
3 be a regular parametric surface. For (u, v) ∈ T

consider a ball of radius ε with center x(u, v). Then

nε(u, v;x) = − ε2
1
6
H(u, v) n(u, v) + o(ε2),(2.5)

where H(u, v) and n(u, v) are, respectively, the mean curvature and the normal vector
of the surface x at (u, v).

From the above theorem we have that ‖nε(u, v;x)‖/ε2 is proportional to the
mean curvature H(u, v), and thus it can be used to select corners or sharp changes
in the shape of x(u, v). Moreover, since the vector nε(u, v;x) lies parallel to the
normal n(u, v), it gives information about convex or concave behaviors of x(u, v), in
a neighborhood of (u, v). In virtue of these considerations, nε(u, v;x) will be called
local ε shape of x.

In view of the contents of the following sections, we remark that the ε-normal can
be defined also at irregular points, still providing geometric information.

In order to select the sequences U and V of knots from the parameter values, we
have to look for both sharp corners and changes in convexity of the data. We need
two algorithms, respectively, Algorithm 1 for data of the forms (2.1) and Algorithm 2
for data of the form (2.2). Such algorithms are extremely important for the success
of our method but also rather complicated and, in order to avoid interruptions in the
reading of the paper, we have preferred to postpone their description until the final
appendix. Here we limit ourselves to say that they are based on the discrete (and
easier) counterpart of (2.3) studied in [17], namely

M 0
ε(P μ,ν) :=

1
card(Θε(P μ,ν))

∑
P q,l∈wnΘε(Pμ,ν)

P q,l

in the case (2.1) or

M 0
ε(P μ) :=

1
card(Θε(P μ))

∑
P q∈Θε(Pμ)

P q

in the case (2.2), and the changes of the corresponding discrete ε-normals

nε(P μ,ν) := M0
ε (P μ,ν)− P μ,ν or nε(P μ) := M0

ε(P μ)− P μ

are compared with tolerances tolpeak and tolcc for detecting, respectively, the peaks
and the lines of convexity changes of the data points. Clearly, a good choice of the
tolerances ε, tolpeak, and tolcc is crucial for a suitable detection of the data subsets
with uniform shape, as distinctly appears, for instance, in Figure 1.

2.2. The reference surface. For an arbitrary sequence of ordered knots
{z0, z1, . . . , zq}, let

S0
2[z0, zq] := {s : [z0, zl]→ R

3 : s ∈ C0[z0, zl] s.t. s|[zi,zi+1]

has components in P2 for i = 0, . . . , q − 1},
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)c()b()a(

Fig. 1. Influence of the input parameters on Algorithm 1: (a) Data points. (b) Gridlines and
reference surface, large tolpeak. (c) Gridlines and reference surface, small tolpeak.

be the space of parametric C0, quadratic splines. We take the parameter sequences
U = {u0, . . . , um} and V = {v0, . . . , vn} given by the algorithms described in the
previous subsection and form the tensor product space of C0 biquadratic parametric
splines

S0
2,U ⊗ S0

2,V := S0
2[u0, um]⊗ S0

2[v0, vn].(2.6)

Let f : D 	→ R
3. We introduce the following semi-norm

|f | :=
√√√√ M∑
μ=0

N∑
ν=0

‖f (tμ, rν)‖22 or |f | :=
√√√√ L∑

μ=0

‖f (tμ, rμ)‖22,(2.7)

respectively, for the cases (2.1) or (2.2). Justified by practical applications (where we
have many and well spread data), we assume the following property.

Assumption 1. The semi-norm (2.7) is a norm for all the (finite dimensional)
tensor-product spline spaces introduced in the present and in the following sections.

Following the scheme proposed in [5] for spatial curves, we construct σ∗ ∈ S0
2,U ⊗

S0
2,V , the best approximation to data.

|σ∗ − P| ≤ |σ − P| , ∀ σ ∈ S0
2,U ⊗ S0

2,V .

Remark 1. Since, obviously, the minimization of |σ − P| is equivalent to that of
|σ − P|2, the computation of σ∗ requires the solution of three independent discrete
least squares problems for the three components of the surface.

We use σ∗ for a comprehensive visual description of the data set; that is, we set
the following definition.

Definition 2. The (local) shape of the data P is given by nε(u, v;σ∗).
We conclude this section by observing that the use of the local ε shape of σ∗ has

the advantage of being both simple and effective in the description of the data shape.

3. The tensor product spline spaces. In this section we want to define the
tensor product space of quartic-like variable degree polynomial splines (VDPS for
short) and analyze its main properties. We start recalling some basic facts on one-
dimensional splines, referring for details to [2] and [5].

3.1. C2 VDPS curves. Let Z = {z0, z1, . . . , zq} be an ordered knot sequence,
let hi := zi+1−zi, i = 0, . . . , q−1, and let K = {k0, . . . , kq}, ki ≥ 4 be a given sequence
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of integers. In the following B�j will denote the jth �-degree Bernstein polynomial and
λ�j the corresponding Bézier control net. In other words B�j = B(�)λ�j where B(�)

is the �-degree Bernstein operator. For each interval [zi, zi+1] we consider the five-
dimensional polynomial space:

V P4,ki,ki+1 = span
{
(1− w)ki , P2, w

ki+1
}
,(3.1)

with w = (z − zi)/hi. Any φi ∈ V P4,ki,ki+1 can be expressed as

φi(w) = e−i (1− w)ki + b2i,0B2
0(w) + b2i,1B2

1(w) + b2i,2B2
2(w) + e+i w

ki+1 ,(3.2)

with e−i , e
+
i , b

2
i,· ∈ R. Note that the break points ξi,0, ξi,1, . . . , ξi,4 of the corresponding

piecewise linear function

λi(w) = e−i λ
ki
0 (w) + b2i,0λ

2
0(w) + b2i,1λ

2
1(w) + b2i,2λ

2
2(w) + e+i λ

ki+1
ki+1

(w)

are located at

ξi,0 = zi, ξi,1 = zi +
hi
ki
, ξi,2 = zi +

hi
2
, ξi,3 = zi+1 − hi

ki+1
, ξi,4 = zi+1

and have values

βi,0 = b2i,0 + e−i , βi,1 =
(

1− 2
ki

)
b2i,0 +

2
ki
b2i,1, βi,2 = b2i,1,

βi,3 =
2

ki+1
b2i,1 +

(
1− 2

ki+1

)
b2i,2, βi,4 = b2i,2 + e+i .

For further references, we explicitly write the break points of λi:

{(ξi,0, βi,0) , (ξi,1, βi,1) , (ξi,2, βi,2) , (ξi,3, βi,3) , (ξi,4, βi,4)} .(3.3)

Obviously φi ∈ Pk̄ where k̄ = max{ki, ki+1}; in [2], Theorem 2.1, the following result
is given.

Theorem 2. The sequence bk̄i,0, . . . , b
k̄
i,k̄

of control points of φi are obtained via
repeated convex combinations of {βi,0, . . . , βi,4}.

The convex combinations quoted in the theorem can be described by degree el-
evation operators (see [12]) and can be represented by a matrix (constructed as the
product of the bidiagonal matrices describing each convex combination/degree eleva-
tion step), namely ⎡

⎢⎢⎢⎢⎣
bk̄i,0
bk̄i,1
...
bk̄
i,k̄

⎤
⎥⎥⎥⎥⎦ = A(k̄)

⎡
⎢⎢⎢⎣
βi,0
βi,1
...
βi,4

⎤
⎥⎥⎥⎦ ; A(k̄) ∈ R

(k̄+1)×5.(3.4)

Given the well-known properties of Bernstein polynomials, Theorem 2 says that φi
lies in the convex hull of {βi,0, . . . , βi,4} and satisfies the usual end tangent conditions.

Using (3.1) we easily define the space of C2 quartic-like VDPS

V S2
4,K = {s ∈ C2[z0, zq] s.t. s(z) = φi(w); φi ∈ V P4,ki,ki+1 ,

z ∈ [zi, zi+1], w = (z − zi)/hi, i = 0, . . . , q − 1}.
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Fig. 2. Some B-spline basis functions: NS
i (solid), ND

i (dashed) with K = {4, 4, 4, 10, 10, 4, 4, 4}.

Let us take an extended knot sequence z−2 < z−1 < z0, zq < zq+1 < zq+2, and an
extended degree sequence k−2 = k−1 = k0, kq = kq+1 = kq+2. In [5] it is shown that
V S2

4,K admits a stochastic and compactly supported B-spline-like basis, denoted by
{ND
−1, N

S
0 , N

D
0 , . . . , N

S
q , N

D
q } (we have adopted this notation for relating this paper

with the geometric construction described in [2], [5]; here it suffices to qualitatively
say that the NS

i and the ND
i are related, respectively, to break and to internal points;

see Figure 2). Note that, for H ∈ {S,D}, NH
i = NH

i (·;Z,K). Figure 2 shows some
B-spline basis functions. A spline curve in R

3 can be constructed as

V S2
4,K = {s : [z0, zq]→ R

3 s.t. has components in V S2
4,K},(3.5)

and any spline curve s ∈ V S2
4,K can be expressed as

s =
q∑
i=0

LS
i N

S
i +

q∑
i=−1

LD
i N

D
i .(3.6)

The points LD
−1,LS

0 ,LD
0 , . . . ,LD

q−1,LS
q ,LD

q are called pseudo-de Boor control points
and play the same role as the classical control points for quartic splines. In partic-
ular, the control points

{
βi,0, . . . ,βi,4

}
of (3.3), corresponding to s|[zi,zi+1], can be

computed with some steps of a corner-cutting procedure (for details see [2]).
Remark 2. We easily see from (3.2) that the computational cost for the evaluation

of φi is approximately the same as for a polynomial of P4. This property is clearly
inherited by the splines of V S (and later by tensor product spline surfaces) which
have a computational cost equivalent to that of quadratic splines in S2

4.

3.2. C2 VDPS surfaces. Given two extended sequences of knots

U = {u−2, . . . , um+2} , V = {v−2, . . . , vn+2}

and two extended sequences of degrees

Ku = {ku−2, . . . , k
u
m+2} , Kv = {kv−2, . . . , k

v
n+2},
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we consider the univariate spaces V S2
4,Ku and V S2

4,Kv as specified in the above sub-
section. The tensor-product space is given by

V S2
4,Ku ⊗ V S2

4,Kv = span
{
NDD
i,j , i = −1, . . . ,m, j = −1, . . . , n;

NDS
i,j , i = −1, . . . ,m, j = 0, . . . , n;

NSD
i,j , i = 0, . . . ,m, j = −1, . . . , n;

NSS
i,j , i = 0, . . . ,m, j = 0, . . . , n

}
,

(3.7)

where the basis functions are given by

NDD
i,j := ND

i (·;U ,Ku)ND
j (·;V ,Kv), NDS

i,j := ND
i (·;U ,Ku)NS

j (·;V ,Kv),
NSD
i,j := NS

i (·;U ,Ku)ND
j (·;V ,Kv), NSS

i,j := NS
i (·;U ,Ku)NS

j (·;V ,Kv).
The plot of some tensor product basis functions is shown in Figure 3 for different
degree sequences.

From Theorem 2 of [5], the following properties immediately hold:
(a) NDD

i,j (u, v) > 0 for u ∈ (ui−1, ui+2) × (vj−1, vj+2) and NDD
i,j (u, v) = 0

otherwise;
NDS
i,j (u, v) > 0 for u ∈ (ui−1, ui+2) × (vj−2, vj+2) and NDS

i,j (u, v) = 0
otherwise;
NSD
i,j (u, v) > 0 for u ∈ (ui−2, ui+2) × (vj−1, vj+2) and NSD

i,j (u, v) = 0
otherwise;
NSS
i,j (u, v) > 0 for u ∈ (ui−2, ui+2) × (vj−2, vj+2) and NSS

i,j (u, v) = 0
otherwise;

(b)
∑m

i=−1

∑n
j=−1N

DD
i,j (u, v) +

∑m
i=−1

∑n
j=0N

DS
i,j (u, v)+∑m

i=0

∑n
j=−1N

SD
i,j (u, v) +

∑m
i=0

∑n
j=0N

SS
i,j (u, v) ≡ 1

(c) NHH
i,j (u, v) for HH ∈ {DD,DS, SD, SS} is an element of the functional

tensor product space (3.7).
Let s ∈ V S2

4,Ku⊗V S2
4,Kv . Obviously, φi,j := s|Di,j

is a bivariate polynomial in the
tensor-product space obtained from (3.1), that is, V P4,ku

i ,k
u
i+1
⊗V P4,kv

j ,k
v
j+1

. Following
the notations of (3.2) and setting ũ = (u − ui)/(ui+1 − ui), ṽ = (v − vj)/(vj+1 − vj)
we have

V P4,ku
i ,k

u
i+1
⊗ V P4,kv

j ,k
v
j+1

= span
({

(1 − ũ)ku
i ,B2

0(ũ),B2
1(ũ),B2

2(ũ), ũk
u
i+1
}

⊗
{
(1− ṽ)kv

j ,B2
0(ṽ),B2

1(ṽ),B2
2(ṽ), ṽ

kv
j+1

})
,

and, recalling (3.3), φi,j admits a bivariate control polygon λi,j defined by the control
points (

ξuvμ,ν , β
uv
μ,ν

)
; ξuvμ,ν = ξuμξ

v
ν , β

uv
μ,ν ∈ R, μ, ν = 0, . . . , 4(3.8)

The space of variable degree parametric surface is given by

V S2
4,Ku ⊗ V S2

4,Kv :=
{
s : [u0, um]× [v0, vn] 	→ R

3 has component in (3.7)
}

(3.9)

and any s ∈ V S2
4,Ku ⊗ V S2

4,Kv can be represented in the form

s =
m∑

i=−1

n∑
j=−1

LDD
i,j N

DD
i,j +

m∑
i=−1

n∑
j=0

LDS
i,j N

DS
i,j

+
m∑
i=0

n∑
j=−1

LSD
i,j N

SD
i,j +

m∑
i=0

n∑
j=0

LSS
i,j N

SS
i,j .

(3.10)
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ND
i ND

j NS
i NS

j

ku
i = kv

j = 4

ku
2 = ku

3 = 40

ku
2 = ku

3 = kv
2 = kv

3 = 40

Fig. 3. Some tensor product B-spline basis functions with different degrees.

As a consequence of the properties of the basis functions, we have that the pseudo-de
Boor control net, defined by the piecewise bilinear function interpolating the points
LDD
i,j ,LDS

i,j ,LSD
i,j , and LSS

i,j in (3.10), plays the role of the usual de Boor control net
for C2 quartic spline surface.

Remark 3. The basis functions NHH
i,j (u, v), HH ∈ {DD,DS, SD, SS}, tend to

the corresponding basis elements of the space S0
2,U ⊗ S0

2,V for limit values of the
degrees. Despite the technical details, the convergence results of subsection 3.4 are
essentially based on this property.
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3.3. Boundary conditions. Given the rectangular shape of the parameter do-
main D, the sections of the surface s along the isoparametric lines u = ui and v = vj
are VDPS spline curves from (3.5). This means that for each parametric lines of the
form

s(u, vj), j = 0, 1, . . . , n; s(ui, v), i = 0, 1, . . . ,m,

we need to add suitable boundary conditions.
For open parametric lines, we consider restricted polynomial spaces at the first

and last subintervals of the knot sequences of the form

V P4,k1 = span
{
P2, w

k1
}
, V P4,kq−1 = span

{
(1 − w)kq−1 ,P2

}
,

and we construct the univariate space V S2
4,K,open as

V S2
4,K,open =

{
s ∈ V S2

4,K : s|[z0,z1] and s|[zq−1,zq ]

have components in V P4,k1 and V P4,kq−1

}
,(3.11)

so that dim(V S2
4,K,open) = dim(S0

2). Also this space admits a B-spline basis,
NS

0 ,ND
0 , . . . ,ND

q−1,NS
q , obtained with a slight modification of the scheme used for

(3.5).
In the case of closed grid lines, we consider the univariate space V S2

4,K,closed of
the form

V S2
4,K,closed =

{
s ∈ V S2

4,K : s =
q−1∑
i=0

(
LS
i NS

i + LD
i ND

i

)}
,(3.12)

where the basis functions NS
i and ND

i are obtained by imposing periodic extension
of the boundary control points:

NS
0 := NS

0 +NS
q , NS

i := NS
i , i = 1, . . . , q − 1,

ND
0 := ND

0 +ND
q , ND

i := ND
i , i = 1, . . . , q − 2,

ND
q−1 := ND

q−1 +ND
−1.

We limit ourselves to say that the properties of B-splines do not hold for the first and
last group of the above functions and refer for details to [5].

Now, due to the tensor product structure, we can construct four different sub-
spaces of V S2

4,Ku ⊗ V S2
4,Kv in (3.9):

(I) The grid line curves s(u, vj) and s(ui, v) are open in both extreme knots, and
then we form the tensor product space:

TV Soo := V S2
4,Ku,open ⊗ V S2

4,Kv,open,

where dim (TV Soo) = (2m+ 1)(2n+ 1). We can set

TV Soo = span
{NDD

i,j , i = 0, . . . ,m− 1, j = 0, . . . , n− 1;
NDS
i,j , i = 0, . . . ,m− 1, j = 0, . . . , n; NSD

i,j , i = 0, . . . ,m, j = 0, . . . , n− 1;
NSS
i,j , i = 0, . . . ,m, j = 0, . . . , n

}
.

(II) The grid line curves s(u, vj) are closed curves and s(ui, v) are open, and then
we form the tensor product space:

TV Sco := V S2
4,Ku,closed ⊗ V S2

4,Kv,open,
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where dim (TV Sco) = 2m(2n+ 1) and

TV Sco = span
{NDD

i,j ,NSD
i,j , i = 0, . . . ,m− 1, j = 0, . . . , n− 1;

NDS
i,j ,NSS

i,j i = 0, . . . ,m− 1, j = 0, . . . , n
}
.

(III) The grid line curves s(u, vj) are open and s(ui, v) are closed, and then we
form the tensor product space:

TV Soc := V S2
4,Ku,open ⊗ V S2

4,Kv,closed,

where dim (TV Soc) = 2n(2m+ 1) and

TV Soc = span
{NDD

i,j ,NDS
i,j i = 0, . . . ,m− 1, j = 0, . . . , n− 1;

NSD
i,j ,NSS

i,j , i = 0, . . . ,m, j = 0, . . . , n− 1
}
.

(IV) The grid line curves s(u, vj) and s(ui, v) are closed in both extreme knots,
and then we form the tensor product space:

TV Scc := V S2
4,Ku,closed ⊗ V S2

4,Kv ,closed,

where dim (TV Scc) = 4mn and we set

TV Scc = span
{NDD

i,j ,NDS
i,j ,NSD

i,j ,NSS
i,j , i = 0, . . . ,m− 1, j = 0, . . . , n− 1

}
.

Note that type (II) is equivalent to impose that

∂(r)

∂u(r)
s(u, v)|(u0,v) =

∂(r)

∂u(r)
s(u, v)|(um,v),

and type (III) is equivalent to impose

∂(r)

∂v(r)
s(u, v)|(u,v0) =

∂(r)

∂v(r)
s(u, v)|(u,vn)

for r = 0, 1, 2.

3.4. Convergence properties. It is clear from Definition (3.1) that, for limit
values of the degrees ki and ki+1, the space V P4,ki,ki+1 “tends” to the space P2, that
is, for any φ ∈ V P4,ki,ki+1 , φ(w) = e−i (1−w)ki + b2i,0B2

0(w) + b2i,1B2
1(w) + b2i,2B2

2(w) +
e+i w

ki+1 , we have

lim
ki,ki+1→∞

φ(w) = b2i,0B2
0(w) + b2i,1B2

1(w) + b2i,2B2
2(w); ∀ w ∈ [a, b] ⊂ (zi, zi+1) .

This property is clearly inherited by the spline space V S4,K which, roughly speaking,
“tends” to S0

2 , the space of continuous quadratic splines. A first result is obtained as
a straightforward consequence of Theorem 3 of [2].

Theorem 3. Let s ∈ TV Sxx, xx ∈ {oo, oc, co, cc}

s(u, v) =
m−1∑
i=0

n−1∑
j=0

LDD
i,j NDD

i,j (u, v) +
m−1∑
i=0

n∑
j=0

LDS
i,j NDS

i,j (u, v)

+
m∑
i=0

n−1∑
j=0

LSD
i,j NSD

i,j (u, v) +
m∑
i=0

n∑
j=0

LSS
i,j NSS

i,j (u, v),
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and let σs ∈ S0
2,U ⊗ S0

2,V be defined by the control net LDD
i,j ,LDS

i,j ,LSD
i,j , and LSS

i,j of
s. Then, for all admissible indices, we have

lim
ku

r ,k
v
l ,k

v
l+1→∞

s(ur, v) = σs(ur, v), v ∈ [vl, vl+1];

lim
ku

r ,k
u
r+1,k

v
l→∞

s(u, vl) = σs(u, vl), u ∈ [ur, ur+1];

and

lim
ku

r ,k
u
r+1,k

v
l ,k

v
l+1→∞

s(u, v) = σs(u, v), (u, v) ∈ [ur, ur+1]× [vl, vl+1].

The above theorem is not sufficient for our shape-preserving purposes. Let σ∗ be
our reference surface as defined in subsection 2.2 and let s∗ be the best approximation
in TV Sxx; that is,

|s∗ − P| ≤ |s− P| , ∀ s ∈ TV Sxx.

Recalling Remark 1, we can easily state the following result.
Theorem 4. If kui , k

v
j →∞; i = 0, . . . ,m, j = 0, . . . , n, then

|s∗ − σ∗| → 0.

Proof. For any s ∈ TV Sxx let us denote with σs the C0 biquadratic spline surface
in S0

2,U⊗S0
2,V defined on the control net of s and, conversely, for any σ ∈ S0

2,U⊗S0
2,V

let us denote with sσ the variable degree tensor product surface having the same
control net as σ. Recalling the notations of subsection 3.2, let Ku� = (ku0,�, . . . , k

u
m,�),

Kv� = (kv0,�, . . . , k
v
n,�) with lim�→∞ kui,� = lim�→∞ kvj,� = ∞, all i, j, and let us denote

s = s(Ku� ,Kv� ). From Theorem 3 we have

lim
�→∞

∣∣∣s∗(Ku� ,Kv� )− σs∗(Ku
� ,Kv

� )

∣∣∣ = 0

and so |s∗(Ku� ,Kv� )− σ∗| → 0 if, and only if, |σs∗(Ku
� ,Kv

� ) − σ∗| → 0.
Suppose that |σs∗(Ku

�
,Kv

�
) − σ∗| �→ 0; then, for some subsequence {Ku�(r),Kv�(r)}

and for a positive constant C, for sufficiently large r we have∣∣∣σs∗(Ku
�(r),Kv

�(r))
− σ∗

∣∣∣ ≥ C.
We recall that the best approximations σ∗ and s∗(Ku�(r),Kv�(r)) are unique; therefore
we have |σs∗(Ku

�(r),Kv
�(r))
−P| > |σ∗−P| and for sufficiently large r, again by Theorem 3,

∣∣∣s∗(Ku�(r),Kv�(r))− P∣∣∣ > ∣∣∣sσ∗(Ku�(r),Kv�(r))− P
∣∣∣ ,

which leads to a contradiction.
We intend now to relate the convergence with shape properties. Using (2.3), (2.4),

and Theorem 4 we have immediately the following result.
Theorem 5. If kui , k

v
j →∞; i = 0, . . . ,m, j = 0, . . . , n, then

nε(u, v; s∗)→ nε(u, v;σ∗).
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Recalling Definition 2 we can summarize the above property by saying that s∗ is
asymptotically shape-preserving. The consequent shape-preserving criterium is for-
malized below (the notation is in accordance with Corollary 2).

Corollary 1. Let δi,j > 0, i = 0, . . . ,m, j = 0, . . . , n. Then there exist
threshold sequences K̃u, K̃v such that for any Ku ≥ K̃u , Kv ≥ K̃v (the inequalities
hold componentwise), and for (u, v) ∈ Di,j

‖nε(u, v; s∗)− nε(u, v;σ∗)‖ ≤ 2δi,j.(3.13)

However we note that its practical use requires extensive checks of the ε-normals
associated to the progressive increases of the degree sequences. A weaker but cheaper
criterium is given below.

Let f∗i,j = s∗|Di,j
and φ∗i,j = σ∗|Di,j

and let the corresponding control points (the
3D analogous of (3.8)) be denoted, respectively, by(

ξuvμ,ν ,β
uv
μ,ν(f

∗
i,j)
)
,
(
ξuvμ,ν ,β

uv
μ,ν(φ

∗
i,j)
)
; μ, ν = 0, . . . , 4.

Lemma 1. Let δi,j > 0 and let
∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φ∗i,j)∥∥ ≤ δi,j ; μ, ν = 0, . . . , 4.

Then, for any (u, v) ∈ Di,j ,
∥∥f∗i,j(u, v)− φ∗i,j(u, v)∥∥ ≤ δi,j.

Proof. Let k̄u = max
{
kui , k

u
i+1

}
, k̄v = max

{
kvj , k

v
j+1

}
, and let B(k̄u), B(k̄v)

the Bernstein operators and A(k̄u), A(k̄v) the degree elevation convex combination
operators (3.4). Obviously the components of φ∗i,j belong to V P4,ku

i ,k
u
i+1
⊗V P4,kv

j ,k
v
j+1

,
and therefore we have (the matrix products apply componentwise)

f∗i,j − φ∗i,j = B(k̄u)A(k̄u)βuv(f∗i,j)A(k̄v)TB(k̄v)T −B(k̄u)A(k̄u)βuv(φ∗i,j)A(k̄v)TB(k̄v)T

= B(k̄u)A(k̄u) (βuv(f∗i,j)− βuv(φ∗i,j))A(k̄v)TB(k̄v)T ,

where βuv(f∗i,j) and βuv(φ∗i,j) denote the matrices of control points. By the property
of convex combination and of Bernstein operators we have, for any (u, v),∥∥f∗i,j(u, v)− φ∗i,j(u, v)∥∥ ≤ max

μ,ν=0,...,4

∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φi,j∗)∥∥ ≤ δi,j
which proves the claim.

For any (u, v) ∈ Di,j , we take the ε-balls Θε(f∗i,j(u, v)) and Θε(φ∗i,j(u, v)) and
define the set

Di,j(ε;u, v) :=
{
(t, r) ∈ Di,j s.t. f∗i,j(t, r) ∈ Θε(f∗i,j(u, v)) ∩Θε(φ∗i,j(u, v))

}
∩{(t, r) ∈ Di,j s.t. φ∗i,j(t, r) ∈ Θε(f∗i,j(u, v)) ∩Θε(φ∗i,j(u, v))

}
and the modified barycenters

M
0

ε(f
∗
i,j(u, v)) :=

1
|f∗i,j(Di,j(ε;u, v))|

∫
Di,j(ε;u,v)

f∗i,j dA,

M
0

ε(φ
∗
i,j(u, v)) :=

1
|φ∗i,j(Di,j(ε;u, v))|

∫
Di,j(ε;u,v)

φ∗i,j dA.

We make the assumption that the subsets Di,j(ε;u, v) are nonempty and defer to
Remark 4 its justification.

We have the following result.
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Lemma 2. Let δi,j > 0 and let
∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φ∗i,j)∥∥ ≤ δi,j ; μ, ν = 0, . . . , 4.

Then, for any (u, v) ∈ Di,j∥∥∥M0

ε (f
∗
i,j(u, v))−M

0

ε(φ
∗
i,j(u, v))

∥∥∥ ≤ δi,j .
Proof. Let q ∈ N, q ≥ kui , kui+1, k

v
j , and kvj+1, and let A(q) be the degree elevation

convex combination operator (3.4). Let λuvq,q(f
∗
i,j) and λuvq,q(φ

∗
i,j) be, respectively, the

q-degree control nets of f∗i,j and φ∗i,j . We recall that λuvq,q(f
∗
i,j) and λuvq,q(φ

∗
i,j) are

continuous piecewise bilinear functions with knots at ūi,α := ui + α(ui+1 − ui)/q,
α = 0, . . . , q, and v̄j,γ := vj + γ(vj+1 − vj)/q, γ = 0, . . . , q, and that

λuvq,q(f
∗
i,j ; ūi,α, v̄j,γ) = A(q)βuv(f∗i,j)A

(q)T ,

λuvq,q(φ
∗
i,j ; ūi,α, v̄j,γ) = A(q)βuv(φ∗i,j)A

(q)T ,

where βuv(f∗i,j) and βuv(φ∗i,j) denote the matrices of control points (the matrix prod-
ucts apply componentwise). Clearly we have∥∥λuvq,q(f∗i,j ; ūi,α, v̄j,γ)− λuvq,q(φ∗i,j ; ūi,α, v̄j,γ)∥∥ ≤ δi,j .(3.14)

We also recall that

lim
q→∞λ

uv
q,q(f

∗
i,j ;u, v) = f∗i,j(u, v), lim

q→∞λ
uv
q,q(φ

∗
i,j ;u, v) = φ∗i,j(u, v).(3.15)

Now we set Rα,γ = [ūi,α, ūi,α+1]× [v̄j,γ , v̄j,γ+1], which we use to define

Δ
(q)

i,j (ε;u, v) :=

⎧⎨
⎩
⋃

(α,γ)

Rα,γ s.t. α, γ = 0, . . . , q − 1; Rα,γ ⊂ Di,j(ε;u, v)
⎫⎬
⎭ .

Note that Δ
(q)

i,j (ε;u, v) ⊂ Di,j(ε;u, v) and

lim
q→∞ dist

(
Δ

(q)

i,j (ε;u, v),Di,j(ε;u, v)
)

= 0.(3.16)

We observe that the values

M
0

ε

(
λuvq,q(f

∗
i,j ;u, v)

)
:=

1

|λuvq,q(f∗i,j ; Δ
(q)

i,j (ε;u, v))|

∫
Δ

(q)
i,j (ε;u,v)

λuvq,q(f
∗
i,j) dA,

M
0

ε

(
λuvq,q(φ

∗
i,j ;u, v)

)
:=

1

|λuvq,q(φ∗i,j ; Δ
(q)

i,j (ε;u, v))|

∫
Δ

(q)
i,j (ε;u,v)

λuvq,q(φ
∗
i,j) dA,

can be computed, respectively, as an average of the points

λuvq,q(f
∗
i,j ; ūi,α, v̄j,γ), λ

uv
q,q(φ

∗
i,j ; ūi,α, v̄j,γ); (ūi,α, v̄j,γ) ∈ Δ

(q)

i,j (ε;u, v);

therefore, from (3.14) we have∥∥∥M 0

ε

(
λuvq,q(f

∗
i,j ;u, v)

)−M 0

ε

(
λuvq,q(φ

∗
i,j ;u, v)

)∥∥∥ ≤ δi,j ,
and the claim follows immediately from (3.15) and (3.16).
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Let us define the modified ε-normals

nε(u, v;f∗i,j) :=M
0

ε(f
∗
i,j(u, v))− f∗i,j(u, v),

nε(u, v;φ∗i,j) :=M
0

ε(φ
∗
i,j(u, v))− φ∗i,j(u, v).

(3.17)

From Lemmas 1 and 2 we have immediately the following results.
Theorem 6. Let δi,j > 0 and let

∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φ∗i,j)∥∥∞ ≤ δi,j ; μ, ν = 0, . . . , 4.

Then, for any (u, v) ∈ Di,j∥∥nε(u, v;f∗i,j)− nε(u, v;φ∗i,j)∥∥∞ ≤ 2δi,j .

Corollary 2. Let the values δi,j > 0, i = 0, . . . ,m, j = 0, . . . , n be given. Then
there exist threshold sequences K̃u and K̃v such that for any Ku ≥ K̃u, Kv ≥ K̃v (the
inequalities hold componentwise)

∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φ∗i,j)∥∥∞ ≤ δi,j ; μ, ν = 0, . . . , 4,(3.18)

so that, for (u, v) ∈ Di,j,∥∥nε(u, v;f∗i,j)− nε(u, v;φ∗i,j)∥∥ ≤ 2δi,j .

We anticipate that in the schemes presented in the next section ε, which defines
the radius of the ε-balls and the ε-normals, is a given input parameter and it is
not adaptively changed during the execution of the algorithms. On the contrary,
the algorithms modify the degree sequences, in order to fulfill the shape-preserving
criteria.

Remark 4. From Theorem 4 and Lemma 1 we have that, for suitable sequences
of the tolerances δi,j or, equivalently, for suitable sequences of the degrees, the center
of the ε-balls Θε(f∗i,j(u, v)) and Θε(φ∗i,j(u, v)) are close enough to guarantee that
Di,j(ε;u, v) �= ∅.

Remark 5. Let

Ii,j
(
ε,f∗i,j ;u, v

)
=
{
(t, r) ∈ Di,j s.t. f∗i,j(t, r) ∈ Θε(f∗i,j(u, v))

}
,

Ii,j
(
ε,φ∗i,j ;u, v

)
=
{
(t, r) ∈ Di,j s.t. φ∗i,j(t, r) ∈ Θε(φ∗i,j(u, v))

}
.

From Theorem 4 and Lemma 1 we have that, if kui , k
v
j →∞, all i, j, then

max
{
dist

(Ii,j (ε,f∗i,j ;u, v) ,Di,j(ε;u, v)) , dist
(Ii,j (ε,φ∗i,j ;u, v) ,Di,j(ε;u, v))}→ 0.

Therefore, for the typical piecewise regular surfaces used in data approximation,
(3.17) furnishes a good approximation of the corresponding ε-normals nε(u, v;f∗i,j)
and nε(u, v;φ∗i,j) given in (2.4).

Remark 6. The implementation of (3.18) is much cheaper than (3.13) since it
requires one only to check the distances of the Bézier control points of s∗ and σ∗.

Remark 7. In view of (2.5) we require that δi,j = o(ε2).
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Fig. 4. Example 1: (a) Data points. (b) Unconstrained approximation.

3.5. The algorithms. The aim of this subsection is to propose two schemes
for the effective construction of an approximating surface. We remark that simpler,
unconstrained approximation methods are often inadequate for a good reproduction
of the underlying object. Consider, for instance, the funnel data of Figure 4(a);
the surface depicted in Figure 4(b) obtained using an unconstrained least square
approximation in the space S2

4⊗S2
4 does not represent the main characteristics of the

object.
The reader should compare this plot with Figure 5(d).

Global Algorithm
Let the data (2.1) or (2.2) and the real, positive numbers ε, δi,j be given.
1. Compute the knot sequences U and V using Algorithm 1 or Algorithm 2 of section 6.
2. Compute σ∗ as specified in subsection 2.1.
3. Set kui = 4, i = 0, . . . ,m; kvj = 4, j = 0, . . . , n.
4. Compute s∗ as described in subsection 3.4.
5. While (3.13) or (3.18) is not satisfied

5.1. Set kui = kui + 1, i = 0, . . . ,m; kvj = kvj + 1, j = 0, . . . , n.
5.2. Compute s∗ as described in subsection 3.4.
This global algorithm produces an approximating surface s∗ which is also shape

preserving in the sense that its ε-normals or modified ε-normals agree in each Di,j
with those of the reference surface σ∗ up to 2δi,j.

The main feature of such a global approach is in the convergence properties. On
the other hand, its main drawback relies intrinsically in its global nature; a single,
cumbersome, patch can force all the degrees to reach large values, and these in turn
force the surface to have everywhere a nonsmooth and unpleasant appearance.

Therefore a local scheme, in which the only degrees related to the cumbersome
patches of the data are increased, would be in some cases preferable. Unfortunately,
in this case we cannot prove results similar to those of Corollaries 1 and 2. The
very reason of this nonconvergence is that, even if f∗i,j = s∗|Di,j

tends to locally
have a piecewise biquadratic shape when kui , k

u
i+1, k

v
j , k

v
j+1 → ∞, it does not tend to

φ∗i,j = σ∗|Di,j
. In other words, s∗ belongs to a TV S space which does no more tend to

the space of S0
2,U ⊗S0

2,V . Therefore the best approximation taken from such a TV S
can be, in general, far from σ∗.

We intend to show how it is possible to overcome this difficulty and obtain a
local scheme, changing the linear least squares problem into a weighted linear least
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Fig. 5. Example 1: (a) Data points. (b) Selected gridlines. (c) Reference surface σ∗. (d)
Shape-preserving approximation in TV Sco.

squares problem (using basically the same idea proposed in [4]). The key fact is that
we accept a compromise, obtaining the convergence at the price of a reduction in the
approximation power. In order to force the spline to locally mimic σ∗ when a local
increase is applied, we work with an extension of the approximation problem. Let

{wμ̄,ν̄ ; μ̄ = 0, . . . , 2m, ν̄ = 0, . . . , 2n}
be a sequence of positive weights. The basic idea is to push s∗ towards σ∗, by inserting

σ∗ (γμ̄, ζν̄) ; μ̄ = 0, . . . , 2m, ν̄ = 0, . . . , 2n

as weighted points in the approximation problem, with

γ2i = ui, i = 0, . . . ,m; γ2i+1 = (ui+1 + ui) /2, i = 0, . . . ,m− 1

and

ζ2j = vj , j = 0, . . . , n; ζ2j+1 = (vj+1 + vj) /2, j = 0, . . . , n− 1.

The points we are going to approximate are

Q = {(tμ rν ,P μ,ν)} ∪ {(γμ̄, ζν̄ ,σ∗ (γμ̄, ζν̄))}
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in case (2.1) or

Q = {(tμ, rμ,P μ)} ∪ {(γμ̄, ζν̄ ,σ∗ (γμ̄, ζν̄))}

in case (2.2). We take a modified semi-norm, given by

〈f〉 :=

√√√√ M∑
μ=0

N∑
ν=0

‖f (tμ, rν)‖22 +
2m∑
μ̄=0

2n∑
ν̄=0

wμ̄,ν̄ ‖f (γμ̄, ζν̄)‖22(3.19)

or by

〈f 〉 :=
√√√√ L∑

μ=0

‖f (tμ, rμ)‖22 +
2m∑
μ̄=0

2n∑
ν̄=0

wμ̄,ν̄ ‖f (γμ̄, ζν̄)‖22.(3.20)

We assume that the following property holds.
Assumption 2. The semi-norm (3.19) or (3.20) is a norm for all the (finite

dimensional) tensor-product spline spaces.
We find s∗ ∈ TV S, the best weighted least squares approximation:

〈s∗ −Q〉 ≤ 〈s−Q〉, ∀ s ∈ TV S.

Note that if wμ̄,ν̄ = 0, all μ̄, ν̄ we have the old approximation problem, and, for given
μ̄, ν̄,

lim
wμ̄,ν̄→∞

s∗ (γμ̄, ζν̄) = σ∗ (γμ̄, ζν̄) .(3.21)

We can use both the weights and the degrees to control the behavior of the surface
in Di,j . Let

MN(i,j) = {(μ̄, ν̄) : μ̄ = 2i, 2i+ 1, 2i+ 2, ν̄ = 2j, 2j + 1, 2j + 2} .

We have the following result, whose proof is a trivial consequence of Theorem 3 and
(3.21).

Theorem 7. Let

wμ̄,ν̄ , k
u
p , k

v
q →∞ for (μ̄, ν̄) ∈MN(i,j), p = i, i+ 1, q = j, j + 1,

and then

s∗(u, v)→ σ∗(u, v), ∀ (u, v) ∈ Di,j .

Now, we also have the following local versions of Corollaries 1 and 2.
Corollary 3. Let δi,j > 0. There exist threshold values w̃μ̄,ν̄ , k̃up , and k̃vq with

(μ̄, ν̄) ∈MN(i,j), p = i, i+1, q = j, and j+1 such that for any wμ̄,ν̄ ≥ w̃μ̄,ν̄ , kup ≥ k̃up ,
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and kvq ≥ k̃vq , and for any (u, v) ∈ Di,j
‖nε(u, v; s∗)− nε(u, v;σ∗)‖ ≤ 2δi,j.(3.22)

Corollary 4. Let δi,j > 0 be given. There exist threshold values w̃μ̄,ν̄ , k̃up , and
k̃vq with (μ̄, ν̄) ∈MN(i,j), p = i, i+ 1, and q = j, j + 1 such that for any wμ̄,ν̄ ≥ w̃μ̄,ν̄ ,
kup ≥ k̃up , and kvq ≥ k̃vq∥∥βuvμ,ν(f∗i,j)− βuvμ,ν(φ∗i,j)∥∥∞ ≤ δi,j ; μ, ν = 0, . . . , 4,(3.23)

so that, for (u, v) ∈ Di,j,∥∥nε(u, v;f∗i,j)− nε(u, v;φ∗i,j)∥∥ ≤ 2δi,j .

Clearly, the larger the weights, the more the approximation to the true data
P deteriorates, and we would like to keep the weights as small as possible while
maintaining the “pleasantness” of the surface. Note that if we increase two consecutive
degrees kui , k

u
i+1 (kvj , k

v
j+1) the effect spreads over the strip corresponding to ui ≤ u ≤

ui+1 (vj ≤ v ≤ vj+1), and if we increase the weights wμ,ν with (μ, ν) ∈ MN (i,j), the
effect is local to Di,j .

A possible, simple strategy is described in the following algorithm.
Local Algorithm
Let the data (2.1) or (2.2) and the real, positive numbers ε, δi,j , Δw be given.
1. Compute the knot sequences U and V using Algorithm 1 or Algorithm 2 of section 6.
2. Compute σ∗ as specified in subsection 2.1.
3. Set kui = 4, i = 0, . . . ,m; kvj = 4, j = 0, . . . , n;

wμ̄,ν̄ = 0, μ̄ = 0, . . . , 2m, ν̄ = 0, . . . , 2n.
4. Compute s∗ as described in subsection 3.4.
5. While (3.22) or (3.23) is not satisfied

5.1. For all i, j compute

ERRi,j = max
{∥∥βuvα,γ(f∗i,j)− βuvα,γ(φ∗i,j)∥∥∞ ; α, γ = 0, . . . , 4

}
.

5.2. Find I, J such that ERRI,J ≥ ERRi,j , all i, j.
5.3. For p = I, I + 1, q = J, J + 1, (μ̄, ν̄) ∈MN(i,j) set

kup = kup + 1; kvq = kvq + 1; wμ̄,ν̄ = wμ̄,ν̄ + Δw

5.4. Compute s∗ as described in subsection 3.4.
Obviously, steps 5.2 and 5.3 could be modified to treat simultaneously more sub-

rectangles (for instance, all Di,j whose errors exceed a threshold value), thus reducing
the computational cost required by instruction 5.4.

4. Graphical examples. In this section we want to discuss the practical appli-
cations of the theory developed in the previous sections with the aid of some graph-
ical tests. As previously said in the introduction, our method is mainly conceived
for applications in reverse engineering, where the surface is typically represented by
well-identifiable patches with a clear geometric shape. Figures 5 and 6 are represen-
tative samples from this field. We have also added other additional examples using
geological (Figure 7) and medical (Figure 8) data, which, being taken beyond the
main field of applications,4 provide severe tests for our method. Indeed, if compared

4Geological data are often used as typical examples of fractal phenomena, in which a smooth
representation could lead to erroneous interpretations.
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Fig. 6. Example 2: (a) Data points. (b) Selected gridlines. (c) Reference surface σ∗.
(d) Shape-preserving approximation in TV Sco. (e) Rotated biquadratic surface σ∗. (f) Rotated
shape-preserving approximation s∗.
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)b()a(

)d()c(

)f()e(

Fig. 7. Example 3: (a) Data surface. (b) Selected gridlines. (c) Reference surface σ∗.
(d) Shape-preserving approximation s∗ ∈ TV Soo. (e) Contour plot of σ∗. (f) Contour plot
of s∗.



APPROXIMATING SURFACES 41

)b()a(

)d()c(

Fig. 8. Example 4: (a) Data surface. (b) The selected gridlines. (c) Reference surface σ∗. (d)
Shape-preserving approximation in TV Sco.

with other pictures, Figures 7 and 8 are aesthetically poor. However, such kind of
data are typically represented using a huge amount of (triangular) surface patches;
here we intend to show that the shape of cumbersome data can be efficiently analyzed
with the zero moment approach and that appreciably results in the representation of
complex objects can be obtained with a single mathematical model composed of a
(relatively) limited number of patches.

We conclude this section with a comparison of the zero-moments with the mean
and Gaussian curvature. In Figure 9 the surface approximating the goblet data of
Figure 6 has been enriched with some color maps. The first two rows show the
normalized mean and Gaussian curvature. The last row shows the length of the
normalized ε-normals, where the sign depends on the position with respect to the
tangent plane. Figure 10 shows the normalized mean curvature, Gaussian curvature,
and ε-normals as bivariate functions in the parameter domain. From this and similar
examples we infer that, despite the inherent differences of the plots, the locations of
the significant changes substantially agree. Therefore, the ε-normals seem to provide
an effective tool both to analyze the data and to set up the shape constraints.
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Fig. 9. Shape analysis of the “goblet” surface. Top: normalized mean curvature. Middle:
normalized Gaussian curvature. Bottom: normalized length of ε-normals.

5. Conclusions. We have presented a new method for the construction of tensor-
product parametric surfaces. Such a method, which, as far as we know, is the first
one dealing with shape-preserving approximation of spatial data, is composed of three
principal steps: a scheme for detecting the shape of the data, the application of a new
class of tensor-product spline, and a suitable linear least-squares strategy, inserted
in a global or in a local algorithm. Its main advantage relies in the possibility of
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Fig. 10. Shape analysis of the “goblet surface”. In clockwise sense: normalized mean curvature,
Gaussian curvature, and length of ε-normals represented as functions in the parameter domain.

using the same mathematical model (our variable degree polynomial spline spaces)
for representing objects composed of patches with different shapes, and by sharp or
smooth edges. The practical results, reported in the previous section, indicate that
appreciable results are obtained at the price of limited computational expenses.

It is important to point out that in the tensor-product approximation all the
points are uniformly treated. However, in practical applications it is common that
some feature curves both summarize the shape of real objects and are crucial for
understanding their physical properties. In other words, there are privileged subsets of
the data points that form a network of fundamental grid lines and must be reproduced
with much more accuracy than the remaining ones. In [6] is proposed a specific method
based on surfaces defined via the Boolean sum of variable degree spline operators.

Several practical experiments, similar to those reported in Figures 7 and 8, suggest
the opportunity of using spline surfaces on triangulations. This approach requires both
the definition of new polynomials over triangular domains, approaching in the limit
quadratic triangular elements, and the definition of the corresponding spline spaces.
The zero-moment analysis must also be adapted to triangulations. These new results
will be collected in a forthcoming paper.

It is worthwhile to point out that both in (2.1) or in (2.2) we have assumed to
know the parameter values corresponding to the data points. It is well known that
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the computation of the parameters, especially for arbitrary spatial data set, is a very
difficult task. For more general applications, our algorithm should be integrated with
some efficient tool, for instance, those proposed in [9], [10], and references therein.

We conclude this paper with some open questions.
The first one concerns a possible adaptive strategy for the zero-moment analy-

sis. A crucial aspect is obviously in the size of ε: small values can detect useless
details, and large values can ignore significant changes of the shape. Following the
idea of adaptive quadrature rules, we could stop the process when we find no or
few differences between the results of two zero-moment analysis obtained with, say,
ε and ε/2. Obviously, when necessary, this scheme could be separately applied and
stopped to different subdivision levels, that is, to different subrectangles with decreas-
ing area.

The second concerns the possible relations between ε-normals and the Bézier
control points. It is well known that important consequences derive from the variation
diminishing property, both for planar (see, e.g., [12]) and for spatial (see [11]) curves,
and, in particular, that the geometric characteristics of the curve can be deduced from
the discrete curvature and torsion of the control points. From a different point of view,
we can say that there are some geometric properties which are invariant with respect
to the refinement of the net5 and are thus inherited by the curve. Nothing similar
occurs for parametric surfaces; the few results concerning the relations between the
discrete geometry of the control points and the mean or Gaussian curvature of the
surface are either very restrictive or very cumbersome (see, e.g., [8], [14], [16]). An
investigation on the possible relations between the discrete ε-normals of the control
points and the ε-normals of the final surface would therefore be very useful.

6. Appendix. Knot Selection: Algorithm 1.
Let the data (2.1) and the real positive numbers ε, tolpeak, and tolcc ∈ [0, 1] be given.
The algorithm computes the knot sequences U and V .
1. Zero-moment computation. For each (tμ, rν ,P μ,ν) ∈ P :

1.1 compute the barycenter M0
ε (P μ,ν) as

M 0
ε(P μ,ν) :=

1
card(Θε(P μ,ν))

∑
P q,l∈Θε(Pμ,ν)

P q,l,

where Θε(P μ,ν) := Θε(tμ, rν ,P μ,ν) is the ball of radius ε centered at
(tμ, rν ,P μ,ν);

1.2 compute the ε-normal, nε(P μ,ν) := nε(tμ, rν ;P μ,ν) as

nε(P μ,ν) := M0
ε(P μ,ν)− P μ,ν .

2. Peak selection
2.1 Find the points (tμ, rν ,P μ,ν) ∈ P such that

‖nε(P μ,ν)‖ = max
P q,l∈Θε/2(Pμ,ν)

{‖nε(P q,l)‖ : ‖nε(P q,l)‖ > ε2 tolpeak}.

2.2 Ppeak ← Ppeak ∪ {(tμ, rν ,P μ,ν)}.

5It is well known that the degree elevation or the (repeated) de Casteljau algorithms [12] produce
finer and finer sets of control points converging to the Bézier curve.
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3. Convexity change selection
3.1 For each (tμ, rν ,P μ,ν) ∈ P compute

αuμ,ν :=
nε(P μ,ν) · nε(P μ+1,nu)
‖nε(P μ,ν)‖ ‖nε(P μ+1,ν)‖ , αvμ,ν :=

nε(P μ,ν) · nε(P μ,ν+1)
‖nε(P μ,ν)‖ ‖nε(P μ,ν+1)‖ .

3.2 Find the points (tμ, rν ,P μ,ν) ∈ P such that

αuμ,ν = min
P q,l∈Θε/2(Pμ,ν)

{αuq,l : αuq,l < −tolcc}.

3.3 Pucc ← Pucc ∪ {P μ,ν}.
3.4 Find the points (tμ, rν ,P μ,ν) ∈ P such that

αvμ,ν = min
P q,l∈Θε/2(Pμ,ν)

{αvq,l : αvq,l < −tolcc}.

3.5 Pvcc ← Pvcc ∪ {(tμ, rν ,P μ,ν)}.
4. Grid-lines extraction

4.1 For each point (tμ, rν ,P μ,ν) ∈ Ppeak,
− U ← U ∪ {tμ},
− V ← V ∪ {rν}.

4.2 For each tμ such that (tμ, rl,P μ,ν) ∈ Pucc, for some l ∈ {0, 1, . . . ,M}
− compute the indicator Iccμ as

Iccμ :=
card(Cuμ)
2(N + 1)

+
1

2(N + 1)

∑
l:∈Cu

μ

|αuμ,l|,

where Cuμ = {l : (tμ, rl,P μ,l) ∈ Pucc};
− if Iccμ > tolcc, then U ← U ∪ {tμ}.

4.3 For each rν such that (tq, rν ,P μ,ν) ∈ Pvcc, for some q ∈ {0, 1, . . . , N}
− compute the indicator J ccν as

J ccν :=
card(Cvν )
2(M + 1)

+
1

2(M + 1)

∑
q:∈Cv

ν

|αvq,j |,

where Cvν = {q : (tq, rν ,P q,j) ∈ Pvcc};
− if J ccν > tolcc, then V ← V ∪ {rν}.

Knot Selection: Algorithm 2.
Let the data (2.2) and the real positive numbers ε, tolpeak, and tolcc ∈ [0, 1] be given.
The algorithm computes the knot sequences U and V .
1. Zero-moment computation. For each (tμ, rμ,P μ) ∈ P

1.1 Compute the barycenter M 0
ε(P μ) as

M0
ε (P μ) :=

1
card(Θε(P μ))

∑
P q∈Θε(Pμ)

P q,

where Θε(P μ) := Θε(tμ, rμ,P μ) in the ball of radius ε centered at (tμ, rμ,
P μ).

1.2 Compute the ε-normal, nε(P μ) := nε(tμ, rμ;P μ) as

nε(P μ) :=M 0
ε(P μ)− P μ.
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2. Peak selection
2.1 Find the points (tμ, rμ,P μ) ∈ P such that

‖nε(P μ)‖ = max
P q∈Θε/2(Pμ)

{‖nε(P q)‖ : ‖nε(P q)‖ > ε2 tolpeak

}
.

2.2 Ppeak ← Ppeak ∪ {(tμ, rμ,P μ)}.
3. Convexity change selection

3.1 For each (tμ, rμ,P μ) ∈ P :
− find the set

Cμ :=
{
q : P q ∈ Θε(P μ) and

nε(P μ) · nε(P q)
‖nε(P μ)‖ ‖nε(P q)‖ < −tolcc

}
;

− compute the indicator of convexity change Fccμ as

Fccμ =
1
2
(Nμ +Aμ),

where

Nμ =
card(Cμ)

card(Θε(P μ))
, Aμ =

∑
q:P q∈Cμ

(1− dq) βq∑
q:P q∈Cμ

(1 − dq) ,

βq =
|nε(P μ) · nε(P q)|
‖nε(P μ)‖ ‖nε(P q)‖ , dq =

||P μ − P q||
ε

.

3.2 Find the points (tμ, rμ,P μ) ∈ P such that

Fccμ = max
P q∈Θε/2(Pμ)

{Fccq : Fccq > tolcc}.

3.3 Pcc ← Pcc ∪ {(tμ, rμ,P μ)}.
4. Grid-lines extraction. For each P μ ∈ Ppeak ∪ Pcc,

− U ← U ∪ {tμ},
− V ← V ∪ {rν}.

In the above algorithms, after the computation of the zero-moments for discrete
data (described at step 1), we look for sharp corners or peaks, in accordance with the
magnitude of ‖nε(P μ,ν)‖ or ‖nε(P μ)‖ (step 2). Step 3 in Algorithms 1 and 2 describes
the selection of convexity changes exploiting the different topology of data. For (2.1),
with a tensor product topology of the data, we select convexity changes by considering
the angles αuμ,ν , α

v
μ,ν between consecutive ε-normals in u and v directions. Then we

assign to each parametric line u = tμ, μ = 0, 1, . . . ,M (v = rν , ν = 0, 1, . . . , N)
an indicator Iccμ ∈ [0, 1] (Iccν ∈ [0, 1]) depending on the angles αuμ,l, l = 0, 1, . . . , N
(αvq,ν , q = 0, 1, . . . ,M) and on the amount of convexity changes on such line. In order
to select as knots the lines associated to the most significant changes in convexity, we
choose the parameters with indicator Iccμ or Iccν greater than a threshold tolerance
(step 4 of Algorithm 1). For the sparse data (2.2), the indicator Fccμ , μ = 0, 1, . . . ,M ,
is a function of the angles between nε(P μ) and the ε-normals of all points contained in
a ball centered at P μ and of the amount of convexity changes inside the ball. Again,
great values of Fccμ ∈ [0, 1] correspond to significant convexity changes. Both peak
points and convexity changes are used in step 4 for the selection of the knot sequences
U and V .
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GEGENBAUER TAU METHODS WITH AND WITHOUT SPURIOUS
EIGENVALUES∗
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Abstract. It is proven that a class of Gegenbauer tau approximations to a fourth order differ-
ential eigenvalue problem of a hydrodynamic type provides real, negative, and distinct eigenvalues,
as is the case for the exact solutions. This class of Gegenbauer tau methods includes Chebyshev
and Legendre Galerkin and “inviscid” Galerkin but does not include Chebyshev and Legendre tau.
Rigorous and numerical results show that the results are sharp: positive or complex eigenvalues
arise outside of this class. The widely used modified tau approach is proved to be equivalent to the
Galerkin method.
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1. Introduction. The Chebyshev tau method used by Orszag [17] to obtain ex-
ponentially accurate solutions of the Orr–Sommerfeld equation yields two eigenvalues
with large positive real parts. Such eigenvalues also occur for the Stokes modes in a
channel given by the fourth order differential equation

(1.1)
(
D2 − α2

)2
u = λ

(
D2 − α2

)
u,

with the boundary conditions u = Du = 0 at x = ±1, where λ is the eigenvalue,
u = u(x) is the eigenfunction, D = d/dx, and α is a real wavenumber. The Stokes
eigenvalues λ are real and negative as can be checked by multiplying (1.1) by u∗,
the complex conjugate of u(x), and by integrating by parts twice using the no-slip
boundary conditions. In fact the Stokes spectrum has been known analytically since
Rayleigh [7, section 26.1]. Yet, the Chebyshev tau method applied to (1.1) yields two
eigenvalues with large positive real parts, for any order of approximation and for any
numerical accuracy. Such eigenvalues are obviously spurious for (1.1). Gottlieb and
Orszag [11, Chapter 13] introduced the eigenvalue problem

(1.2)
D4u = λD2u in − 1 ≤ x ≤ 1,
u = Du = 0 at x = ±1

as an even simpler one-dimensional (1D) model of incompressible fluid flow. This is the
α→ 0 limit of the eigenvalue problem (1.1) and of the Orr–Sommerfeld equation [17].
For any fixed α, problem (1.2) is also the asymptotic equation for large λ solutions
of the Stokes and the Orr–Sommerfeld equations. The eigensolutions of (1.2) are
known analytically. They consist of even modes u(x) = 1 − cos(nπx)/ cos(nπ), with
λ = −n2π2, and odd modes u(x) = x − sin(qnx)/sin(qn), with λ = −q2n, where
qn = tan qn so that nπ < qn < (2n + 1)π/2 ∀ integers n > 0. The key properties of
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Fig. 1.1. Eigenvalues of a 3D steady state solution of the Navier–Stokes equations for plane
Couette flow [21] computed with Chebyshev tau (left) and Chebyshev Galerkin (right) methods for
identical resolutions (8773 modes after symmetry reductions. The solutions themselves are indis-
tinguishable). Note the difference in horizontal scales. The Chebyshev tau method produces 274
eigenvalues with positive real parts, 273 of which are spurious. The Chebyshev Galerkin method
returns only one positive eigenvalue, the physical one, equal to 0.03681 at Reynolds number 1000
[21, Figure 4].

these solutions are that the eigenvalues are real, negative, and distinct, and the even
and odd mode eigenvalues interlace. These properties also hold for the Stokes modes,
the solutions of (1.1) but not for the Orr–Sommerfeld modes.

The Chebyshev tau method provides spectrally accurate approximations to the
lower magnitude eigenvalues, but it also yields two large positive eigenvalues for prob-
lems (1.1) and (1.2) [11, Table 13.1]. Those positive eigenvalues are clearly spurious
since it is known that (1.1) and (1.2) should only have negative eigenvalues. The
Chebyshev tau method yields two spurious eigenvalues for no-slip (i.e., clamped)
boundary conditions u = Du = 0 at x = ±1 but none for the free-slip boundary
conditions u = D2u = 0 at x = ±1. The latter problem reduces to the second order
problem D2v = λv, with v(±1) = 0, for which a class of Jacobi and Gegenbauer
tau methods has been proven to yield real, negative, and distinct eigenvalues [4, 5].
For mixed boundary conditions, e.g., u(±1) = Du(−1) = D2u(1) = 0, there is one
spurious eigenvalue (this is a numerical observation).

For a 1D problem such as (1.1) or (1.2), the spurious eigenvalues are easy to
recognize, and they appear as minor nuisances. Boyd [2, section 7.6] even questions
the value of distinguishing between “spurious” and numerically inaccurate eigenvalues.
However, in many applications, large negative eigenvalues are inconsequential, while
“spurious” positive eigenvalues are very significant, and in higher dimensions, spurious
eigenvalues are not as easy to pick out and set aside. In a recent application, three-
dimensional (3D) unstable traveling wave solutions of the Navier–Stokes equations
were calculated with both free-slip and no-slip boundary conditions, and anything in
between, by Newton’s method [19, 20]. In that application, the Chebyshev tau method
provides hundreds of spurious unstable eigenvalues, depending on the resolution and
the exact type of boundary conditions, not all of which have very large magnitudes
(Figure 1.1, left). A simple change in the test functions from Chebyshev polynomials
Tn(x) to (1− x2)Tn(x) or (1− x2)2Tn(x) eliminates all of those spurious eigenvalues
(Figure 1.1, right). This, and more, is proven below for the test problem (1.2) in the
broader context of Gegenbauer tau methods, which include Chebyshev and Legendre
tau and Chebyshev and Legendre Galerkin methods.
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Another practical consequence of the spurious eigenvalues is that the Chebyshev
tau method is unconditionally unstable when applied to the time-dependent version
of (1.1) or (1.2), with ∂/∂t in place of λ. Such time-dependent problems appear as
building blocks in the Navier–Stokes simulations of channel-type flows. Gottlieb and
Orszag [11, p. 145] proposed a modified tau method for the time-dependent problems
and proved that the modified method was stable for even solutions. The modified tau
method (section 6) is a key idea behind several successful time integration schemes for
the Navier–Stokes equations [3, section 7.3], [14]. The modified tau method amounts
to using two more expansion polynomials for the fourth order differential operator on
the left-hand sides of (1.2) and (1.1) than for the second order operator on the right
hand sides. That modified tau method was adapted to eigenvalue problems by Gadner,
Trogdon, and Douglass [8] and McFadden, Murray, and Boisvert [16]. McFadden,
Murray, and Boisvert showed the equivalence between the modified Chebyshev tau
method and the Chebyshev Galerkin method by direct calculation. Zebib [22] had
given numerical evidence that the Galerkin method removed spurious eigenvalues.
The modified tau method idea was adapted to the collocation formulation by Huang
and Sloan [13].

A heuristic “explanation” for spurious eigenvalues is that there is a “mismatch”
between the number of boundary conditions applied to the fourth order operator on
the left-hand side of (1.2) and those applied to the second order operator on the
right-hand side. That interpretation fits with the modified tau method, which uses
two more polynomials for the fourth order operator than for the second order operator.
However, it is incorrect, since, while the tau method for Chebyshev polynomials of the
first kind Tn(x) gives spurious eigenvalues, for instance, the tau method for Chebyshev
polynomials of the second kind Un(x) does not.

All of these various methods are best seen in the context of the Gegenbauer
class with residuals weighted by W (γ)(x) = (1 − x2)γ−1/2 (section 2), where γ = 0
corresponds to Chebyshev and γ = 1/2 to Legendre polynomials. Dawkins, Dunbar,
and Douglass [6] proved the existence of spurious positive eigenvalues for (1.2) when
γ < 1/2. The proof is straightforward. For (1.2), the polynomial equation for μ = 1/λ
can be derived explicitly (section 4). All coefficients of that polynomial are real and
positive, except the constant term which is negative when γ < 1/2. Hence there is one
real positive μ and a “spurious” positive eigenvalue when γ < 1/2 (details are given in
section 5.2). For γ = 1/2, the Legendre tau case, the constant term is zero, and hence
there is one μ = 0 eigenvalue or a λ = 1/μ = ∞ eigenvalue. Perturbation analysis
shows that the λ =∞ eigenvalues become very large positive eigenvalues for γ < 1/2
and very large negative eigenvalues for γ > 1/2. We provide a quicker derivation of
those results in section 3. Dawkins, Dunbar, and Douglass’s results do not prove that
there are no spurious eigenvalues for γ > 1/2 since there could be complex eigenvalues
with positive real parts. In section 5, we prove that the Gegenbauer tau method
applied to (1.2) provides eigenvalues that are real, negative, and distinct when 1/2 <
γ ≤ 7/2. This provides a complete characterization of the Gegenbauer tau spectrum
for problem (1.2). Numerical calculations confirm that the range 1/2 < γ ≤ 7/2 is
sharp. Spurious positive eigenvalues exist for γ < 1/2 [6], and complex eigenvalues
arise for γ > 7/2, for sufficiently high polynomial order. In section 6, we prove that
the modified tau method is mathematically equivalent to the Galerkin approach.

Obviously, γ = 1/2 is a critical value for the weight function (1− x2)γ−1/2. The
boundaries x = ±1 have infinite weight for γ < 1/2 and zero weight for γ > 1/2,
but we do not know a valid heuristic explanation for “spurious” eigenvalues beyond
that observation, if one exists. Section 3 provides further insights into the nature of
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the spurious eigenvalues and gives some support for the view that “spurious” and
numerically inaccurate eigenvalues are related. In Figure 1.1, for fixed resolution,
the 273 spurious eigenvalues for γ = 0 (Chebyshev tau) escape to +∞ as γ ↗ 1/2
(Legendre tau). They come back from −∞ as γ increases beyond 1/2. Thus there is
indeed a connection between large positive eigenvalues and large negative eigenvalues,
but whether we have “spurious” positive eigenvalues or inconsequential very negative
eigenvalues is sharply controlled by γ, irrespective of the order of approximation n
(see also (3.6)).

2. Tau and Galerkin methods.
Definition 2.1. A Gegenbauer tau method approximates the solution u(x) of a

differential equation in −1 ≤ x ≤ 1 by a polynomial of degree n, un(x), that satisfies
the m boundary conditions exactly. The remaining n+ 1−m polynomial coefficients
are determined by requiring that the residual be orthogonal to all polynomials of degree
n−m (or less) with respect to the Gegenbauer weight W (γ)(x) = (1− x2)γ−1/2, with
γ > −1/2.

For problem (1.2), the residual

(2.1) Rn−2(x) ≡ λD2un(x)−D4un(x)

is a polynomial of degree n − 2 in x. The polynomial approximation un(x) is deter-
mined from the four boundary conditions un(±1) = Dun(±1) = 0 and the require-
ment that Rn−2(x) is orthogonal to all polynomials qn−4(x) of degree n − 4 or less
with respect to the weight function W (γ)(x) = (1−x2)γ−1/2 ≥ 0 in the interval (−1, 1)

(2.2)
∫ 1

−1

Rn−2(x) qn−4(x)W (γ)(x)dx = 0 ∀ qn−4(x).

This provides n−3 equations which, together with the four boundary conditions, yield
n+1 equations for the n+1 undetermined coefficients in the polynomial approximation
un(x). For the Gegenbauer weight function W (γ)(x) = (1−x2)γ−1/2, the residual can
be written explicitly as

(2.3) Rn−2(x) = τ0λG
(γ)
n−2(x) + τ1λG

(γ)
n−3(x)

for some x-independent coefficients τ0 and τ1, where G(γ)
n (x) is the Gegenbauer poly-

nomial of degree n. This follows from orthogonality of the Gegenbauer polynomials in
−1 < x < 1 with respect to the weight (1−x2)γ−1/2, which implies the orthogonality
of the Gegenbauer polynomial of degree k to any polynomial of degree k − 1 or less
with respect to that weight function.

Gegenbauer (a.k.a. ultraspherical) polynomials are a special subclass of the Ja-
cobi polynomials [1]. The latter are the most general class of polynomial solutions
of a Sturm–Liouville eigenproblem that is singular at ±1, as required for faster-
than-algebraic convergence [3]. Gegenbauer polynomials are the most general class
of polynomials with the odd-even symmetry G

(γ)
n (x) = (−1)nG(γ)

n (−x). This is a
one-parameter family of polynomials, with the parameter γ > −1/2. Chebyshev
polynomials correspond to γ = 0 and Legendre polynomials to γ = 1/2. We use a
(slightly) nonstandard normalization of Gegenbauer polynomials since the standard
normalization [1] is singular in the Chebyshev case. Some key properties of Gegen-
bauer polynomials used in this paper are given in Appendix A. Note that if λ = 0,
then, from (2.1), the residual Rn−2(x) must be a polynomial of degree n− 4 implying
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that τ0 = τ1 = 0 in (2.3) and D4un(x) = 0 for all x in (−1, 1). The boundary condi-
tions un(±1) = Dun(±1) = 0 then imply that un(x) = 0 for all x in [−1, 1], the trivial
solution. Hence we can assume that λ 	= 0 in the Gegenbauer tau method applied to
(1.2). Following common usage [11, 3, 22, 16], we have the following definition.

Definition 2.2. The Gegenbauer Galerkin method approximates the solution
u(x) of a differential equation in −1 ≤ x ≤ 1 by a polynomial of degree n, un(x),
that satisfies the m boundary conditions exactly. The remaining n+1−m polynomial
coefficients are determined by imposing the fact that the residual be orthogonal to all
polynomials of degree n (or less) that satisfy the homogeneous boundary conditions
with respect to the Gegenbauer weight W (γ)(x) = (1 − x2)γ−1/2, with γ > −1/2.

Strictly speaking, this a Petrov–Galerkin method since the test functions are not
identical to the trial functions because of the Gegenbauer weight (1− x2)γ−1/2 [3].

For problem (1.2), un(x) is determined from the boundary conditions un(±1) =
Dun(±1) = 0 and the orthogonality with respect to the weight W (γ)(x) = (1 −
x2)γ−1/2 of the residual (2.1) to all polynomials of degree n that vanish together with
their derivative at x = ±1. Such polynomials can be written as (1 − x2)2qn−4(x),
where qn−4(x) is an arbitrary polynomial of degree n− 4, and the weighted residual
equations read

(2.4)
∫ 1

−1

Rn−2(x) (1 − x2)2qn−4(x)W (γ)(x)dx = 0 ∀ qn−4(x).

The Gegenbauer Galerkin method is therefore equivalent to the tau method for the
weight W (γ+2)(x) = (1− x2)2W (γ)(x), and its residual has the explicit form

(2.5) Rn−2(x) = τ0λG
(γ+2)
n−2 (x) + τ1λG

(γ+2)
n−3 (x).

So the Chebyshev (or Legendre) Galerkin method for clamped boundary conditions,
un(±1) = Dun(±1) = 0, is in fact a tau method for Chebyshev (or Legendre) poly-
nomials of the third kind (proportional to the second derivative of Chebyshev (or
Legendre) polynomials (A.5)). Since we consider a range of the Gegenbauer parame-
ter γ, the Gegenbauer tau method also includes some Gegenbauer Galerkin methods.

This suggests an intermediate method where the test functions are polynomials
that vanish at x = ±1 (inviscid boundary conditions only).

Definition 2.3. The Gegenbauer “inviscid Galerkin” method determines un(x)
from the four boundary conditions un(±1) = Dun(±1) = 0 and the orthogonality of
the residual to all polynomials of degree n − 2 that vanish at x = ±1 with respect to
the weight function W (γ)(x) = (1− x2)γ−1/2.

Such test polynomials can be written in the form (1− x2)qn−4(x), where qn−4(x)
is an arbitrary polynomial of degree n − 4, and so the weighted residual equations
read

(2.6)
∫ 1

−1

Rn−2(x) (1 − x2)qn−4(x)W (γ)(x)dx = 0 ∀ qn−4(x).

The Gegenbauer inviscid Galerkin method is therefore equivalent to the Gegenbauer
tau method with weight W (γ+1)(x), and its residual for (1.2) is

(2.7) Rn−2(x) = τ0λG
(γ+1)
n−2 (x) + τ1λG

(γ+1)
n−3 (x).

Thus the Chebyshev (or Legendre) inviscid Galerkin method is a tau method for
Chebyshev (or Legendre) polynomials of the second kind. Since we consider a range of
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the Gegenbauer parameter γ, the Gegenbauer tau method also includes some Gegen-
bauer inviscid Galerkin methods.

For completeness, we list the collocation approach, where un(x) is determined
from the boundary conditions un(±1) = Dun(±1) = 0 and from enforcingRn−2(xj) =
0 at the n − 3 interior Gauss-Lobatto points xj such that DGn−2(xj) = 0, j =
1, . . . , n− 3, [3, section 2.2]. The residual (2.1) has the form [10, equation (4.5)]

(2.8) Rn−2(x) = (A+Bx)DGn−2(x),

for some A and B independent of x. That residual can be written in several equivalent
forms by using the properties of Gegenbauer polynomials (Appendix A). We do not
have rigorous results for the collocation method.

3. Legendre and near-Legendre tau cases. Here we provide a quicker and
more complete derivation of earlier results [6] about spurious eigenvalues for the Leg-
endre and near-Legendre tau cases. This section provides a useful technical introduc-
tion to the problem, but it is not necessary to derive the main results of this paper.
Dawkins, Dunbar, and Douglass [6], focusing only on even modes, use the monomial
basis x2k to derive an explicit form for the generalized eigenvalue problem Aa = λBa
for the Legendre tau method. In the monomial basis, the matrix A is upper trian-
gular and nonsingular, and the matrix B is upper Hessenberg, but its first row is
identically zero; hence there exists one infinite eigenvalue. A perturbation analysis
is used to show that the infinite eigenvalue of the Legendre tau method becomes a
large positive eigenvalue for the Gegenbauer tau methods with γ < 1/2 and a large
negative eigenvalue for γ > 1/2.

In the Legendre tau method, the polynomial approximation un(x) of degree n
to problem (1.2) satisfies the four boundary conditions un = Dun = 0 at x = ±1.
Thus un(x) = (1 − x2)2pn−4(x), and the polynomial pn−4(x) is determined from the
weighted residual equation (2.2), with γ = 1/2 and W (1/2)(x) = 1,

(3.1)
∫ 1

−1

(
μD4un −D2un

)
qn−4(x)dx = 0 ∀ qn−4(x).

The mathematical problem is fully specified, except for an arbitrary multiplicative
constant for un(x). Choosing various polynomial bases for pn−4(x) and qn−4(x) will
lead to distinct matrix problems, but those problems are all similar to each other and
provide exactly the same eigenvalues, in exact arithmetic.

We use the bases G(5/2)
l (x) for pn−4(x) and G

(1/2)
k (x) for qn−4(x), with k, l =

0, . . . , n − 4, where G(γ)
n (x) is the Gegenbauer polynomial of degree n for index γ

(see Appendix A, and recall that G(1/2)
k (x) = Pk(x) are Legendre polynomials). Thus

we write un(x) =
∑n−4

l=0 al (1 − x2)2G(5/2)
l (x) for some n − 3 coefficients al to be

determined. The tau equation (3.1) provides the matrix eigenproblem μAa = Ba or
μ
∑n−4
l=0 A(k, l)al =

∑n−4
l=0 B(k, l)al with

A(k, l) =
∫ 1

−1

D4
[
(1− x2)2G(5/2)

l (x)
]
G

(1/2)
k (x) dx,(3.2)

B(k, l) =
∫ 1

−1

D2
[
(1− x2)2G(5/2)

l (x)
]
G

(1/2)
k (x) dx,(3.3)
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for k, l = 0, . . . , n− 4. Using (B.1), these expressions simplify to

A(k, l) = Cl
∫ 1

−1

[
D2G

(1/2)
l+2 (x)

]
G

(1/2)
k (x) dx,(3.4)

B(k, l) = Cl
∫ 1

−1

G
(1/2)
l+2 (x) G(1/2)

k (x) dx,(3.5)

where Cl = 1
15 (l + 1)(l + 2)(l + 3)(l + 4).

Since the Legendre polynomials G(1/2)
n (x) = Pn(x) are orthogonal with respect to

the unit weight, (3.5) yields that B(k, l) ∝ δk,l+2, where δk,l+2 is the Kronecker delta
so that B(0, l) = B(1, l) = 0, for all l, and B has nonzero elements only on the second
subdiagonal. For A(k, l), use (A.10) to express D2G

(1/2)
l+2 (x) as a linear combination of

G
(1/2)
l (x), G(1/2)

l−2 (x), etc. Orthogonality of the Legendre polynomials G(1/2)
n (x) then

implies that A(k, l) is upper triangular with nonzero diagonal elements. Hence A is
nonsingular, while the nullspace of B is two-dimensional. The eigenvalue problem
μAa = Ba therefore has two μ = 0 eigenvalues. Since the only nonzero elements of
B consists of the subdiagonal B(l+ 2, l), the two right eigenvectors corresponding to
μ = 0 are a = [0, . . . , 0, 1]T and [0, . . . , 0, 1, 0]T , respectively. In other words,

(3.6) un(x) =
(
1− x2

)2
G

(5/2)
n−4 (x) and un(x) =

(
1− x2

)2
G

(5/2)
n−5 (x)

satisfy the boundary conditions and the tau equation (3.1) with μ = 0 = 1/λ, for all
n ≥ 5. One mode is even, and the other one is odd. Likewise, the left eigenvectors
bT = [1, 0 . . . , 0] and [0, 1, 0 . . . , 0] satisfy μbTA = bTB with μ = 0. These results are
for the Legendre case, and μ = 0 corresponds to λ = 1/μ =∞.

Now consider the Gegenbauer tau equations for γ − 1/2 = ε with |ε| � 1, the
near-Legendre case. The equation is (3.1) but with the extra weight factor W (γ)(x) =
(1−x2)ε inside the integral. We can figure out what happens to the μ = 0 eigenvalues
of the ε = 0 Legendre case by perturbation. The matrices A and B and the left and
right eigenvectors, denoted a and b, respectively, as well as the eigenvalue μ, now
depend on ε. Let

A = A0 + εA1 +O
(
ε2
)
, B = B0 + εB1 +O

(
ε2
)
,(3.7)

a = a0 + εa1 +O
(
ε2
)
, b = b0 + εb1 +O

(
ε2
)
,(3.8)

μ = μ0 + εμ1 +O
(
ε2
)
,(3.9)

where A0 and B0 are the matrices obtained above in (3.4) and (3.5) for ε = 0, while
a0 and bH0 are the corresponding right and left eigenvectors so that μ0A0a0 = B0a0

and μ0b
H
0 A0 = bH0 B0. Substituting these ε-expansions in the eigenvalue equation

μAa = Ba and canceling out the zeroth order term, we obtain

(3.10) μ1A0a0 + μ0A1a0 + μ0A0a1 = B1a0 +B0a1 + O(ε).

Multiplying by bH0 cancels out the μ0b
H
0 A0a1 = bH0 B0a1 terms, so we obtain

(3.11) μ1 =
bH0 B1a0 − μ0b

H
0 A1a0

bH0 A0a0
.

This expression is general but simplifies further since we are interested in the pertur-
bation of the zero eigenvalues μ0 = 0. This expression for μ1 is quite simple since b0,
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a0, and A0 are the zeroth order objects. All we need to compute when μ0 = 0 is the
first order correction B1 to the matrix B. But since a0 and b0 have only one nonzero
component as given at the end of the previous paragraph, we need only to calculate
two components of the B matrix. For n even, all that is needed are the first order
corrections to B(0, n−4) for the even mode and to B(1, n−5) for the odd mode. For
n odd, we need B(0, n− 5) for the even mode and B(1, n− 4) for the odd mode; how-
ever, since the even and odd modes decouple in this problem, it suffices to compute
both the even and odd modes in only one case of n even or odd. The matrix elements
in the ε 	= 0 cases are still given by (3.4) and (3.5) but with the extra (1−x2)ε weight
factor inside the integrals. Since G(1/2)

1 (x) = x and G
(1/2)
n (x) = Pn(x), the Legendre

polynomial of degree n, we obtain

B(0, n− 4) = Cn−4

∫ 1

−1

Pn−2(x)
(
1− x2

)ε
dx = εB1(0, n− 4) +O

(
ε2
)
,(3.12)

B(1, n− 5) = Cn−5

∫ 1

−1

x Pn−3(x)
(
1− x2

)ε
dx = εB1(1, n− 5) +O

(
ε2
)
,(3.13)

with Cl as defined in (3.5). The integrals are readily evaluated, and details are provided
in Appendix B. Using (B.2), (B.5), and (B.8), we obtain for the even mode (for n
even) that

(3.14) μ1 =
B1(0, n− 4)
A0(0, n− 4)

=
−4

(n− 2)2(n− 1)2
.

This matches the formula in Dawkins, Dunbar, and Douglass [6, p. 456] since their
2N = n− 4 and 2ν − 1 = 2ε. Likewise using (B.7) and (B.9) for the odd mode (with
n even) yields

(3.15) μ1 =
B1(1, n− 5)
A0(1, n− 5)

=
−4

(n− 4)2(n− 1)2
.

Again if n is odd, then μ1 for the even mode is given by (3.14) but with n − 1 in
lieu of n. Likewise for n odd, the odd mode is given by (3.15) with n + 1 in lieu of
n. Finally since λ = 1/μ, the λ = ∞ eigenvalues in the Legendre tau case become
λ = 1/(εμ1 + O(ε2)) ∼ 1/(εμ1) in the near-Legendre cases. From (3.14) and (3.15),
these eigenvalues will be O(n4/ε). Furthermore they will be positive when ε < 0 (i.e.,
spurious when γ < 1/2) but negative when ε > 0.

4. Characteristic polynomials. For the model problem (1.2), we can bypass
the matrix eigenproblem of section 3 to directly derive the characteristic polynomial
for the eigenvalues μ = 1/λ. To do so, invert (2.1) to express the polynomial approx-
imation D2un(x) in terms of the residual Rn−2(x)

(4.1) D2un(x) = μ

∞∑
k=0

μkD2kRn−2(x),

where μ = 1/λ. The inversion (4.1) follows from the application of the geometric
(Neumann) series for (1− μD2)−1 =

∑∞
k=0 μ

kD2k which terminates since Rn−2(x) is
a polynomial. Thus un(x) can be computed in terms of the unknown tau coefficients
by double integration of (4.1) and the application of the boundary conditions. We
can assume that λ 	= 0 because λ = 0 with un(±1) = Dun(±1) = 0 necessarily
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corresponds to the trivial solution un(x) = 0 ∀x in [−1, 1], as noted in the previous
section.

The Gegenbauer polynomials are even in x for n even and odd for n odd (A.8).
The symmetry of the differential equation (1.2) and of the Gegenbauer polynomials
allows decoupling of the discrete problem into even and odd solutions. This parity
reduction leads to simpler residuals and simpler forms for the corresponding charac-
teristic polynomials. The residual in the parity-separated Gegenbauer case contains
only one term

(4.2) Rn−2(x) = τ0λG
(γ)
n−2(x),

instead of (2.3), where G
(γ)
n (x) is the Gegenbauer polynomial of degree n with n

even for even solutions and odd for odd solutions. Substituting (4.2) in (4.1) and
renormalizing un(x) by τ0 gives

(4.3) D2un(x) =
∞∑
k=0

μkD2kG
(γ)
n−2(x).

For γ > 1/2, the identity (A.5) in the form 2γG(γ)
n−2(x) = DG

(γ−1)
n−1 (x) can be used to

write (4.3) in the form

(4.4) D2un(x) =
1
2γ

∞∑
k=0

μkD2k+1G
(γ−1)
n−1 (x),

which integrates to

(4.5) Dun(x) =
1
2γ

∞∑
k=0

μkD2kG
(γ−1)
n−1 (x) + C,

where C is an arbitrary constant.

4.1. Even solutions. For even solutions un(x) = un(−x), n is even and Dun(x)
is odd so C = 0 in (4.5). The boundary condition Dun(1) = 0 gives the characteristic
equation for μ (for n even and γ > 1/2):

(4.6)
∞∑
k=0

μkD2kG
(γ−1)
n−1 (1) = 0.

4.2. Odd solutions. For odd solutions, un(x) = −un(−x), n is odd and the
boundary condition Dun(1) = 0 requires that

(4.7) C = − 1
2γ

∞∑
k=0

μkD2kG
(γ−1)
n−1 (1).

Substituting this C value in (4.5) and integrating gives

(4.8) 2γ un(x) =
∞∑
k=0

μkD2k−1G
(γ−1)
n−1 (x) − x

∞∑
k=0

μkD2kG
(γ−1)
n−1 (1),

where we must define

(4.9) D−1G
(γ−1)
n−1 (x) =

∫ x

0

G
(γ−1)
n−1 (s) ds =

G
(γ−1)
n (x)−G(γ−1)

n−2 (x)
2(n+ γ − 2)
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since un(x) and n are odd, where we have used (A.10) to evaluate the integral and
the symmetry (A.8) so that Gn(0) = Gn−2(0) = 0 for n odd. The boundary condition
un(1) = 0 yields the characteristic polynomial equation (for n odd and γ > 1/2):

(4.10)
∞∑
k=0

μkD2k−1G
(γ−1)
n−1 (1)−

∞∑
k=0

μkD2kG
(γ−1)
n−1 (1) = 0.

For γ > 3/2, we can use identity (A.5) in the form 2(γ−1)G(γ−1)
n−1 (x) = DG

(γ−2)
n (x)

to write the characteristic equation (4.10) as

(4.11)
∞∑
k=0

μkD2kG(γ−2)
n (1)−

∞∑
k=0

μkD2k+1G(γ−2)
n (1) = 0.

For 1/2 < γ ≤ 3/2, this cannot be used since γ − 2 < −1/2, but using (4.9) for the
D−1 term in the first sum, the characteristic equation (4.10) can be written as

(4.12) μ
∞∑
k=0

μkD2k+1G
(γ−1)
n−1 (1)− G

(γ−1)
n−2 (1)−G(γ−1)

n (1)
2(n+ γ − 2)

−
∞∑
k=0

μkD2kG
(γ−1)
n−1 (1) = 0.

5. Zeros of characteristic polynomials. Here we prove that the zeros of the
characteristic polynomial equations (4.6) and (4.10) are real, negative, and distinct
for 1/2 < γ ≤ 7/2. Some background material is needed.

5.1. Stable polynomials and the Hermite Biehler theorem. A polynomial
p(z) is stable if and only if all of its zeros have negative real parts. Stable polynomials
can arise as characteristic polynomials of a numerical method applied to a differential
equation as in [5] for Du = λu, with u(1) = 0, and in other dynamical systems
applications. The characterization of stable polynomials that is most useful here is
given by [12], [18, p. 197].

Theorem 5.1 (the Hermite Biehler theorem). The real polynomial p(z) =
Ω(z2) + zΘ(z2) is stable if and only if Ω(μ) and Θ(μ) form a positive pair.

Definition 5.2. Two real polynomials Ω(μ) and Θ(μ) of degree n and n− 1 (or
n), respectively, form a positive pair if

(a) the roots μ1, μ2, . . . , μn
of Ω(μ) and μ

′
1, μ

′
2, . . . , μ

′
n−1

(or μ
′
1, μ

′
2, . . . , μ

′
n
) of

Θ(μ) are all distinct, real, and negative;
(b) the roots interlace as follows: μ1 < μ

′
1 < μ2 < · · · < μ

′
n−1

< μn < 0 (or
μ

′
1 < μ1 < · · · < μ

′
n
< μ

n
< 0);

(c) the highest coefficients of Ω(μ) and Θ(μ) are of like sign.
We will use the following theorem about positive pairs [15, p. 198].
Theorem 5.3. Any nontrivial real linear combination of two polynomials of

degree n (or n and n− 1) with interlacing roots has real roots.
(Since such a linear combination changes sign n− 1 times along the real axis, it

has n − 1 real roots. Since it is a real polynomial of degree n, the remaining root is
real also.)

5.2. Eigenvalues for even modes. In [5] and [4] we study the Gegenbauer tau
method for D2u = λu, with u(±1) = 0, which leads to the characteristic polynomial∑∞

k=0 μ
kD2kG

(γ)
n (1). The derivation of that result is entirely similar to that in sections

2 and 4. The strategy to prove that the Gegenbauer tau method for that second order
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problem has real, negative, and distinct roots is to show the stability of the polynomial

(5.1) p(z) =
n∑
k=0

zkDkG(γ)
n (1)

for −1/2 < γ ≤ 3/2, then to use the Hermite Biehler theorem to deduce the following
theorem.

Theorem 5.4. For −1/2 < γ ≤ 3/2, the polynomials

(5.2) Ω(γ)
n (μ) =

∞∑
k=0

μkD2kG(γ)
n (1) and Θ(γ)

n (μ) =
∞∑
k=0

μkD2k+1G(γ)
n (1)

form a positive pair. From (A.5) this is equivalent to stating that the polynomials

(5.3) Ω(γ)
n (μ) =

∞∑
k=0

μkD2kG(γ)
n (1) and Ω(γ+1)

n−1 (μ) =
∞∑
k=0

μkD2kG
(γ+1)
n−1 (1)

also form a positive pair. Combining the γ and γ+1 ranges in (5.3) yields that Ω(γ)
n (μ)

has real, negative, and distinct roots for −1/2 < γ ≤ 5/2.
The stability of (5.1) is proven in [5, Theorem 1] for the broader class of Jacobi

polynomials. The basic ideas of the proof are along the lines of Gottlieb [9] and
Gottlieb and Lustman’s work [10] on the stability of the Chebyshev collocation method
for the first and second order operators.

For the fourth order problem (1.2), D4u = λD2u, with u(±1) = Du(±1) = 0, the
Gegenbauer tau method gives the characteristic polynomial (4.6) for even solutions.
This is the polynomial Ω(γ−1)

n−1 (μ) of (5.3) that appears for the second order problem
[4, 5] and is known to have real, negative, and distinct eigenvalues for −1/2 < γ−1 ≤
5/2, that is, for 1/2 < γ ≤ 7/2. Hence it follows directly from (4.6) and Theorem 5.4
that the Gegenbauer tau approximation for even solutions of problem (1.2), D4u =
λD2u, with u(±1) = Du(±1) = 0, has real, negative, and distinct eigenvalues for
1/2 < γ ≤ 7/2.

This result is sharp. For γ > 7/2 and sufficiently large n, our numerical com-
putations show that the polynomial has a pair of complex eigenvalues. For γ < 1/2
the polynomial (4.6) has a real positive eigenvalue as first proven in [6]. The proof
goes as follows. For γ < 1/2 we cannot use (4.5) since γ − 1 is below the range of
definition of Gegenbauer polynomials (Appendix A). Instead, integrate (4.3) and use
identity (A.10) to obtain

∫ 1

0
G

(γ)
n−2dx = (G(γ)

n−1(1) − G
(γ)
n−3(1))/(2(γ + n − 2)) since

Gn−1(0) = Gn−3(0) = 0 for n even (A.8). Using formula (A.11), one shows that
G

(γ)
n (1) increases with n if γ > 1/2 but decreases with n if γ < 1/2. Hence the con-

stant term is negative for γ < 1/2, while all the other coefficients of the characteristic
polynomial can be shown to be positive using (A.5) and (A.11). Therefore there is one
real positive eigenvalue as proved in [6]. For γ = 1/2, the Legendre case, the constant
term vanishes, and there is a μ = 0 (λ =∞) eigenvalue as established in section 3.

Remark 1. Exact even solutions of D4u = λD2u, with u(±1) = Du(±1) = 0,
obey D3u = λDu + C, with C = 0, since D3u and Du are odd. Thus even solution
eigenvalues of (1.2) are equal to the eigenvalues for odd solutions of the second order
problem D2w = λw with w = 0 at x = ±1, with w = Du. The Gegenbauer tau
version of this property is that eigenvalues for even Gegenbauer tau solutions of (1.2)
of order n (even) and index γ are equal to the eigenvalues for odd Gegenbauer tau
solutions of D2w = λw, w(±1) = 0, of order n−1 (odd) and index γ−1. This follows
directly from (4.6) and [4, 5].
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5.3. Eigenvalues for odd modes. The reduction of the fourth order problem
(1.2) to the second order problem does not hold for odd modes which have the char-
acteristic equation (4.10). In fact, all previous theoretical work focused only on the
even modes [6, 11]. The same general strategy as for the even case led us to prove
the stability of a shifted version of polynomial (5.1).

Theorem 5.5. Let G(γ)
n (x) denote the nonstandard Gegenbauer polynomial of

degree n as defined in Appendix A; then the polynomial

(5.4) p(γ)
n (z) =

G
(γ)
n−1(1)−G(γ)

n+1(1)
2(n+ γ)

+
n∑
k=0

zkDkG(γ)
n (1)

is stable for −1/2 < γ ≤ 1/2.
The proof is elementary but technical; it is given in Appendix C. We also need the

following simple lemma. This lemma will help us determine the sign of the coefficients
of the characteristic polynomials.

Lemma 5.6. With G(γ)
n (x) as defined in Appendix A, the expression

(5.5) Dk+1G(γ)
n (1)−DkG(γ)

n (1) ≥ 0

for k = 0, . . . , n− 1 and γ > −1/2.
Proof. From (A.13)

(5.6) DkG(γ)
n (1) =

2k−1Γ(γ + k)Γ(n+ 2γ + k)
(n− k)!Γ(γ + 1)Γ(2γ + 2k)

,

where Γ(z) is the standard gamma function. For k > 0 and given that γ > −1/2, the
sign of the above expression is positive since all individual terms are positive. In the
k = 0 case, the sign of the expression is determined by the term Γ(γ)

Γ(2γ) since all other
terms are positive. If −1/2 < γ < 0, both numerator and denominator are negative,
and thus their ratio is positive. If γ > 0, the two terms are positive, and thus again
their ratio is positive. For γ = 0 a simple limiting argument shows positiveness again;
in fact from (A.14), G(0)

n (1) = Tn(1)/n = 1/n.
Taking the ratio Dk+1G

(γ)
n (1)/DkG

(γ)
n (1) and making some simplifications gives

(5.7)
Dk+1G

(γ)
n (1)

DkG
(γ)
n (1)

=
(2γ + n+ k)(n− k)

(2γ + 2k + 1)
.

Since k ≤ n− 1, then 2γ + 2k + 1 ≤ 2γ + (n− 1) + k + 1 = 2γ + n+ k. Thus

(5.8)
Dk+1G

(γ)
n (1)

DkG
(γ)
n (1)

≥ 1, k = 0, . . . , n− 1,

and since both derivatives are positive, the lemma follows.
We now have all of the tools to prove the following theorem.
Theorem 5.7. The Gegenbauer tau approximation to problem (1.2) has real,

negative, and distinct eigenvalues for 1/2 < γ ≤ 7/2. This γ range is sharp, spurious
positive eigenvalues exist for γ < 1/2, and complex eigenvalues arise for 7/2 < γ.

Proof. This has already been proven in section 5.2 for even solutions. For odd
solutions, we need to consider two separate cases.
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Case 1 (3/2 < γ ≤ 7/2). The characteristic polynomial (4.11)

(5.9)
∞∑
k=0

μkD2k G(γ−2)
n (1) −

∞∑
k=0

μkD2k+1G(γ−2)
n (1) = Ω(γ−2)

n (μ)−Θ(γ−2)
n (μ)

is a linear combination of the polynomials Ω(γ−2)
n (μ) and Θ(γ−2)

n (μ), which form a
positive pair for 3/2 < γ ≤ 7/2, by Theorem 5.4. Therefore, by Theorem 5.3, this
characteristic polynomial has real roots. Then, by Lemma 5.6, we deduce that all of
its coefficients are of the same sign, and hence all of its roots must be negative.

Case 2 (1/2 < γ ≤ 3/2). The polynomial

(5.10) p
(γ−1)
n−1 (z) = Λ

(
z2
)

+ zΦ
(
z2
)
,

with p
(γ)
n (z) as in Theorem 5.5, is stable for the desired range of parameters by

Theorem 5.5, and so the Hermite Biehler theorem (Theorem 5.1) implies that the
polynomials

(5.11) Λ(μ) =
G

(γ−1)
n−2 (1)−G(γ−1)

n (1)
2(n+ γ − 2)

+
∞∑
k=0

μkD2kG
(γ−1)
n−1 (1)

=
G

(γ−1)
n−2 (1)−G(γ−1)

n (1)
2(n+ γ − 2)

+ Ω(γ−1)
n−1 (μ)

and

(5.12) Φ(μ) =
∞∑
k=0

μkD2k+1G
(γ−1)
n−1 (1) = Θ(γ−1)

n−1 (μ)

form a positive pair, with Ω(γ)
n (μ) and Θ(γ)

n (μ) as defined in Theorem 5.4. Thus μΦ(μ)
and Λ(μ) have interlacing roots, and any real linear combination of the two must have
real roots (Theorem 5.3). Now the characteristic polynomial (4.12) is in fact the linear
combination μΦ(μ)− Λ(μ), so it has real roots. Its constant term is equal to

(5.13)
G

(γ−1)
n (1)−G(γ−1)

n−2 (1)
2(n+ γ − 2)

−G(γ−1)
n−1 (1),

which is negative if −1/2 < γ−1 ≤ 1/2, that is, 1/2 < γ ≤ 3/2, from (A.11). All other
coefficients of the characteristic polynomial μΦ(μ)−Λ(μ) are negative by Lemma 5.6.
Since all coefficients have the same sign and all roots are real, all of the roots must
be negative.

6. Galerkin and modified tau methods. Our main Theorem 5.7 can be ex-
pressed in terms of the inviscid Galerkin and Galerkin methods since these methods
are equivalent to Gegenbauer tau methods with index γ + 1 and γ + 2, respectively,
as shown in section 2.

Corollary 6.1. The Gegenbauer inviscid Galerkin approximation to problem
(1.2) has real, negative, and distinct eigenvalues for −1/2 < γ ≤ 5/2.

Corollary 6.2. The Gegenbauer Galerkin approximation to problem (1.2) has
real negative eigenvalues for −1/2 < γ ≤ 3/2.
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Corollary 6.3. Since Chebyshev corresponds to γ = 0 and Legendre to γ = 1/2,
the Chebyshev and Legendre tau approximations to problem (1.2) have spurious eigen-
values, but the Chebyshev and Legendre inviscid Galerkin (γ = 1 and 3/2, respectively)
and Galerkin (γ = 2 and 5/2, respectively) approximations provide real, negative, and
distinct eigenvalues.

Finally, we prove that the modified tau method introduced by Gottlieb and Orszag
[11] and developed by various authors [8, 16] is equivalent to the Galerkin method.
McFadden, Murray, and Boisvert [16] have already shown the equivalence between
the modified Chebyshev tau and the Chebyshev Galerkin methods. Our simpler proof
generalizes their results to the Gegenbauer class of approximations.

The idea for the modified tau method, widely used for time marching, starts with
the substitution v(x) = D2u(x). Problem (1.2) reads

(6.1) D2u = v, D2v = λv, with u = Du = 0 at x = ±1.

If we approximate u(x) by a polynomial of degree n, then v = D2u suggests that v
should be a polynomial of degree n− 2; however, the modified tau method approxi-
mates both u(x) and v(x) by polynomials of degree n,

un(x) =
n∑
k=0

ûkG
(γ)
k (x), D2un(x) =

n−2∑
k=0

û
(2)
k G

(γ)
k (x),

vn(x) =
n∑
k=0

v̂kG
(γ)
k (x), D2vn(x) =

n−2∑
k=0

v̂
(2)
k G

(γ)
k (x),

(6.2)

where the superscripts indicate the Gegenbauer coefficients of the corresponding
derivatives. These can be expressed in terms of the Gegenbauer coefficients of the
original function using (A.10) twice, as in the Chebyshev tau method [3, 17]. Hence
there are 2n+2 coefficients to be determined, û0, . . . , ûn and v̂0, . . . , v̂n. In the modi-
fied tau method, these are determined by the four boundary conditions and the 2n−2
tau equations obtained from orthogonalizing the residuals of both equations D2u = v
and D2v = λv to the first n− 1 Gegenbauer polynomials G(γ)

0 (x), . . . , G(γ)
n−2(x) with

respect to the Gegenbauer weight (1 − x2)γ−1/2. In terms of the expansions (6.2),
these weighted residual equations have the simple form

(6.3)
û

(2)
k =v̂k, 0 ≤ k ≤ n− 2,

v̂
(2)
k =λv̂k, 0 ≤ k ≤ n− 2.

McFadden, Murray, and Boisvert [16] showed that the modified Chebyshev tau is
equivalent to the Chebyshev Galerkin method for this particular problem. We provide
a simpler proof for the general setting of Gegenbauer polynomials.

Theorem 6.4. The modified Gegenbauer tau method proposed in [11] is equivalent
to the Gegenbauer Galerkin method for problem (1.2).

Proof. Let the polynomial approximations and their derivatives be as in (6.2).
Then the tau equations (6.3) are equivalent to the residual equations

(6.4)
vn(x)−D2un(x) = v̂n−1G

(γ)
n−1(x) + v̂nG

(γ)
n (x),

(λ−D2)vn(x) =λv̂n−1G
(γ)
n−1(x) + λv̂nG

(γ)
n (x).
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Combining the two yields

(6.5)(
λ−D2

)
D2un(x) = v̂n−1D

2G
(γ)
n−1(x) + v̂nD

2G(γ)
n (x), un(±1) = Dun(±1) = 0,

which using (A.5) is equivalent to

(6.6)
(
λ−D2

)
D2un(x) = τ0λG

(γ+2)
n−2 (x)+ τ1λG

(γ+2)
n−3 (x), un(±1) = Dun(±1) = 0,

with v̂n = 4λ(γ + 1)(γ + 2)τ0 and v̂n−1 = 4λ(γ + 1)(γ + 2)τ1. This is exactly the
Gegenbauer Galerkin method as given in (2.5).

Since the modified Gegenbauer tau method is equivalent to the Galerkin method,
the results in section 5 imply that the modified tau method for problem 1.2 has real
and negative eigenvalues for −1/2 < γ ≤ 3/2. This includes Chebyshev for γ = 0 and
Legendre for γ = 1/2.

Appendix A. Gegenbauer (ultraspherical) polynomials. The Gegenbauer
(a.k.a. ultraspherical) polynomials C(γ)

n (x), γ > −1/2, of degree n, are the Jacobi
polynomials, with α = β = γ − 1/2, up to normalization [1, 22.5.20]. They are
symmetric (even for n even and odd for n odd) orthogonal polynomials with weight
function W (γ)(x) = (1−x2)γ−1/2. Since the standard normalization [1, 22.3.4] is sin-
gular for the Chebyshev case γ = 0, we use a nonstandard normalization that includes
the Chebyshev case but preserves the simplicity of the Gegenbauer recurrences. Set

(A.1) G
(γ)
0 (x) := 1, G(γ)

n (x) :=
C

(γ)
n (x)
2γ

, n ≥ 1.

These Gegenbauer polynomials satisfy the orthogonality relationship

(A.2)
∫ 1

−1

(1− x2)γ−1/2G(γ)
m G(γ)

n dx =
{

0, m 	= n,
hγn, m = n,

where [1, 22.2.3]

(A.3) hγ0 =
π2−2γΓ(2γ + 1)

Γ2(γ + 1)
and hγn =

π2−1−2γΓ(n+ 2γ)
(n+ γ)n!Γ2(γ + 1)

, n ≥ 1.

The Sturm–Liouville form of the Gegenbauer equation for G(γ)
n (x) is

(A.4) D
[
(1− x2)γ+1/2DG(γ)

n (x)
]

= −n(n+ 2γ) (1− x2)γ−1/2G(γ)
n (x).

They satisfy the derivative recurrence formula

(A.5)
d

dx
G

(γ)
n+1 = 2(γ + 1)G(γ+1)

n

(for C(γ)
n this is formula [2, A.57]), and their three-term recurrence takes the simple

form

(A.6) (n+ 1)G(γ)
n+1 = 2(n+ γ)xG(γ)

n − (n− 1 + 2γ)G(γ)
n−1, n ≥ 2,

with

(A.7) G
(γ)
0 (x) = 1, G

(γ)
1 (x) = x, G

(γ)
2 = (γ + 1)x2 − 1

2
.
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These recurrences can be used to verify the odd-even symmetry of Gegenbauer poly-
nomials [1, 22.4.2]

(A.8) G(γ)
n (x) = (−1)nG(γ)

n (−x).

Differentiating the recurrence (A.6) with respect to x and subtracting from the cor-
responding recurrence for γ + 1 using (A.5) yields [1, 22.7.23]

(A.9) (n+ γ)G(γ)
n = (γ + 1)

[
G(γ+1)
n −G(γ+1)

n−2

]
, n ≥ 3.

Combined with (A.5), this leads to the important derivative recurrence between
Gegenbauer polynomials of same index γ

G
(γ)
0 (x) = DG

(γ)
1 (x), 2(1 + γ)G(γ)

1 (x) = DG
(γ)
2 (x),

2(n+ γ)G(γ)
n =

d

dx

[
G

(γ)
n+1 −G(γ)

n−1

]
.

(A.10)

Evaluating the Gegenbauer polynomial at x = 1, we find [1, 22.4.2]

(A.11)

G(γ)
n (1) =

1
2γ
C(γ)
n (1) =

1
2γ

(
2γ + n− 1

n

)
=

(2γ + n− 1)(2γ + n− 2) · · · (2γ + 1)
n!

=
Γ(2γ + n)
n! Γ(2γ + 1)

for n ≥ 2, with G
(γ)
1 (1) = G

(γ)
0 (1) = 1, where Γ(z) is the standard gamma function

[1]. Note that G(γ)
n (1) > 0 for γ > −1/2 and that it decreases with increasing n if

−1/2 < γ < 1/2 but increases with n if 1/2 < γ.
Now (A.5) gives

(A.12)
dkG

(γ)
n

dxk
(x) =

2kΓ(γ + k + 1)
Γ(γ + 1)

G
(γ+k)
n−k (x),

which coupled with (A.11) gives

(A.13)
dkG

(γ)
n

dxk
(1) =

2k−1Γ(γ + k)Γ(n+ 2γ + k)
(n− k)!Γ(γ + 1)Γ(2γ + 2k)

, n ≥ 1.

Gegenbauer polynomials correspond to Chebyshev polynomials of the first kind Tn(x)
when γ = 0, to Legendre polynomials Pn(x) for γ = 1/2, and to Chebyshev polyno-
mials of the second kind Un(x) for γ = 1. For the nonstandard normalization,

(A.14) G(0)
n (x) =

Tn(x)
n

, G(1/2)
n (x) = Pn(x), G(1)

n (x) =
Un(x)

2
.

Appendix B. Integrals and asymptotics. As shown in section 3, the tau
equation (3.1) provides a matrix eigenproblem of the form μAa = Ba. To reduce the
coefficients A(k, l) and B(k, l) defined in (3.2) and (3.3) to the expressions (3.4) and
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(3.5), respectively, use (A.4) and (A.5) repeatedly:

D2
[
(1− x2)2G(5/2)

l (x)
]

=
1
5
D2
[
(1− x2)2DG(3/2)

l+1 (x)
]

(B.1)

= −1
5
(l + 1)(l + 4)D

[
(1− x2)G(3/2)

l+1 (x)
]

= − 1
15

(l + 1)(l + 4)D
[
(1 − x2)DG(1/2)

l+2 (x)
]

=
1
15

(l + 1)(l + 2)(l + 3)(l + 4)G(1/2)
l+2 (x)

≡ ClG(1/2)
l+2 (x).

For the perturbation analysis described in section 3, we need the first order corrections
to B(0, n− 4) and to B(1, n− 5). From (3.12) and (3.13)

B1(0, n− 4) = lim
ε→0

Cn−4

ε

∫ 1

−1

Pn−2(x)
(
1− x2

)ε
dx,(B.2)

B1(1, n− 5) = lim
ε→0

Cn−5

ε

∫ 1

−1

x Pn−3(x)
(
1− x2

)ε
dx.(B.3)

To evaluate
∫ 1

−1 Pn(x)(1−x2)εdx to O(ε) for |ε| � 1 and n even, use (A.4) for γ = 1/2
and integration by parts to derive

(B.4)

∫ 1

−1

Pn(x)
(
1− x2

)ε
dx =

−1
n(n+ 1)

∫ 1

−1

D
[(

1− x2
)
DPn

] (
1− x2

)ε
dx

=
ε

n(n+ 1)

∫ 1

−1

DPn
(
1− x2

)ε
(−2x)dx.

This integral is 0 if n is odd since Pn(x) = (−1)nPn(−x). Since we have an ε pre-
factor, we can now set ε = 0 in the integral and do the remaining integral by parts to
obtain

(B.5)

∫ 1

−1

Pn(x)
(
1− x2

)ε
dx ∼ −2ε

n(n+ 1)

∫ 1

−1

xDPndx

=
−2ε

n(n+ 1)

∫ 1

−1

(D(xPn)− Pn) dx

=
−2ε

n(n+ 1)
(Pn(1) + Pn(−1)) =

−4ε
n(n+ 1)

for n even (0 for n odd as it should be).
For the integral in (B.3), use the recurrence (A.6) for γ = 1/2 to write (2n −

5)xPn−3(x) = (n−2)Pn−2(x)+(n−3)Pn−4(x) and evaluate the resulting two integrals
from (B.5). Hence, for n even,

B1(0, n− 4) ∼− 4Cn−4

(n− 2)(n− 1)
,(B.6)

B1(1, n− 5) ∼− 4Cn−5

(n− 4)(n− 1)
.(B.7)
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Now for A0(0, n− 4), A0(1, n− 5), and n even, we have

A0(0, n− 4) =Cn−4

∫ 1

−1

D2Pn−2(x)dx = (n− 2)(n− 1)Cn−4,(B.8)

A0(1, n− 5) =Cn−5

∫ 1

−1

xD2Pn−3(x)dx = (n− 4)(n− 1)Cn−5.(B.9)

Appendix C. Proof of Theorem 5.5. Consider

(C.1) fn(x; z) =
∞∑
k=0

zkDkG(γ)
n (x) +K

(
G(γ)
n (x) −G(γ)

n+2(x)
)
,

where z is a solution of fn(1; z) = 0 and K is

(C.2) K =

(
G

(γ)
n−1(1)−G(γ)

n+1(1)
)

2(n+ γ)
(
G

(γ)
n (1)−G(γ)

n+2(1)
) = · · · = n+ 2

2(n+ γ + 1)(n+ 2γ − 1)
,

where we have used (A.11). Note that fn(1; z) = p
(γ)
n (z) defined in Theorem 5.5.

Taking the x-derivative of fn(x; z) and using (A.10), we find

(C.3)
dfn(x; z)
dx

=
∞∑
k=0

zkDk+1G(γ)
n (x)− 2K(n+ γ + 1)G(γ)

n+1(x).

Thus fn(x; z) satisfies the following differential equation,

(C.4) fn(x; z)− (1+K)G(γ)
n (x)+KG

(γ)
n+2(x) = z

dfn(x; z)
dx

+z2K(n+γ+1)G(γ)
n+1(x).

Multiplying by (1 + x)df
∗
n(x;z)
dx , integrating in the Gegenbauer norm, and adding the

complex conjugate, we get

(C.5)
∫ 1

−1

d|fn|2
dx

(1 + x)w(x)dx − (1 +K)
(∫ 1

−1

(1 + x)
df∗n
dx

G(γ)
n (x)w(x)dx + C.C.

)

+K

(∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+2(x)w(x)dx + C.C.

)
= (z + z∗)

∫ 1

−1

∣∣∣∣dfndx
∣∣∣∣
2

(1 + x)w(x)dx

+
(
z2K(n+ γ + 1)

∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+1(x)w(x)dx + C.C.

)
,

where C.C. denotes the complex conjugate. To simplify (C.5) we need to compute
four simple integrals:

(C.6)

I1 =
∫ 1

−1

d|fn|2
dx

(1 + x)w(x)dx,

J0 =
∫ 1

−1

(1 + x)
df∗n
dx

G(γ)
n (x)w(x)dx,

J1 =
∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+1(x)w(x)dx,

J2 =
∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+2(x)w(x)dx.
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Using integration by parts, the first integral becomes

(C.7) I1 =
∫ 1

−1

d|fn|2
dx

(1 + x)w(x)dx = −
∫ 1

−1

|fn|2(1− 2γx)
w(x)
1− xdx.

Therefore, the integral is negative for −1/2 < γ ≤ 1/2 since for this range of param-
eters 1− 2γx is positive.

For the calculation of the three other integrals, we are going to need the expres-
sions

dfn
dx

=
∞∑
k=0

zkDk+1G(γ)
n (x)− 2K(γ + n+ 1)G(γ)

n+1(x),(C.8)

=Pn−2(x; z) + 2(γ + n− 1)G(γ)
n−1(x)− 2K(γ + n+ 1)G(γ)

n+1(x),(C.9)

=Pn−1(x; z)− 2K(γ + n+ 1)G(γ)
n+1(x),(C.10)

where Pn−2(x; z) and Pn−1(x; z) are polynomials of degree n−2 and n−1, respectively.
With the use of (C.9) and the orthogonality of the Gegenbauer polynomials, we

find

(C.11)

J0 =
∫ 1

−1

(1 + x)
df∗n
dx

G(γ)
n (x)w(x)dx

= 2(n− 1 + γ)
∫ 1

−1

xG
(γ)
n−1(x)G

(γ)
n (x)w(x)dx − 2K(n+ 1 + γ)∫ 1

−1

xG
(γ)
n+1(x)G

(γ)
n (x)w(x)dx

= n

∫ 1

−1

(
G(γ)
n (x)

)2

w(x)dx −K(n+ γ + 1)
n+ 1
n+ γ

∫ 1

−1

(
G

(γ)
n+1(x)

)2

w(x)dx

= nh(γ)
n −K

(n+ γ + 1)(n+ 1)
n+ γ

h
(γ)
n+1,

where we have also used (A.5) and (A.6). In the same way, we compute

(C.12)

J2 =
∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+2(x)w(x)dx

= −K
∫ 1

−1

2(n+ γ + 1)xG(γ)
n+1(x)G

(γ)
n+2(x)w(x)dx

= −K(n+ 2)h(γ)
n+2

and

(C.13)

J1 =
∫ 1

−1

(1 + x)
df∗n
dx

G
(γ)
n+1(x)w(x)dx

= −2K(n+ γ + 1)
∫ 1

−1

(1 + x)(G(γ)
n+1(x))

2w(x)dx

−2K(n+ γ + 1)
∫ 1

−1

(G(γ)
n+1(x))

2w(x)dx

= −2K(n+ γ + 1)h(γ)
n+1.
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Thus (C.5) transforms to

(C.14)

−
∫ 1

−1

|fn|2 (1− 2γx)w(x)
(1− x) dx− 2(1 +K)

(
nh(γ)

n −K
(n+ γ + 1)(n+ 1)

n+ γ
h

(γ)
n+1

)

−2K2(n+2)h(γ)
n+2 = (z+z∗)

(∫ 1

−1

∣∣∣∣dfndx
∣∣∣∣
2

(1 + x)w(x)dx − 4K2(n+ 1 + γ)2h(γ)
n+1

)
.

Our task is to show that the left-hand side of the above expression is negative, whereas
the coefficient of the term z+z∗ on the right-hand side is positive. A simple calculation
shows that

(C.15) nh(γ)
n −K

(n+ γ + 1)(n+ 1)
(n+ γ)

h
(γ)
n+1 = nh(γ)

n −
(n+ 1)(n+ 2)

(n+ γ)(n+ 2γ − 1)
h

(γ)
n+1

=
π2−1−2γΓ(n+ 2γ)
γ2Γ2(γ)n!(n+ γ)

(
n− (n+ 2)(n+ 2γ)

2(n− 1 + 2γ)(n+ 1 + γ)

)

≥ π2−1−2γΓ(n+ 2γ)
γ2Γ2(γ)n!(n+ γ)

(
n− (n+ 2)(n+ 1)

(n− 2)(2n+ 1)

)
.

The last parenthesis is positive for n ≥ 3.
For the right-hand side, we use the notation in (C.10) to get

(C.16)
∫ 1

−1

∣∣∣∣dfndx
∣∣∣∣
2

(1 + x)w(x)dx − 4K2(n+ 1 + γ)2h(γ)
n+1

=
∫ 1

−1

(1 + x)
(
|Pn−1(x; z)|2 − 2K(n+ 1 + γ)G(γ)

n+1(x)
(Pn−1(x; z) + P∗n−1(x; z)

)
+ 4K2(n+ 1 + γ)2(G(γ)

n+1(x))
2
)
w(x)dx − 4K2(n+ 1 + γ)2h(γ)

n+1

=
∫ 1

−1

(1+x)|Pn−1(x; z)|2w(x)dx+0+0+4K2(n+1+γ)2h(γ)
n+1−4K2(n+1+γ)2h(γ)

n+1

=
∫ 1

−1

(1 + x) |Pn−1(x; z)|2 w(x)dx > 0.

Thus (C.14) becomes

(C.17)

−
∫ 1

−1

|fn|2 (1− 2γx)w(x)
(1− x) dx− 2(1 +K)

(
nh(γ)

n −K
(n+ γ + 1)(n+ 1)

n+ γ
h

(γ)
n+1

)

− 2K2(n+ 2)h(γ)
n+2 = (z + z∗)

∫ 1

−1

(1 + x) |Pn−1(x; z)|2 w(x)dx,

and (z) < 0.
For n = 2 we get the following characteristic polynomial:

(C.18) f
(γ)
2 (1; z) =

2
3
(γ + 1)

(
3z2 + 3z + 1

)
,
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whose zeros

(C.19) z1 = −1
2
−
√

3i
6
, z2 = −1

2
+
√

3i
6

have negative real parts for any γ.
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NUMERICAL ALGORITHM FOR CALCULATING THE
GENERALIZED MITTAG-LEFFLER FUNCTION∗

HANSJÖRG SEYBOLD† AND RUDOLF HILFER‡

Abstract. A numerical algorithm for calculating the generalized Mittag-Leffler Eα,β(z) function
for arbitrary complex argument z and real parameters α > 0 and β ∈ R is presented. The algorithm
uses the Taylor series, the exponentially improved asymptotic series, and integral representations
to obtain optimal stability and accuracy of the algorithm. Special care is applied to the limits of
validity of the different schemes to avoid instabilities in the algorithm.

Key words. special functions of mathematical physics, fractional calculus, generalized Mittag-
Leffler functions, numerical algorithms
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1. Introduction. The (generalized) Mittag-Leffler function Eα,β(z) is an entire
function with two parameters α and β. The function Eα,1(z) is named after Mittag-
Leffler, who introduced it in 1903 in a publication on Laplace–Abel integrals [10, 11,
12]. Shortly after its introduction it was generalized by Wiman [21].

The generalized Mittag-Leffler function with a nonnegative argument is com-
pletely monotone if and only if 0 < α ≤ 1, Re(β) ≥ α [18].

In the special case β = 1 and 0 < α ≤ 1, complete monotonicity was already
conjectured by Feller and later proved by Pollard in 1948 [2, 16]. Analytical inves-
tigations on the distribution of the zeros in the complex plane were published by
Wiman [21, 22], and numerical results are given in [7, 19].

In recent years fractional calculus has become a popular topic in physics and
engineering [8]. Fractional equations of motion are widely accepted for describing
viscoelasticity and anomalous diffusion [5, 6, 8, 9, 24]. The generalized Mittag-Leffler
function plays a central role in fractional calculus and its applications because it
is closely related to the eigenfunction of the fractional derivative operator [8, 17].
Progress in this field requires the calculation of the exact numerical values of the
generalized Mittag-Leffler function for arbitrary complex arguments and the study of
its properties.

The Mittag-Leffler function shows very different behaviors in the complex plane
with varying parameters α and β, so different approaches have to be used for different
regions in the complex plane. We present a stable and robust numerical method based
on recursion relations, exponentially improved asymptotics, and integral representa-
tions for calculating the generalized Mittag-Leffler function for real parameters α > 0
and β and arbitrary complex argument z.

The article is organized as follows: First, we give an overview of the formulas used
for the calculation in section 2 and introduce the partitioning of the complex plane
in section 3. Then, we present the error estimates starting with the series expansions
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(section 4). Finally, we discuss the numerical details of the algorithm in section 5 and
present the results of extensive numerical calculations in the last section (section 6),
comparing the speed and stability of the algorithm.

2. Overview. This section gives an overview of the numerical algorithm. The
generalized Mittag-Leffler function is an entire function defined by the following power
series:

(2.1) Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

for z ∈ C, α > 0, and β ∈ R. If |z| < 1, finitely many terms of the power series are
sufficient to approximate Eα,β(z) with arbitrary precision. The error estimates are
given in section 4.

The case α ≥ 1 will be reduced to the case α < 1 using the following recursion
relation [2, 15]:

(2.2) Eα,β(z) =
1

2m+ 1

m∑
h=−m

Eα/(2m+1),β

(
z1/(2m+1)e2πih/(2m+1)

)
,

which is valid for all α, β ∈ R, z ∈ C, and m = [(α − 1)/2] + 1. Here [x] denotes the
largest integer less than or equal to x.

For large values |z| � 1 the exponentially improved asymptotic series with the
Berry-type smoothing transition gives a fast approximation of the Mittag-Leffler func-
tion. If | arg(z)| > πα, the asymptotic series is given by [2]

(2.3) Eα,β(z) ∼ −
∞∑
k=1

z−k

Γ(β − αk) ,

while for | arg(z)| < πα we find the following series:

(2.4) Eα,β(z) ∼ 1
α
z(1−β)/α ez

1/α −
∞∑
k=1

z−k

Γ(β − αk) .

In the transition area around the Stokes lines | arg(z)| < πα ± δ, with δ < πα/2, we
have the Berry-type smoothing given by

(2.5) Eα,β(z) ∼ 1
2α
z(1−β)/α ez

1/α

erfc
(
−c(θ)

√
|z|1/α/2

)
−
∞∑
k=1

z−k

Γ(β − αk)

around the lower Stokes line for −3πα/2 < arg(z) < πα/2, where the parameter c is
given by the relation 1

2c
2 = 1 + iθ − eiθ, with θ = arg(z1/α) + π and the principle

branch of c is chosen such that c ≈ θ+ i
6θ

2− 1
36θ

3 for small θ [23]. Around the upper
Stokes line πα/2 < arg(z) < 3πα/2, one finds that

(2.6) Eα,β(z) ∼ 1
2α
z(1−β)/α ez

1/α

erfc
(
c(θ)

√
|z|1/α/2

)
−
∞∑
k=1

z−k

Γ(β − αk) ,

with 1
2c

2 = 1 + iθ − eiθ, θ = arg(z1/α) − π, and the same condition as before for
small θ. This exponentially improved asymptotic series converges very rapidly for
most values of z ∈ C, with |z| > 1. The Stokes phenomenon and the Berry-type
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smoothing for the Mittag-Leffler function have been investigated recently in [13, 23].
In an intermediate range r0 ≤ |z| ≤ r1 between the Taylor series and the asymp-

totic expansion, we use Wiman’s integral representation [2, p. 210]

(2.7) Eα,β(z) =
1

2πi

∫
C

yα−β ey

yα − z dy

for calculating Eα,β(z). The values r0 where the Taylor series ends and r1 where
the asymptotic series starts will be specified later. The path of integration C in the
complex plane starts and ends at −∞ and encircles the circular disc |y| ≤ |z|1/α in the
positive sense. Equation (2.7) can be obtained by inserting the Hankel representation
of the inverse Γ-function into the Taylor series and bending the contour in the complex
plane.

3. Partitioning of the complex plane. In different regions of the complex
plane the Mittag-Leffler function shows different kinds of behavior. Therefore different
calculation schemes are needed for different regions. The following definitions are used
to describe these regions. First,

(3.1) D(r) = {z ∈ C : |z| ≤ r}
is the closure of the open disk D(r) = {z ∈ C : |z| < r} of radius r centered at the
origin. Next, we define the wedges

W(φ1, φ2) = {z ∈ C : φ1 < | arg(z)| < φ2},(3.2)
W(φ1, φ2) = {z ∈ C : φ1 ≤ | arg(z)| ≤ φ2},(3.3)

where φ2−φ1 is the opening angle measured in a positive sense and φ1, φ2 ∈ (−π, π).
On a disc

(3.4) G0 = D(r0)

of radius r0 < 1, the Taylor series (2.1) gives a good approximation of the generalized
Mittag-Leffler function. For the algorithm we choose r0 = 0.95.

For large values of |z| ∈ C exponentially improved asymptotics can be used to
calculate Eα,β(z). Equation (2.4) is used for z in

(3.5) G1 = [C \ D(r1)] ∩W(−πα+ δ, πα− δ)
and (2.3) for z in

(3.6) G2 = [C \ D(r1)] ∩W

(
πα+ δ̃,−πα− δ̃

)
,

where r1 > r0 will be defined in (4.21) and δ and δ̃ are numbers smaller than πα/2.
In the algorithm δ and δ̃ are chosen to be

(3.7) δ = πα/8 and δ̃ = min{πα/8, (π + πα)/2}.
Close to the Stokes lines | arg(z)| = πα, the approximation scheme with the series
(2.3) and (2.4) becomes unstable, so the Berry-type smoothed asymptotic series (2.6)
is used in the area around the upper Stokes line

(3.8) G3 = [C \ D(r1)] ∩W

(
πα− δ, πα+ δ̃

)
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Re(z)

Im(z)

(a)

γ(1/2, πα)

γ(1/2, 2πα/3)

Re(z)

Im(z)

(b)

Fig. 1. Figure (a) shows the partitioning of the complex plane for calculating the generalized
Mittag-Leffler function Eα,β(z). The thick dashed lines mark the Stokes line at arg(z) = ±πα. In the
central light gray region G0, finitely many terms of the Taylor series (2.1) give a good approximation
for the generalized Mittag-Leffler function. The black crosshatched region marks G6 (left) and the
black hatched one G5 (right), where the integral representations (4.31), (4.32) and (4.25), (4.26),
respectively, are used for the calculations. The asymptotic series (2.4) and (2.3) are used in the gray
hatched regions G1 (left) and G2 (right). Berry-type smoothing is applied in the gray solid areas:
(2.6) in the upper region G3 and (2.5) in the lower one G4. In (b) the integration contours for the
two cases ϑ = πα (solid line) and ϑ = 2πα/3 (dashed line) are shown. While (4.25) and (4.26) are
used in the crosshatched region corresponding to (G6), (4.31) and (4.32) are used for the part where
the hatching runs at 45◦ (G5).

and (2.5) close to the lower one

(3.9) G4 = [C \D(r1)] ∩W

(
−πα− δ̃,−πα+ δ

)
.

In the transition area between the Taylor series and the asymptotic expansion, we
make use of Hankel’s integral representation for the generalized Mittag-Leffler function
(2.7). We employ two different contour paths to avoid numerical problems which arise
in other algorithms [4] when z is too close to the contour path. The two regions G5

and G6 are defined by

G5 = D(r1) ∩W(−5πα/6, 5πα/6) \G0,(3.10)
G6 = D(r1) ∩W(5πα/6,−5πα/6) \G0,(3.11)

where W(−5πα/6, 5πα/6) and W(5πα/6,−5πα/6) are defined as in (3.3) and (3.2),
respectively. The different regions are shown in Figure 1.

4. Error estimates.

4.1. Taylor series. For z ∈ G0 finitely many terms of the Taylor series are
sufficient to approximate the generalized Mittag-Leffler function for arbitrary α > 0
and β ∈ R. The maximum number of terms N taken into account is chosen such that
the error

(4.1) RN (z) =

∣∣∣∣∣Eα,β(z)−
N∑
k=0

zk

Γ(αk + β)

∣∣∣∣∣ ≤ ε
is smaller than a given accuracy ε.
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Theorem 4.1. Let ε > 0. If |z| < 1 and

(4.2) N ≥ max
{

[(2− β)/α] + 1,
[
ln(ε(1− |z|))

ln(|z|)
]

+ 1
}
,

then the error term RN (z) = |∑∞k=N zk

Γ(αk+β) | is smaller than the given accuracy ε.
We have 1/Γ(x) > 1 for all x > 2. Setting x = αk+β one finds that 1

Γ(αN+β) ≤ 1
for all N ≥ [ (2−β)

α ] + 1, where [a] is the smallest integer larger than a; thus

(4.3) RN (z) =
∣∣∣∣
∞∑
k=N

zk

Γ(αk + β)

∣∣∣∣ ≤
∣∣∣∣
∞∑
k=N

zk
∣∣∣∣ ≤

∞∑
k=N

|zk|.

Under the condition |z| < 1 the geometric series can be summed up, and one obtains
together with (4.1) that

(4.4) RN (z) ≤
∞∑
k=N

|zk| = |z|N
1− |z|

!≤ ε and therefore N ≥ ln(ε(1− |z|))
ln(|z|) .

For the algorithm we have chosen

(4.5) M = max
{[

(2− β)
α

]
+ 1,

[
ln(ε(1 − |z|))

ln(|z|)
]

+ 1
}

for the maximum numbers of coefficients that have to be taken into account to reach
an accuracy of ε.

4.2. Exponentially improved asymptotics. In this section we give an es-
timate of the error term of the asymptotic series. To apply the asymptotic series
expansions for a given accuracy ε, two parameters have to be determined, which are
the truncation point N of the series and a lower limit r1 of |z| such that the error is
smaller than ε for |z| > r1.

Theorem 4.2. Let α ∈ (0, 1). For N ≈ 1
α |z|1/α and |z| ≥ (−2 log ε

C

)α the
estimate of the error term of the asymptotic series (2.3) and (2.4) fulfills the condition

(4.6) RN (z) =

∣∣∣∣∣Eα,β(z)−
(
−
N−1∑
k=1

z−k

Γ(β − αk)

)∣∣∣∣∣ ≤ ε,
where C is a constant dependent only on α, β, and

(4.7) RN (z) =
zN−1

2πi

∫
C

tNα−β et

tα − z dt.

C is the classical Hankel contour, which runs along the positive real axis in the upper
half-plane starting from +∞+ i0 encircling the origin and returning to +∞− i0 along
the positive real axis in the lower half-plane.

Without loss of generality we can assume that αN −β > −1 by choosing N large
enough. Then the circle can be shrunk to zero, and there remain two rays, above and
below the cut of the complex plane along the negative real axis. Inserting t = v e−πv

for the upper part of the contour and t = v eπv for the lower one, we obtain

(4.8) RN (z) = LN(z) + UN (z),
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where

(4.9) LN (z) = eiπβ(z eiπα)−N+1 1
2πi

∫ ∞
0

vαN−β e−v

vα − z eiπα
dv

and

(4.10) UN (z) = − e−iπβ(z e−iπα)−N+1 1
2πi

∫ ∞
0

vαN−β e−v

vα − z e−iπα
dv

are the integrals along the upper and lower parts, respectively, of the remaining con-
tour path. Following the arguments in [23] we obtain

(4.11) UN (z) ≤ 1
2π sinαπ

|z|−NΓ(αN − β + 1)

and similarly

(4.12) LN (z) ≤ 1
2πmin{sinαπ, sin ξ} |z|

−NΓ(αN − β + 1),

where arg(z) ∈ (−π,−πα − ξ) for ξ > 0. The angle ξ describes the distance of z to
the Stokes line. Applying the argument of Boyd [1] yields

(4.13) LN (z) ≤ C1(α, β)|z|−NΓ(αN − β + 1)
√
N,

where C1 now depends only on α and β. Combining (4.11) and (4.13) yields

(4.14) RN (z) ≤ C2(α, β)|z|−NΓ(αN − β + 1)
√
N,

where we used the fact that N > 1 and hence
√
N > 1.

To obtain an estimate for N and a minimal |z|, further approximations have to
be applied. Using Stirling’s formula for RN (z), (4.14) yields

RN (z) ≤ C2(α, β)|z|−NΓ(αN − β + 1)
√
N

= C2(α, β)|z|−N (αN − β)Γ(αN − β)
√
N(4.15)

≤ C3(α, β)|z|−N
√
N(αN − β)(αN−β+3/2) e−(αN−β),

with constant C3 depending only on α and β. For β ≥ 0 one has (αN − β) ≤ αN .
For β < 0 one obtains (αN − β)γ ≤ C′(αN)γ by applying the binomial series. Here
γ was used as an abbreviation for (αN − β + 3/2). Combining these estimates with
(4.15) we arrive at

(4.16) RN (z) ≤ C4(α, β)(αN)1−β eN(−α+α log(αN)−log |z|),

where we applied the trivial identity
√
N = (αN)1/2/

√
α and C4 absorbs all constants

from the approximations. An optimal truncation should be obtained when

(4.17) N ≈ 1
α
|z|1/α,
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which yields for real α and β

(4.18) RN (z) ≤ C4(α, β)(αN)1−β e−Nα .

Assuming that |z| > 1 yields (|z|1/α)1−β ≤ (|z|1/α)|1−β|. Now we apply the inequality
xy ≤ (qy)yex/q, with x, y, q > 0 (see Theorem 4.4 below) for q = 1/2, x = |z|1/α, and
y = |1− β|. Thus the estimate

(4.19) RN (z) ≤ Ce− 1
2 |z|1/α

holds for all α, β, and |z| > 1, where C is given by C = C4(α, β)(1/2 · |1 − β|)|1−β|.
This can now be easily solved for |z| to determine r1 if we assume that the error
RN (z) is smaller than a given error ε for |z| > r1. Thus we obtain

(4.20) |z| ≥ r1 =
(
−2 log

ε

C

)α
,

which yields the following conditions for the exponential asymptotics:

(4.21) M =
[

1
α
|z|1/α

]
+ 1, r1 =

(
−2 log

ε

C

)α
,

where [x] is the smallest integer larger than x. The parameter M denotes the number
of terms in the series that are taken into account to achieve the given accuracy.

Finally it is important to mention that the use of the Berry-type smoothing in
the region close to the Stokes lines avoids numerical problems of the asymptotic series
in the transition area between G2 (with (2.3)) and G3 (with (2.4)) and gives a much
faster convergence due to the exponential corrections of the series.

4.3. Integral representation.

4.3.1. Basic formulas. For the area between the Taylor series and the expo-
nentially improved asymptotics, Hankels’s integral representation can be used for
calculating the values of Eα,β(z). Another approach for calculating the Mittag-Leffler
function was suggested in [4], but that algorithm neglects the numerical difficulties
that arise for values of z close to the contour path. Also, it does not make use of the
exponentially improved asymptotics and hence is much slower. We avoid the prob-
lems of [4] near the contour path by using two different integration formulas with
different contours. In the following paragraph the integration formula will be derived
from Hankel’s integral representation by inserting the contour path into the defini-
tion, and the behavior of the integrands will be discussed. Finally we present the
approximations and the error estimates of the integrals used in the numerical scheme.

We start from the classical Hankel representation of the generalized Mittag-
Leffler function which is obtained by inserting the Hankel representation of the inverse
Gamma function in the series expansion (2.1). The integral representation is given
by [2, p. 210]

(4.22) Eα,β(z) =
1

2πi

∫
C

yα−β ey

yα − z dy,
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where the path of integration C in the complex plane starts and ends at −∞ and
encircles the circular disc |y| ≤ |z|1/α in the positive sense.

Bending the contour in the complex plane and applying the Cauchy theorem, one
obtains the following integral representation [21] for 0 < α < 2:

Eα,β(z) =
1

2πiα

∫
γ(�,ϑ)

eξ
1/α

ξ
1−β

α

ξ − z dξ for z ∈ G(−)(γ),(4.23)

Eα,β(z) =
1
α
z

1−β
α exp(z1/α) +

1
2πiα

∫
γ(�,ϑ)

eξ
1/α

ξ
1−β

α

ξ − z dξ for z ∈ G(+)(γ),(4.24)

where the contour γ(�, ϑ) starts at infinity in the lower half-plane, goes along a ray
of arg(z) = −ϑ towards the origin, encircles the origin with a circular arc of radius �,
and goes back to infinity in the upper half-plane along the ray arg(z) = +ϑ. Thus the
complex plane is divided by the contour path in two parts, whereG(−)(γ) and G(+)(γ)
are the areas left and right of the contour path, respectively. Close to the contour
path the numerical evaluation of the formulas (4.23) and (4.24) becomes inaccurate
because of the singularity of the integral (4.23) at r = |z|e±iϑ.

Combining formula (4.24) with ϑ = πα and (4.23) with ϑ = 2πα/3, one can cover
the whole complex plane. The regions G(+)(πα) and G(−)(2πα/3) have nonvanishing
overlap. The overlap allows us to avoid the use of formulas (4.23) and (4.24) close to
the contour path by choosing the partitioning described in section 3. The value of �
was set to 0.5 and thus lies in G1, where the Taylor series is used for the calculation.
Equation (4.24) is used with ϑ = πα for z ∈ G5 and (4.23) with ϑ = 2πα/3 for
z ∈ G6. When these integrals are evaluated, several cases arise. We distinguish the
cases β ≤ 1 and β > 1.

Let z ∈ G5. Summing up the different terms after inserting the parameterization
of the contour path for ϑ = πα and ε = 1/2 yields for z ∈ G(+)(γ) that

(4.25) Eα,β(z) = A (z;α, β, 0) +
∫ ∞

0

B(r;α, β, z, πα)dr

for β ≤ 1 and

(4.26) Eα,β(z) = A (z;α, β, 0) +
∫ ∞

1/2

B(r;α, β, z, πα)dr +
∫ πα

−πα
C(ϕ;α, β, z, 1/2)dϕ

for β > 1, where the following abbreviations are used:

(4.27) A(z;α, β, x) =
1
α
z(1−β)/α exp

[
z1/α cos(x/α)

]
,

(4.28) B(r;α, β, z, φ) =
1
π
A(r;α, β, φ)

r sin[ω(r, φ, α, β) − φ]− z sin[ω(r, φ, α, β)]
r2 − 2rz cosφ+ z2

,

(4.29) C(ϕ;α, β, z, �) =
�

2π
A(�;α, β, ϕ)

cos[ω(�, ϕ, α, β)] + i sin[ω(�, ϕ, α, β)]
�(cosϕ+ i sinϕ)− z ,

(4.30) ω(x, y, α, β) = x1/α sin(y/α) + y(1 + (1− β)/α).
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In the case β ≤ 1 we applied the limit � → 0. These equations are used to calculate
Eα,β for z ∈ G5.

For z ∈ G6 we use a different contour with ϑ = 2πα/3. In this case the integral
representations read

Eα,β(z) =
∫ ∞

0

B(r;α, β, z, 2πα/3)dr, β ≤ 1,(4.31)

Eα,β(z) =
∫ ∞

1/2

B(r;α, β, z, 2πα/3)dr +
∫ 2πα/3

−2πα/3

C(ϕ;α, β, z, 1/2)dϕ, β > 1,(4.32)

where the integrands have been defined in (4.27)–(4.30) above.
The integrand C(ϕ;α, β, z, �) is oscillatory but bounded over the integration in-

terval. Thus the integrals over C can be evaluated numerically using any appropriate
quadrature formula. We use a robust adaptive 21-point Gauss–Kronrod scheme from
the gnu scientifc library (GSL) [3], which is based on the QUADPACK QAGS algo-
rithm [14]. Other robust integration schemes such as the standard MATLAB Gauss–
Lobatto scheme have also been used successfully. The integrals over B(r;α, β, z, φ)
involve unbounded intervals and have to be treated more carefully.

4.3.2. Integrands. As the integral representation is used only for |z| > 0, we
assume z to be nonzero. It can be easily shown that the integrand B(r;α, β, z, φ)
in (4.28) behaves like O(r

1−β
α ) for r → 0 which yields to the following cases: For

β < 1 + α the integrand
∫∞
a
B(r;α, β, z, φ)dr is convergent in the limit a → 0, but

the integrand remains finite at r = 0 only for β ≤ 1. Thus, for numerical integration
the limit a → 0 can be applied only in the case β ≤ 1 in (4.31). For β exactly 1 + α
and φ = πα, the integrand can be further simplified and approaches a finite value in
the limit r → 0. The integrands for different cases of α and β are shown in Figure 2.

A special case in the integrand in (4.28) occurs when z lies on the contour line.
Then the denominator becomes zero which causes problems in the numerical scheme.
Although there are numerical algorithms for treating such integrands with singular-
ities, it is much more accurate to avoid such a case if possible. In our case this has
been done by choosing two different integral representations with different contour
paths, so one can always be used in the case of z close to the contour of the other.

This also speeds up the algorithm because the integrand is smoother and the
integration routine does not need to treat the singularities. The behavior of the
integrand close to the contour path is shown in Figure 3.

4.3.3. Error estimates. Now we present the error estimates for the different
integral formulas. The truncation points for the integrals over B(r;α, β, z, φ) are
determined such that the error R(Rmax;α, β, z, φ) is smaller than a given accuracy ε.

For given z ∈ G5 (resp., z ∈ G6) and accuracy ε, we approximate the integrals
by truncation. The error

(4.33) R(Rmax;α, β, z, φ) ≤
∣∣∣∣
∫ ∞
Rmax

B(r;α, β, z, φ)dr
∣∣∣∣ < ε

depends on the truncation point Rmax.
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Fig. 2. (a)–(e) summarize the behavior of the integrand B(r;α, β, z, φ) for different combina-
tions of α and β, where φ = πα and z = 10 are kept constant. (a) β < 1, β < 1 + α: In this case
the integral is convergent and the integrand approaches 0 for r → 0. For the plot α = β = 2/3 was
chosen. (b) β = 1, β < 1 + α: For β = 1 the integrand approaches a finite value in the limit r → 0.
The parameters for the figure are α = 2/3 and β = 1. (c) β > 1, β < 1 + α: If β > 1 but still
smaller than 1+α, the integral is still convergent but the integrand diverges in the limit r → 0. The
values for the plot have been chosen as α = 2/3 and β = 5/4. (d) β = 1 + α: This is a special case
where the integrand approaches again a finite value in the limit r → 0. The plot shows the integrand
for α = 2/3 and β = 5/3. (e) β > 1 + α: For β > 1 + α the integrand diverges in the limit r → 0
and the integral over B(r;α, β, z, φ) does not converge anymore. (f) This figure shows the integrand
B(r;α, β, z, φ) for another value of z = −10 and φ = 2πα/3. The parameters α and β were chosen
to be α = 2/3 and β = 1+α. In this case the integrand does not approach a finite value in the limit
r → 0 as in the case φ = πα.

Inserting φ = πα (resp., φ = 2πα/3) in B(r;α, β, z, φ) one obtains, after simpli-
fying the resulting terms,

B(r;α, β, z, πα) =
1
πα

r(1−β)/α e−r
1/α

×r sin[π(1 − β)]− z sin[π(1 − β + α)]
r2 − 2rz cosφ+ z2

,(4.34)

B(r;α, β, z, 2πα/3) =
1
πα

r(1−β)/α e−(1/2)r1/α

×r sin[ω(r, 2πα
3 , α, β)− 2πα

3 ]− z sin[ω(r, 2πα
3 , α, β)]

r2 − 2rz cosφ+ z2
,(4.35)

where ω(r, 2πα
3 , α, β) − 2πα

3 = r1/α
√

3
2 + 2π

3 (1 − β) and ω(r, 2πα
3 , α, β) = r1/α

√
3

2 +
2π
3 (α+ (1− β)).

If we assume r ≥ 2|z|, one finds for the denominator of (4.34) and (4.35) that

(4.36)
1

|r2 − 2rz cosφ+ z2| =
1

r2
∣∣z
r − z0

∣∣ ∣∣ z
r − z̄0

∣∣ ≤ 1
r2
(∣∣ z
r

∣∣− z0) (∣∣ zr ∣∣− z̄0) ≤
4
r2
,

where φ is either πα or 2πα/3 and z0 = eiφ.
As α, β, r, and φ are real numbers, one easily obtains

(4.37)
∣∣ sin[ω(r, φ, α, β) − φ]− z sin[ω(r, φ, α, β)]

∣∣ ≤ 3r
2
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Fig. 3. The three plots show the divergence of the integrand B(r;α, β, z, φ) close to the contour
path. The real part is drawn with a dashed line and the imaginary part with a dashed-dotted line. The
absolute value is marked with a black solid line. The parameters in the figures are α = 2/3, β = 1,
and φ = πα. (a) shows the integrand for z slightly above the contour path (z = exp(iπα) + 0.03),
while in (c) the integrand is shown for slightly below (z = exp(iπα)−0.03). The singularity is shown
in (b) when z lies on the contour path. The insets show the contour path for the integration and the
location of z relative to the contour path as a black dot.

for the numerator because in (4.36) r was assumed to be larger than 2|z|. The angle
φ is either πα or 2πα/3. Thus we obtain for the integrals

∣∣∣∣
∫ ∞
Rmax

B(r;α, β, z, πα)dr
∣∣∣∣ ≤

∫ ∞
Rmax

6
πα

r
(1−β)

α −1 e−r
1/α

dr

≤ 6
π

Γ(1− β,Rmax
1/α),(4.38) ∣∣∣∣

∫ ∞
Rmax

B(r;α, β, z, 2πα/3)dr
∣∣∣∣ ≤

∫ ∞
Rmax

6
πα

r
(1−β)

α −1 e−
1
2 r

1/α

dr

≤ 12
2βπ

Γ
(

1− β, 1
2
Rmax

1/α

)
(4.39)

after comparing with the definition of the incomplete gamma function. Now we apply
the following two lemmas.

Theorem 4.3 (lemma). For the incomplete gamma function the following bounds
hold:

|Γ(1− β, x)| ≤ e−x if x ≥ 1, β ≥ 0,(4.40)
|Γ(1− β, x)| ≤ (|β|+ 2)x−βe−x if x ≥ |β|+ 1, β < 0.(4.41)
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Proof. For t ≥ x ≥ 1 and β ≥ 0 we have the inequality

(4.42) t−βe−t ≤ e−t,
and therefore

(4.43) |Γ(1− β, x)| ≤
∫ ∞
x

e−tdt = e−x,

which proves the first inequality (4.40). For β < 0 we can find an n ∈ N such that

(4.44) −(n+ 1) ≤ β < −n.
For x > 0 and β < 0 it holds that

(4.45)

Γ(1 − β, x) = x−βe−x
∫ ∞

0

e−u (1 + (u/x))−β du < x−βe−x
∫ ∞

0

e−u (1 + (u/x))N du,

where N = |β|+ 1. This can be shown by using the binomial theorem for expanding
(1 + (u/x))N and integrating (4.45) term by term:

(4.46) Γ(1− β, x) < x−βe−x
(

1 +
N

x
+N2x2 + · · ·+NNxN

)
< x−βe−x(N + 1),

where x ≥ N and N + 1 ≤ 2− β. This yields the second inequality of (4.41):

(4.47) |Γ(1− β, x)| ≤ (|β|+ 2)x−βe−x.

Theorem 4.4 (lemma). The inequality

(4.48) xy ≤ (qy)yex/q

holds for arbitrary x, y, q > 0.
Proof. Let x = a · y with a > 0. Then one can write (4.48) as (ay)y ≤ (qy)yeay/q,

which is equivalent to ay ≤ qyeay/q. Dividing this by qy and applying the logarithm on
both sides yields y log(a/q) ≤ y(a/q), which is the same as log(a/q) ≤ (a/q) because
y > 0. The last inequality is true because log(x) < x∀x > 0 and a, q > 0.

Using Theorem 4.3 with (4.38) (resp., (4.39)) and then applying Theorem 4.4 in
the case β < 0, the following estimates for φ = πα and φ = 2πα/3 are obtained:

(4.49)

R(Rmax;α, β, z, πα) ≤

⎧⎪⎪⎨
⎪⎪⎩

6
π

e−Rmax
1/α

, β ≥ 0, Rmax ≥ 1,

6
π

(|β|+ 2)(2|β|)|β| e− 1
2Rmax

1/α

, β < 0, Rmax
1/α ≥ |β|+ 1,

(4.50)

R(Rmax;α, β, z, 2πα/3) ≤

⎧⎪⎪⎨
⎪⎪⎩

12
2βπ

e−
1
2Rmax

1/α

, β ≥ 0, Rmax ≥ 1,

12
2βπ

(|β| + 2)(4|β|)|β| e− 1
4Rmax

1/α

,
β < 0,
Rmax

1/α ≥ |β|+ 1.

In the case φ = πα we applied Theorem 4.4 with x = Rmax
1/α, y = −β, and q = 2,

whereas in the case φ = 2πα/3 Theorem 4.4 was used with the parameters x =
Rmax

1/α, y = −β, and q = 4.
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Recalling that (4.36) requires Rmax > 2|z| and solving (4.49) and (4.50) for the
truncation point Rmax, one finds for φ = πα that

(4.51)

Rmax ≥

⎧⎪⎪⎨
⎪⎪⎩

max
{

1, 2|z|,
(
− ln πε6

)α}
, β ≥ 0,

max
{

(|β|+ 1)α, 2|z|,
(
−2 ln

(
πε

6(|β|+ 2)(2|β|)|β|
))α}

β < 0

while for φ = 2πα/3 we have

(4.52)

Rmax ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{

2α, 2|z|,
(
−2 ln π2βε

12

)α}
, β ≥ 0,

max
{

[2(|β|+ 1)]α, 2|z|,
[
−4 ln π2βε

12 (|β|+ 2) (4|β|)|β|
]α}

, β < 0.

5. Discussion of the algorithm. In this section we briefly summarize the
algorithm and the different cases that have to be distinguished to calculate Eα,β for
a given error ε. Also the numerical treatment of the constants and error terms is
described and details of the algorithm are discussed.

For |z| ≤ 0.95 the Taylor series (2.1) is used for all α > 0 and β ∈ R. We apply
the recursion formula (2.2) in the case α > 1. The maximum number of terms M in
the Taylor series which are needed to achieve an accuracy of ε is given by (4.5). This
number increases rapidly for z → 1; thus the Taylor series becomes inefficient for the
calculation of Eα,β if z > 0.95. Furthermore if M becomes very large, the calculation
of the gamma function fails due to numerical overflows. This can be avoided by using
the identity

(5.1) zk/Γ(αk + β) = exp(k ln(z)− ln Γ(αk + β)),

which behaves in a more stable manner for large k and |z| not too close to the origin,
where the logarithm is singular. Thus for very small |z| < 0.5 we switch back to the
definition (2.1). In this case only a few terms of the Taylor series are necessary to
obtain good accuracy, so one does not have to worry about M . Also a real Lanczos
approximation [3] of the reciprocal gamma function is used to avoid problems at the
poles of Γ(αk + β) when β is smaller than 0.

The integral formulas are limited only by the floating arithmetic of the computer,
where errors can accumulate due to the rounding errors of the numerical integration
scheme.

Now if |z| ≥ r1, where r1 is given by (4.21), the asymptotic formulas are used,
where we distinguish between the two asymptotic formulas (2.3) in G1 (resp., (2.4)
in G2) and the Berry-type smoothed regions G3 and G4 in an angle of ±δ around
the Stokes lines ((2.5) and (2.6)). In the algorithm we choose δ = πα/8 to avoid
coming too close to the Stokes lines with (2.3) (resp., (2.4)). For |δ| ≤ πα/8 the
argument θ ∈ [−π/8, π/8] is sufficiently small that one can apply the approximation
c ≈ θ + 1

6θ
2 − 1

36θ
3. Figure 4 shows a plot of c(θ). The error of the approximation

is much smaller than 1× 10−4 in the real part and 1× 10−3 in the imaginary one so
that this approximation in the exponent is negligible.

For large α (α ≥ 8/9) the angle πα + δ would cross the negative real axis and
produce a jump in θ; thus we always make use of the normal asymptotic series in a
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Fig. 4. The figures show the real (left) and imaginary part (right) of the parameter c(θ) of the
Berry-type smoothed asymptotic series (2.5) (resp., (2.6)). The exact solution of c(θ)2/2 = 1+iθ−eiθ

is plotted as a black solid line, and the approximation c ≈ θ + 1
6
θ2 − 1

36
θ3 is marked with a dashed

line. In the considered region of θ ∈ [−π/4, π/4] the difference between the two curves is negligible.
The absolute error of the approximation is given in the inset plot.

wedge arround the negative real axis, where the opening angle δ̃ is between πα and
π. More precisely δ̃ is defined by δ̃ = min{(π + πα)/2, δ}, where δ is the angle of the
wedge around the Stokes line (cf. (3.7)). In the algoritm δ was chosen to be πα/8.

Optimal truncation for the series should be achieved for M according to (4.21),
which would mean that the number of necessary coefficients will increase with∼ |z|1/α.
But for z →∞ the asymptotic series becomes better and better, so we apply an upper
limit of M < 100 in the algorithm. This is also necessary to avoid overflows in the
reciprocal gamma function for small negative values which reaches the floating point
limit for about β −αk ≈ 130. As the term z−k/Γ(β−αk) involves the multiplication
of a very small number (z−k  1) with a very large number 1/Γ(β − αk) � 1, it is
better to apply the exp− log identity again for large k. In this case the calculation
of log Γ(β − αk) can fail due to the poles of the gamma function for negative integer
values; thus we assume all terms to be zero for which β − αk is closer than 10−9 to a
negative integer value.

In the algorithm the constant C in (4.19) is replaced with

(5.2) C0 =
1
2π

(
1

sinαπ
+

1
min{sinαπ, sin ξ}

)
≈ 1
π sinπα

,

obtained by combining (4.11) and (4.12). The choice to limit the constant C0 on the
Stokes line is supported analytically by the argument of Boyd [1, 23] that demands a
smooth transition when crossing the Stokes line from one side to the other. Therefore
the error cannot diverge when ξ goes to zero. Extensive numerical tests (see Table 2)
and comparisions with the integral representations show that with (5.2) the relative
errors between the asymptotic series and the integral representation are extremely
small for |z| ≤ r1 = (−2 log(ε/C0))α. In practice the influence of the exact numerical
value of C0 is small as the constant appears inside a logarithm. In the Berry-type
smoothed regions, the series (2.5) and (2.6) shows even better, namely, exponential
convergence, than the normal series. Thus we can use the same estimate for r1 as
under optimal truncation.
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Fig. 5. The two plots summarize the results of the error estimates of the integral representation.
(a) shows the decay of the error term (4.38) of the integral representation for α = β = 2/3 on a
semilog scale. It decays faster than exponentially with Rmax. (b) shows the dependence of the radius
r1 on the parameter α for a given tolerance ε = 1e− 12 using the formula r1 = (−2 log(ε/C0))α =
14.16, with C0 given by (5.2). The radius r1 determines from where on the asymptotic formula that
is used to calculate Eα,β(z). The inset shows a semilogarithmic plot of the same region.

If 0.95 < |z| < r1, the integral formulas are used in G5 and G6. For the error
estimates we have to distinguish here β > 1 and β ≤ 1, where the case β ≤ 1 yields
two further subcases β ≥ 0 and β < 0. The contours for the integral formulas for the
areas G5 and G6 have been chosen such that z will never come close to the contour
of integration. A plot of the areas G5 and G6 with the two contour paths γ(1/2, πα)
and γ(1/2, 2πα/3) is shown in Figure 1(b). Figure 5(a) shows a plot of the right-hand
side of (4.38) versus Rmax. One can see that the accuracy is extremely good even for
rather small Rmax. The estimates for Rmax are given in (4.51) and (4.52).

The integrand in (4.29) is oscillatory. The amplitude of these oscillations is mainly
determined by the prefactor in (4.27). For real argument z ∈ R, the imaginary part
of the integrand is antisymmetric in (4.27) with respect to the origin. This means
that the integral over the imaginary part of (4.29) vanishes and does not have to be
calculated. For the real part one can also make use of the symmetry and perform the
integration over only half of the contour arc.

A detailed description of the behavior of the generalized Mittag-Leffler function
in the complex plane and the investigation of the distribution of the zeros can be
found in [7]. Two contour plots of Eα,β(z) are shown in Figure 6.

The algorithm has been implemented for complex z with real and imaginary parts
in double precision. The parameters α and β are represented as real double variables.
A separate function for real double z has also been implemented. In this case the
integration routines make use of the symmetry of the integrand and the fact that
Im(Eα,β(x)) = 0. This speeds up the integration routine and improves the stability
of the algorithm.

6. Numerical tests and speed analysis of the algorithm. Extensive nu-
merical calculations of the algorithm were performed to test the stability and the
validity range for the parameters α, β ∈ R and the argument z ∈ C. The results are
summarized in this section.

By incorporating the asymptotic formula the algorithm has been much improved.
Especially for large values of |z| the asymptotic series are much faster and more stable
than the integral formulas. For some representative values the differences are reported
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Fig. 6. The plots show the behavior of the Mittag-Leffler function Eα,1(z) in the complex plane
for α = 0.8 (top) and α = 2.25 (bottom). In the three-dimensional plot the absolute value of the
function is plotted with the contour lines on top. Furthermore, the contour lines of the argument
are also marked.

in Table 1, where the speed of the integral routine is compared to the asymptotic
formula in a range where both formulas can be used for the calculation. The speedup
factor ranges typically between 20 and 40. Close to the Stokes lines the Berry-type
smoothed formulas give a better approximation than the normal asymptotic series.

The convergence of the series is compared with the values obtained by the integral
representation along rays with constant argument for |z| → ∞. Good agreement and
fast convergence is obtained in all sectors of the complex plane.

For very large values of |z| the integral formula cannot be used due to rounding
errors in the floating point arithmetic. Also the dependence on the parameters α
and β is very important; for example, the amplitude equation (4.27) of the integrand
B(r;α, β, z, δ) in (4.28) behaves like r(1−β)/α. If this value becomes too large, the inte-
gration routines cannot achieve the required precision. An example of B(r;α, β, z, δ)
for different β = 5, 10, 20 is shown in Figure 7. Similar limitations hold for the in-
tegrand in (4.29), where the integrand oscillates with a higher and higher frequency
while the value of the integral is close to zero (see Figure 8).

A comparison of the integral formula with the asymptotic series in a range around
r1 is shown in Figure 9. The range for which we still obtained reasonable results is
summarized in Table 2. The tests were performed by calculating the values of Eα,β(z)
on a rectangular grid with Remin ≤ Re(z) < Remax and Immin ≤ Im(z) < Immax with
different lattice spacings. Furthermore the values of Eα,β are calculated along different
rays from the origin covering the different areas of the partitioning (section 3) of the
complex plane. For various combinations of α and β the range of validity with respect
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Table 1

Comparison of the speedup for the calculation for Eα,β using the asymptotic series expansions.
The tolerance ε is set to 10−16. The last column indicates the equation used for the calculation of
the asymptotic series. Each speedup factor is averaged over 100 calculations. All calculations were
done using the complex algorithm.

α β z Eint
α,β(z) Eint

α,β(z) − Easym
α,β (z) Speedup

0.6 0.8 7.0 4.24680224e + 11 0.0 40.8
0.6 0.8 20.0 4.50513132e + 64 0.0 21.1
0.6 0.8 −7.0 0.036402965145 6.2000e − 13 55.5
0.6 0.8 −50.0 0.004463867842 0.0 35.3

0.6 0.8 7 e0.6πi 0.00509750 + 0.03299810i 1.06e − 12 − 2.28e − 12i 57.1

0.6 0.8 20 e0.6πi 0.00282134 + 0.01075547i 0.0 39.7

0.6 1.25 7.0 9.86821285e + 10 0 22.0
0.6 1.25 20.0 4.76359640e + 63 0 14.0
0.6 1.25 −7.0 0.101261033685 4.3e − 13 31.2
0.6 1.25 −50.0 0.014419766303 0.0 16.01

0.6 1.25 7 e0.6πi 0.03339025 + 0.0980431i −8.0e − 14 − 2.70e − 13i 32.7

0.6 1.25 20 e0.6πi 0.01128945 + 0.0342852i 0.0 16.1

0.6 −0.8 7.0 4.24680224e + 11 0.0 40.8
0.6 −0.8 20.0 4.50513132e + 64 0.0 21.1
0.6 −0.8 −7.0 0.036402965145 6.2e − 13 55.5
0.6 −0.8 −50.0 0.004463867842 0.0 35.3

0.6 −0.8 7 e0.6πi 0.01931826 + 0.0537209i −4.61e − 10 − 8.36e − 10i 69.0

0.6 −0.8 20 e0.6πi 0.00592228 + 0.0179734i 0.0 35.2
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Fig. 7. The figure shows the integrand B(r;α, β, z, 2πα/3) for α = 0.2 and different values
of large |β|. The argument is set to z = −5 ∈ G5 (left). One can see how strongly the amplitude
increases with increasing β. The oscillations are especially difficult to handle as the large positive
parts of the integral cancel out with the large negative ones. The right figure shows the integrand
B(r;α, β, z, 2πα) in the case z = 5 ∈ G6 for the parameters β = 28 to β = 30. Note the values on
the y-axis. In the inset the semilog plot of the absolute value of the integrand in the same range is
shown.

to the argument z was determined for the integral representation and the asymptotic
series. The upper limit |z|int

max for which the integral representation is still valid is
calculated as follows: Let Eint

α,β be the values of the Mittag-Leffler function calculated
with the integral representation and Easym

α,β those obtained from the asymptotic series.
As for |z| → ∞ the asymptotic series becomes more and more accurate; thus the
difference |Eint

α,β − Easym
α,β | decreases until it increases again for |z| > |z|int

max due to
the fact that the integral representation becomes inaccurate. For given α and β the
value reported in Table 2 is the minimum of all |z|int

max obtained on the different rays
covering all sectors of the partitioning described in section 3.
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Fig. 8. The figure shows the integrand C(ϕ;α, β, z, 
) in (4.29) for α = 0.9 and different values
of β (left). The same integrand but for α = 0.2 is shown in the right figure. All other parameters
are the same in both plots, where z was set to −5 and 
 = 0.5.
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Fig. 9. The figures show the behavior of the Mittag-Leffler function in a range of |z| around
r1 calculated with the asymptotic series (gray dashed line) and the integral formula (black solid
line) for different arguments of z. Starting from (a) to (f) the arguments are (a) arg(z) = 0, (b)
arg(z) = πα/4, (c) arg(z) = πα/2, (d) arg(z) = πα, (e) arg(z) = π − πα/4, and (f) arg(z) = π.
The example is calculated for α = 1/3, β = 2, and ε = 10−10. The value of r1 in this case is
r1 = (−2 log(ε/C))α = 3.53.

In the case |z| → 0 the asymptotic series becomes unstable. The lower bound
|z|asym

min of the asymptotic series is defined by the value of |z| for which the relative
error Errrel = |(Eint

α,β − Easym
α,β )/Eint

α,β | exceeds 10−2. The largest value of |z|asym
min along

the different rays is shown in Table 2.
For the parameters α and β we find that, in the range 0.05 < α < 0.999 and

−2 < β < 2, the algorithm covers the whole complex plane up to machine precision in
the asymptotic formula which is reached for positive values at Re(z) ≤ 1.5 (α = 0.05)
and |z| ≤ 600 (α = 0.999) as the function grows like 1/α exp(x1/α). For Re(z)→ −∞
the limits are much larger. For a negative argument the function can be calculated
at least for Re(z) > −1050.
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Table 2

Comparison of the the asymptotic series and the integral formula for different combinations
of α and β. The value |z|int

max indicates when the integral formulas start to become inaccurate
(see text). For z < |z|asym

min the asymptotic formula begins to break down. This value is defined
by the smallest number of |z| for which the relative error is still smaller than 10−2. The relative
error is defined by Errrel = |(Eint

α,β − Easym
α,β )/Eint

α,β |, where Eint
α,β are the values of Eα,β obtained

with the integral representation and Easym
α,β are the values calculated with the series expansion. The

numerical values of the relative error at the points |z| = r1 are reported in the sixth column, where
r1 = (−2 log(ε/C0))α is the lower radius for the asymptotic series. The value of ε is set to 10−11,
and C0 is given by (5.2).

α β |z|int
max |z|asym

min r1 Errrel at r1

0.1 −5 |z|max = 8.5 ± 0.5 1.3566 1.4809 1.0835e − 05
0.1 −1 |z|max = 8.5 ± 0.5 1.2718 1.4809 8.7296e − 08
0.1 −2/3 |z|max = 8.5 ± 0.5 1.2380 1.4809 3.2593e − 08
0.1 2/3 > 200 1.1391 1.4809 3.8697e − 10
0.1 1 > 200 1.1052 1.4809 8.2624e − 11
0.1 5/3 |z|max = 5.5 ± 0.5 1.1173 1.4809 3.0580e − 11

0.2 −5 |z|max = 13.5 ± 0.5 1.7785 2.1817 1.8535e − 09
0.2 −1 |z|max = 12.5 ± 0.5 1.6014 2.1817 6.0096e − 12
0.2 −2/3 |z|max = 12.5 ± 0.5 1.5863 2.1817 3.8440e − 12
0.2 2/3 > 200 1.3517 2.1817 7.3541e − 12
0.2 1 > 200 1.2778 2.1817 1.0214e − 12
0.2 5/3 |z|max = 136.5 ± 0.5 1.2304 2.1817 2.3144e − 12

0.5 −5 |z|max = 53.5 ± 0.5 4.4068 6.9547 4.4764e − 13
0.5 −1 |z|max = 40.5 ± 0.5 3.3007 6.9547 7.1942e − 14
0.5 −2/3 |z|max = 40.5 ± 0.5 3.2379 6.9547 5.5955e − 14
0.5 2/3 > 200 2.5417 6.9547 1.4747e − 11
0.5 1 > 200 2.0966 6.9547 1.7497e − 12
0.5 5/3 > 200 1.5969 6.9547 1.5321e − 14
0.5 10 > 200 2.7404 6.9547 7.4421e − 07

0.9 −5 > 200 15.2764 34.2477 3.5560e − 13
0.9 −1 > 200 9.7702 34.2477 1.3282e − 10
0.9 −2/3 |z|max = 190.5 ± 0.5 8.5021 34.2477 4.6096e − 13
0.9 2/3 > 200 6.5593 34.2477 1.0505e − 11
0.9 1 > 200 6.3687 34.2477 6.1782e − 12
0.9 5/3 > 200 3.6252 34.2477 8.7930e − 14
0.9 10 > 200 5.9216 34.2477 6.6471e − 08

The limitations of large |β| can be overcome using the following relation:

(6.1) znEα,β+nα(z) =
∞∑
k=n

zn+k

Γ(α(n+ k) + β)
= Eα,β(z)−

n∑
k=0

zk

Γ(αk + β)
.

This extends the range of β to arbitrary large and small values.

7. Conclusion. A numerical algorithm for calculating the generalized Mittag-
Leffler function for arbitrary real parameters α > 0 and β was presented, and the error
estimates have been calculated. Different representations have been used for different
values of z ∈ C to obtain optimal stability and accuracy. The algorithm is not only
fast, but it also eliminates numerical instabilities in other codes [4]. Furthermore the
algorithm was extended using exponentially improved asymptotics. The Berry-type
smoothing was used to avoid numerical instabilities close to the Stokes lines, where
the asymptotic formulas fail. A great improvement in the speed and stability of the
algorithm especially for large values of z has been achieved using the asymptotic series
as presented in section 6. Furthermore the algorithm has been analyzed in detail, and
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several numerical techniques have been discussed to improve the calculation. Finally,
a detailed analysis of the numerical stability and validity of the algorithm is given.
The algorithm is available as in C and as a MATLAB script for download [20].
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performing extensive test runs with the algorithm. Furthermore, we want to thank
the referees for their constructive criticism and useful hints.
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Abstract. In this paper, we consider the singularly perturbed reaction-diffusion problem in one
and two dimensions. The boundary value problem is decomposed into a first-order system to which
a suitable weighted least-squares formulation is proposed. A robust, stable, and efficient approach is
developed based on local discontinuous Galerkin (LDG) discretization for the weak form. Uniform
error estimates are derived. Numerical examples are presented to illustrate the method and the
theoretical results. Comparison studies are made between the proposed method and other methods.
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1. Introduction. In this paper, we are concerned with the singularly perturbed
reaction-diffusion problem

(1.1)
{ −ε2Δu+ cu = f in Ω = (0, 1)d,
u = 0 on ∂Ω,

where 0 < ε � 1 is the perturbation parameter, c and f are continuous functions in
Ω, 0 < c0 ≤ c ≤ c1 in Ω with two positive constants c0 and c1, and d = 1 or 2.

It is well known that exact solutions to singular perturbation problems (1.1)
typically contain layers, which cause nonmonotonic numerical oscillations in the solu-
tions from standard Galerkin finite element methods (FEMs). Stabilization techniques
such as upwinding, Petrov–Galerkin, streamline diffusion, discontinuous Galerkin, and
adaptive approximations have been developed to improve standard Galerkin methods.
For an overview of these methods, we refer to the books by Miller, O’Riordan, and
Shishkin [26], Morton [27], Roos, Stynes, and Tobiska [33], and the references therein.
Nevertheless, singularly perturbed problems remain difficult to solve numerically.

The least-squares finite element method (LSFEM) is a general methodology, which
is based on the minimization of the residuals in a least-squares sense. The method,
for linear differential equations, leads to symmetric positive-definite algebraic systems
which can be efficiently solved by iterative methods. Continuous LSFEMs have been
applied to solve convection-reaction-diffusion problems; see, e.g., [4, 6, 8, 10, 11, 14,
16, 21, 22, 30, 31]. For more details on the theory of LSFEMs, we refer to the review
paper of Bochev and Gunzburger [5] and the book by Jiang [20].

Although the least-squares method shows many attractive features, its use is
restricted by several disadvantages [7, 10, 11]. In particular, comparing with the
Galerkin method, the least-squares based weak formulation requires higher regularity
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2008; published electronically October 24, 2008.
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†Department of Mathematical and Physical Sciences, Texas A & M International University,
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of finite element spaces. In addition, as we will illustrate in section 5, the standard
least-squares method is inefficient for solving singularly perturbed problems, especially
within and near the layers.

Discontinuous approximation spaces have been used to discretize least-squares
formulations for solving a variety of problems, which can remove additional regularity
requirement of the LSFEM. Cao and Gunzburger [12] used, for the first time in the
literature, least-squares methods with discontinuous elements to treat interface prob-
lems. Gerritsma and Proot [17] derived a discontinuous least-squares spectral element
method for a sample first order ordinary differential equation. Bensow and Larson
applied discontinuous LSFEMs to elliptic problems [2] and div-curl problems [3] with
boundary singularities. In all of these works, special least-squares functionals are
proposed in discontinuous finite element spaces. On the other hand, the least-squares
technique has also been used as a stabilizer of DG methods. For instance, Houston,
Jensen, and Süli [19] investigated a general family of hp-discontinuous Galerkin FEMs
with least-squares stabilization for symmetric systems of first-order partial differential
equations.

Recently, the author proposed a discontinuously discretized LSFEM for 1D singu-
larly perturbed reaction-diffusion problems with constant coefficients [24]. We hereby
extend the method and develop a robust and stable numerical approach for more
general singularly perturbed reaction-diffusion problems in 1D and 2D spaces. We
will demonstrate the efficiency of our methods both theoretically and numerically.
Numerical comparison studies between the proposed method and the local discontin-
uous Galerkin (LDG) method, the continuous LSFEM, and the discontinuous LSFEM
indicate that the method is a promising alternative to existing schemes.

This paper is organized as follows. Section 2 introduces definitions and notations
used in this paper. In section 3, we present the singularly perturbed problem and its
least-squares variational formulation. The LDG method is utilized for the associated
discrete problems. We prove coercivity of the bilinear forms in an associated energy
norm. An adaptive method is also provided in this section to reduce computational
cost. In section 4, a priori error estimate results are presented in one and two spatial
dimensions. In section 5, numerical examples are given, which verify the theoretical
results. Some comparisons of our method to other methods are included. Conclusions
are drawn in section 6.

2. Notations. Throughout this paper, we shall use C to denote a generic pos-
itive constant which is independent of ε and the mesh used. Vectors and scalars are
denoted by bold and plain letters, respectively.

We will denote the inner products in L2(Ω) and product spaces of L2(Ω) by (·, ·).
For 1 ≤ p ≤ ∞ and s ≥ 0, we use the standard notation for the Sobolev space
W s
p (Ω) with the norm || · ||W s

p (Ω) and the seminorm | · |W s
p (Ω). Hs(Ω) is used to stand

for the space W s
2 (Ω), whose norm and seminorm are denoted by || · ||s,Ω and | · |s,Ω,

respectively. When no confusion may arise, the measure Ω will be omitted from the
above norm designations. We recall the space H1

0 (Ω) consisting of all functions in
H1(Ω) that vanish on the boundary ∂Ω, and the space

H(div; Ω) =
{
q ∈ [L2(Ω)]d : ∇ · q ∈ L2(Ω)

}
with corresponding norm

||q||2H(div;Ω) = ||∇ · q||20 + ||q||20.
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Here, we denote also the norms on product spaces of Hs(Ω) by || · ||s,Ω, or simply
|| · ||s, where there is no chance for ambiguity. We define further the vector function
space

H(Ω) = H(div; Ω)×H1
0 (Ω)

with norms

||v||20 = ||q||20 + ||v||20 and ||v||2H(Ω) = ||q||2H(div;Ω) + ||v||21,
where, and in the remainder of this paper, the vector valued functions u, v, and w
have components

u =
[

p
u

]
, v =

[
q
v

]
, and w =

[
r
w

]
,

respectively, unless otherwise specified. As we shall see in section 3, p, q, and r are
vector functions of dimension d, which are corresponding to the gradients of u, v, and
w, respectively.

Let u be a solution of (1.1). The following estimates hold (see, e.g., [34]):

||u||s ≤ C

εs
||f ||0

for 0 < ε ≤ 1 and s = 0, 1, or 2. These estimates are, in fact, sharp [35]. Thus the
standard norm ||u||1 or ||u||2 does not provide an informative gauge when ε is small.
It is natural to introduce the following ε-dependent norm in H1(Ω) [33]:

||v||21,ε = ε2|v|21 + ||v||20.
In addition, we present ε-dependent norms in H(Ω) as

||v||20,ε = ε2||q||20 + ||v||20,
||v||21,ε = ε4||∇ · q||20 + ε2|v|21 + ||v||20,ε.

Let Th = {Ωk}Mk=1 be a shape regular triangulation on Ω with mesh size h. Let
E be the union of the boundaries of all elements Ωk associated with the partition
Th, and let Eint ⊂ E be the set of all interior edges contained in Ω. Note that
an anisotropic mesh (e.g., Shishkin mesh) will certainly improve numerical results,
which, nevertheless, is not necessary.

We use the following broken Sobolev spaces:

Hs(Th) =
{
v ∈ L2(Ω) : v|Ωk

∈ Hs(Ωk), k = 1, . . . ,M
}
,

where Hs(Ωk) is the Sobolev space of order s on Ωk, s ≥ 0. The inner products and
norms defined above can be taken over the elements Ωk, which are denoted by (·, ·)Ωk

and || · ||s,Ωk
, respectively. For v ∈ Hs(Th), we define its norms and seminorms as

||v||2s =
M∑
k=1

||v||2s,Ωk
, |v|2s =

M∑
k=1

|v|2s,Ωk
,(2.1)

||v||21,ε =
M∑
k=1

||v||21,ε,Ωk
,(2.2)
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where s ≥ 0 and

||v||21,ε,Ωk
= ε2|v|21,Ωk

+ ||v||20,Ωk
.

We define also the space

H(Th) =
{
[q, v]T ∈ H(div; Th)×H1(Th) : v|∂Ω = 0

}
,

where

H(div; Th) =
{
q ∈ [H1(Th)]d : q|Ωk

∈ [L2(Ωk)]d,∇ · q|Ωk
∈ L2(Ωk)

}
.

The inner products and norms in H(Th) can be defined analogously. In particular,
for v ∈ H(Th), we define

(2.3) ||v||20,ε =
M∑
k=1

||v||20,ε,Ωk
, ||v||21,ε =

M∑
k=1

||v||21,ε,Ωk
,

where

||v||20,ε,Ωk
= ε2||q||20,Ωk

+ ||v||20,Ωk
,

||v||21,ε,Ωk
= ε4||∇ · q||20,Ωk

+ ε2|v|21,Ωk
+ ||v||20,ε,Ωk

.

In (2.1)–(2.3), we use the same norm notations as in the continuous Sobolev spaces,
which will cause no ambiguity.

For any element Ωk ∈ Th and an edge e ∈ ∂Ωk ∩ Eint, let Ωk′,e be the unique
element sharing e with Ωk. Let n+

k,e and n−k,e be the outward normal unit vectors of
Ωk and Ωk′,e to e, respectively. For v ∈ H1(Th), we denote v+

k,e and v−k,e, the interior
and outer traces of v on e, with respect to Ωk, respectively. Note that v−k,e and v+

k′,e

are selfsame. Similarly, we can define traces q+
k,e and q−k,e for q ∈ [H1(Th)]d. As in

[1], we define the average and jump of v and q to element Ωk across e by

{v}k,e =
1
2
(v+
k,e + v−k,e), [[v]]k,e = v+

k,en
+
k,e + v−k,en

−
k,e;

{q}k,e =
1
2
(q+
k,e + q−k,e), [[q]]k,e = q+

k,e · n+
k,e + q−k,e · n−k,e.

We denote v+
k , v−k , q+

k , and q−k , the interior and outer traces of v and q, along ∂Ωk
with respect to Ωk, respectively.

Finally, we define the finite element space associated with Th as

Vh = [V h]d × V h0 ⊂ H(Th),
where V h ⊂ H1(Th) is the space of piecewise linear (1D and 2D) or bilinear (2D)
polynomials allowing discontinuity along interelement edges, and V h0 is the subspace
of V h, which consists of functions vanishing on the boundary ∂Ω.

3. Least-squares finite element approximations. We rewrite (1.1) as the
following system of first-order equations:

(3.1)

⎧⎨
⎩

p−∇u = 0 in Ω,
−ε2∇ · p + cu = f in Ω,
u = 0 on ∂Ω.



LDG LEAST-SQUARES METHOD 93

For u ∈ H(Ω), define

Au =
[
ε
√
c0 (p−∇u)

−ε2∇ · p + cu

]
and f =

[
0
f

]
.

Notice that a weight ε
√
c0 is employed in the first component of Au, where the same

concerns as in the definitions of ε-dependent norms are reflected. Equation (3.1) can
be written as

(3.2) Au = f in Ω.

The homogenous boundary condition in (3.1) is satisfied since u ∈ H(Ω) implies
u ∈ H1

0 (Ω). Note that problem (1.1) has a unique solution u in H1
0 (Ω) ∩ H2

loc(Ω),
which is, moreover, in H2

0 (Ω) when ∂Ω is sufficiently smooth [18]. We will assume
from now on that problem (3.2) has a unique solution u ∈ H(Ω).

3.1. The least-squares formulation. Consider the least-squares functional J
in H(Ω) defined by

J (v; f) = ||Av − f ||20 = (Av − f , Av − f).

The least-squares method reads: find u ∈ H(Ω) such that

J (u; f) = inf
v∈H(Ω)

J (v; f).

A necessary condition for u to be a minimizer of the functional J is that its first
variation vanishes at u, i.e.,

lim
t→0

d

dt
J (u + tv; f) = 2(Au− f , Av) = 0 ∀v ∈ H(Ω).

The corresponding least-squares variational formulation for problem (1.1) thus follows:
find u ∈ H(Ω) such that

(3.3) B(u,v) = L(v) ∀v ∈ H(Ω),

where the bilinear form B : H(Ω) ×H(Ω) → R and linear functional L : H(Ω) → R

are defined as

B(w,v) = (Aw, Av) = c0ε
2(r−∇w,q−∇v) + (−ε2∇ · r + cw,−ε2∇ · q + cv),(3.4)

L(v) = (f , Av) = (f,−ε2∇ · q + cv)(3.5)

for all v,w ∈ H(Ω).
It is clear that the bilinear form B(·, ·) defined in (3.4) is symmetric. In addition,

we have the following boundedness and coercivity results.
Theorem 3.1. (i) There exists a constant C > 0 independent of ε such that

(3.6) |B(w,v)| ≤ C||w||1,ε||v||1,ε ∀v,w ∈ H(Ω).

(ii) There exists a constant α > 0 independent of ε such that

(3.7) B(v,v) ≥ α||v||21,ε ∀v ∈ H(Ω).

Proof. The boundedness property (3.6) is a direct consequence of the Cauchy–
Schwartz and triangle inequalities.
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We next prove the coercivity (3.7). From (3.4), one has

B(v,v) = c0ε
2||q−∇v||20 + || − ε2∇ · q + cv||20.

Using integration by parts and homogenous boundary conditions of v, we have

(3.8) 2B(v,v) ≥ ε4||∇ ·q||20 + ||cv||20 + c0ε
2||q||20 + c0ε

2||∇v||20 +2
(
ε2∇ · q, (c0 − c)v

)
.

Choose a constant δ = c1
c0+c1

. Then 0 < δ < 1. It follows that

(3.9)

δε4||∇·q||20+2
(
ε2∇ · q, (c0 − c)v

)
+

1
δ
||(c0−c)v||20 =

∥∥∥∥ε2√δ∇ · q +
1√
δ
(c0 − c)v

∥∥∥∥
2

0

≥ 0.

By (3.8) and (3.9), we get

2B(v,v) ≥ (1− δ)ε4||∇ · q||20 + ||cv||20 −
1
δ
||(c0 − c)v||20 + c0ε

2||q||20 + c0ε
2||∇v||20

= (1− δ)ε4||∇ · q||20 +
1
δ

((
δc2 − (c0 − c)2

)
v, v
)

+ c0ε
2||q||20 + c0ε

2||∇v||20.(3.10)

Note that

(δ − 1)c+ c0 ≥ − c0
c0 + c1

c1 + c0 =
c20

c0 + c1
.

Hence

(3.11) δc2 − (c0 − c)2 = ((δ − 1)c+ c0)c+ c0(c− c0) ≥ c20
c0 + c1

c ≥ c30
c0 + c1

.

Finally, by (3.10) and (3.11), we arrive at

B(v,v) ≥ 1− δ
2

ε4||∇ · q||20 +
c30
2c1
||v||20 +

c0
2
ε2||q||20 +

c0
2
ε2||∇v||20,

which implies (3.7) by taking α = min{ c0
2(c0+c1)

,
c30
2c1
, c02 }.

The following result is a straightforward consequence of Theorem 3.1.
Proposition 3.2. The least-squares variational problem (3.3) is well posed.

3.2. LDG discretization. We next discretize the least-squares formulation
(3.3) with the LDG method [15]. Using integration by parts in each element, we
get the LDG approximation for the least-squares variational formulation (3.3) as fol-
lows, by employing a process which will be referred to as the LDG-LS method in this
paper. Find uh = [ph, uh]T ∈ Vh such that

(3.12) Bh(uh,v) = Lh(v) ∀v ∈ Vh,

where the bilinear form (or primal form) Bh : H(Th) ×H(Th) → R and the linear
form Lh : H(Th)→ R are defined by

(3.13)

Bh(w,v) =
M∑
k=1

∫
Ωk

(c0ε2r · q + c0ε
2∇w · ∇v + ε4∇ · r∇ · q + c2wv) dx

+ ε2
M∑
k=1

∫
Ωk

(r · ∇ ((c− c0)v) + (c0 − c)w∇ · q) dx

− ε2
M∑
k=1

∫
∂Ωk

(c0ŵkq+
k · n+

k + cv+
k r̂k · n+

k ) ds
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and

(3.14) Lh(v) =
M∑
k=1

(f , Av)ΩK =
M∑
k=1

(f,−ε2∇ · q + cv)Ωk

for all v,w ∈ H(Th), respectively. In (3.13), n+
k is the outward normal unit vector to

∂Ωk, ŵ, and r̂ are numerical fluxes defined by

ŵk,e = {w}k,e + [[w]]k,e · λk,e,(3.15)
r̂k,e = {r}k,e + [[r]]k,eμk,e(3.16)

on e ∈ Eint and by

ŵk,e = w|e,(3.17)
r̂k,e = r|e(3.18)

on e ∈ E\Eint, where parameters λ and μ are vector-valued functions. Note that Vh

does not need to be a subspace of H(Ω). Our method is therefore nonconforming in
this sense.

Remark 3.1. For continuous functions, the numerical fluxes defined in (3.15)–
(3.18) are the restrictions of the corresponding functions on associated interelement
edges. A straightforward computation shows that Bh(·, ·) coincides with B(·, ·) in
H(Ω)×H(Ω).

Remark 3.2. To see the difference between the discontinuous LSFEMs in [2, 3, 17]
and the LDG-LS method developed in this paper, we note that, for discontinuous
LSFEMs in the papers cited, special least-squares functionals are defined on dis-
continuous spaces, which lead to symmetric weak forms from minimization of the
corresponding functionals. The LDG-LS method, on the other hand, discretizes a
standard least-squares functional with the LDG method, whose formulation is in gen-
eral nonsymmetric.

Remark 3.3. If λ and μ are properly selected, then Bh(·, ·) preserves many good
properties of B(·, ·). For instance, letting λk = n+

k /2 and μk = n+
k /2, it is easy to

verify that ŵk = w+
k , r̂k · n+

k = r+
k · n+

k , and hence

Bh(w,v) =
M∑
k=1

(Aw, Av)Ωk
,

which is symmetric.
Before considering the coercivity of Bh(·, ·), we recall the trace inequalities when

d = 2. For v ∈ Vh, we have (see, e.g., [9])

||v+
k ||0,∂Ωk

≤ C1h
1/2|v|1,Ωk

,(3.19)

||q+
k ||0,∂Ωk

≤ C2h
−1/2||q||0,Ωk

,(3.20)

where || · ||0,∂Ωk
is the H0(∂Ωk) norm, and C1 and C2 are fixed constants satisfying

(3.19) and (3.20) for all k, respectively. Then we have the following results.
Theorem 3.3. Let Bh(·, ·) be the bilinear form defined in (3.13) with λk = 0 and

μk = 0.
(i) There exists a constant C > 0 independent of ε such that

(3.21) |Bh(w,v)| ≤ C||w||1,ε||v||1,ε ∀v,w ∈ Vh.
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(ii) Assume that min{ c0
c0+c1

,
c30
c1
, c0} > (c1 − c0)C1C2 when d = 2. There exists a

constant α∗ > 0 independent of ε such that

(3.22) Bh(v,v) ≥ α∗||v||21,ε ∀v ∈ Vh.

Proof. We first prove the coercivity of Bh(·, ·). Comparing (3.4) and (3.13), we
have

Bh(w,v) =
M∑
k=1

(
B(w,v)k + ε2

∫
∂Ωk

(c0(w+
k − ŵk)q+

k · n+
k + cv+

k (r+
k − r̂k) · n+

k ) ds
)

for all v,w ∈ Vh, where

B(w,v)k = (Aw, Av)Ωk

is the restriction of B(w,v) to the element Ωk. Since λk = 0 and μk = 0, we get

Bh(w,v) =
M∑
k=1

(
B(w,v)k + ε2

∫
∂Ωk

c0(w+
k − {w}k)q+

k · n+
k ds

+ ε2
∫
∂Ωk

cv+
k (r+

k − {r}k) · n+
k ds

)
.

It follows that

(3.23) Bh(v,v) =
M∑
k=1

B(v,v)k + c0ε
2
M∑
k=1

∑
e⊂∂Ωk

∫
e

IΩk,e
ds+ ε2

M∑
k=1

∑
e⊂∂Ωk

∫
e

JΩk,e
ds,

where IΩk,e
and JΩk,e

are the interior traces of (v − {v})q · n+
k + v(q− {q}) · n+

k and
(c− c0)v(q− {q}) · n+

k on edge e with respect to Ωk, respectively.
For any element Ωk, if an edge e ∈ E\Eint, then v|e = 0 and {v}|e = 0, and hence

IΩk,e
= 0 and JΩk,e

= 0, which contribute 0 in the last two summations in (3.23).
On the other hand, if the edge e ∈ Eint, then there is another element Ωk′,e sharing e
with Ωk, and there are two terms associated with the edge in each double summation
in (3.23). In particular,∫

e

IΩk,e
ds =

∫
e

(
1
2
(v+
k,e − v−k,e)q+

k,e · n+
k,e +

1
2
v+
k,e(q

+
k,e − q−k,e) · n+

k,e

)
ds,(3.24) ∫

e

IΩk′,e
ds =

∫
e

(
1
2
(v−k,e − v+

k,e)q
−
k,e · n−k,e +

1
2
v−k,e(q

−
k,e − q+

k,e) · n−k,e
)
ds.(3.25)

Adding (3.24) and (3.25), we get∫
e

(IΩk,e
+ IΩk′,e

) ds =
∫
e

(v+
k,eq

+
k,e · n+

k,e + v−k,eq
−
k,e · n−k,e) ds,

since n+
k,e + n−k,e = 0. We thus conclude that

M∑
k=1

∑
e⊂∂Ωk

∫
e

IΩk,e
ds =

M∑
k=1

∫
∂Ωk

v+
k q+

k · n+
k ds.
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Similarly, ∫
e

JΩk,e
ds =

∫
e

1
2
(c− c0)v+

k,e(q
+
k,e − q−k,e) · n+

k,e ds,(3.26) ∫
e

JΩk′,e
ds =

∫
e

1
2
(c− c0)v−k,e(q−k,e − q+

k,e) · n−k,e ds.(3.27)

By adding (3.26) and (3.27), we then have∫
e

(JΩk,e
+ JΩk′,e

) ds =
∫
e

(c− c0){v}k,e[[q]]k,e ds,

and hence

M∑
k=1

∑
e⊂∂Ωk

∫
e

JΩk,e
ds =

M∑
k=1

1
2

∫
∂Ωk

(c− c0){v}k[[q]]k ds.

Therefore, (3.23) reads

(3.28) Bh(v,v) =
M∑
k=1

Rk +
M∑
k=1

ε2

2

∫
∂Ωk

(c− c0){v}k[[q]]k ds,

where

Rk = B(v,v)k + c0ε
2

∫
∂Ωk

v+
k q+

k · n+
k ds.

Now, by Theorem 3.1, we have

(3.29) Rk ≥ α||v||21,ε,Ωk

for each element Ωk, where α = min{ c0
2(c0+c1) ,

c30
2c1
, c02 }. Consider the second summa-

tion in (3.28). When d = 1, a straightforward calculation shows that (see [24])

(3.30)
M∑
k=1

∫
∂Ωk

(c− c0){v}k[[q]]k ds = 0.

When d = 2, since the interior and outer traces of {v}[[q]] on each edge are equal,
we may rearrange terms in the sum. Applying Cauchy–Schwartz inequality, it follows
that ∣∣∣∣∣

M∑
k=1

∫
∂Ωk

(c− c0){v}k[[q]]k ds

∣∣∣∣∣ = 2

∣∣∣∣∣
M∑
k=1

∫
∂Ωk

(c− c0)v+
k q+

k · n+
k ds

∣∣∣∣∣
≤ 2(c1 − c0)

M∑
k=1

||v+
k ||0,∂Ωk

||q+
k · n+

k ||0,∂Ωk
≤ 2(c1 − c0)

M∑
k=1

||v+
k ||0,∂Ωk

||q+
k ||0,∂Ωk

.

Using the trace inequalities (3.19) and (3.20), we obtain

(3.31)
M∑
k=1

ε2

2

∫
∂Ωk

(c− c0){v}k[[q]]k ds ≥ −
M∑
k=1

C3ε
2|v|1,Ωk

||q||0,Ωk
,
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where C3 = (c1 − c0)C1C2. From (3.29)–(3.31) we conclude that, when d = 1,

Bh(v,v) ≥
M∑
k=1

(
α||v||21,ε,Ωk

) ≥ α||v||21,ε,

and when d = 2,

Bh(v,v) ≥
M∑
k=1

(
α||v||21,ε,Ωk

− C3ε
2|v|1,Ωk

||q||0,Ωk

) ≥ (α − C3/2)||v||21,ε.

The coercivity result follows with α∗ = α when d = 1 and α∗ = α−C3/2 when d = 2.

The boundedness (3.21) is a direct consequence of the Cauchy–Schwartz, triangle,
and trace inequalities.

In addition, we have the following analogue of Proposition 3.2.

Proposition 3.4. Assume that the conditions of Theorem 3.3 are fulfilled. The
LDG-LS approximation problem (3.12) is well posed.

Remark 3.4. Note that the boundedness result (3.21), as well as (3.6), is in the
more desirable norm || · ||1,ε, comparing with the results in only standard H1 norm
from some other classical FEMs [27, 33]. This inequality leads naturally to a Céa
type error estimate and a uniform error estimate in the || · ||1,ε norm, which will be
presented in section 4.

Remark 3.5. λ = 0 and μ = 0 are sufficient but not necessary conditions for
the results of Theorem 3.3. In section 5, we provide numerical results with nonzero
numerical flux parameters. Moreover, a proper selection of λ and μ will produce
numerical solutions of better quality. Our examples show that better computational
results are obtained if λ and μ are pointing toward the layers.

Remark 3.6. The LDG-LS method (3.12) is stable and robust with zero numer-
ical flux parameters. In addition, if c is a constant function, then the assumption
min{ c0

c0+c1
,
c30
c1
, c0} > (c1 − c0)C1C2 for coercivity (3.22) is naturally true.

3.3. The hybrid adaptive method. We divide the solution domain Ω into
two regions: the regular solution region ΩC and the layer region ΩD. In ΩC the
exact solution is smooth and the derivatives of the exact solution can be bounded by
a constant that is independent of ε, where we may use continuous elements. In ΩD
the exact solution has large derivatives thus motivating the use of the discontinuous
method in the region. Conforming with the triangulation Th, we may define ZD =⋃

Ωk∩ΩD �=∅ Ωk, the region consisting of elements covering ΩD, and ZC = Ω\ZD.

Let V∗h be a subspace of Vh, such that the basis functions of V∗h are continuous in
ZC . The hybrid LDG/continuous least-squares (LDG/C-LS) FEM is: find uh ∈ V∗h
such that

(3.32) B∗h(uh,v) = Lh(v) ∀v ∈ V∗h,
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where the bilinear form B∗h : V∗h ×V∗h → R is defined by

B∗h(w,v) =
M∑
k=1

∫
Ωk

(c0ε2r · q + c0ε
2∇w · ∇v + ε4∇ · r∇ · q + c2wv) dx

+ ε2
M∑
k=1

∫
Ωk

(r · ∇((c− c0)v) + (c0 − c)w∇ · q) dx

− ε2
M∑
k=1

Ωk⊂ZD

∫
∂Ωk

(c0ŵkq+
k · n+

k + cr̂k · n+
k v

+
k ) ds

for all v,w ∈ V∗h, the linear form Lh is given in (3.14), and the numerical fluxes are
given in (3.15)–(3.18).

The continuous and discontinuous discretizations for the least-squares formulation
(3.3) are naturally combined in the LDG/C-LS approximation (3.32), which saves the
extra degrees of freedom required by the LDG-LS method. Moreover, the coercivity
of B∗h in the || · ||1,ε norm and the well posedness of problem (3.32) can be verified. A
computational comparison between the two methods is made in section 5.

4. Error estimates. In this section, we present some a priori error estimate
results.

Proposition 4.1. The bilinear form Bh(·, ·) defined by (3.13) is consistent.
Proof. Let u ∈ H(Ω) solve the problem (3.3). By the definitions (3.15)–(3.18),

we have {u}k,e = u|e, [[u]]k,e = 0, and {p}k,e = p|e on all e ∈ E ; and [[p]]k,e = 0 on
all e ∈ Eint. Therefore, it follows that

Bh(u,v) =
M∑
k=1

B(u,v)k =
M∑
k=1

(f , Av)Ωk
= Lh(v)

for all v ∈ Vh. The desired result thus follows.
Let u and uh solve problems (3.3) and (3.12), respectively. It follows from Propo-

sition 4.1 that Bh(·, ·) satisfies the Galerkin orthogonality

(4.1) Bh(u− uh,v) = 0 ∀v ∈ Vh.

We assume the numerical flux parameters λ = 0 and μ = 0. Then, by Theorem 3.3
and (4.1), we have

α∗||u− uh||21,ε ≤ Bh(u− uh,u− uh)
= Bh(u− uh,u− v) ≤ C||u− uh||1,ε||u− v||1,ε

for all v ∈ Vh, which implies the following Céa type error estimate.
Theorem 4.2. Let u and uh be solutions to (3.3) and (3.12), respectively. As-

sume that the conditions of Theorem 3.3 are fulfilled. Then

(4.2) ||u− uh||1,ε ≤ C inf
v∈Vh

||u− v||1,ε.

Thus, the LDG-LS FEM is optimal in the ε-dependent norm. Consequently, we
get the following a priori error estimate.

Theorem 4.3. Let u and uh be solutions to (3.3) and (3.12), respectively. As-
sume that u ∈ H3(Ω) and the conditions of Theorem 3.3 are fulfilled. Then

(4.3) ||u− uh||1,ε ≤ Ch1/2.
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Proof. Let Ihu and Ihp be the standard linear or bilinear finite element interpo-
lation of u and p (i.e., ∇u), respectively. Then, from approximation theory (e.g., [9]),
we have

(4.4)
||u− Ihu||W 0∞(Ω) ≤ Ch|u|W 1∞(Ω),
||p− Ihp||W 1∞(Ω) ≤ Ch|p|W 2∞(Ω),

where C denotes a constant independent of the mesh size h.
By the coercivity of Bh(·, ·), we have

(4.5)
α∗||u− Ihu||21,ε ≤ Bh(u− Ihu,u− Ihu)

= B(u− Ihu,u− Ihu)
= (A(u − Ihu), A(u − Ihu)),

where the first identity is due to the fact that u− Ihu is continuous in Ω (see Remark
3.1). Noting that the interpolation operator is linear, it follows that

A(u− Ihu) = Au−AIhu = Au− IhAu = f − Ihf .

By approximation theory, we have

(4.6) ||f − Ihf ||W 0∞(Ω) ≤ C|f |W 0∞(Ω).

Using the estimates (4.4) and (4.6), we obtain

(4.7)
(A(u− Ihu), A(u− Ihu)) = (A(u− Ihu), f − Ihf)

≤ Ch
(
ε2|p|W 2∞(Ω) + |u|W 1∞(Ω)

) |f |W 0∞(Ω).

By (4.5) and (4.7), we get

(4.8) ||u− Ihu||1,ε ≤ Ch1/2,

since u, and hence p, is sufficiently smooth. The desired result follows immediately
from Theorem 4.2 and (4.8) by selecting v as Ihu in (4.2).

Remark 4.1. As shown in [10, 11], for second-order elliptic problems, the first-
order system LSFEM has an optimal error estimate of O(h) in the H1 norm. See also
[5]. For singularly perturbed problems described in this paper, however, this optimal
convergence rate cannot be achieved (cf. [33]).

Remark 4.2. In [36] and [28], uniform error estimates of O(h1/2) are obtained
in an ε-dependent norm for singularly perturbed elliptic problems in 1D and 2D,
respectively, by using exponentially fitted spline elements; cf. [33]. We obtain an
estimate of the same order in Theorem 4.3. Our numerical examples show that this
estimate is optimal.

Finally, by a standard procedure (see, e.g., [9]), we have the following maximum-
norm error estimate, whose proof will not be included here.

Theorem 4.4. Let u and uh be solutions to (3.3) and (3.12), respectively. As-
sume that conditions of Theorem 3.3 are fulfilled. Then

(4.9) ||u− uh||W 0∞(Ω) ≤ Ch||u||W 1∞(Ω).
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Fig. 1. Example 5.1: Numerical solutions by the LDG-LS method with different numerical fluxes.

5. Numerical experiments. In this section we present three numerical exam-
ples to illustrate the theoretical results of the methods developed in section 3. The
stiffness matrices and load vectors are analytically calculated. High order Gaussian
quadrature rules are used to calculate the norms of numerical errors over the com-
putational regions (including the layers), which hereby causes no competitive extra
errors in numerical integration. In the following examples, if not otherwise specified,
we set ε2 = 10−8. Uniform meshes are used for all examples.

Example 5.1. Consider the reaction-diffusion equation

(5.1)
{ −ε2u′′(x) + u(x) = x in (0, 1),
u(0) = u(1) = 0.

The analytical solution to (5.1) is

u(x) = x− e(x−1)/ε − e−(x+1)/ε

1− e−2/ε
,

which has a typical exponential boundary layer at x = 1 when ε� 1.
We first inspect the impact of the numerical fluxes. In Figure 1, we present

the computational results of the LDG-LS method with numerical flux parameters (i)
λ = μ = 0 and (ii) λ = μ = 1/2 (toward the boundary layer), and mesh size h = 1/32
and 1/128, respectively. The numerical solutions have two traces (one-sided limits) at
each interior mesh point, which are denoted in Figure 1 by u+ and u−, respectively.
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Fig. 2. Example 5.1: Convergence of the LDG-LS method with different numerical fluxes.

Figure 1 shows that the numerical results with (i) have oscillations. But those with
(ii) have no oscillations even in quite a big mesh size. In addition, the jumps between
u+ and u− are not visible. A more detailed investigation confirms that the jumps at
the interior mesh points can be ignored when comparing them with other numerical
errors.

Figure 2 shows log-log plots of numerical errors for the LDG-LS method with
different numerical flux parameters, which are measured in the ε-dependent norm
||u − uh||1,ε and the discrete maximum norm ||u − uh||max,h at mesh points. Figure
2 confirms the estimates in Theorem 4.3. On the other hand, when selection (i) is
used, the numerical results have first-order accuracy in the discrete maximum norm,
as indicated in Theorem 4.4. When selection (ii) is used, the superconvergence phe-
nomenon occurs. Superconvergence of singularly perturbed problems has been studied
for continuous and discontinuous Galerkin methods; see, e.g., [23, 25, 32, 37, 38, 39].
In [13, 29], superconvergence results of LSFEM have been developed for second-order
self-adjoint equations in 1D. Superconvergence analysis for least-squares methods in
multidimensional nontenser product meshes is an ongoing research project.

Next, we compare the LDG-LS method with continuous LSFEMs, discontinuous
LSFEMs, and DG methods. For comparison, we define a discontinuous least-squares
functional in H(Th) as

Ĵ (v; f) =
M∑
k=1

||Av − f ||20,Ωk
+

M∑
k=1

∑
e∈∂ΩK

∫
e

(
[[v]]2k,e + ε2[[q]]2k,e

)
ds.

The corresponding FEM is referred to as discontinuous LSFEM 1. We also imple-
mented the method proposed in [2], which is referred to as discontinuous LSFEM
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Fig. 3. Example 5.1: Numerical solutions by different numerical methods.

Table 1

Example 5.1: Numerical errors ||u − uh||1,ε by the LDG-LS method for different ε values.

ε2\ h 1/16 1/32 1/64 1/128 Order of convergence

100 2.106547e-2 7.758647e-3 2.799855e-3 1.000096e-3 1.476201
10−2 1.459560e-1 6.232572e-2 2.470814e-2 9.363776e-3 1.362641
10−4 3.112819e-1 2.045051e-1 1.206056e-1 6.187578e-2 0.867373
10−6 4.314102e-1 2.819504e-1 1.732858e-1 1.120847e-1 0.647382
10−8 4.368976e-1 3.089476e-1 2.183285e-1 1.536840e-1 0.504225
10−10 4.368963e-1 3.089774e-1 2.184881e-1 1.544961e-1 0.499952
10−12 4.368963e-1 3.089773e-1 2.184879e-1 1.544957e-1 0.499954

2. All numerical computations are conducted in uniform meshes with h = 1/32
and h = 1/128, respectively. In Figure 3, we present the numerical results of these
methods. Here λ = μ = 1/2 are used for the LDG-LS method. For methods with
discontinuous elements, the average of the numerical approximations is plotted. It
is observed that the solutions by the DG method and the discontinuous LSFEM 1
illustrate the typical “over-shooting” phenomenon near the boundary layer, where
the magnitude of the numerical heap does not decrease as the mesh size decreases.
On the other hand, the standard LSFEM and the discontinuous LSFEM 2 smear out
the boundary layer, whose numerical errors in the discrete maximum norm do not
converge to 0, though the methods converge with order 1/2 in the ε-dependent norm.
The LDG-LS method provides the best numerical solutions here.

Finally, Table 1 is used to test for numerical independence of the LDG-LS method
on ε. Here zero numerical fluxes are used. It is observed that when a singular pertur-
bation occurs, the error ||u−uh||1,ε converges with rate 1/2, which is independent of
ε, as indicated in Theorem 4.3. On the other hand, when the problem is not singularly
perturbed, superconvergence is observed (e.g., as ε2 = 1 or 10−2); cf. [10]. In fact,
when ε = 1, norms || · ||1,ε and || · ||1 are the same.

Example 5.2. Consider the reaction-diffusion equation

(5.2)
{ −ε2u′′(x) + (2− x)u(x) = f in (0, 1),
u(0) = u(1) = 0,

where f is chosen properly such that the solution u to (5.2) is

u(x) =
(
1− e−x/ε

)(
1− e(x−1)/ε

)
.
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Fig. 4. Example 5.2: Numerical solutions by LDG-LS and LDG/C-LS methods (h = 1/32).
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Fig. 5. Example 5.2: Convergence of LDG-LS and LDG/C-LS methods.

The exact solution has two boundary layers at x = 0 and 1.
We compare the numerical solutions of the LDG-LS method and the LDG/C-LS

method in this example. The numerical fluxes are first chosen toward the layers. In
particular, for the LDG-LS scheme, we choose λ = μ = −1/2 for elements located in
[0, 1/2] and λ = μ = 1/2 for elements in [1/2, 1]. For the LDG/C-LS scheme, the nu-
merical flux parameters are analogously chosen only for the first and last two elements,
respectively, which contain the boundary layers. Recall that, in the case of this exam-
ple, the LDG/C-LS method uses discontinuous basis functions only in two elements
at each end, and uses continuous basis functions for the other elements. Analogous
LDG-LS and LDG/C-LS schemes are developed with λ = μ = 0 for comparison.

Figure 4 shows the numerical solutions by the two methods with different numer-
ical fluxes in a uniform mesh (h = 1/32). When λ = μ = 0, the LDG-LS solutions
have oscillations in the entire region, while the LDG/C-LS solutions have only small
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Fig. 6. Example 5.3: Numerical solutions and errors by the LDG/C-LS method (h = 1/32).

bumps near the boundary layers. On the other hand, solutions from both methods
with λ = μ = ±1/2 match the exact solutions very well. Figure 5 indicates that the
convergence rates of the LDG-LS and LDG/C-LS methods are the same when identi-
cal numerical fluxes are applied, since the dominant error occurs near the boundary
layers. Moreover, superconvergence is observed in the discrete maximum norm when
the numerical flux parameters are ±1/2.

Note that the LDG/C-LS method produces an algebraic problem of about half the
degrees of freedom as the LDG-LS method, which thus significantly reduces computa-
tional cost. This makes the method competitive with the standard DG or least-squares
methods. Moreover, our numerical tests show that the resulting discrete problems by
both methods have the same order condition numbers; in particular, O(h−2) condi-
tion numbers for the problem with nonsingular perturbation, and O(h−3) condition
numbers for singularly perturbed cases.

Example 5.3. Consider the reaction-diffusion equation

(5.3)
{ −ε2Δu+ 2u = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

where f is chosen properly such that the solution u to (5.3) is

u(x, y) =
(
1− e−x/ε

)(
1− e(x−1)/ε

)
y(1− y) + x(1 − x)

(
1− e−y/ε

)(
1− e(y−1)/ε

)
.

The exact solution has exponential layers on the boundary ∂Ω.
We use bilinear LDG/C-LS elements on uniform meshes in this example. Discon-

tinuous basis functions are used only in two layers of elements along the boundary, and
continuous basis functions are used for the other elements. Here, we use λ = μ = 0
for all discontinuous elements.

Figure 6 shows the numerical solutions uh and the errors u− uh by the LDG/C-
LS method when h = 1/32. Figure 7 is the log-log plot of the numerical errors of
the LDG/C-LS method. The convergence rates are calculated based on the last three
data points. The numerical results agree with the theoretical predictions in Theorems
4.3 and 4.4.

6. Conclusion. A singularly perturbed reaction-diffusion problem with homo-
geneous Dirichlet boundary conditions is considered in this paper, for which we de-
veloped a stable numerical approach based on LDG discretization of least-squares
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formulation, which needs no special treatments. The coercivity and boundedness of
the bilinear forms have been proven, which leads to the well posedness of the meth-
ods. We prove a uniform optimal energy norm error estimate. A maximum-norm
error estimate is also provided. A hybrid adaptive method is derived for efficiency
reasons. Numerical examples are presented, which are in agreement with the the-
oretical results. Comparisons have been conducted numerically. In addition, some
superconvergence results have been observed.

The proposed approach is innovative, requiring neither special treatments nor
manually adjusted parameters. Comparing with the other methods, such as the LDG
method and the continuous and discontinuous LSFEMs, our method is more robust
and accurate in solving problems with singular perturbation. The hybrid method is
competitive with the standard LDG method and LSFEM in the sense of computational
cost. This paper provides an efficient alternative to numerical approaches for solving
singularly perturbed reaction-diffusion problems.

It is our belief that an analogous approach can be developed for general singularly
perturbed convection-diffusion problems, which is an ongoing research project.

Acknowledgments. The author thanks the anonymous referees and the editor,
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A POSTERIORI ERROR ESTIMATE AND ADAPTIVE MESH
REFINEMENT FOR THE CELL-CENTERED FINITE VOLUME

METHOD FOR ELLIPTIC BOUNDARY VALUE PROBLEMS∗
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Abstract. We extend a result of Nicaise [SIAM J. Numer. Anal., 43 (2005), pp. 1481–1503] for
the a posteriori error estimation of the cell-centered finite volume method for the numerical solution
of elliptic problems. Having computed the piecewise constant finite volume solution uh, we compute
a Morley-type interpolant Iuh. For the exact solution u, the energy error ‖∇T (u − Iuh)‖L2 can
be controlled efficiently and reliably by a residual-based a posteriori error estimator η. The local
contributions of η are used to steer an adaptive mesh-refining algorithm. A model example serves
the Laplace equation in two dimensions with mixed Dirichlet–Neumann boundary conditions.

Key words. finite volume method, cell-centered method, diamond path, a posteriori error
estimate, adaptive algorithm
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1. Introduction. Throughout, Ω ⊂ R2 is a bounded and connected domain
with Lipschitz boundary Γ := ∂Ω. We assume that Γ is divided into a closed Dirichlet
boundary ΓD ⊆ Γ with positive surface measure and a Neumann boundary ΓN :=
Γ\ΓD. We consider the elliptic model problem

−Δu = f in Ω(1.1)

with mixed boundary conditions

u = uD on ΓD and ∂u/∂n = g on ΓN .(1.2)

Here f ∈ L2(Ω), uD ∈ H1(ΓD), and g ∈ L2(ΓN ) are given data, and L2(·) and H1(·)
denote the standard Lebesgue and Sobolev spaces equipped with the usual norms
‖ · ‖L2(·) and ‖ · ‖H1(·). The weak form of (1.1) reads as follows: Find u ∈ H1(Ω) with
u|ΓD = uD and∫

Ω

∇u ·∇v dx =
∫

Ω

fv dx+
∫

ΓN

gv dx for all v ∈ H1
D(Ω) :=

{
v ∈ H1(Ω)

∣∣ v|ΓD = 0
}
.

Recall that there is a unique solution u which we aim to approximate by a postpro-
cessed finite volume scheme. For technical reasons, we assume that ΓD as well as ΓN
are connected; see Theorem 5.1 below.

Let T be a triangulation of Ω and E the set of all edges of T . Replacing the
continuous diffusion flux

∫
E ∂u/∂nE ds by a discrete diffusion flux FDE (uh), the cell-

centered finite volume method provides a T -elementwise constant approximation uh ∈
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P0(T ) of u. The classical choice of FDE (uh) is based on the admissibility of the
triangulation T in the sense of [10]. However, locally refined meshes are usually not
admissible. Another choice of FDE (uh) is the diamond path method, which has been
mathematically analyzed in [6, 7] for rectangular meshes with a maximum of one
hanging node per edge. Optimal order of convergence ‖u−uh‖1,h = O(h) of the error
with respect to a discrete H1-norm ‖ · ‖1,h holds under the regularity assumption
u ∈ H2(Ω), which is usually not met in practice.

We aim to provide a mathematical criterion for steering an adaptive mesh-refining
algorithm to recover the optimal order of convergence O(N−1/2) with respect to the
number N = #T of elements. Following Nicaise [11], we introduce a Morley-type
interpolant Iuh which belongs to a certainH1(Ω)-nonconforming finite element space,
the definition of which is a generalization of the definition in [11, section 5] to the case
of hanging nodes and mixed boundary conditions. Roughly speaking, the analytical
idea is to ensure that Iuh has enough orthogonality properties which can be used to
adapt the well-known a posteriori error analysis from the context of the finite element
method; see, e.g., [12, 1]. For each element T ∈ T with corresponding edges ET , we
define the refinement indicators

η2
T := h2

T ‖f − fT ‖2L2(T ) +
∑

E∈{E∈EE |E⊂∂T}
hE‖[[∇T (Iuh) ]]‖2L2(E)

+
∑

E∈ET∩EN

hE

∥∥∥∥∂(u− Iuh)
∂nE

∥∥∥∥
2

L2(E)

+
∑

E∈ET∩ED

hE

∥∥∥∥∂(u− Iuh)
∂tE

∥∥∥∥
2

L2(E)

.

Here [[ · ]] denotes the jump, nE and tE denote the normal and tangential vector on E,
respectively, fT denotes the piecewise integral mean of the volume term, and hE is
the length of the edge E. We prove that the corresponding error estimator

η :=
( ∑
T∈T

η2
T

)1/2

is reliable and efficient in the sense that

C−1
rel ‖∇T (u − Iuh)‖L2(Ω) ≤ η ≤ Ceff

[‖∇T (u− Iuh)‖L2(Ω) + ‖h(f − fT )‖L2(Ω)

]
.

Here ∇T denotes the T -piecewise gradient, and the constants Ceff , Crel > 0 depend
only on the shape of the elements in T but not on f , the local mesh width h, or the
number of elements. Moreover, the efficiency estimate holds even locally:

ηT ≤ Ceff

[‖∇T (u − Iuh)‖L2(ωT ) + ‖h(f − fT )‖L2(ωT )

]
,

where ωT denotes the patch of the element T ∈ T .
The proof of the reliability makes use of the Helmholtz decomposition to deal

with mixed boundary conditions. For the proof of the efficiency estimate, the non-
avoidance of hanging nodes needs the extended definition of edge patches. We stress
that [11] treats only the Dirichlet problem ΓD = Γ and that the a posteriori error
analysis is restricted to the case of regular meshes. Therefore the definition of Iuh
had to be substantially modified.

The content of this paper is organized as follows. In section 2, we introduce the
notation that is used below. In particular, we define the concept of an almost regular
triangulation, which allows the analytical error analysis in the case of certain hanging
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nodes. Section 3 gives a short summary on the classical cell-centered finite volume
method for our model problem. We recall the ideas of the diamond path, where
emphasis is laid on the treatment of nodes a ∈ ΓN that lie on the Neumann boundary
ΓN . In section 4, we define the Morley interpolant and collect the orthogonality
properties used for the error analysis. Reliability and efficiency of the error estimator
η are then proven in section 5. Numerical experiments, found in section 6, confirm the
theoretical results and conclude the work. In particular, we observe that the proposed
strategy even recovers the optimal order of convergence with respect to the energy
norm ‖u− uh‖1,h.

2. Preliminaries and notation. In this section, we introduce the notation for
the triangulations that are considered below. In particular, we define the so-called
almost regular triangulation which allows certain hanging nodes.

2.1. Almost regular triangulation. Throughout, T denotes a triangulation
of Ω, where N and E are the corresponding set of nodes and edges, respectively.
We assume that the elements T ∈ T are triangles or rectangles, either of which are
nondegenerate. For T ∈ T , hT := diam(T ) denotes the Euclidean diameter and �T is
the corresponding height; i.e., the volume of T is |T | = hT�T in the case of T being a
rectangle and |T | = hT�T /2 in the case of T being a triangle. Moreover, for an edge
E ∈ E , we denote by hE its length.

Nodes. In the following, we introduce a partition

N = ND ∪NN ∪ NH ∪ NF
of N into Dirichlet and Neumann nodes, hanging nodes, and free nodes, respectively:
First, let ND :=

{
a ∈ N ∣∣ a ∈ ΓD

}
(resp., NN :=

{
a ∈ N ∣∣ a ∈ ΓN

}
) be the set of

all nodes that belong to the Dirichlet boundary (resp., Neumann boundary). A node
a ∈ N\(ND ∪ NN ) is a hanging node, provided that there are elements T1, T2 ∈ T
such that a ∈ T1 ∩ T2 is a node of T1 but not of T2. Let NH be the set of all hanging
nodes. Finally, the set of free nodes is NF := N\(ND ∪ NN ∪ NH). For an element
T ∈ T , we denote with NT the set of nodes of T , i.e., |NT | = 3 for T being a triangle
and |NT | = 4 for T being a rectangle, respectively.

Edges. For the edges, we introduce a partition

E = ED ∪ EN ∪ EH ∪ EE
into Dirichlet and Neumann edges, nonelementary edges, and interior elementary
edges, respectively: First, we define ED :=

{
E ∈ E ∣∣E ⊆ ΓD

}
and EN :=

{
E ∈

E ∣∣E ⊆ ΓN
}
. Second, an interior edge E ∈ E is nonelementary if there are pairwise

different nodes x, y, z ∈ N such that E = conv{x, y} and z ∈ E; i.e., there is a hanging
node z in the interior of E. The set of all nonelementary edges is denoted by EH .
Contrarily, E\EH denotes the set of all elementary edges, which is split into boundary
edges ED ∪ EN and interior elementary edges EE := E\(EH ∪ ED ∪ EN ). Moreover, we
define the set

E0 :=
{
E ∈ EE

∣∣ 
 ∃E′ ∈ EH E � E′
}

of all interior elementary edges which are not part of a nonelementary edge. Finally,
for an element T ∈ T , we denote with ET ⊂ E the set of all edges of T , i.e.,

ET :=
{
E ∈ E ∣∣E ⊆ ∂T for all E′ ∈ E (E � E′ ⇒ E′ 
⊆ ∂T )

}
.
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(a) Circles denote
nodes in NH , squares
denote nodes in NF ,
triangles denote nodes
in ND, stars denote
nodes in NN .

(b) Full lines denote
edges in ED , dashed
lines denote edges in
EN , dotted lines de-
note edges in EE .

(c) Dotted lines de-
note edges in EH ,
dashed lines denote
edges in E0.

T

(d) Full lines denote
edges in ET , circles de-
note nodes in NT .

Fig. 2.1. The sets of edges and nodes for a simple (almost regular) triangulations, which
consists of six rectangular elements.

Almost regular triangulations. We say that the triangulation T is almost
regular if the following hold:

(i) the mixed boundary conditions are resolved; i.e., each edgeE ∈ E with E∩Γ 
=
∅ satisfies either E ∈ ED or E ∈ EN ;

(ii) the intersection T1 ∩ T2 of two elements T1, T2 ∈ T with T1 
= T2 is either
empty or a node or an edge;

(iii) each nonelementary edge E ∈ EH is the finite union of elementary edges;
i.e., there are finitely many elementary edges E1, . . . , En ∈ EE such that
E =

⋃n
i=1Ei.

With respect to regular triangulations in the sense of Ciarlet, the only difference is
that in (ii) the intersection T1 ∩ T2 may be, for instance, a node (or an edge) of T1

but not of T2; see Figure 2.1. However, in the case of E := T1 ∩ T2 being an edge,
(iii) implies that there holds at least either E ∈ ET1 or E ∈ ET2 . From now on, we
assume that all triangulations are at least almost regular (or even regular).

2.2. Normal and tangential vectors. For each edge E ∈ E , we fix a normal
vector nE as follows: For E ∈ ED ∪ EN , let nE point outwards of Ω. For an edge
E ∈ EH , there is a unique element T ∈ T with E ∈ ET , and we choose nE to point
into T . For each elementary edge E′ ∈ EE with E′ ⊂ E, we define nE′ := nE . For
the remaining edges, namely E ∈ E0, we may choose the orientation of nE arbitrarily.

In section 3, we shall use the following notational convention: For each elementary
edge E ∈ EE , there are unique elements TW,E and TE,E such that E ⊆ TW,E∩TE,E and
such that nE points from TW,E to TE,E (i.e., from west to east). For E ∈ ED ∪ EN ,
there is a unique element TW,E with E ⊂ ∂TW,E. If the edge E is clear from the
context, we omit the additional subscript and simply write, e.g., TW = TW,E .

Moreover, for each element T ∈ T and an edge E ∈ E with E ⊂ ∂T , we define
the sign

σT,E =

{
+1, provided T = TW,E ,

−1 else;

i.e., σT,EnE is the outer normal vector nT |E of T restricted to the edge E.
Finally, the tangential vector tE of an edge E ∈ E is chosen orthogonal to nE in

the mathematical positive sense. We note that σT,EtE is the tangential vector tT |E
of an element T ∈ T restricted to the edge E; see Figure 2.2.
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T

E
xT

tE

nE

σT,EnE

σT,EtE

(a) σT,E = 1

T

E
xT

tE

nE

σT,EnE

σT,EtE

(b) σT,E = −1

Fig. 2.2. The dashed lines show the a priori chosen normal vector nE (resp., tangential vector
tE) on the edge E, whereas the full lines are the outer normal vector nT |E = σT,EnE of T (resp.,
tT |E = σT,EtE) with respect to the edge E.

a

(a) ωa

E

(b) ωE

E

(c) ω∗
E

T

(d) ωT

Fig. 2.3. The four patches introduced in section 2.3.

2.3. Patches. We recall the definition of the patches which are well known from
finite element analysis. Additionally, we introduce the elementary patch of an edge
which is needed for the handling of the hanging nodes in our a posteriori error analysis;
see Figure 2.3.

Patch of a node. For a ∈ N , the patch is given by

ωa =
⋃
T∈ω̃a

T, where ω̃a :=
{
T ∈ T ∣∣ a ⊆ ∂T}.

Patch of an edge. For an elementary edge E ∈ E\EH , the patch is given by

ωE :=
⋃

T∈ω̃E

T, where ω̃E :=
{
T ∈ T ∣∣E ⊆ ∂T}.

For a nonelementary edge E ∈ EH and E1, . . . , En ∈ EE with E =
⋃n
i=1Ei, we define

ωE :=
⋃

T∈ω̃E

T =
n⋃
i=1

ωEi , where ω̃E :=
n⋃
i=1

ω̃Ei .

Elementary patch of an edge. Let us consider a nonelementary edge E ∈ EH
and E1, . . . , En ∈ EE with E =

⋃n
i=1 Ei. Then there is a unique element TE ∈ T with

E ∈ ETE . Moreover, there are unique elements Ti ∈ T such that Ei ∈ ETi . We denote
by a1, . . . , an−1 ∈ NH the hanging nodes, which are on E. Moreover, let a0 and an
be the nodes of E. Without loss of generality, ai−1, ai are the nodes of Ei, i.e.,

Ei = conv{ai−1, ai}.
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If TE = conv{a0, an, b} is a triangle, we define triangles T̃i := conv{ai−1, ai, b} and
note that

TE =
n⋃
i=1

T̃i and int(T̃i) ∩ int(T̃j) = ∅ for i 
= j,(2.1)

where int(·) denotes the topological interior of a set. We stress that the triangles
T̃i cannot be elements of the triangulation T . For TE a rectangle, we can construct
rectangles T̃i with (2.1). For each of the elementary edges Ei, we may then define the
elementary patch

ω∗Ei
:= Ti ∪ T̃i and ω̃∗Ei

:= {Ti, T̃i}.
So far, we have defined the patch ω∗E for all edges E ∈ E which are contained in
a nonelementary edge. For the remaining edges E ∈ E , we define ω∗E := ωE and
ω̃∗E := ω̃E.

Patch of an element. The patch of an element T ∈ T is defined by

ωT :=
⋃

T∈ω̃T

T, where ω̃T :=
{
T ′ ∈ T ∣∣T ∩ T ′ ∈ E}.

2.4. Jump terms. For T ∈ T , E ⊆ ∂T , and ϕ ∈ H1(T ), let ϕ|E,T denote the
trace of ϕ on E. Now let E ∈ EE be an interior elementary edge and TE and TW the
unique elements with E = TE ∩ TW . For a {TE, TW }-piecewise H1 function ϕ, the
jump of ϕ on E is defined by

[[ϕ ]]E := ϕ|E,TE − ϕ|E,TW .

Note that [[ϕ ]]E = 0, provided ϕ ∈ H1(TE ∪ TW ). Moreover, for a {TE, TW }-piecewise
polynomial ϕ, the jump on E reads

[[ϕ ]]E(x) := lim
t→0+

ϕ(x + tnE)− lim
t→0+

ϕ(x− tnE) for all x ∈ E.

For each nonelementary edge E ∈ EH , we define the jump [[ϕ ]]E by

[[ϕ ]]E(x) := [[ϕ ]]Ei(x) for all x ∈ Ei,
where E =

⋃n
i=1 Ei with E1, . . . , En ∈ EE .

3. Cell-centered finite volume method. This section summarizes the dis-
cretization for the cell-centered finite volume method for our model problem. It
especially points out the difference between the approximation of the diffusive flux on
an admissible mesh and an almost regular mesh.

3.1. Discretization ansatz. We integrate the strong form (1.1) over a control
volume T ∈ T and use the Gauss divergence theorem to obtain∫

T

f dx = −
∫
T

Δu dx = −
∫
∂T

∂u

∂nT
ds = −

∑
E∈ET

σT,E

∫
E

∂u

∂nE
ds for all T ∈ T .

With the diffusive flux ΦDE (u) =
∫
E
∂u/∂nE ds, we get the so-called balance equation

−
∑
E∈ET

σT,EΦDE (u) =
∫
T

f dx for all T ∈ T .(3.1)
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TETW

E

xTExTW nE

TW

E

xTW

xEm

nE

Fig. 3.1. The orthogonality condition for E ∈ EE (left) (resp., E ∈ ED (right)) for an admissible
mesh in the sense of [10].

For the cell-centered finite volume method, one replaces the continuous diffusion flux
ΦDE (u) by a discrete diffusion flux FDE (uh), which is discussed in section 3.2. Here
uh ∈ P0(T ) is a piecewise constant approximation of u, namely uT := uh|T ≈ u(xT ),
where xT denotes the center of an element T ∈ T . The discrete problem thus reads
as follows: Find uh ∈ P0(T ) such that

−
∑
E∈ET

σT,EF
D
E (uh) =

∫
T

f dx for all T ∈ T .

3.2. Discretization of diffusion flux. Note that ΦDE (uh) =
∫
E g ds is known

for a Neumann edge E ∈ EN . One therefore defines

FDE (uh) := ΦDE (uh) =
∫
E

g ds for E ∈ EN .

Moreover, for a nonelementary edge with E =
⋃n
i=1Ei and Ei ∈ EE , there holds

ΦDE (u) =
∑n

i=1 ΦDEi
(u), which leads to the definition

FDE (uh) :=
n∑
i=1

FDEi
(uh) for all E1, . . . , En ∈ EE and E =

n⋃
i=1

Ei ∈ EH .(3.2)

Therefore, it remains only to define FDE (uh) for E ∈ EE ∪ ED.

Admissible meshes. For an admissible mesh in the sense of [10, Definition 9.1],
a first-order difference scheme leads to

ΦDE (u) ≈ FDE (uh) :=

⎧⎪⎪⎨
⎪⎪⎩
uTE − uTW

|xTE − xTW |
hE if E ∈ EE and E = TW ∩ TE ,

uEm − uTW

|xEm − xTW |
hE if E ∈ ED and E = TW ∩ ΓD,

(3.3)

with uTW = uh|TW ≈ u(xTW ) and uTE ≈ u(xTE ) as well as for E ∈ ED, uEm ≈
uD(xEm).

The admissibility of the mesh T allows one to choose the centers xT for T ∈ T
in a way that the edges E = TW ∩ TE for any TW , TE ∈ T are orthogonal to the
directions xTE − xTW ; see Figure 3.1. For general meshes, it is not possible to choose
the centers xT appropriately, and the approximation (3.3) is not consistent [10].

Remark 3.1. Even if a triangular mesh is admissible in the sense of [10, Defini-
tion 9.1], local mesh refinement is nontrivial: One has to guarantee that all angles
are strictly less than π/2; i.e., one cannot avoid remeshing of the domain. For rec-
tangular meshes, local mesh refinement cannot avoid hanging nodes. This, however,
contradicts the admissibility condition.
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T1 T2

T3

E1 E2

xT1

xT2

xT3

xa

anE1 nE2

T1

T2

E1

E2

xT1

xT2

xa

a

nE1

nE2

E1

E2a

nE1

nE2

xa=xT

T

T1

T2T3

E1

E2xT1

xT2
xT3

xa

nE1

nE2=a

Fig. 3.2. The different cases for calculating ua with a ∈ NN and E1, E2 ∈ EN .

Diamond path method. A possible choice of FDE (uh) for general meshes is the
so-called diamond path method, which has been mathematically analyzed in [6, 7] for
rectangular meshes with a maximum of one hanging node per edge. For each node
a ∈ N , we define

ua =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
T∈ω̃a

ψT (a)uT for all a ∈ NF ∪ NH ,

uD(a) for all a ∈ ND,
ua + ga for all a ∈ NN

(3.4)

for certain weights
{
ψT (a)

∣∣T ∈ T , a ∈ NT}. For details on the computation of the
weights, the reader is referred to [5, 6, 7, 9]. We stress that the computation can be
done in linear complexity with respect to the number #T of elements.

We remark only on the computation of ua and ga in the case of a Neumann node
a ∈ NN ; see Figure 3.2: Two edges E1, E2 ∈ EN correspond to a ∈ NN such that
{a} = E1 ∩ E2. Let nj denote the normal vector of Ej . In the case of #ω̃a > 1,
let T1, T2 ∈ ω̃a with T1 
= T2. We define xa as the intersection of the line γ1(s) =
a + s(n1 + n2)/2 and the line γ2(t) = t(xT1 − xT2). Moreover, provided #ω̃a > 2,
we assume that |xa − a| is minimized over all pairs T1, T2 ∈ ω̃a. Then ua ≈ u(xa) is
interpolated linearly from uT1 and uT2 :

ua =
uT2 − uT1

|xT2 − xT1 |
|xa − xT1 |+ uT1 .

For n1 = n2, we choose

ga = |xa − a|
(

1
|E1|

∫
E1

g ds+
1
|E2|

∫
E2

g ds

)/
2,

and, finally, for n1 
= n2, we choose

ga = λ
1
|E1|

∫
E1

g ds+ μ
1
|E2|

∫
E2

g ds,

where λ, μ ∈ R are calculated from the linear equation a − xa = λn1 + μn2. In the
case ω̃a = {T }, i.e., a is the node of only one element T ∈ T , we choose xa = xT and
ua = uT , whereas ga is computed as before.

Remark 3.2. Provided xa = a, we obtain a− xa = 0, λ = μ = 0, and ga = 0.
With the notation from Figure 3.3, where xTS and xTN are the starting and end
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xTW

xTS

xTE

xTN

|(xTE
−xTW

)·tE ||(xTE
−xTW

)·nE|
dE=

hE

TE

TW

E

tE

nE

χE

Fig. 3.3. Diamond path with domain χE.

points of E ∈ EE ∪ ED, we compute FDE (uh). For an elementary edge E ∈ EE ,

FDE (uh) := hE

(
uTE − uTW

dE
− αE uTN − uTS

hE

)

with αE =
(xTE − xTW ) · tE
(xTE − xTW ) · nE , dE = (xTE − xTW ) · nE .

(3.5)

Here the additional unknowns uTN and uTS are located at the nodes xTN and xTS and
are computed by (3.4). For a boundary edge E ∈ ED, we compute FDE (uh) by (3.5),
where xTE is now replaced by the midpoint xEm of E and uTE becomes uD(xEm).

4. Morley interpolant. Let uh ∈ P0(T ) be the computed discrete solution. In
this section, we define an interpolant Iuh which is appropriate for the a posteriori
error analysis, the definition of which is an extension of the definition in [11, section 5]
to the case of hanging nodes and Neumann nodes.

Triangular Morley element. Let T = conv{a1, a2, a3} ⊂ R2 be a nondegener-
ate triangle with edges Ej = conv{aj, aj+1}, where a4 := a1. The standard Morley
element (T,PT ,ΣT ) is given by PT = P2 and ΣT = (S1, . . . , S6), where

Sj(p) = p(aj) and Sj+3(p) =
∫
Ej

∂p

∂nT,Ej

ds for j = 1, . . . , 3 and p ∈ P2.

Note that Sj+3(p) = hEj∂p(mj)/∂nT,Ej , where mj := (aj + aj+1)/2 denotes the
midpoint of Ej , so that this definition is consistent with [2, section 8.3].

Rectangular Morley element. Let T = conv{a1, a2, a3, a4} ⊂ R2 be a nonde-
generate rectangle with edges Ej . A Morley-type element (T,PT ,ΣT ) is then given
by PT = P2 ⊕ span{x3 − 3xy2, y3 − 3yx2} and ΣT = (S1, . . . , S8), where

Sj(p) = p(aj) and Sj+4(p) =
∫
Ej

∂p

∂nT,Ej

ds for j = 1, . . . , 4 and p ∈ PT ;

cf. [11, section 4.2]. Note that the polynomials x3− 3xy2 and y3− 3yx2, which enrich
the ansatz space, are harmonic.
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Fig. 4.1. An almost regular triangulation, where the elementwise and recursive computation of
Iuh does not stop.

The Morley interpolant. In either of the cases, that T is a nondegenerate tri-
angle or rectangle, the Morley element (T,PT ,ΣT ) is a nonconforming finite element.
The Morley interpolant Iuh satisfies elementwise (Iuh)|T ∈ PT for all T ∈ T defined
by the following properties (4.1)–(4.3): For each free node a ∈ NT ∩ NF , the value
Iuh(a) satisfies

(Iuh)|T (a) =
∑
Ta∈ω̃a

ψTa(a)uh|Ta ,(4.1)

where the weights ψTa(a) are the same as for the computation of uh by the use of the
diamond cell method. For each boundary node, the value Iuh(a) is prescribed:

(Iuh)|T (a) =

{
uD(a) for a ∈ NT ∩ ND,
ua + ga for a ∈ NT ∩ NN ,

(4.2)

where the calculation of ua and ga was discussed in section 3. For each hanging node
a ∈ NT ∩ NH , there holds

(Iuh)|T (a) = (Iuh)|Ta(a),(4.3)

where Ta ∈ T is the unique element with a ∈ int(E) for some (nonelementary) edge
E ∈ ETa . For each edge E ∈ ET , there holds∫

E

∂(Iuh)|T
∂nE

ds = FDE (uh),(4.4)

where FDE (uh) is the numerical flux from section 3.2.
Lemma 4.1. The Morley interpolant Iuh is uniquely defined by (4.1)–(4.4).

Moreover, Iuh is continuous in all nodes a ∈ N but not globally continuous in Ω.
Proof. For an element T ∈ T without hanging nodes, i.e., NT ∩ NH = ∅, the

interpolant (Iuh)|T is uniquely defined by (4.1)–(4.3) and (4.4) since (T,PT ,ΣT ) is a
finite element.

Remark 4.1. The computation of Iuh can be performed by solving a large system
of linear equations which is coupled through the hanging nodes. However, normally
Iuh can be computed locally by solving a 6× 6 (resp., 8× 8) system for each element
T ∈ T . For an element T ∈ T without hanging nodes, the interpolant (Iuh)|T is
uniquely determined by (4.1)–(4.2) and (4.4). For an element with hanging nodes,
we have to compute (Iuh)|Ta first; cf. (4.3). This leads to a recursive algorithm.
Figure 4.1 shows an almost regular triangulation, where the proposed recursion would
not stop. Instead, one has to solve a global linear system to compute Iuh.
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Properties of Morley interpolant. From the definition of the discrete scheme
and the property (4.3), we obtain an additional orthogonality property of Iuh.

Lemma 4.2. The residual R := f + Δ(Iuh) is L2-orthogonal to P0(T ), i.e.,∫
T

(
f + Δ(Iuh)

)
dx = 0 for all T ∈ T .(4.5)

In particular, the residual satisfies R = f − fT .
Proof. From integration by parts and the definition of the balance equation (3.1),

we infer∫
T

Δ(Iuh)|T dx =
∫
∂T

∂(Iuh)|T
∂nT

ds =
∑
E∈ET

σT,EF
D
E (uh) = −

∫
T

f(x) dx,

where we have used (4.4) in the second equality. In particular, there holds RT |T :=
|T |−1

∫
T
Rdx = 0. With ΔT (Iuh) ∈ P0(T ), we obtain R = R−RT = f − fT .

According to the definition of Iuh on the Dirichlet and Neumann boundaries,
namely (4.2) and (4.3), we obtain corresponding orthogonalities.

Lemma 4.3. For boundary edges, there hold∫
E

∂(u− Iuh)
∂tE

ds = 0 for all E ∈ ED(4.6)

as well as ∫
E

∂(u− Iuh)
∂nE

ds = 0 for all E ∈ EN .(4.7)

Proof. For E ∈ ED, let aS and aN be the starting and end points of E, respectively.
Then ∫

E

∂(u− Iuh)
∂tE

ds = (u− Iuh)(aN )− (u− Iuh)(aS) = 0

by the use of (4.2). To prove (4.7), we use (4.4) and the definition of the finite volume
scheme: ∫

E

∂(Iuh)
∂nE

ds = FDE (uh) =
∫
E

g ds,

where g = ∂u/∂n.
Finally, we note some orthogonality relations of the normal and tangential jumps

of Iuh which again follow from (4.4) (in combination with (3.2)) and from the nodal
values (4.1)–(4.3) of Iuh.

Lemma 4.4. For the interior edges, there hold∫
E

[[
∂(Iuh)
∂nE

]]
ds = 0 for all E ∈ E0 ∪ EH(4.8)

as well as ∫
E

[[
∂(Iuh)
∂tE

]]
ds = 0 for all E ∈ EE .(4.9)
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Proof. We first prove (4.8) for E ∈ EH . There holds E =
⋃n
i=1Ei with E1, . . . , En

∈ EE , Ei = TWi ∩ TE and nE shows from element TWi to TE. Therefore, the defini-
tion (3.2) of the discrete flux on nonelementary edges implies∫

E

[[
∂(Iuh)
∂nE

]]
ds =

∫
E

∂(Iuh)|TE

∂nE
ds−

n∑
i=1

∫
Ei

∂(Iuh)|TWi

∂nE
ds

= FDE (uh)−
n∑
i=1

FDEi
(uh) = 0.

For E ∈ E0, the proof of (4.8) works analogously with n = 1. To prove (4.9), let aS and
aN be the starting and end points of E ∈ EE , respectively. Note that [[ Iuh ]]E(aN ) =
0 = [[ Iuh ]]E(aS) because of the continuity of Iuh in all nodes. Therefore,∫

E

[[
∂(Iuh)
∂tE

]]
ds =

∫ aN

aS

[[
∂(Iuh)
∂tE

]]
ds = [[ Iuh ]]E(aN )− [[ Iuh ]]E(aS) = 0,

which concludes the proof.

5. A posteriori error estimate. In this section, we provide a residual-based a
posteriori error analysis for the error u−Iuh, where I denotes the Morley interpolant
from section 4. The idea goes back to [11] and is now extended to almost regular
triangulations and mixed boundary conditions. The mathematical techniques follow
the a posteriori error analysis for nonconforming finite elements. Throughout, ∇T
and ΔT denote the T -piecewise gradient and Laplacian, respectively.

5.1. Residual-based error estimator. For each element T ∈ T , we define the
refinement indicator

η2
T := h2

T ‖f − fT ‖2L2(T ) +
∑

E∈{E∈EE |E⊂∂T}
h∗E‖[[∇T (Iuh) ]]‖2L2(E)

+
∑

E∈ET∩EN

hE

∥∥∥∂(u− Iuh)
∂nE

∥∥∥2

L2(E)
+

∑
E∈ET∩ED

hE

∥∥∥∂(u− Iuh)
∂tE

∥∥∥2

L2(E)
.

(5.1)

Here fT denotes the T -piecewise integral mean, i.e., fT |T := |T |−1
∫
T
f dx. Moreover,

the length h∗E of an edge E ∈ EE is defined by

h∗E :=

{
hE′ if E ⊂ E′ for some E′ ∈ EH ,
hE else, i.e., E ∈ E0.

The residual-based error estimator is then given by the �2-sum η =
(∑

T∈T η
2
T

)1/2 of
all refinement indicators. In the following sections, we prove that η is (up to terms of
higher order) a lower and upper bound of the error ‖∇T (u−Iuh)‖L2(Ω) in the energy
norm.

5.2. Reliability of error estimator.
Theorem 5.1. There is a constant c1 > 0 which depends only on the shape of

the elements in T but neither on the size nor the number of elements such that

‖∇T (u − Iuh)‖L2(Ω) ≤ c1
( ∑
T∈T

η2
T

)1/2

.



ADAPTIVE FINITE VOLUME METHOD 121

Proof. To abbreviate notation, we use the symbol � if an estimate holds up
to a multiplicative constant that depends only on the shape of the elements in T .
For e := u − Iuh, the Helmholtz decomposition, e.g., from [4, Lemma 2.1], provides
v ∈ H1(Ω) and w ∈ H1(Ω) such that

∇T e = ∇v + curlw and v|ΓD = 0 as well as curlw · n|ΓN = 0.

Moreover, there holds

‖∇v‖2L2(Ω) + ‖ curlw‖2L2(Ω) = ‖∇T e‖2L2(Ω) =
∫

Ω

∇T e · ∇v dx +
∫

Ω

∇T e · curlw dx.

(5.2)

Note that 0 = curlw · n = ∂w/∂t on ΓN . Since ΓN is connected, we infer that w is
constant on ΓN . Subtracting a constant, we may therefore guarantee w|ΓN = 0. We
now estimate the two addends on the right-hand side separately. The first term reads∫

Ω

∇T e·∇v dx =
∑
T∈T

∫
T

Rv dx+
∫

ΓN

gv ds−
∑
T∈T

∫
∂T

∂(Iuh)
∂nT

v ds

according to elementwise integration by parts and the definition of the residual R :=
f + ΔT (Iuh). We now consider the sum over the boundary integrals, namely

∑
T∈T

∫
∂T

∂(Iuh)
∂nT

v ds =
∑
T∈T

∑
E∈ET

σT,E

∫
E

∂(Iuh)
∂nE

v ds.

For E ∈ ED, the boundary integral vanishes due to v|ΓD = 0. The Neumann edges
E ∈ EN are combined with the boundary integral

∫
ΓN

g ds. Each edge E ∈ E0 appears
twice for associated elements TW and TE , respectively. The normal vectors σTW ,E nE
and σTE ,E nE differ only in the sign so that we obtain the jump of the normal derivative
on E. For a nonelementary edge E ∈ EH with E =

⋃n
i=1Ei and Ei ∈ EE , both E as

well as the elementary edges Ei appear only once in the sum. Similarly to the prior
arguments we are led to the jump of the normal derivative on E, where we make use
of nE = −nEi for all i = 1, . . . , n. Altogether, we obtain∫

Ω

∇T e · ∇v dx =
∑
T∈T

∫
T

Rv dx−
∑

E∈E0∪EH

∫
E

[[
∂(Iuh)
∂nE

]]
v ds

+
∑
E∈EN

∫
E

(
g − ∂(Iuh)

∂nE

)
v ds

=
∑
T∈T

∫
T

R(v − vT ) dx−
∑

E∈E0∪EH

∫
E

[[
∂(Iuh)
∂nE

]]
(v − vE) ds

+
∑
E∈EN

∫
E

∂e

∂nE
(v − vE) ds,

where we have applied the orthogonalities (4.5), (4.7), and (4.8) for the integral means
vT = |T |−1

∫
T
v dx and vE := h−1

E

∫
E
v ds, respectively. We now apply the Cauchy

inequality combined with a Poincaré inequality ‖v− vT ‖L2(T ) � hT ‖∇v‖L2(T ) for the
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first sum and a trace inequality ‖v − vE‖L2(E) � h
1/2
E ‖∇v‖L2(TE) for the remaining

sums, where TE ∈ T is an arbitrary element with E ∈ ETE . This leads to∫
Ω

∇T e · ∇v dx �
( ∑
T∈T

h2
T ‖R‖2L2(T )

)1/2( ∑
T∈T
‖∇v‖2L2(T )

)1/2

+
( ∑
E∈E0∪EH

hE

∥∥∥ [[∂(Iuh)
∂nE

]] ∥∥∥2

L2(E)

)1/2( ∑
E∈E0∪EH

‖∇v‖2L2(TE)

)1/2

+
( ∑
E∈EN

hE

∥∥∥ ∂e

∂nE

∥∥∥2

L2(E)

)1/2( ∑
E∈EN

‖∇v‖2L2(TE)

)1/2

�
[( ∑

T∈T
h2
T ‖R‖2L2(T )

)1/2

+
( ∑
E∈EE

h∗E
∥∥∥ [[∂(Iuh)

∂nE

]] ∥∥∥2

L2(E)

)1/2

+
( ∑
E∈EN

hE

∥∥∥ ∂e

∂nE

∥∥∥2

L2(E)

)1/2
]
‖∇v‖L2(Ω).(5.3)

For the second integral in (5.2), we proceed in the same manner: Elementwise inte-
gration by parts yields∫

Ω

∇T e · curlw dx = −
∑
T∈T

∫
∂T

∂e

∂tT
w ds = −

∑
T∈T

∑
E∈ET \EN

σT,E

∫
E

∂e

∂tE
w ds,

since w|ΓN = 0. Treating the interior edges as before, we obtain

∑
T∈T

∑
E∈ET

σT,E

∫
E

∂e

∂tE
w ds =

∑
E∈EE

∫
E

[[
∂(Iuh)
∂tE

]]
w ds+

∑
E∈ED

∫
E

∂e

∂tE
w ds,

where we have used that, for an interior edge E, the tangential jump of anH1-function
vanishes, i.e., [[ ∂u/∂tE ]]E = 0. With the orthogonalities (4.9) and (4.6), we prove∫

Ω

∇T e · curlw dx = −
∑
E∈EE

∫
E

[[
∂(Iuh)
∂tE

]]
(w − wE) ds−

∑
E∈ED

∫
E

∂e

∂tE
(w − wE) ds

for the integral mean wE := h−1
E

∫
E
w ds. As before, the application of the Cauchy

inequality and the trace inequality yields∫
Ω

∇T e · curlw dx(5.4)

�
[ ∑
E∈EE

h∗E
∥∥∥[[∂(Iuh)

∂tE

]] ∥∥∥2

L2(E)
+
∑
E∈ED

hE

∥∥∥ ∂e

∂tE

∥∥∥2

L2(E)

]1/2
‖∇w‖L2(Ω).

If we finally combine (5.2)–(5.4), we prove

‖∇T e‖L2(Ω) �
[ ∑
T∈T

h2
T ‖R‖2L2(T ) +

∑
E∈EE

h∗E‖[[∇Iuh ]]‖2L2(E)

+
∑
E∈EN

hE

∥∥∥ ∂e

∂nE

∥∥∥2

L2(E)
+
∑
E∈ED

hE

∥∥∥ ∂e
∂tE

∥∥∥2

L2(E)

]1/2
,
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(a) Almost regular
triangulation.

(b) Bubble function
bE on E ∈ E0.

(c) Bubble function
bE on E ∈ EE\E0.

(d) Bubble function
bE on a boundary
edge.

Fig. 5.1. The different types of the edge-bubble functions on an almost regular triangulation.

where we have used that {tE ,nE} is an orthonormal basis of R2 and that ‖∇v‖L2 ≤
‖∇T e‖L2 as well as ‖∇w‖L2 = ‖ curlw‖L2 ≤ ‖∇T e‖L2. This and R = f−fT conclude
the proof.

5.3. Local efficiency of error estimator. To prove the efficiency of the pro-
posed error estimator, we need to control the constant c2 > 0 in the estimate hE ≤
h∗E ≤ c2hE uniformly for all E ∈ EE .

Theorem 5.2. There is a constant c3 > 0 which depends only on c2 and the
shape of the elements in T but neither on the size nor the number of elements such
that

η2
T ≤ c3

(‖∇T (u− Iuh)‖2L2(ωT ) + h2
T ‖f − fT ‖2L2(ωT )

)
for all T ∈ T .(5.5)

The proof follows along the arguments of Verfürth [12] by use of appropriate
bubble functions bE (see Figure 5.1) and an edge lifting operator Fext. The elementary
edge patch ω∗E is defined in a way that it belongs to a locally regular triangulation. For
E ∈ EE, we may therefore adopt the notation of bE and Fext from the literature [12].

Lemma 5.3. For each edge E ∈ EE ∪ED ∪EN , there is a ω̃∗E-piecewise polynomial
bubble function bE ∈ H1(ω∗E) with 0 ≤ bE ≤ 1 such that, for all w ∈ Pp(E), there
holds

c4‖w‖L2(E) ≤ ‖w b1/2E ‖L2(E) ≤ ‖w‖L2(E).(5.6)

The constant c4 > 0 depends only on the shape of the elements of T and the polynomial
degree p. Moreover, for E ∈ EE, the bubble function satisfies bE ∈ H1

0 (ω∗E), whereas
for a boundary edge E ∈ ED ∪ EN there holds bE |∂ω∗

E\E = 0.
Lemma 5.4. For each edge E ∈ EE ∪ ED ∪ EN , there is a lifting operator Fext :

Pp(E)→ H1(ω∗E) such that Fext(w)|E = w, for w ∈ Pp(E), as well as

c5h
1/2
E ‖w‖L2(E) ≤ ‖Fext(w)bE‖L2(ω∗

E) ≤ c6h1/2
E ‖w‖L2(E)(5.7)

and

‖∇(Fext(w)bE)‖L2(ω∗
E) ≤ c7h−1/2

E ‖w‖L2(E).(5.8)

The constants c5, c6, c7 > 0 depend only on the shape of the elements in T and the
polynomial degree p. Here bE denotes the bubble function from Lemma 5.3.

The proof of Theorem 5.2 is now split into four claims which dominate the different
edge contributions of η2

T separately. Throughout the proofs, we adopt the foregoing
notation for e = u− Iuh, R = f + ΔT (Iuh), and �.

Claim 1. There holds hE
∥∥[[∂(Iuh)

∂nE

]]∥∥2

L2(E)
� ‖∇T e‖2L2(ω∗

E) + h2
E‖R‖2L2(ω∗

E) for
each E ∈ EE.
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Proof. We first stress that u ∈ H1(Ω) implies
[[∂(Iuh)

∂nE

]]
E

= −[[ ∂e
∂nE

]]
E

. With
bE ∈ H1

0 (ω∗E) the corresponding edge-bubble function, (5.6) yields∥∥∥∥
[[
∂(Iuh)
∂nE

]]∥∥∥∥
2

L2(E)

�
∫
E

[[
∂(Iuh)
∂nE

]]
E

v ds with v := Fext

([[
∂(Iuh)
∂nE

]]
E

)
bE ∈H1

0 (ω∗E).

We rewrite the right-hand side and use integration by parts to prove∫
E

[[
∂(Iuh)
∂nE

]]
E

v dx = −
∑
T∈ω̃∗

E

∫
∂T

∂e

∂nT
v dy = −

∑
T∈ω̃∗

E

(∫
T

∇e · ∇v dx−
∫
T

Rv dx

)
.

With the help of (5.7)–(5.8), the Cauchy inequality proves∥∥∥∥
[[
∂(Iuh)
∂nE

]]∥∥∥∥
2

L2(E)

�
(
h−1
E ‖∇T e‖2L2(ω∗

E)+hE‖R‖2L2(ω∗
E)

)1/2∥∥∥∥
[[
∂(Iuh)
∂nE

]]∥∥∥∥
L2(E)

.

Claim 2. There holds hE
∥∥[[∂(Iuh)

∂tE

]]∥∥2

L2(E)
� ‖∇T e‖2L2(ω∗

E) for each E ∈ EE.
Proof. With bE ∈ H1

0 (ω∗E) the corresponding edge-bubble function, we observe∥∥∥∥
[[
∂(Iuh)
∂tE

]]∥∥∥∥
2

L2(E)

�
∫
E

[[
∂(Iuh)
∂tE

]]
v ds with v := Fext

([[
∂(Iuh)
∂tE

]]
E

)
bE ∈H1

0 (ω∗E).

As before, we rewrite the right-hand side and use integration by parts to prove∫
E

[[
∂(Iuh)
∂tE

]]
v ds =

∑
T∈ω̃∗

E

∫
∂T

∂(Iuh)
∂tT

v dx = −
∑
T∈ω̃∗

E

∫
T

∇(Iuh) · curl v dx.

Together with
∫
ω∗

E
∇u · curl v dx = 0 and (5.8), we obtain

∥∥∥∥
[[
∂(Iuh)
∂tE

]] ∥∥∥∥
2

L2(E)

�
∫
ω∗

E

∇T e · curl v dx � h
−1/2
E ‖∇T e‖L2(ω∗

E)

∥∥∥∥
[[
∂(Iuh)
∂tE

]] ∥∥∥∥
L2(E)

,

where we used ‖ curl v‖L2 = ‖∇v‖L2 .
Claim 3. For E ∈ ED, there holds hE

∥∥ ∂e
∂tE

∥∥2

L2(E)
� ‖∇e‖2L2(T ).

Proof. For E ∈ ED, there is a unique element ωE = T ∈ T with E ∈ ET . The
corresponding edge-bubble function bE ∈ H1(T ) satisfies bE|∂T\E = 0. We consider
v := Fext(∂e/∂tE)bE ∈ H1(T ) and note that v|∂T\E = 0 as well as tT |E = tE .
Therefore,∥∥∥∥ ∂e∂tE

∥∥∥∥
2

L2(E)

�
∫
E

∂e

∂tE
v ds = −

∫
T

∇e · curl v dx ≤ h−1/2
E ‖∇e‖L2(T )

∥∥∥∥ ∂e

∂tE

∥∥∥∥
L2(E)

,

where we finally used the Cauchy inequality together with (5.8).
Claim 4. For E ∈ EN , there holds hE

∥∥ ∂e
∂nE

∥∥2

L2(E)
� ‖∇e‖2L2(T ) + h2

E‖R‖2L2(T ).
Proof. As in Claim 3, let T ∈ T be the unique element with ωE = T for a fixed

edge E ∈ EN and let bE ∈ H1(T ) be the associated edge bubble function. With
v := Fext(∂e/∂nE)bE ∈ H1(T ) and integration by parts, there holds∥∥∥ ∂e

∂nE

∥∥∥2

L2(E)
�
∫
∂T

∂e

∂nT
v ds =

∫
T

∇e · ∇v dx−
∫
T

Rv dx.
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The proof now follows as in Claim 1.
Proof of Theorem 5.2. According to Claims 1 and 2, there holds∑

E∈{E∈EE |E⊂∂T}
h∗E‖[[∇T (Iuh) ]]‖2L2(E)

�
∑

E∈{E∈EE |E⊂∂T}

(‖∇T e‖2L2(ω∗
E) + h2

E‖R‖2L2(ω∗
E)

)

� ‖∇T e‖2L2(ωT ) + h2
E‖R‖2L2(ωT ).

With Claim 3, there holds

∑
E∈ET∩ED

hE

∥∥∥ ∂e

∂tE

∥∥∥2

L2(E)
�

∑
E∈ET∩ED

‖∇e‖2L2(T ) ≤ 4‖∇e‖2L2(T ).

With Claim 4, there holds

∑
E∈ET∩EN

hE

∥∥∥ ∂e

∂nE

∥∥∥2

L2(E)
�

∑
E∈ET∩EN

(‖∇e‖2L2(T ) + h2
E‖R‖2L2(T )

)

≤ 4
(‖∇e‖2L2(T ) + h2

E‖R‖2L2(T )

)
.

Finally, this and R = f − fT prove (5.5).

6. Numerical experiments. In this section, we study the accuracy of the de-
rived a posteriori error estimate from section 5 as well as the performance of an
adaptive mesh-refining algorithm which is steered by the local refinement indicators
ηT from (5.1). All computations are done in MATLAB. Throughout, we run the fol-
lowing standard algorithm, where we use θ = 1 for uniform and θ = 0.5 for adaptive
mesh refinement, respectively.

Algorithm 6.1. Given an initial mesh T (0), k = 0, and 0 ≤ θ ≤ 1, do the
following:

1. Compute the discrete solution uh ∈ P0(T (k)) for the current mesh T (k) =
{T1, . . . , TN}.

2. Compute the Morley interpolant Iuh.
3. Compute the refinement indicators ηTj for all elements Tj ∈ T (k).
4. Construct a minimal subset M(k) of T (k) such that

θ
∑

T∈T (k)

η2
T ≤

∑
T∈M(k)

η2
T(6.1)

and mark all elements in M(k) for refinement.
5. Refine at least all marked elements T ∈ M(k) and generate a new mesh
T (k+1).

6. Update k �→ k + 1 and go to (1).
Remark 6.1. The marking criterion (6.1) was introduced in [8] to prove conver-

gence of an adaptive algorithm for some P1-FEM for the Laplace problem. Despite
convergence, even the question of optimal convergence rates of the adaptive FEM
based on residual error estimators is well understood; cf. the recent work [3] for a
precise statement of optimality and the history of mathematical arguments.



126 CHRISTOPH ERATH AND DIRK PRAETORIUS

T1

T2

T3

(a) original mesh (b) not allowed (c) allowed

Fig. 6.1. To bound the constant c2 which enters the efficiency estimate of Theorem 5.2, we allow
only one hanging node per edge: If in configuration (a) the element T2 is marked for refinement,
we mark element T1 for refinement as well. This leads to configuration (c) instead of (b) after
refinement.
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Fig. 6.2. A priori computed weights ψT for the special mesh of squares with at most one
hanging node per edge.

In all experiments, the initial mesh T (0) is a uniform and regular triangulation,
where all of the elements are either triangles or squares. In the case of triangular
elements, we use a red-green-blue strategy to obtain T (k+1) from T (k); i.e., marked
elements are uniformly refined, and the obtained mesh is regularized by a green-blue
closure [12]. In the case of square elements, a marked element is uniformly refined,
and we allow hanging nodes. However, we do some additional marking to ensure the
following assumption.

Assumption 6.1. For all almost regular meshes consisting of squares, there is at
most one step of refinement between two neighboring cells; see Figure 6.1.

Note that under this assumption, there are only seven possible geometrical config-
urations for triangulations with square elements. This allows the a priori computation
of the weights ψT (a) in (3.4) and (4.1) which is shown in Figure 6.2.

Throughout, we compute and compare the following numerical quantities for uni-
form and adaptive mesh refinement: First, we have the Morley error

EI := ‖∇T (u− Iuh)‖L2(Ω),
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D1

D2

D3D4

N1 N2

N3

N4

D1

D2

N1

N2

Fig. 6.3. Domain Ω = (0, 1)2 as well as Dirichlet and Neumann boundary conditions in the
example in section 6.1. The initial mesh T (0) consists of four squares (left) and four triangles (right),
respectively.

where I denotes the Morley interpolant. Second, we have the corresponding residual-
based error estimator

η :=
( ∑
T∈T

η2
T

)1/2

,

where ηT are the refinement indicators of (5.1). Finally, we have the discretization
error in the discrete H1-norm

Eh := ‖u− uh‖1,h :=
(‖u− uh‖2L2(Ω) + |uT − uh|21,h

)1/2
,

where uT ∈ P0(T ) is the T -piecewise integral mean of u, i.e., uT |T = |T |−1
∫
T
u dx,

and where the discrete H1-seminorm is defined by

|vh|1,h =
( ∑
E∈EE∪ED

∣∣∣vTE − vTW

dE

∣∣∣2hEdE)1/2

for any T -piecewise constant function vh ∈ P0(T ). According to [7], the diamond
path method satisfies Eh = O(h) with h = maxT∈T hT , provided u ∈ H2(Ω). We
stress that this, however, is proven only for locally refined Cartesian meshes, i.e.,
meshes consisting of rectangular elements with at most one hanging node per edge.
In the case of triangular meshes, the proof still seems to be open.

6.1. Example with smooth solution. We consider the Laplace problem (1.1)
on the unit square Ω = (0, 1)2 with prescribed exact solution

u(x, y) = sinh(πx) cos(πy) for (x, y) ∈ Ω.(6.2)

Note that u is smooth and satisfies f := Δu = 0 so that the data oscillation term
‖h(f − fT )‖L2(Ω) of the error estimator η vanishes. We consider mixed boundary
conditions, where the Dirichlet and Neumann data on

ΓD = {1} × [0, 1] ∪ [0, 1]× {1} and ΓN = (0, 1)× {0} ∪ {0} × (0, 1)(6.3)

are computed from the given exact solution. The initial mesh T (0) consists of either
four squares or four triangles; see Figure 6.3.
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Fig. 6.4. Morley error EI = ‖∇T (u−Iuh)‖L2(Ω) and corresponding error estimator η as well

as energy error Eh = ‖u − uh‖1,h in the example in section 6.1 for uniform and adaptive mesh
refinement and triangulations consisting of squares (top) and triangles (bottom), respectively.

Figure 6.4 shows the curves of the errors EI = ‖∇T (u − Iuh)‖L2(Ω) and Eh =
‖u − uh‖1,h as well as the curve of the error estimator η with respect to uniform
and adaptive mesh refinement. We plot the experimental results over the number
of elements, where both axes are scaled logarithmically. Therefore, a straight line g
with slope −α corresponds to a dependence g = O(N−α), where N = #T denotes
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#T (5) = 112 #T (10) = 700

#T (15) = 3400 #T (20) = 13096

Fig. 6.5. Adaptively generated meshes T (k) for k = 5, 10, 15, 20 with square elements in the
example in section 6.1.
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Fig. 6.6. T -piecewise constant solutions uh in the example in section 6.1 with respect to
adaptively generated meshes T (8) consisting of #T (8) = 361 squares (left) and #T (8) = 1279
triangles (right), respectively.

the number of elements. Note that, for uniform mesh refinement, the order O(N−α)
with respect to N corresponds to O(h2α) with respect to the maximal mesh size
h := maxT∈T hT .

Because of u ∈ H2(Ω), theory predicts the optimal order of convergence Eh =
O(N−1/2) in the case of uniform mesh refinement and square elements. This is, in
fact, observed. Moreover, in the case of square elements, the curves of Eh for uniform
and adaptive mesh refinement almost coincide. However, the adaptive algorithm
does not lead to uniformly refined meshes. Instead, the adaptive meshes plotted in
Figure 6.5 show a certain refinement towards the edge x = 1 since the gradient of
u(x, y) is increasing with x → 1 (see Figure 6.6), where we visualize some computed
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#T (4) = 125 #T (8) = 1279

#T (12) = 11028 #T (14) = 32291

Fig. 6.7. Adaptively generated meshes T (k) for k = 4, 8, 12, 14 with triangular elements in the
example in section 6.1.

discrete solutions uh. Although the Dirichlet and Neumann boundaries are not chosen
symmetrically, the adaptive meshes appear to be almost symmetric with respect to the
line y = 1/2, which corresponds to the symmetry |∇u(x, 1/2− y)| = |∇u(x, 1/2 + y)|
of the exact solution.

For triangular elements, we observe the order O(N−1/2) for both uniform and
adaptive mesh refinement. However, the absolute values of Eh are better in the case
of uniform mesh refinement. As in the case of rectangular elements, we observe a
certain refinement of the adaptively generated meshes towards the right edge x = 1
in Figure 6.7, and again they are almost symmetric related to the line y = 1/2.

For the Morley error EI and uniform mesh refinement, we experimentally observe
some superconvergence of order 3/4 for both square and triangular elements in Fig-
ure 6.4. This superconvergence is destroyed by the use of adaptive mesh refinement,
where we observe only a convergence order 1/2. Independently of the mesh-refining
strategy and the type of elements, we observe the theoretically predicted reliability
and efficiency of the error estimator η: The curves of the Morley error EI and the
corresponding error estimator η are parallel up to a certain range.

6.2. Laplace problem with generic singularity. We consider the Laplace
problem (1.1) on the L-shaped domain

Ω = (−1, 1)2\([0, 1]× [−1, 0]
)

(6.4)
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D1 D2
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Fig. 6.8. L-shaped domain as well as Dirichlet and Neumann boundary conditions in the
Laplace problem in section 6.2. The initial mesh T (0) consists of 12 squares (left) and 12 triangles
(right), respectively.

as shown in Figure 6.8. The given exact solution is the harmonic function u(x, y) =
Im
(
(x+ iy)2/3

)
and reads in polar coordinates

u(x, y) = r2/3 sin(2ϕ/3) with (x, y) = r (cosϕ, sinϕ).

Note that u has a generic singularity at the reentrant corner (0, 0), which leads to
u ∈ H1+2/3−ε(Ω) for all ε > 0. Therefore, a conforming finite element method with
polynomial ansatz space leads to convergence of order O(h2/3) for the finite element
error in the H1-norm, where h denotes the uniform mesh size. This corresponds to
order O(N−1/3) with respect to the number of elements.

For the numerical computation, we prescribe the exact Neumann and Dirichlet
data, where

ΓD = Γ\ΓN and ΓN := {0} × (−1, 0) ∪ (0, 1)× {0}.
The initial meshes as well as ΓD and ΓN are shown in Figure 6.8. Note that ΓN
includes the reentrant corner, where the normal derivative ∂u/∂n is singular.

Figure 6.9 plots the experimental results for the energy error Eh as well as for the
Morley error EI and the corresponding error estimator η over the number of elements.
For uniform mesh refinement, the energy error Eh converges with a suboptimal or-
der slightly better than O(N−1/3) for square elements and O(N−1/3) for triangular
elements. The proposed adaptive strategy regains the optimal order of convergence
O(N−1/2).

As can be expected from the finite element method, the Morley error EI decreases
like O(N−1/3) for uniform mesh refinement. The adaptive algorithm leads to an
improved order of convergence O(N−1/2). For both mesh-refining strategies as well
as for square and triangular elements, the error estimator η is observed to be reliable
and efficient. For a sequence of adaptively generated meshes for both square and
triangular elements, see Figures 6.10 and 6.11, respectively.

6.3. Laplace problem with inhomogeneous right-hand side. Finally, we
consider the Laplace problem (1.1) on the L-shaped domain (6.4) from the previous
experiment. The exact solution is prescribed by u(x, y) = Im

(
(x + iy)2/3

)
+
(
x2 +

y2
)3/2 and reads in polar coordinates

u(x, y) = r2/3 sin(2ϕ/3) + r3 with (x, y) = r (cosϕ, sinϕ).
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Fig. 6.9. Morley error EI = ‖∇T (u−Iuh)‖L2(Ω) and corresponding error estimator η as well

as energy error Eh = ‖u − uh‖1,h in the Laplace problem in section 6.2 for uniform and adaptive
mesh refinement and triangulations consisting of squares (top) and triangles (bottom), respectively.

Note that f = −Δu reads f(x, y) = −9 (x2 + y2)1/2 (resp., f(x, y) = −9 r) with
respect to polar coordinates. We consider mixed boundary conditions with ΓD and
ΓN as in the previous experiment. Figure 6.12 shows the numerical results of our
computation. Despite a preasymptotic phase, where the f has to be resolved, we
observe the same behavior as in the example in section 6.2.
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#T (5) = 69 #T (10) = 531

#T (15) = 3069 #T (20) = 12474

Fig. 6.10. Adaptively generated meshes T (k) for k = 5, 10, 15, 20 with square elements in the
Laplace problem in section 6.2.

#T (4) = 118 #T (8) = 492

#T (12) = 2836 #T (14) = 7376

Fig. 6.11. Adaptively generated meshes T (k) for k = 4, 8, 12, 14 with triangular elements in the
Laplace problem in section 6.2.
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Fig. 6.12. Morley error EI = ‖∇T (u−Iuh)‖L2(Ω) and corresponding error estimator η as well

as energy error Eh = ‖u − uh‖1,h in the Laplace problem in section 6.3 for uniform and adaptive
mesh refinement and triangulations consisting of squares (top) and triangles (bottom), respectively.
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A BDDC METHOD FOR MORTAR DISCRETIZATIONS USING A
TRANSFORMATION OF BASIS∗

HYEA HYUN KIM† , MAKSYMILIAN DRYJA‡ , AND OLOF B. WIDLUND§

Abstract. A BDDC (balancing domain decomposition by constraints) method is developed for
elliptic equations, with discontinuous coefficients, discretized by mortar finite element methods for
geometrically nonconforming partitions in both two and three space dimensions. The coarse compo-
nent of the preconditioner is defined in terms of one mortar constraint for each edge/face, which is
the intersection of the boundaries of a pair of subdomains. A condition number bound of the form
Cmaxi{(1 + log(Hi/hi))

2} is established under certain assumptions on the geometrically noncon-
forming subdomain partition in the three-dimensional case. Here Hi and hi are the subdomain di-
ameters and the mesh sizes, respectively. In the geometrically conforming case and the geometrically
nonconforming cases in two dimensions, no assumptions on the subdomain partition are required.
This BDDC preconditioner is also shown to be closely related to the Neumann–Dirichlet version of
the FETI-DP algorithm. The results are illustrated by numerical experiments which confirm the
theoretical results.

Key words. elliptic problems, finite elements, mortar methods, parallel algorithms, precondi-
tioner, BDDC, FETI–DP, change of basis
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1. Introduction. This study concerns a scalable BDDC (balancing domain de-
composition by constraints) method for solving linear systems arising from mortar fi-
nite element discretizations of elliptic problems with discontinuous coefficients. BDDC
methods were first introduced by Dohrmann [5] as an alternative to and an improve-
ment of the balancing Neumann–Neumann methods. These more recent methods use
different and more flexible coarse finite element spaces which lead to sparser linear
systems. Additionally, as in the dual-primal finite element tearing and interconnect-
ing (FETI-DP) methods, all linear systems actually solved have symmetric, positive
definite coefficient matrices.

The coarse basis functions are related to a relatively small set of continuity con-
straints, across the interface between the subdomains, which are enforced throughout
the iteration. In the standard, conforming finite element case, these constraints are
given in terms of common values at subdomain vertices and/or common values of av-
erages computed over subdomain edges and/or faces. We will refer to these as primal
constraints and the corresponding subspace as the primal space of displacements. We
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note that the theory (and practice) of BDDC methods for conforming finite elements
is by now quite well developed; see [23, 26, 25].

In a FETI-DP method, a linear system, formulated for a set of Lagrange mul-
tipliers, is solved after eliminating the displacement variables. The resulting linear
system, in itself, contains a coarse problem, which also is directly related to the primal
constraints discussed above, i.e., they are given by matching conditions on averages
over edges/faces and/or by enforcing continuity of the solutions at vertices. Its pre-
conditioner, on the other hand, is built only from subdomain problems, while for a
BDDC method a linear system in the original degrees of freedom is solved in an iter-
ation with a preconditioner that has both coarse and subdomain components. This
appears to provide the BDDC methods with more flexibility, e.g., in allowing for the
use of inexact coarse problems. Thus, for standard finite element problems an inexact
coarse problem can be introduced by applying the BDDC method recursively to the
coarse problem; see Tu [30, 29] and a recent conference paper by Mandel, Soused́ık,
and Dohrmann [27]. The use of inexact local problems for the BDDC preconditioners
has also been considered by Li and Widlund [24]. We also note that Klawonn and
Rheinbach [17] have developed and extensively tested algorithms which use inexact
solvers for the coarse problem of FETI-DP methods.

There are a number of articles on solving the algebraic problems given by the mor-
tar discretizations considered in this paper; see [32] and the literature cited therein.
Most of them concern the simpler case of geometrically conforming partitioning of
the original region Ω; see, however, Achdou, Maday, and Widlund [1], where some
iterative substructuring methods are developed and analyzed for problems in two di-
mensions in the geometrically nonconforming case, and Kim and Widlund [13], where
an additive Schwarz method with overlap is designed and analyzed. Among the pa-
pers on the geometrically conforming case that are related to this paper, we mention
[14, 12], where a Neumann–Dirichlet version of a FETI-DP method is analyzed. In [6],
a FETI-DP method is considered, which is a generalization of a variant known for the
standard conforming discretization. To the best of our knowledge, BDDC methods
for the mortar discretization have not previously been discussed in the literature even
for the geometrically conforming case.

A condition number bound of the form C(1 + log(H/h))2 was first given for the
BDDC operator by Mandel and Dohrmann [26] for a standard conforming discretiza-
tion. This bound is of the same quality as the FETI-DP methods. In fact, the BDDC
methods have been shown to be closely related to the FETI-DP methods. Thus, Man-
del, Dohrmann, and Tezaur [25] have shown that the eigenvalues of the FETI-DP and
BDDC operators are the same except possibly for eigenvalues equal to 0 and 1. More
recently, a new formulation of the BDDC method was given by Li and Widlund [23].
They introduced a change of variables as well as an average operator for the BDDC
method closely related to the jump operator used in [19] in the analysis of FETI-DP
methods. The change of variables greatly simplifies the analysis; it has also led to
a successful and robust implementation of FETI-DP methods; see [16, 18]. We note
that the idea of changing the variables for FETI-DP algorithms was discussed already
in [20]. We also note that FETI-DP algorithms have also been implemented using
enough point constraints to assure that there are no floating subdomains. In addition,
optional admissible primal constraints (e.g., averages over edges or faces) are added to
enhance the rate of convergence of the iterations; see [9]. These constraints are then
handled by a separate set of Lagrange multipliers. We note that in our context, we
often have no point constraints, and therefore this second approach cannot be used.

In this paper, we will describe a BDDC method for mortar discretizations, after
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a brief introduction to mortar methods. We will use a change of variables, as in
[23] and Klawonn and Widlund [21], which is related to the primal constraints over
edges/faces. We will consider quite general geometrically nonconforming partitions,
i.e., we will not make any assumptions that the intersection of the boundaries of a
pair of subdomains is a full face, edge, or a subdomain vertex.

We will work with mortar methods without any continuity constraints at sub-
domain vertices. Our results are valid for the traditional mortar methods as well as
the dual basis mortar methods first introduced by Wohlmuth [31, 32]. We propose a
preconditioner with a certain matrix of weights D and obtain the condition number
bound, Cmaxi

{
(1 + log(Hi/hi))2

}
, under some assumptions on the geometrically

nonconforming subdomain partition in three dimensions. When the algorithm is ap-
plied to a geometrically conforming partition in three dimensions or a geometrically
nonconforming partition in two dimensions, we obtain the same bound without any
assumption on the partition. The subdomain partition can have interfaces that are
narrow faces and our bounds can be established for such quite general cases. Section 4
is devoted to proving our condition number bound in terms of a bound of an average
operator ED in an appropriate norm.

In section 5, we show that our BDDC preconditioner is closely connected to
the Neumann–Dirichlet preconditioner for the FETI-DP methods given in [14, 12].
Connections are established between the average and jump operators, and the spectra
of the BDDC and FETI-DP methods are then shown to be the same except possibly
for an eigenvalue equal to 1.

Results of numerical experiments are reported in the final section and show that
the FETI-DP and BDDC methods perform well and very similarly when the same set
of primal constraints is selected.

Throughout this paper, C denotes a generic constant that depends neither on the
mesh parameters nor on the coefficients of the elliptic problems.

We note that this paper originated from two projects developed separately by
the first and second authors; the contribution of the third began with a suggestion
that a theory could be developed for the geometrically nonconforming case using tools
similar to those of [23].

2. Finite element spaces and mortar matching constraints.

2.1. A model problem and the mortar methods. We consider a model
elliptic problem in a polygonal/polyhedral domain Ω ⊂ R

2 (R3): find u ∈ H1
0 (Ω) such

that

(2.1)
∫

Ω

ρ(x)∇u(x) · ∇v(x) dx =
∫

Ω

f(x)v(x) dx ∀v ∈ H1
0 (Ω),

where ρ(x) ≥ ρ0 > 0 and f(x) ∈ L2(Ω).
We partition Ω into disjoint polygonal/polyhedral subdomains

Ω =
N⋃
i=1

Ωi.

As previously noted, the partition can be geometrically nonconforming; see further
discussion below. We assume that ρ(x) = ρi, x ∈ Ωi for some positive constant ρi.

We denote by Xi the P1-conforming finite element space on a quasi-uniform tri-
angulation of the subdomain Ωi. The finite element meshes typically do not align
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across subdomain interfaces. The trace space of Xi on ∂Ωi is denoted by Wi. We will
use the product spaces

X :=
N∏
i=1

Xi, W :=
N∏
i=1

Wi.

For functions in these spaces, we will impose mortar matching conditions across the
interfaces using suitable spaces of Lagrange multipliers. Some of these matching
conditions will be enforced throughout the iteration; they are directly related to the
primal subspace.

In a geometrically nonconforming partition, the intersection of the boundaries of
neighboring subdomains may be only part of an edge/face of a subdomain. We define
the entire interface by

Γ =

⎛
⎝⋃

ij

∂Ωi ∩ ∂Ωj

⎞
⎠ \ ∂Ω.

Among the subdomain edges/faces, we select nonmortar (slave) edges/faces Fl such
that ⋃

l

F l = Γ, Fl ∩ Fk = ∅, l 	= k;

see Figure 1 for an example of the selection of the nonmortar edges. For the case
when ρ(x) are very different across the interface, it is beneficial to select the part with
smaller ρi as the nonmortar; see Assumption 4.2.

Since the subdomain partition can be geometrically nonconforming, a single non-
mortar edge/face Fl ⊂ ∂Ωi may intersect the boundaries of several other subdomains
Ωj . This provides Fl with a partition

F l =
⋃
j

F ij , Fij = ∂Ωi ∩ ∂Ωj ;

see Figure 1 for the mortar counter parts of the nonmortar edge Fl. A dual or standard
Lagrange multiplier space M(Fl) is introduced for each nonmortar edge/face Fl. We
require M(Fl) to have the same dimension as the space

(2.2)
◦
W (Fl) := Wi|Fl

∩H1
0 (Fl),
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Fig. 1. Nonmortar edges (black) and mortar edges (white) in a geometrically nonconforming
partition.
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that it is nonempty, and that it contains the constants. Constructions of such La-
grange multiplier spaces are given in [2, 3] using standard Lagrange multiplier spaces,
and in [31, 32] using dual Lagrange multiplier spaces; see also [11].

For (w1, . . . , wN ) ∈ W, wi ∈ Wi, we define φl ∈ L2(Fl) by φl = wj on Fij ⊂
Fl. The mortar matching condition for the geometrically nonconforming partition is
given by

(2.3)
∫
Fl

(wi − φl)λds = 0 ∀λ ∈M(Fl), ∀Fl.

The mortar finite element method for problem (2.1) amounts to approximating the
solution of the continuous problem by a Galerkin method using the mortar finite
element space

X̂ := {v ∈ X : v|Γ satisfies the mortar matching condition (2.3)} ,

where v|Γ is the restriction of v to the interface Γ. We introduce the space Ŵ as the
restriction of X̂ to Γ,

Ŵ :=
{
w : w = v|Γ ∀v in X̂

}
.

2.2. Finite element spaces and a change of variables. In this subsection,
we introduce a change of variables for some of the unknowns in the space W . It
is based on the primal constraints that will be specified for our BDDC method. In
mortar discretizations, we may consider the following sets of primal constraints: vertex
constraints; vertex and edge average constraints, or edge average constraints only, for
two dimensions; and vertex constraints and face average constraints, or face average
constraints only, for three dimensions. We note that vertex constraints are appropriate
only for the first generation of the mortar methods, in which case the subdomain
vertex values are constrained to be continuous. In order to reduce the number of
primal constraints, we can also select only some edges/faces as primal. Such choices
have been considered for the FETI-DP methods and conforming finite elements in
[21], and for mortar finite elements in [15].

In our BDDC formulation, we will select primal constraints over edges/faces from
the set of mortar matching constraints (2.3). We consider {λij,k}k, the basis functions
of M(Fl) that are supported in F ij ⊂ F l, and define

(2.4) λij =
∑
k

λij,k.

We assume that at least one such basis function λij,k exists for each Fij .
We now introduce one primal constraint over each interface Fij ⊂ Fl and for all

edges/faces Fl,

(2.5)
∫
Fij

(wi − wj)λij ds = 0,

and define

(2.6) W̃ = {w ∈ W : w satisfies the primal constraints (2.5)} .
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We note that Ŵ ⊂ W̃ ⊂ W , where Ŵ is the restriction of X̂ to Γ. For the case
of a geometrically conforming partition, i.e., when each Fij is a full edge/face of
two subdomains, these constraints are edge/face average matching conditions because
λij = 1. In addition to these constraints, vertex constraints can be considered but
only if the partition is geometrically conforming.

Throughout this paper, we use hats for functions and function spaces that satisfy
all of the mortar matching conditions. We use tildes for functions and function spaces
that satisfy only the primal constraints across the subdomain interface.

Following Li and Widlund [23], we now introduce a change of variables based on
the primal constraints. We provide details for the two-dimensional case but note that
this approach can be extended to the three-dimensional case without any difficulty.

We recall that Fl ⊂ ∂Ωi, denoted from now on by F , is a nonmortar edge/face and
that {Fij}j is a partition of F given by Fij = F ∩ ∂Ωj, a mortar edge/face of Ωj . We
denote by {vk}Lk=1 the values of the unknowns of wi ∈ Wi at the nodes on Fij , with
nodal basis functions that are supported in F ij , and by {ηk}pk=1 the other unknowns
on F ij . We will now define a transformation that retains the unknowns {ηk}pk=1 and
changes {vk}Lk=1 into {ξk}Lk=1 as follows: we pick one unknown ξm among {ξk}Lk=1

and build a transformation TFij so that

(2.7)
(
η
v

)
= TFij

(
η
ξ

)
, ξm =

∫
Fij

wiλij ds∫
Fij

λij ds
.

Here η, v, and ξ denote vectors of the unknowns {ηk}pk=1, {vk}Lk=1, and {ξk}Lk=1,
respectively.

Let

Aηk
=

∫
Fij

φηk
λij ds∫

Fij
λij ds

, Avk
=

∫
Fij

φvk
λij ds∫

Fij
λij ds

,

where φηk
and φvk

are the nodal basis functions of the unknowns ηk and vk, respec-
tively. To make the presentation simpler, we assume that p = 2, but what follows can
be generalized to any p. We will use the following transformation TFij :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
η2
v1
...

vm−1

vm
vm+1

...
vL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= TFij

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
η2
ξ1
...

ξm−1

ξm
ξm+1

...
ξL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 A 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 A 0 · · · 0
c1 c2 r1 · · · rm−1 A rm+1 · · · rL
0 0 0 · · · 0 A 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 A 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
η2
ξ1
...

ξm−1

ξm
ξm+1

...
ξL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
...
...
...
...
...
...
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξm +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
η2
ξ1
...

ξm−1

ξ0
ξm+1

...

...

...
ξL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ξ0 = c1η1 + c2η2 + r1ξ1 + · · ·+ rm−1ξm−1 + rm+1ξm+1 + · · ·+ rLξL

and

A =

∫
Fij

λij ds∑L
k=1 Avk

, c1 = − Aη1
Avm

, c2 = − Aη2
Avm

, rk = − Avk

Avm

, k 	= m.

We can then see that this transformation satisfies the (2.7) requirement. The trans-
formation TFij can be applied to each face Fij ⊂ F independently, since it does not
change any nodal values other than {vk}Lk=1, which are associated with the unknowns
of the nodes interior to Fij .

On the other side, the mortar side, of the interface Fij , i.e., Fij ⊂ ∂Ωj , we
perform a change of basis to the unknowns in finite element space Wj . In this case,
we introduce another set of unknowns {vk}Jk=1 and {ηk}pk=1. The unknowns {vk}Jk=1

are related to the nodes on Fij with nodal basis functions, which belong to Wj and are
supported in F ij . The unknowns {ηk}pk=1 are the remaining unknowns on Fij . The
transformation TFij is then defined for these unknowns similarly as for a nonmortar
interface.

Using the transforms TFij , we represent the Schur complement of the local stiffness
and the mortar matching matrices, and the local force vector in the space of the new
unknowns by

T (i)tS(i)T (i), B(i)T (i), T (i)tg(i).

Here S(i) is the reduced matrix obtained after eliminating all variables associated with
only the subdomain Ωi, and T (i) designates the transform of the original unknowns
into the new unknowns of the subdomain boundary ∂Ωi. In the following, we will use
the same notation, S(i), B(i), and g(i), for the matrices and vectors obtained after the
change of unknowns, to simplify the notation. We will also use the notation Wi for
the space of the new unknowns.

The unknowns ξm in (2.7), representing certain weighted averages over the edges,
are the primal variables. Using the new variables, the space W̃ , defined in (2.6), can
be represented as

(2.8) W̃ = WΔ ⊕ ŴΠ,
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where WΔ consists of the vectors of unknowns which are not primal unknowns, and
ŴΠ consists of the vectors of global, primal unknowns.

We now derive the matrix representation of the mortar matching condition (2.3) in
the space W̃ of the new unknowns. The mortar matching condition (2.3) is redundant
when enforced for the functions in the space W̃ . We recall that {λij,k}k are the
Lagrange multiplier basis elements supported in Fij . To make the mortar matching
condition nonredundant, we eliminate one basis element among {λij,k}k for each Fij ⊂
Fl, and we denote the reduced Lagrange multiplier space by M(Fl). The entire
nonredundant Lagrange multiplier space is then defined as

M =
∏
l

M(Fl).

The remaining nonprimal, mortar matching conditions of (2.3) are enforced using the
reduced space M(Fl). In matrix form, this can be written as

(2.9) BΔwΔ +BΠwΠ = 0.

The space WΔ can be split into

WΔ = WΔ,n ⊕WΔ,m,

where n and m denote unknowns in the interior of the nonmortar edges/faces and
the remaining unknowns, respectively. The mortar matching conditions can then be
written as

(2.10) Bnwn +Bmwm +BΠwΠ = 0.

Since these equations are obtained using only the nonredundant Lagrange multiplier
space M , the matrix Bn is invertible.

After a symmetric permutation, we can write the local Schur complement and
the local Schur complement vector as

S(i) =

(
S

(i)
ΔΔ S

(i)
ΔΠ

S
(i)
ΠΔ S

(i)
ΠΠ

)
, g(i) =

(
g
(i)
Δ

g
(i)
Π

)
,

and define a partially subassembled matrix and two vectors by

(2.11) S̃ =
(
SΔΔ SΔΠ

SΠΔ SΠΠ

)
, gΔ =

⎛
⎜⎜⎝
g
(1)
Δ
...

g
(N)
Δ

⎞
⎟⎟⎠ , gΠ =

N∑
i=1

R
(i)
Π

t
g
(i)
Π ,

where

SΔΔ = diagNi=1

(
S

(i)
ΔΔ

)
,

SΠΔ =
(
R

(1)
Π

t
S

(1)
ΠΔ · · · R

(N)
Π

t
S

(N)
ΠΔ

)
, SΔΠ = StΠΔ,

SΠΠ =
N∑
i=1

R
(i)
Π

t
S

(i)
ΠΠR

(i)
Π .

(2.12)

Here R(i)
Π is the restriction of the global primal unknowns to the subdomain primal

unknowns. The matrix S̃ is central to the description of our BDDC algorithm.
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3. A BDDC method for the mortar discretizations. In this section, we
will define a BDDC operator for the discrete elliptic problem described in section 2.1.
We consider the same finite element space and subdomain partition as in section 2.1
and, as in section 2.2, we will work with the unknowns obtained after the change of
variables.

Since the matrix Bn of (2.10) is invertible, we can solve for wn,

wn = −B−1
n (Bmwm +BΠwΠ).

We next define the matrix

(3.1) RΓ =

⎛
⎝−B−1

n Bm −B−1
n BΠ

I 0
0 I

⎞
⎠ ,

which maps (wtm, w
t
Π)t into a vector (wtn, w

t
m, w

t
Π)t that satisfies the mortar matching

condition (2.10). The mortar finite element space of section 2.1 can then be charac-
terized as

Ŵ =
{
w ∈ W̃ : (wn, wm, wΠ) satisfies (2.10)

}
.

In the BDDC method, we work with the following discrete problem:

(3.2) RtΓS̃RΓ

(
wm
wΠ

)
= RtΓ

(
gm
gΠ

)
,

where gm is the component of the vector gΔ in (2.11) not related to the nonmortar
part.

Let us now define, with RΓ given by (3.1),

(3.3) RD,Γ = DRΓ =

⎛
⎝Dnn

Dmm

DΠΠ

⎞
⎠RΓ,

where the scaling matrices are selected to be

(3.4) Dnn = 0, Dmm = I, DΠΠ = I.

We now propose the following preconditioner:

(3.5) M−1 = RtD,ΓS̃
−1RD,Γ

for problem (3.2). Using the block Cholesky decomposition of S̃ as in Li and Wid-
lund [23], we have

S̃−1 =
(
S−1

ΔΔ 0
0 0

)
+ ΨtF−1

ΠΠΨ,

where

FΠΠ =
N∑
i=1

(
R

(i)
Π

)t(
S

(i)
ΠΠ − S(i)

ΠΔS
(i)
ΔΔ

−1
S

(i)
ΔΠ

)
R

(i)
Π ,

Ψt = RtΠ −
N∑
i=1

(
R

(i)
Δ

)t(
S

(i)
ΔΔ

)−1

S
(i)
ΔΠR

(i)
Π .
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Here R(i)
Π : ŴΠ → W

(i)
Π is the restriction of the global primal variables to those of

the subdomain Ωi, and RtΠ : ŴΠ →WΔ⊕ŴΠ and (R(i)
Δ )t : W (i)

Δ →WΔ⊕ŴΠ provide
extensions by zero. The columns of the matrix Ψ are coarse basis functions of minimal
energy with the value 1 at one of the primal unknowns and vanishing at the other
primal unknowns; see [5].

The BDDC operator of the problem, given in (3.2), with the preconditioner M−1,
given in (3.5), is then given by

(3.6) BDDC = RtD,ΓS̃
−1RD,ΓR

t
ΓS̃RΓ.

4. Condition number analysis using a bound on ED. In this section, we
will estimate the condition number of the BDDC operator by using the approach
introduced in [22]. A bound for the average operatorED in the S̃-norm is central in the
analysis; see below. For definitions of RΓ and RD,Γ, see (3.1) and (3.3), respectively.
The operator ED is defined by

(4.1) ED = RΓR
t
D,Γ.

In the following, we will show that the weight matrix D has been chosen so that

(P1) RtΓRD,Γ = RtD,ΓRΓ = I,

(P2) |EDw|2S̃ ≤ Cmax
i

{(
1 + log

Hi

hi

)2
}
|w|2

S̃
.

Here |w|2
S̃

= 〈S̃w, w〉. We then consider

RtΓRD,Γ

(
wm
wΠ

)
=
(−Btm(Btn)−1Dnnzn +Dmmwm
−BtΠ(Btn)−1Dnnzn +DΠΠwΠ

)
,

where

zn = −B−1
n (Bmwm +BΠwΠ).

We recall the scaling factors of the weight matrix D in (3.4) and we can easily see
that these weights give the (P1) property.

Remark 4.1. The weights above lead to an operator ED of the form

ED

⎛
⎝wnwm
wΠ

⎞
⎠ =

⎛
⎝−B−1

n (Bmwm +BΠwΠ)
wm
wΠ

⎞
⎠ .

In contrast to the case of conforming finite elements, this does not involve any aver-
aging across the interface. We will still call ED the average operator, borrowing the
name from the conforming case.

We will now show that the average operator ED satisfies the (P2) property for the
weight matrix D just given. As a preparation, we need to establish an estimate for
the mortar projection of a function w in W̃ in the H1/2

00 (F )-norm. For an edge/face
F ⊂ ∂Ωi, the space H1/2

00 (F ) consists of the functions for which the zero extension to
the whole boundary ∂Ωi belongs to the Sobolev space H1/2(∂Ωi). It is equipped with
the norm

‖w‖2
H

1/2
00 (F )

= |w|2H1/2(F ) +
∫
F

|w(x)|2
dist(x, ∂F )

ds(x).
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This norm has the well-known property that

(4.2) c|w̃|H1/2(∂Ωi) ≤ ‖w‖H1/2
00 (F )

≤ C|w̃|H1/2(∂Ωi),

where w̃ is the zero extension of w to ∂Ωi \ F ; see [10, Lemma 1.3.2.6].
We recall that a nonmortar edge/face F of ∂Ωi is a union of mortar interfaces Fij

common to ∂Ωi and ∂Ωj . We recall that φ is a function defined on F with φ = wj
on each Fij ⊂ F , and with wj ∈ Wj , the finite element space provided for ∂Ωj . We
then have φ ∈ H1/2−ε(F ) for any ε > 0. Because of the slightly weaker regularity of
the function φ, caused by the geometrically nonconforming partition, we have some
difficulty obtaining the condition number bound with only two logarithmic factors
for geometrically nonconforming partitions in three dimensions. We will overcome
this difficulty by using an additional finite element space for the interface Fij and
an L2-projection onto this space. This will result in a condition number bound with
two logarithmic factors under some assumptions on the geometry of the subdomain
partition; see Assumption 4.3 below.

We also need the following assumption on the coefficients of the elliptic problem.
We note that this assumption basically reflects a weakness of the mortar methods in
the case of geometrically nonconforming partitions.

Assumption 4.2. The coefficients satisfy

ρi ≤ Cρj ,
where Ωi and Ωj correspond to the nonmortar and mortar side of the common set
Fij = ∂Ωi ∩ ∂Ωj, respectively.

We also will use the following assumption.
Assumption 4.3. A geometrically nonconforming partition {Ωi}i in three di-

mensions satisfies the following three assumptions.
1. The subdomains are polytopes.
2. A quasi-uniform triangulation, with a mesh size comparable to hi, is possible

for the interface Fij .
3. Any subdomain has a diameter comparable to those of its neighbors.

We recall that the finite element space
◦
W (F ), given in (2.2), and a Lagrange

multiplier space M(F ) are provided for the nonmortar edge/face F . We now define
the mortar projection.

Definition 4.4. The mortar projection πF : L2(F ) → ◦
W (F ) of the nonmortar

edge/face F is defined by∫
F

(v − πF (v))λds = 0 ∀λ ∈M(F ).

This mortar projection has been shown to be stable in the L2- and H
1/2
00 -norms in

[3, 2, 32].
Lemma 4.5. Under Assumptions 4.2 and 4.3 and with w = (w1, . . . , wN ) ∈ W̃ ,

we have

ρi‖πF (φ− wi)‖2H1/2
00 (F )

≤ C
(

1 + log
Hi

hi

)2 ∑
k∈I(F )

〈S(k)wk, wk〉.

Here F ⊂ ∂Ωi is an edge/face, φ = wj on Fij ⊂ F , and I(F ) is the set of indices of
the subdomains with boundaries that intersect F .
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Proof. We will prove the result for a geometrically nonconforming partition in
three dimensions under Assumption 4.3. In the case of a geometrically conforming
partition in three dimensions and for any partition in two dimensions, the same result
can be obtained straightforwardly without any assumption on the partition.

For each interface Fij , we define a characteristic function χij ∈ L2(F ) with the
value 1 on Fij and the value 0 on F \ Fij . In addition, we introduce a quasi-uniform
finite element space U(Fij) on the interface Fij with a mesh size comparable to hi,
that of the finite element space Wi of the subdomain Ωi of the nonmortar side. The
L2-projection onto U(Fij) is denoted by Qij and it satisfies the following properties
(see [4, Chapter II]: ∀w ∈ H1/2(Fij)):

(4.3) ‖w −Qijw‖2L2(Fij)
≤ Chi|w|2H1/2(Fij)

, ‖Qijw‖2H1/2(Fij)
≤ C‖w‖2H1/2(Fij)

,

where the L2-term in the H1/2-norm is scaled by 1/|Fij|. Here |Fij | is the diameter
of Fij .

Then, on F, consider

wi − φ =
∑
j

χij(wi − wj)

=
∑
j

χij ((wi − cij)− (wj − cij)) .

Here cij denotes the common average value of wi and wj defined by

cij =

∫
Fij

wiλij ds∫
Fij

λij ds
=

∫
Fij

wjλij ds∫
Fij

λij ds
,

where λij are defined in (2.4); cij is closely related to the primal mortar matching
condition (2.5).

It suffices to show that

(4.4) ‖πF (χij(wj − cij))‖2H1/2
00 (F )

≤ C
(

1 + log
Hi

hi

)2

|wj |2H1/2(∂Ωj)
,

and to give a similar estimate for wi−cij . We will prove (4.4) but leave out the estimate
for wi − cij , which is quite similar. The required estimate then follows from Assump-
tion 4.2 and the fact that |wj |2H1/2(∂Ωj)

is spectrally equivalent to (1/ρj)〈S(j)wj , wj〉.
Let

z = wj − cij .
We decompose Qij(z) into

(4.5) Qij(z) = IFij (Qij(z)) + I∂Fij (Qij(z)),

where the first term is equal to Qij(z) at all interior nodal points of Fij and vanishes
on ∂Fij while the second term is equal to Qij(z) at the nodal points of ∂Fij and
vanishes at the remaining nodal points of Fij . We have

‖πF (χij(wj − cij))‖2H1/2
00 (F )

= ‖πF (χijz)‖2H1/2
00 (F )

≤ 2‖πF (χij(z −Qij(z)))‖2H1/2
00 (F )

+ 2‖πF (χijQij(z))‖2H1/2
00 (F )

.(4.6)
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The first term above is estimated by

‖πF (χij(z −Qij(z)))‖2H1/2
00 (F )

≤ Ch−1
i ‖χij(z −Qij(z))‖2L2(F )

= Ch−1
i ‖z −Qij(z)‖2L2(Fij)

≤ C|z|2H1/2(Fij)

≤ C|wj |H1/2(∂Ωj).(4.7)

We have used an inverse inequality, the L2-stability of πF , and the properties ofQij(z)
given in (4.3).

There remains for us to estimate the second term of (4.6). By Assumption 4.3, the
subdomain interfaces Fij are polygonal regions. For a geometrically nonconforming
partition, the area of the interface Fij might be comparable to that of Fj , the face of
Ωj such that Fj ∩ ∂Ωi = Fij . In the other case, when Fij is only a small part of Fj ,
it could be a narrow strip, e.g., [0, H ] × [0, δ], or a rectangular region with its area
comparable to [0, δ]× [0, δ], where δ is comparable to the mesh size h.

We will first consider the second term in (4.6) when the area of the interface Fij
is comparable to that of Fj . Using (4.5), we have

‖πF (χijQij(z))‖2H1/2
00 (F )

= ‖πF (χij(IFijQij(z) + I∂FijQij(z)))‖2H1/2
00 (F )

≤ C
(
‖ĨFij (Qij(z))‖2H1/2

00 (F )
+ h−1

i ‖Ĩ∂FijQij(z)‖2L2(F )

)
≤ C

(
‖IFij (Qij(z))‖2H1/2

00 (Fij)
+ ‖I∂FijQij(z)‖2L2(∂Fij)

)
,(4.8)

where ĨFij (v) and Ĩ∂Fij (v) are the extensions of IFij (v) and I∂Fij (v) by zero, respec-
tively. Here, we have used an inverse inequality, the stability of πF in the L2- and
H

1/2
00 -norms, and the following inequalities:

‖ĨFij (Qij(z))‖H1/2
00 (F )

≤ ‖IFij (Qij(z))‖H1/2
00 (Fij)

,

‖Ĩ∂FijQij(z)‖2L2(F ) ≤ Chi‖I∂FijQij(z)‖2L2(∂Fij)
.

By applying Lemmas 4.17, 4.19, and 4.24 of [28] to the terms of (4.8), and using
(4.3) and the Poincaré inequality, we obtain

(4.9) ‖πF (χijQij(z))‖2H1/2
00 (F )

≤ C
(

1 + log
Hij

hi

)2

|wj |2H1/2(∂Ωj)
,

where Hij is the diameter of Fij , which satisfies Hij ≤ Hi.
We now consider the second term in (4.6) for the case when Fij is only a small

part of Fj . Then,

‖πF (χijQij(z))‖2H1/2
00 (F )

≤ Ch−1
i ‖πF (χijQij(z))‖2L2(F )

≤ Ch−1
i ‖z‖2L2(Fij) = Ch−1

i ‖wj − cij‖2L2(Fij)

≤ Ch−1
i ‖wj‖2L2(Fij)

≤ Ch−1
i δ (1 + log(Hj/δ)) ‖wj‖2H1/2(Fj)

≤ C (1 + log(Hi/hi)) |wj |2H1/2(∂Ωj)
.(4.10)
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Here we have used an inverse inequality, the stability of πF and Q in the L2-norm,
the inequality

‖cij‖2L2(Fij)
≤ C‖wj‖2L2(Fij),

Lemma 3.4 of Dryja and Widlund [7] for the fourth inequality, the Poincaré inequality
in the last inequality, and that δ is comparable to the mesh size hi. We note that we
have only one log factor in this case.

Therefore, (4.6) combined with (4.7) and (4.9) or (4.10) proves the desired bound
(4.4).

With the help of Lemma 4.5, we can establish property (P2) for the operator ED.
Lemma 4.6. With Assumptions 4.2 and 4.3, the operator ED satisfies

|EDw|2S̃ ≤ C max
i

{(
1 + log

Hi

hi

)2
}
|w|2

S̃
for any w ∈ W̃ ,

where S̃ is defined in (2.11).
Proof. Using the weight matrix D of (3.4), the average operator ED, given by

(4.1), satisfies

ED

⎛
⎝wnwm
wΠ

⎞
⎠ =

⎛
⎝wn −B−1

n (Bnwn +Bmwm +BΠwΠ)
wm
wΠ

⎞
⎠ ,

as in Remark 4.1. Here w = (wn, wm, wΠ) ∈ W̃ . Let

ŵn = wn −B−1
n (Bnwn +Bmwm +BΠwΠ),

and construct ŵi by restricting the unknowns (ŵn, wm, wΠ) to the subdomain Ωi.
Similarly, we construct wi from (wn, wm, wΠ). We note that (w1, . . . , wN ) satisfies
the primal constraints on the edges/faces. By definition, ŵ = (ŵ1, . . . , ŵN ) ∈ Ŵ ; i.e.,
ŵ satisfies all of the mortar matching conditions, and each ŵi is of the form

ŵi = wi −
∑

F⊂∂Ωi

π̃F (wi − φ),

where F is a nonmortar edge/face of ∂Ωi, π̃F (wi−φ) is the zero extension of πF (wi−φ)
to all of ∂Ωi \ F , and φ = wj on Fij := ∂Ωj ∩ ∂Ωi ⊂ F . We then obtain

|EDw|2S̃ =
N∑
i=1

〈S(i)ŵi, ŵi〉

≤ C
N∑
i=1

(
〈S(i)wi, wi〉+

∑
F⊂∂Ωi

〈S(i)π̃F (φ− wi), π̃F (φ− wi)〉
)

≤ C
(

N∑
i=1

〈S(i)wi, wi〉+
N∑
i=1

∑
F⊂∂Ωi

ρi‖πF (φ− wi)‖2H1/2
00 (F )

)

≤ Cmax
i

{(
1 + log

Hi

hi

)2
}

N∑
i=1

〈S(i)wi, wi〉

= Cmax
i

{(
1 + log

Hi

hi

)2
}
〈S̃w, w〉.
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Here we have used that 〈S(i)wi, wi〉 � ρi|wi|2H1/2(∂Ωi)
, the bounds in (4.2), and

Lemma 4.5.
By using the properties (P1) and (P2), we can show the following condition

number bound for the BDDC operator (3.6). A proof for a quite similar case is given
in Li and Widlund [22] in their analysis of a BDDC method for the Stokes problem
with conforming meshes. We do not include a proof, which would be almost identical
to that of [22].

Theorem 4.7. With Assumptions 4.2 and 4.3, we have the condition number
bound

κ(BDDC) ≤ Cmax
i

{(
1 + log

Hi

hi

)2
}
.

Remark 4.8. For a geometrically nonconforming partition, the number of pri-
mal constraints tends to be larger than for a conforming partition if only edge/face
constraints are used. We note that there are several previous studies which explore
the possibility of selecting primal constraints for only some of the edges/faces; see
[15, 21, 19].

5. A connection between the FETI-DP and BDDC methods. In this
section, we will show that the BDDC method developed in the previous sections is
closely connected to the FETI-DP method developed by the first author in [14, 15]
and jointly with Lee in [12]. We will show that the two methods share the same
spectra except possibly for an eigenvalue equal to 1.

As previously noted, a comparison of the spectra of the BDDC method to that
of the FETI-DP method was made by Mandel, Dohrmann, and Tezaur [25] for con-
forming finite elements. They showed that the two algorithms have the same set of
eigenvalues except possibly for eigenvalues equal to 1. A simpler proof of this fact was
given more recently by Li and Widlund [23]. They formulated the BDDC operators,
as well as the FETI-DP operators, using a change of variables and introducing certain
projections and average operators. These projections and average operators provide
an important connection between the FETI-DP and the BDDC operators.

We now formulate an FETI-DP operator after the same change of variables as
in section 2.2. We then show that the FETI-DP operator has essentially the same
spectrum as the BDDC operator by establishing several properties of the projections
and average operators that were used by Li and Widlund [23].

After the change of variables, the linear system considered in the FETI-DP for-
mulation is given by

(5.1)

⎛
⎝SΔΔ SΔΠ BtΔ
SΠΔ SΠΠ BtΠ
BΔ BΠ 0

⎞
⎠
⎛
⎝uΔ

uΠ

λ

⎞
⎠ =

⎛
⎝gΔgΠ

0

⎞
⎠ ,

where the matrices SΔΔ, SΔΠ, SΠΔ, and SΠΠ are defined in (2.12) and the matri-
ces BΔ and BΠ are obtained from the mortar matching condition (2.9). We recall
that the subscripts Π and Δ stand for the unknowns or submatrices related to the
primal variables and the remaining part, respectively, and that λ ∈ M , the reduced,
nonredundant Lagrange multiplier space.

After eliminating the unknowns uΔ and uΠ, we obtain an equation for λ ∈M :

(5.2) BΓS̃
−1BtΓλ = d,
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where

(5.3) BΓ =
(
BΔ BΠ

)
, S̃ =

(
SΔΔ SΔΠ

SΠΔ SΠΠ

)
,

and d is also the result of the Gaussian elimination.
We will now express the Neumann–Dirichlet preconditioner considered in [14, 15,

12] using the new unknowns. The Neumann–Dirichlet preconditioner M−1
DP is defined

by

(5.4) 〈MDPλ, λ〉 = max
wΔ,n∈WΔ,n

〈BΓ E(wΔ,n), λ〉2
〈S̃ E(wΔ,n), E(wΔ,n)〉 ,

where E(wΔ,n) is the extension by zero of wΔ,n ∈ WΔ,n to elements in the space
W̃ = WΔ,n ⊕WΔ,m ⊕ ŴΠ.

We recall that the matrix BΔ is partitioned into

BΔ =
(
Bn Bm

)
,

where n denotes the columns of the nonmortar unknowns and m those that remain.
The formula (5.4) can then be written as

(5.5) 〈MDPλ, λ〉 = max
wΔ,n∈WΔ,n

〈BnwΔ,n, λ〉2
〈SnnwΔ,n, wΔ,n〉 ,

where Snn is the submatrix of SΔΔ in (5.1) corresponding to the nonmortar part. We
see that Snn : WΔ,n → W ′Δ,n and Btn : M → W ′Δ,n are invertible. Here W ′Δ,n is the
space dual to WΔ,n. The maximum in (5.5) occurs when SnnwΔ,n = Btnλ, and hence
it follows that

M−1
DP = (Btn)

−1SnnB
−1
n .

Furthermore, this matrix can be written as

(5.6) M−1
DP = BΣ,ΓS̃B

t
Σ,Γ,

where

BtΣ,Γ =

⎛
⎝Σnn

Σmm
ΣΠΠ

⎞
⎠
⎛
⎝BtnBtm
BtΠ

⎞
⎠

with the weights given by

Σnn = (BtnBn)
−1, Σmm = 0, ΣΠΠ = 0.

Therefore, the FETI-DP operator with the Neumann–Dirichlet preconditioner
M−1
DP is given by

M−1
DPFDP = BΣ,ΓS̃B

t
Σ,ΓBΓS̃

−1BtΓ,
while the preconditioned BDDC operator is given by

BDDC = RtD,ΓS̃
−1RD,ΓR

t
ΓS̃RΓ.

Let us now define the following jump and average operators:

PΣ = BtΣ,ΓBΓ, ED = RΓR
t
D,Γ.

The following results are provided in [23, section 5].
Theorem 5.1. Assume that PΣ and ED satisfy
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1. ED + PΣ = I,
2. E2

D = ED, P 2
Σ = PΣ, and

3. EDPΣ = PΣED = 0.
Then the operators M−1

DPFDP and BDDC have the same eigenvalues except possibly
for an eigenvalue equal to 1.

We will now show that the assumptions of Theorem 5.1 hold for the operators
PΣ and ED. We recall the definition of the space of functions satisfying the primal
constraints

W̃ =
{

(wtn, w
t
m, w

t
Π)t : ∀wn ∈WΔ,n, wm ∈ WΔ,m, wΠ ∈ ŴΠ

}
,

and the mortar finite element space

Ŵ = {w ∈ W̃ : Bmwm +BΠwΠ +Bnwn = 0}.

We note that PΣ and ED are operators defined on the space W̃ .
Lemma 5.2. The operators PΣ and ED satisfy the assumptions of Theorem 5.1.
Proof. From

Σmm = 0, ΣΠΠ = 0, Σnn = (BtnBn)
−1,

Dmm = I, DΠΠ = I, Dnn = 0,

we have

PΣw =

⎛
⎝B−1

n (Bmwm +BΠwΠ +Bnwn)
0
0

⎞
⎠ ,

EDw =

⎛
⎝−B−1

n (Bmwm +BΠwΠ)
wm
wΠ

⎞
⎠ .

Hence,

(5.7) ED + PΣ = I.

From EDw = w and PΣw = 0 for all w ∈ Ŵ , and from Range(ED) ⊂ Ŵ , we obtain

(5.8) E2
D = ED, PΣED = 0.

From (5.7), we have the identities

ED(ED + PΣ) = ED, PΣ(ED + PΣ) = PΣ,

and combining them with (5.8), we obtain

EDPΣ = 0, P 2
Σ = PΣ.

Remark 5.3. Other FETI-DP preconditioners in two dimensions with different
weights

Σ =

⎛
⎝Σnn

Σmm
ΣΠΠ

⎞
⎠ ,
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with nonzero weights Σmm and ΣΠΠ, have been developed and shown to give condition
number bounds of the form

Cmax
i

{
(1 + log(Hi/hi))2

}
for geometrically conforming partitions; see [8, 6]. We have not found any weight
matrix D that results in ED + PΣ = I for such a choice of Σ.

6. Numerical results. In this section, we present numerical results. We first
compare the BDDC and the FETI-DP methods with the suggested preconditioners,
for geometrically conforming cases, and we then illustrate the performance of our
BDDC methods for some geometrically nonconforming partitions. We solve an elliptic
problem with the exact solution u(x, y) = sin(πx)(1 − y)y,

−Δu = f in Ω,
u = 0 on ∂Ω,

where Ω is the unit square in R
2. The conjugate gradient iteration is halted when the

2-norm of the relative residual has been reduced by a factor of 106.
In the first series of experiments, the domain Ω is divided into uniform square

subdomains, as in Figure 2, that are geometrically conforming. Common values at
the subdomain vertices are selected as the primal constraints for this case. Each
subdomain has either a nonuniform mesh or a uniform mesh with n nodes on each
subdomain edge. The meshes do not match and have comparable mesh sizes across
the interface as in Figure 2.

In Table 1, we show the performance of the two algorithms when Ω is partitioned
into N = 4×4 subdomains (see Figure 2) and with the local problem size n increasing.
In this case, the upper and the right edges of each subdomain are selected to be
nonmortar edges; see Figure 2. We provide the L2- and H1-errors between the exact
solution and the solution of the iterative method, the number of conjugate gradient
iterations, and the minimum and the maximum eigenvalues of the BDDC and the
FETI-DP methods. For the H1-error, we use the broken H1-norm given by the
subdomain partition. Table 2 shows the numerical results when we fix the local
problem size to n− 1 = 4 and increase N , the number of subdomains to N = 8 × 8,
16 × 16, and 32 × 32, and divide Ω into square subdomains in the same manner as
for N = 4 × 4. We observe that the two methods give the same L2- and H1-errors.
The minimum eigenvalue of the BDDC operator is always equal to 1 while that of the
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Fig. 2. A subdomain partition (left: white edges are mortar and black edges are nonmortar)
with N = 4 × 4 and nonmatching comparable meshes with the local problem size n− 1 = 4.
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Table 1

Comparison of FETI-DP and BDDC methods where n, the local problem size, increases with a
fixed subdomain partition (N = 4 × 4).

M−1
DPFDP BDDC

n− 1 ‖u− uh‖0 ‖u− uh‖1 Iter λmin λmax Iter λmin λmax

4 5.0850e-4 6.0126e-2 10 1.40 4.09 12 1.00 4.09
8 1.2865e-4 3.0128e-2 13 1.01 5.72 15 1.00 5.72
16 3.2231e-5 1.5072e-2 15 1.00 7.72 16 1.00 7.72
32 8.0621e-6 7.5374e-3 16 1.01 1.00e+1 17 1.00 1.00e+1
64 2.0134e-6 3.7688e-3 17 1.01 1.28e+1 19 1.00 1.28e+1

Table 2

Comparison of FETI-DP and BDDC methods when N , the number of subdomains, increases
with a fixed local problem size (n− 1 = 4).

M−1
DPFDP BDDC

N ‖u− uh‖0 ‖u− uh‖1 Iter λmin λmax Iter λmin λmax

4 × 4 5.0850e-4 6.0126e-2 10 1.40 4.09 12 1.00 4.09
8 × 8 1.1744e-4 2.9900e-2 11 1.37 4.41 12 1.00 4.41

16 × 16 2.9743e-5 1.4980e-2 12 1.32 4.49 13 1.00 4.49
32 × 32 7.4317e-6 7.4917e-3 12 1.30 4.57 13 1.00 4.62

FETI-DP operator is greater than 1. The maximum eigenvalues of both operators
are almost the same; the eigenvalues are estimated by using the parameters of the
conjugate gradient iteration. We note that the minimum eigenvalue of the FETI-DP
operator converges to 1 when the number of nodes increases; see Table 1. The two
algorithms perform quite similarly with good scalability in terms of the local problem
size and the number of subdomains.

We next illustrate the performance of the BDDC method for geometrically non-
conforming partitions. We divide the unit square Ω into rectangular subdomains that
are geometrically nonconforming. For a given N , we first divide Ω into N uniform
vertical strips and then each strip into N or N + 1 rectangles, in succession; see
Figure 3 for N = 4. Each subdomain has a uniform mesh with a number of nodes
across the subdomain equal to n, n+ 2, or n+ 4; see Figure 3. We consider the case
when the coefficient ρ(x) = 1 in Ω and the case when the coefficient ρ(x) has jumps
across the subdomain interfaces; i.e., ρ(x) = ρi, with different constants in different
subdomains Ωi. See Figure 3 for the distribution of the ρi with the values 1, 10, 100,
and 1000 in a partition with N = 4, and for the selection of nonmortar and mortar
edges which satisfies Assumption 4.2 with C less than 1. For the uniform case with
ρ(x) = 1, we use the same selection of nonmortar and mortar edges. For a larger N ,
we copy the same pattern periodically. We run the BDDC method with increasing
numbers of nodes in a fixed subdomain partition and with an increase of the number
of subdomains with a fixed local problem size.

Table 3 presents the condition numbers and the number of iterations for both
continuous and discontinuous ρ(x). Since the subdomain partitions are geometrically
nonconforming, we have chosen∫

Fij

(vi − vj)λij ds = 0

as the primal constraints for each face Fij = ∂Ωi ∩ ∂Ωj . Here λij is the sum of
the Lagrange multiplier basis functions that are supported in F ij . We observe good
scalability in terms of the number of subdomains and the local problem size for both
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n n

n+2

n+2

n+2

n+4

n+2

n+4

n+2

n+2

(1)
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(1)
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(100) (100)

(1000)

(100)

(1000)

(100) (100)

(1000)

(100)

(1000)

n+4n+4

Fig. 3. A geometrically nonconforming partition with N = 4 and the number of nodes for each
subdomain edge for a given n, and the values of ρi (in parentheses) in the jump coefficient case:
nonmortar edges (black) and mortar edges (white) which satisfy Assumption 4.2 for the given ρi

with C less than 1.

Table 3

Performance of the BDDC algorithm with an increase of N with a fixed local problem size
(n=6) and with an increase of the local problem size, n, in a geometrically nonconforming partition
with N=4. Cond (the condition number) and Iter (the number of iterations) are provided.

ρ(x) = 1 Jump coefficient ρi

N Cond Iter n Cond Iter N Cond Iter n Cond Iter
16 12.36 23 6 11.57 20 16 6.68 15 6 6.67 14
32 12.37 24 12 14.85 22 32 6.68 15 12 7.94 15
48 12.40 24 24 18.54 23 48 6.68 15 24 9.52 17
64 12.41 24 48 22.69 26 64 6.69 15 48 11.37 18

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Local problem size (n)

Fig. 4. Plot of the values, Cond/(1+ logn)2, with an increase of the local problem size, n, in a
fixed geometrically nonconforming subdomain partition with N = 4; the dashed line is for the case
ρ(x) = 1 and the solid line for the case with a jump coefficient ρi.

cases. In addition, the behavior of the condition number with an increase of the local
problem size shows that the condition number bound (1 + log(H/h))2 appears to be
optimal; see Figure 4.

REFERENCES

[1] Y. Achdou, Y. Maday, and O. B. Widlund, Iterative substructuring preconditioners for
mortar element methods in two dimensions, SIAM J. Numer. Anal., 36 (1999), pp. 551–
580.

[2] F. Ben Belgacem and Y. Maday, The mortar element method for three-dimensional finite
elements, RAIRO Modél. Math. Anal. Numér., 31 (1997), pp. 289–302.

[3] C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain
decomposition: The mortar element method, in Nonlinear Partial Differential Equations
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Abstract. Projection methods are an efficient tool to approximate strong solutions of the incom-
pressible Navier–Stokes equations. As a major deficiency, these methods often suffer from reduced
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1. Introduction. Given an open bounded Lipschitz domain Ω ⊂ R
d, for d =

2, 3, and a time T > 0, we consider the time-dependent Navier–Stokes equations for
incompressible, viscous (ν > 0) Newtonian fluids,

ut − νΔu + (u · ∇)u +∇p = f in ΩT := (0, T )× Ω,(1.1)
div u = 0 in ΩT ,(1.2)

u = 0 on ∂ΩT := (0, T )× ∂Ω,(1.3)
u(0, ·) = u0 in Ω.(1.4)

Here, u : ΩT → R
d denotes the velocity field, p : ΩT → R the scalar pressure of

vanishing mean value, i.e.,
∫
Ω
p(·,x) dx = 0, and a given force f : ΩT → R

d is driving
the fluid flow, with initial velocity field u0 : Ω→ R

d.
To construct and analyze numerical schemes for (1.1)–(1.4), we benefit from well-

known analytical results for the given problem, which we recall here for the con-
venience of the reader. For this purpose, we introduce some notation: let Lp(Ω),
Hr(Ω), and Hr

0 (Ω), for r ∈ N be usual Lebesgue and Sobolev spaces, which are
endowed with standard scalar products and induced norms ‖ · ‖Hr . We recall that
H−1(Ω) =

[
H1

0 (Ω)
]∗. Let Lp0(Ω) ⊂ Lp(Ω) be the space of functions, whose elements

have vanishing integrals. Spaces of vector-valued functions will be indicated with bold-
face letters, e.g., H1

0(Ω) =
[
H1

0 (Ω)
]d, for d = 2, 3. We make frequent use of the spaces

J0(Ω) =
{
v ∈ L2(Ω) : div v = 0 in Ω, 〈v,n〉 = 0 on ∂Ω

}
,

J1(Ω) =
{
v ∈ H1

0(Ω) : div v = 0 in Ω
}
,

where 〈·, ·〉 denotes the standard scalar product in R
d, and n(x) ∈ S

d−1 is the
unit vector field pointing outside Ω. For a Banach space X , let Lp

(
0, T ;X

)
, and

Wm,p
(
0, T ;X

)
denote standard Bochner spaces.

∗Received by the editors July 3, 2007; accepted for publication (in revised form) May 13, 2008;
published electronically October 29, 2008.

http://www.siam.org/journals/sinum/47-1/69609.html
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Let us recall the concept of weak solutions to (1.1)–(1.4), for u0 ∈ J0(Ω), and f ∈
L2
(
0, T,J∗1(Ω)

)
from [20, Chapter 3]): A function u ∈ L2

(
0, T ;J1(Ω)

)∩L∞(0, T ;J0(Ω)
)

is called a weak solution of (1.1)–(1.4), if (1.1)–(1.2) hold in distributional sense, and
boundary and initial data in (1.3) and (1.4) are attained. Moreover, we have the
following further properties specific for dimensions d = 2 and d = 3:

• d = 2: weak solutions are unique, belong to W 1,2
(
0, T ;J∗1(Ω)

)
, and hence to

C
(
[0, T ];J0(Ω)

)
, and satisfy for almost all t ∈ [0, T ] the energy identity

(1.5)
1
2
‖u(t, ·)‖2L2 + ν

∫ t

0

‖∇u(s, ·)‖2L2 ds =
1
2
‖u0‖2L2 +

∫ t

0

〈
f(s, ·),u(s, ·)

〉
J∗
1×J1

ds.

In addition, provided u0 ∈ J1(Ω), f ∈ L2
(
0, T ;J0(Ω)

)
, and Ω has C1,1-

boundary or is a convex polygonal domain, there holds

(u, p) ∈
[
L2
(
0, T ;H2(Ω)

) ∩C([0, T ];J1(Ω)
)]× L2

(
0, T ;L2

0(Ω) ∩H1(Ω)
)
.

• d = 3: weak solutions belong to W 1,4/3
(
0, T ;J∗1(Ω)

)
, are weakly continuous

mappings from [0, T ] to J0(Ω), and satisfy an inequality version of (1.5).
They are locally strong, provided u0 ∈ J1(Ω), f ∈ L2

(
0, T ;J0(Ω)

)
, and Ω has

C1,1-boundary.
In below, we always suppose that the data of problems (1.1)–(1.4) satisfy

(A1) (regularity of domain) The unique solution w ∈ J1(Ω) of the stationary,
incompressible Stokes problem −νΔw + ∇π = g in Ω ⊂ R

d is already in
J1(Ω) ∩H2(Ω), provided g ∈ L2(Ω), and satisfies ‖w‖H2 ≤ C ‖g‖L2 .

(A2) (regularity of data) For any T > 0, let u0 ∈ J1(Ω) ∩ H2(Ω), and f ∈
W 2,∞(0, T ;L2(Ω)

)
.

In order to approximate weak solutions of (1.1)–(1.4) by using a general Galerkin
method, one proper temporal discretization strategy is the implicit Euler method,
where iterates satisfy the (damped) discrete energy law (M > 0); see, e.g., [20, Chap-
ter 3],

1
2
‖uM‖2L2 +

k2

2

M∑
m=1

‖dtum‖2L2

+ νk

M∑
m=1

‖∇um‖2L2 =
1
2
‖u0‖2L2 + k

M∑
m=1

〈
f(tm, ·),um

〉
J∗
1×J1

.(1.6)

Here, we denote dtφm+1 := 1
k{φm+1 − φm}, where k = tm+1 − tm > 0 is the time-

step. For given f ∈ L2
(
0, T ;J0(Ω)

)
, the uniform bound (1.6) is then the key to

conclude (subsequence) convergence of iterates against weak solutions u : ΩT → R
d

of (1.1)–(1.4), for k → 0.
The practical disadvantage of implicit discretization strategies is the significant

computational effort implied from the necessity to solve coupled nonlinear algebraic
problems to determine (Galerkin approximations) (um, pm) at every time-step given
by 1 ≤ m ≤ M . As a consequence, splitting algorithms were developed to reduce
complexity of actual computations; among them, and one of the first, is Chorin’s
projection method [2, 3, 19], where iterates for velocity field and pressure are inde-
pendently obtained at every time-step. Below, let fm := f(tm, ·), and suppose that
u0 ∈ J1(Ω) is given.
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Algorithm A. 1. Let m ≥ 0. Given um ∈ J0(Ω), find ũm+1 ∈ H1
0(Ω) that

satisfies

(1.7)
1
k

{
ũm+1 − um

}− νΔũm+1 + (um · ∇)ũm+1 = fm+1 in Ω.

2. Given ũm+1 ∈ H1
0(Ω), compute (um+1, pm+1) ∈ J0(Ω)× [L2

0(Ω) ∩H1(Ω)
]

from

1
k

{
um+1 − ũm+1

}
+∇pm+1 = 0, div um+1 = 0 in Ω,(1.8) 〈
um+1,n

〉
= 0 on ∂Ω.(1.9)

The latter step can be reformulated as a problem for the pressure function only,

(1.10) −Δpm+1 = −1
k

div ũm+1 in Ω, ∂np
m+1 = 0 on ∂Ω.

Hence, each step consists of (1.7), (1.10), and the algebraic update (1.8) to obtain
(um+1, pm+1).

In order to understand error effects inherent to temporal discretization, and op-
erator splitting in Chorin’s scheme, we shift the index in (1.8) back, and add the
equation to (1.7); together with (1.10), we obtain

dtũm+1 − νΔũm+1 + (um · ∇)ũm+1 +∇pm = fm+1 in Ω,(1.11)
div ũm+1 − kΔpm+1 = 0 in Ω,(1.12)

∂np
m+1 = 0 on ∂Ω.(1.13)

We make the following crucial observations implied from Chorin’s decoupling strategy,
for every 0 ≤ m ≤M :

(i) The velocity field ũm+1 : Ω → R
d is not divergence-free any more, but sat-

isfies a “quasi-compressibility equation” (1.12), with a penalization param-
eter equal to the time-step, and a penalization term that requires pm+1 ∈
[L2

0(Ω) ∩H1(Ω)].
(ii) Iterates of the pressure satisfy a homogeneous Neumann boundary condition,

which is in contrast to the pressure p : ΩT → R that satisfies (1.1)–(1.4).
(iii) The pressure iterate in (1.11) is used in an explicit fashion, which rules out

an immediate discrete energy law, where test functions um+1 and pm+1 in
(1.11) and (1.12) are used.

As a consequence of the lack of a discrete energy law, we need not hope to construct
weak solutions of (1.1)–(1.4) as proper limits of iterates from Chorin’s scheme (e.g.,
in the sense of weak subsequence convergence). Instead, given that strong solutions
to (1.1)–(1.4) exist, we may exploit their improved regularity properties to establish
convergence of iterates of Algorithm A at an optimal rate. As already mentioned,
strong solutions exist globally in time in 2D, and local existence is known for d = 3.

The convergence analysis of Algorithm A has a long history, which started with
first studies by Temam [19], and continued with a series of interesting works of Shen,
and W. E & J.G. Liu (see, e.g., [17, 6] and [4, 5]), where solutions to (1.1)–(1.4) were
assumed to be smooth. Unfortunately, solutions to (1.1)–(1.4) suffer a breakdown of
regularity for t→ 0 even for smooth initial data, which is due to an incompatibility of
(1.2) and the prescribed data [8], which restricts the applicability of these results. A
major step towards getting optimal error estimates in the context of existing strong
solutions has been done by Rannacher [16], where the different error effects in Chorin’s
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method as a semi-implicit pressure-stabilization method (1.11)–(1.13) were pointed
out, leading to the following result which is first proved in [13, Theorem 6.1].

Theorem 1.1. Let {(ũm, pm)}Mm=0 be the solution of Chorin’s method (1.7)–(1.9),
and let (u, p) be a strong solution of (1.1)–(1.4) up to tM = T . Suppose that

‖u0 − u0‖L2 +
√
k ‖u0 − u0‖H1 ≤ Ck.

For sufficiently small time-steps k ≤ k0(T ), there exists a constant C = C(T ) > 0,
such that

(a) max
1≤m≤M

[
‖u(tm, ·)− ũm‖L2 + τm ‖p(tm, ·)− pm‖H−1

]
≤ C k,

(b) max
1≤m≤M

[
‖u(tm, ·)− ũm‖H1 +

√
τm ‖p(tm, ·)− pm‖L2

]
≤ C

√
k,

where τm = min{1, tm}.
Corresponding results hold for {um}Mm=1 ⊂ J0(Ω) from Step 2 in Algorithm A,

thanks to well-known stability properties of the Helmholtz projection PJ0 : L2(Ω)→
J0(Ω); cf. [20].

The proof of Theorem 1.1 in [13] is split into three steps: in a first step, optimal
error estimates for the implicit Euler discretization from [8] in the presence of strong
solutions of (1.1)–(1.4) are recalled to control time-discretization effects. In a second
step, a modified version of (1.11)–(1.13) is studied, where the pressure iterate pm in
(1.11) is shifted to pm+1. We remark that this pressure-stabilization method is of its
own interest, since it allows for more finite element pairings [9, 1], where otherwise the
discrete LBB condition restricts stable finite element pairings. Optimal error estimates
which control perturbation effects due to (1.12) and (1.13) are the key results of the
analysis, and provide k-independent a priori bounds for velocity and pressure iterates
in strong norms. The latter bounds are then necessary for an optimal error estimate
between this auxiliary problem, and (1.11)–(1.13) in the last step, which closes the
proof.

Remark 1.1. An extension of this result to a fully discrete (LLB-stable) finite
element discretization of Algorithm A is easily possible in the proof in [13]. Moreover,
the stabilization effect in Algorithm A allows for equal order finite elements which
violate the discrete LBB condition for choices k ≥ Ch2 [9]; see [13] for further details.

These L2(Ω)-error bounds show optimal convergence behavior for velocity fields
computed from Algorithm A, and only suboptimal convergence behavior for pressure
iterates, which become optimal in the negative norm H−1(Ω) =

[
H1

0 (Ω)
]∗. This

observation reflects observed boundary layers in the computed pressure iterates, which
are caused by the nonphysical boundary condition in (1.10). In [16], it is conjectured
that the thickness of the boundary layer is of order O(

√
k |log(k)|), and first order

of convergence holds on compact subdomains Ωδ � Ω, where dist(Ωδ, ∂Ω) ≥ δ, for
δ =

√
k |log(k)|. The conjecture in [16] is based on a heuristic argument to control

the error due to pressure stabilization in the case of the stationary Stokes problem:
as has been pointed out above, the perturbation of the incompressibility constraint,
and prescription of nonphysical boundary data for the pressure in Algorithm A are
accounted for by considering a fully implicit version of (1.11)–(1.13), where the key
is again to study the following stationary problem, with ε = k: Find (uε, pε) ∈[
H1

0(Ω) ∩H2(Ω)
]× [L2

0(Ω) ∩H1(Ω)
]

such that

−νΔuε +∇pε = f , div uε − εΔpε = 0 in Ω,(1.14)
∂np

ε = 0 on ∂Ω.(1.15)
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The following equations control errors e := u−uε and η = p− pε, where (u, p) is the
strong solution of the stationary incompressible Stokes problem,

−νΔe +∇η = 0, div e− εΔη = −εΔp in Ω,(1.16)
∂nη = ∂np on ∂Ω.(1.17)

Thanks to e = 1
νΔ−1

D ∇η, the second identity in (1.16) may be replaced as an equation
only for the pressure error η : Ω → R, which involves a pseudo-differential operator
of order zero, such that

(1.18)
1
ν

divΔ−1
D ∇η − εΔη = −εΔp in Ω, ∂nη = ∂np on ∂Ω.

Here, we denote ψψψ := Δ−1
D w as the solution of Δψψψ = w in Ω, and ψψψ = 0 on ∂Ω.

In [16], the operator divΔ−1
D ∇ is replaced by the identity operator, and the above

control of boundary layers is then derived. Our first result in this work is a rigorous
derivation of arising boundary layers caused by Chorin’s method for existing strong
solutions. We use the following notation, with 0 < δ < 1

2diam(Ω),

Ωδ =
{
x ∈ Ω : dist(x, ∂Ω) > δ

}
� Ω ⊂ R

d.

Theorem 1.2. Suppose that (u, p) is a strong solution of (1.1)–(1.4) up to time
tM = T , with f ∈ C([0, T ];L2r(Ω)

)
, r ≥ 1, and Ω ⊂ R

d of class C2,α, for 0 < α < 1.

Let
{(

um, pm
)}M
m=1

be iterates from Algorithm A. Let Ωδ ⊂ R
d, for d = 2, 3. For

sufficiently small k ≤ k0(T ), and r−1 + (r′)−1 = 1, there holds

max
1≤m≤M

[
τm‖p(tm, ·)− pm‖L2(Ωδ)

]

≤ C
√
k

⎡
⎣√k +

(√
k

2r′

) 1
2r′

‖f‖L∞(L2r) + exp
(
− δ√

k

)⎤⎦ .
The result is verified in section 2, where the key observation is a corresponding

bound for errors η ∈ W 1,2r(Ω) which solve (1.18); cf. Theorem 2.1. We remark that
the error analysis is of independent interest to, e.g., control the quantitative behavior
of errors close to the boundary for pressure stabilization methods [9], where ε = O(h2).

Remark 1.2. 1. The decay property has first been studied by W. E and J.G. Liu
in [4] via asymptotic analysis for a restricted model problem, where first order of
convergence is established on compact subdomains.
2. Regularity of Ω ⊂ R

d is required to use Lp-theory for strong solutions of the
stationary incompressible Stokes problem; cf. [20, Prop. 2.2].
3. This result evidences a boundary layer of order δ =

√
k |log(k)|, with improved rate

of convergence of almost 3
4 on subdomains Ωκ, κ ≥ δ.

Apparent boundary layers of the projection method cannot be accepted when
accurate data for the pressure or the velocity gradient close to the boundary are
needed; undesirable consequences include pollution effects to involved quantities in
more complex fluid flow problems (e.g., physicochemical hydrodynamics, or mag-
netohydrodynamics) that cannot be avoided in general [14, 15]. Hence, it is nec-
essary to develop projection methods of comparable computational effort that are
exempted from this deficiency. In [13], the Chorin–Uzawa scheme (β = 0) is pro-
posed that avoids this drawback of Chorin’s projection method. Let β ≥ 0. The
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method again splits each iteration step into several substeps, and starts with initial
data (u0, ũ0, p0, p̃0) ∈ J1(Ω)×H1

0(Ω)× [L2
0(Ω)]2.

Algorithm B. 1. For 0 ≤ m ≤ M , let (um, ũm, pm, p̃m) ∈ J0(Ω) ×H1
0(Ω) ×

[L2
0(Ω)]2 be given. Find ũm+1 ∈ H1

0(Ω) such that

1
k

{
ũm+1 − um

}− β∇div dtũm+1 − νΔũm+1(1.19)

+ (um · ∇)ũm+1 +∇{pm − p̃m} = fm+1 in Ω.

2. Find (um+1, p̃m+1) ∈ J0(Ω)× L2
0(Ω) that solves

1
k

{
um+1 − ũm+1

}
+∇p̃m+1 = 0, div um+1 = 0 in Ω,(1.20) 〈
um+1,n

〉
= 0 on ∂Ω .(1.21)

3. Determine pm+1 ∈ L2
0(Ω) from

(1.22) pm+1 = pm − α div ũm+1 in Ω, 0 < α < 1.

Again, (1.20) may be reformulated as a Poisson problem for the pressure p̃m+1 :
Ω→ R.

Step 1 in Algorithm B leads to a coupled computation of components of the
velocity field, which is due to the second term in (1.19), and which is the price we
pay to better enforce the incompressibility constraint. However, other advantages of
projection methods are still valid, since velocity and pressure iterates are computed
independently.

By eliminating p̃m+1 from the scheme, we easily obtain the following reformulation
of the Chorin–Uzawa method as a semiexplicit “artificial compressibility method”
[20, 16, 13],

dtũm+1 − β∇div dtũm+1 − νΔũm+1

+ (um · ∇)ũm+1 +∇pm = fm+1 in Ω,(1.23)

div ũm+1 +
k

α
dtp

m+1 = 0 in Ω,(1.24)

ũm+1 = 0 on ∂Ω.(1.25)

Since no unphysical boundary conditions are involved any more, and motivated by
numerical experiments in [13], we conjecture accurate approximations of the pressure
up to the boundary ∂Ω. In fact, the following result is taken from [13, Theorem 8.2].

Theorem 1.3. Suppose that (u, p) is a strong solution of (1.1)–(1.4). For 0 <
tm1 = O(1), let initial data p̃m1 = 0, and (um1 , ũm1 , pm1) ∈ J0(Ω)×H1

0(Ω)× L2
0(Ω)

are such that

(1.26) ‖um1 − u(tm1 , ·)‖L2 + ‖ũm1 − u(tm1 , ·)‖L2 +
√
k ‖pm1 − p(tm1 , ·)‖L2 ≤ Ck.

Then, iterates {(ũm, pm)}Mm=m1+1 solving (1.19)–(1.22), for β = 0, satisfy for k ≤
k0(T ),

max
m1≤m≤M

[
‖ũm − u(tm, ·)‖L2 +

√
k ‖pm − p(tm, ·)‖L2

]

+

(
k

M∑
m=m1

‖ũm − u(tm, ·)‖2H1

) 1
2

≤ C
(

1 + log
1
k

)
k.(1.27)
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The Chorin–Uzawa scheme suffers from the need of accurate initial data for the
pressure function and additional regularity requirements for strong solutions of (1.1)–
(1.4), and computational experiments are reported in [13] where rates of convergence
deteriorate if one of the requirements is violated; see also the computational exper-
iments reported in section 5. However, both drawbacks can be avoided, if stretched
time-grids m → km = min{mk2

0, k0} are used throughout the calculation that refine
near the origin to attribute a singular weight to iterates as t → 0. Obviously, this
strategy asymptotically requires the same computational costs; for further details on
the revised Chorin–Uzawa scheme, we refer to [13, Chapter 10].

Despite this improvement over the original Chorin–Uzawa method, and improved
rates of convergence for gradients of computed velocity fields {∇um}, no improved
error statements for pressure iterates over those of Theorem 1.3 are known so far.
Our goal here is to construct a scheme that does so; for this purpose, we come back
to Algorithm B, with positive β, and change (1.22) to

(1.28) pm+1 = −1
k

div ũm+1.

In the sequel, we refer to (1.19)–(1.21), (1.28) as the Chorin–Penalty scheme. The
following result will be shown in section 3, which verifies optimal order of convergence
for iterates {pm} ⊂ L2

0(Ω) of Algorithm B. As will be shown in section 3.3, choices
β ≥ 1 are sufficient to effectively account for the decoupling in the Chorin–Penalty
scheme; see also Remarks 3.1 and 3.2 below.

Theorem 1.4. Suppose that initial data (u0, ũ0, p0, p̃0) ∈ [H1
0(Ω)]2 × [L2

0(Ω)]2

satisfy

‖u0 − u0‖L2 + ‖ũ0 − u0‖L2 ≤ Ck, p̃0 = p0 = 0.

Let {(ũm, pm)}Mm=1 solve (1.19)–(1.21), (1.28), for β ≥ 1, and let (u, p) be strong
solution to (1.1)–(1.4). There exists C = C(T ) > 0, such that

max
1≤m≤M

[
‖ũm − u(tm, ·)‖L2 +

√
τm ‖ũm − u(tm, ·)‖H1 + τm ‖pm − p(tm, ·)‖L2

]
≤ C k.

Remark 1.3. 1. The Chorin–Penalty method can be reformulated as a semi-
explicit penalty method; see (3.1)–(3.2). This stationary quasi-compressibility method
has been analyzed in [13, Chapter 3].

2. No additional regularity requirements for strong solutions of (1.1)–(1.4) are
needed, and p0 ≡ p̃0 ≡ 0 is convenient.

Chorin’s original method is by no means the only existing projection method
to solve (1.1)–(1.4): over the last four decades, many different further projection
schemes have been developed, which use modified splitting strategies (e.g., the Gauge
method; see, e.g., [5, 11, 12], modified boundary conditions for pressure iterates), or
variants which use higher order temporal discretization, in combination with differ-
ent projection (or quasi-compressibility) strategies. Recently, an interesting splitting
strategy is proposed in [10] to implement boundary conditions consistently; however,
the approach requires C1-finite elements for the velocity field, and to prove quali-
tative convergence (without rates) of iterates towards strong solutions of (1.1)–(1.4)
requires bounded domains Ω ⊂ R

d (d = 2, 3) with C3-boundary. Another strategy to
avoid artificial boundary layers, and currently studied in the literature, are “velocity-
correction methods” [7], where the error analysis requires accurate initial data for
the pressure function (see discussion above). All these schemes share the goal to
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Table 1.1

Comparison of different first-order projection methods: additional regularity requirements for
strong solutions of (1.1)–(1.4) needed for convergence analysis are displayed in the first column.
The subsequent two columns display convergence rates for different quantities, reflecting pres-
ence/absence of boundary layers. The last column indicates the corresponding quasi-compressibility
method (QCM).

Method
additional
require-
ments

(
k
∑M

m=1 ‖ũm − u(tm, ·)‖2
H1

)1/2 ‖pM − p(tM , ·)‖L2 Related QCM

Chorin no ≤ C
√
k ≤ C 1√

τM

√
k

pressure
stabilization

Chorin–
Uzawa

yes ≤ C k ≤ C (1 + |log k|)√k artificial
compressibility

Chorin–
Penalty

no ≤ C k ≤ C 1
τM

k penalty

circumvent the drawbacks of Chorin’s original projection scheme, and we refer to [6]
for a review of the current state of the art. However, most numerical analyses of
these schemes are based on the assumption that solutions of (1.1)–(1.4) are smooth,
which leaves unclear whether these results apply to strong solutions which are known
to exist. Hence, for general applicability, it is our goal in this work to validate the
results discussed above on solid analytical grounds.

The remainder of this work is organized as follows: In section 2, we quantify
arising boundary layers due to pressure-stabilization methods for the stationary Stokes
problem in the context of strong solutions; see Theorem 2.1. Theorem 1.4 then
follows from this result. The main results and properties for the Chorin–Penalty
method (i.e., Algorithm B, for β ≥ 1) are given and compared with other methods
discussed above in Table 1.1; in section 3, we validate optimal convergence for pressure
iterates to strong solutions of (1.1)–(1.4), as stated in Theorem 1.4. Comparative
computational studies for Chorin, Chorin–Uzawa, and Chorin–Penalty schemes are
reported in section 4. A conclusion is given in section 5.

2. Boundary layers in Chorin’s projection method. As is already dis-
cussed in the introduction, Chorin’s projection method, i.e., Algorithm A, suffers
from marked boundary layers for the pressure error, which are bounded in Theorem
1.2. In this section, we verify this theorem by first studying a corresponding effect
for strong solutions of the stationary, stabilized Stokes problem: For given f ∈ L2(Ω),
and ε > 0, find solutions (uε, pε) ∈ [H1

0(Ω) ∩H2(Ω)]× [L2
0(Ω) ∩H1(Ω)] of (ν > 0)

−νΔuε +∇pε = f , div uε − εΔpε = 0 in Ω,(2.1)
∂np

ε = 0 on ∂Ω.(2.2)

This problem is a perturbation of the incompressible Stokes equation, where strong
solutions (u, p) ∈ [J1(Ω) ∩ H2(Ω)] × [L2

0(Ω) ∩ H1(Ω)] solve −νΔu + ∇p = f in Ω.
Below, we consider compactly contained subsets Ωδ of Ω,

Ωδ =
{
x ∈ Ω : dist

(
x, ∂Ω

)
> δ
}
, for 0 < δ <

1
2
diam(Ω).

Theorem 2.1. Let Ω ⊂ R
d, for d ≥ 2, and f ∈ L2(Ω), such that div f ∈

L2(Ω). Suppose that (u, p) is a strong solution of the stationary, incompressible Stokes
equation in Ω ⊂ R

d, such that p ∈ W 1,2r(Ω), r ≥ 1 , and (uε, pε) is a strong solution
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of (2.1) and (2.2). There holds

‖p− pε‖L2(Ωδ) ≤ C
√
εν

[
√
εν ‖Δp‖L2 +

(√
εν

2r′

) 1
2r′
‖∇p‖L2r + exp

(
− δ√

εν

)
‖∇p‖L2

]
.

Proof. The equations for the error (e, η) := (u− uε, p− pε) are

−νΔe +∇η = 0, div e− εΔη = −εΔp in Ω,(2.3)
∂nη = ∂np on ∂Ω.

Let

σ(x) = exp
(
− δ√

εν

)
min
[
exp
(
d(x)√
εν

)
, exp

(
δ√
εν

)]
, where d(x) = dist(x, ∂Ω).

We employ a duality argument: Find (w, q) ∈ [H1
0(Ω) ∩H2(Ω)] × [L2

0(Ω) ∩H1(Ω)],
such that

−νΔw +∇q = 0, div w− εΔq = σ η in Ω,(2.4)
∂nq = 0 on ∂Ω.(2.5)

The following stability bound for solutions of (2.4) and (2.5) is easy to verify:

(2.6)
1
ν
‖q‖2L2 + ν ‖∇w‖2L2 + ε ‖∇q‖2L2 ≤ Cν ‖σ η‖2L2 .

By testing (2.4) with (e, η), and (2.3) with (w, q), we find

‖√σ η‖2L2 = ε (∇q,∇η) + (div w, η)− (div e, q)− ε (∇η,∇q) + ε (∇q,∇p)
−ν (∇w,∇e) + (div e, q) + ν (∇w,∇e)− (div w, η)(2.7)

= ε (∇p,∇q) = −ε (Δp, q) + ε
〈
∂np, q

〉
∂Ω
.

Since exp(− d(x)√
εν

) = 1 on ∂Ω, we further conclude for σ̃(x) = max[exp(− d(x)√
εν

),
exp(− δ√

εν
)],

(2.8) ε
〈
∂np, σ̃ q

〉
∂Ω

= ε (Δp, σ̃ q) + ε
(∇p,∇(σ̃q)

)
.

There remains to bound the last term in (2.8). By |∇σ̃| ≤ σ̃√
εν

, we conclude

ε
(∇p, σ̃∇q)+ ε

(∇p, q∇σ̃)
≤ C

[
εν ‖σ̃∇p‖2L2 +

√
ε

ν

∫
B
|∇p| |q| σ̃ dx

]
+

ε

4ν
‖∇q‖2L2

≤ Cεν
[
‖σ̃∇p‖2L2(Ω\B) + 2 ‖σ̃∇p‖2L2(B)

]
+

1
4

[
ε

ν
‖∇q‖2L2 +

1
ν2
‖q‖2L2

]
,

where B := supp |∇σ̃|, which has d-dimensional Lebesgue measure Ld(B) = O(δ).
Hence, ∫

B
exp
(
−d(x)√

εν

)
dx = O (√εν) ,
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and we may conclude from (2.7), (2.6) as follows, for r, r′ ≥ 1, such that 1
r + 1

r′ = 1,

‖√σ η‖L2 ≤ C εν ‖Δp‖L2

+C
√
εν

[
exp
(
− δ√

εν

)
‖∇p‖L2(Ω\B) + ‖exp

(
−d(x)√

εν

)
∇p‖L2(B)

]

≤ C εν ‖Δp‖L2

+C
√
εν

[
exp
(
− δ√

εν

)
‖∇p‖L2 + ‖∇p‖2r

(∫
B

exp
(
−2r′d(x)√

εν

)
dx
) 1

2r′
]

≤ C εν ‖Δp‖L2

+C
√
εν

[
exp
(
− δ√

εν

)
‖∇p‖L2 +

(√
εν

2r′

) 1
2r′
‖∇p‖L2r

]
.

Thanks to ‖p‖L2(Ωδ) ≤ ‖σ p‖L2, this proves the assertion of the lemma.
Let 1 ≤ r <∞. By [20, Prop. 2.2], solutions of the incompressible Stokes equation

with f ∈ L2r(Ω) are strong, and satisfy (u, p) ∈W2,2r(Ω) ×W 1,2r(Ω), provided the
open bounded set Ω ⊂ R

d is of class C2,α, for 0 < α < 1. Then, for large values
r →∞, the above lemma motivates an L2(Ωδ)-error decay behavior for the pressure,
which is almost order 3

4 in the interior, and deteriorates to order 1
2 if errors on a

boundary layer of width δ =
√
νε |log(νε)| are included.

We use Theorem 2.1 to show Theorem 1.2. As has already be pointed out
in the introduction, an error analysis for Algorithm A to optimally bound time-
discretization, perturbation, and decoupling error effects is split into three steps;
the most critical step to bound arising errors is the one where the pressure stabiliza-
tion effect is accounted for. As a consequence, we consider the following auxiliary
problem: Let u0

k = u0 be given. For every 0 ≤ m ≤ M , find (um+1
k , pm+1

k ) ∈
[H1

0(Ω) ∩H2(Ω)]× [L2
0(Ω) ∩H1(Ω)] such that

dtum+1
k − νΔum+1

k +
(
PJ0u

m
k · ∇

)
um+1
k +∇pm+1

k = fm+1 in Ω,(2.9)

div um+1
k − kΔpm+1

k = 0 in Ω,(2.10)

∂np
m+1
k = 0 on ∂Ω.(2.11)

The following uniform estimates for solutions {(vm+1, πm+1)}Mm=0 ⊂ [J1(Ω)∩H2(Ω)]×
[L2

0(Ω) ∩H1(Ω)] of (2.9) will be useful below; we refer to [16, 13] for a proof.
Lemma 2.1. Let (A1), (A2) be valid. Then, iterates {(vm+1, πm+1)}Mm=0 ⊂

[J1(Ω) ∩H2(Ω)]× [L2
0(Ω) ∩H1(Ω)] of (2.9) satisfy

i) the following uniform bounds for values i ∈ {0, 1, 2}, and r ∈ {1, 2, 3},

max
r≤m≤M

[
τ
r−1+ i

2
m−1 ‖drtvm‖W i,2

]
+

(
k

M∑
m=r

τ
[2(r−1)+i−1]+
m−1 ‖drtvm‖2W i,2

)1/2

≤ C,

where [x]+ := max{x, 0}. For values i ∈ {0, 1}, and r ∈ {1, 2, 3}, there holds

max
r+1≤m≤M

[
τ
r+ i−1

2
m−1 ‖drtπm‖W i,2

]
+

(
k

M∑
m=r+1

τ2(r−1)+i
m ‖drtπm‖2W i,2

)1/2

≤ C.
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ii) the following error estimates, for (u, p), a strong solution of (1.1)–(1.4),

max
1≤m≤M

[‖u(tm, ·)− vm‖L2 +
√
τm
[‖p(tm, ·)− πm‖H−1

+‖u(tm, ·)− vm‖H1

]
+ τm ‖p(tm, ·)− πm‖L2

] ≤ Ck.
We are now in a position to sketch the proof of Theorem 1.2.
Proof. Step 1: consistency error. This error contribution in Algorithm A is ac-

counted for by introducing the semi-implicit Euler scheme as a first auxiliary problem;
then, Lemma 2.1 provides both optimal error estimates and stability results for the
iterates.

Step 2: quasi-compressibility constraint. Problem (2.9)–(2.11) is the second aux-
iliary problem to account for error effects due to violating the incompressibility con-
straint; this is the step where we employ Theorem 2.1 by first considering the follow-
ing quasi-stationary auxiliary problem, for every 0 ≤ m ≤M : Find (Um+1

k ,Πm+1
k ) ∈

[H1
0(Ω) ∩H2(Ω)]× [L2

0(Ω) ∩H1(Ω)] such that

−ΔUm+1
k +∇Πm+1

k = Fm+1 in Ω,(2.12)
div Um+1

k − kΔΠm+1
k = 0 in Ω,(2.13)

∂nΠm+1
k = 0 in ∂Ω,(2.14)

for Fm+1 := fm+1 − dtvm+1 − (vm · ∇)vm+1, and where {(vm+1, πm+1)}Mm=0 ⊂
[J1(Ω)∩H2(Ω)]×[L2

0(Ω)∩H1(Ω)] solves (2.9). In order to apply Theorem 2.1, we need
Fm+1 ∈ L2r(Ω) to apply [20, Prop. 2.2]. Thanks to the first result in Lemma 2.1, and
Sobolev’s inequality for d = 2, 3, we easily obtain uniform bounds for τm+1‖Fm+1‖L2r ,
with 1 ≤ r <∞, and hence the right-hand side of (r ≥ 1),

‖πm −Πm
k ‖L2(Ωδ)

≤ C
√
kν

⎡
⎣√kν‖Δπm‖L2 +

(√
kν

2r′

) 1
2r′

‖πm‖W 1,2r + exp
(
− δ√

kν

)
‖πm‖W 1,2

⎤
⎦ ,

can be controlled uniformly if a time-weight τm is used. Next, we employ the bound

max
1≤m≤M+1

‖Πm
k − pmk ‖L2(Ω) ≤ Ck,

which is already known from [13, section 6.2], and easily follows from the fact that
both pm+1

k and Πm+1
k satisfy (2.13) and (2.14).

Step 3: splitting error. This step controls errors between solutions of systems
(2.9)–(2.11) and (1.11)–(1.13). This error analysis leads to first-order estimates for
all iterates in the considered norms; see [13, section 6.4] for a detailed analysis.

3. Algorithm B: The Chorin–Penalty projection method. In order to
analyze the Chorin–Penalty scheme (1.19), (1.20), and (1.28), we use its reformulation
as a semi-explicit penalty method,

dt
(
ũm+1
k − β∇div ũm+1

k

)− νΔũm+1
k

+ (PJ0 ũ
m
k · ∇) ũm+1

k +∇pmk = fm+1 in Ω,(3.1)
div ũm+1

k + k pm+1
k = 0 in Ω.(3.2)

The main part of the subsequent analysis focuses on the fully implicit modification
of (3.1),
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(3.3)
dt
(
ũm+1
k − β∇div ũm+1

k

)− νΔũm+1
k + (PJ0ũ

m
k · ∇) ũm+1

k +∇qm+1
k = fm+1 in Ω,

and strong solutions (ũm+1
k , qm+1

k }Mm=0 ⊂ [H1
0(Ω) ∩H2(Ω)] × [L2

0(Ω) ∩H1(Ω)], with
ũ0
k = u0. In the sequel, we use the sequence {(vm+1, πm+1)}Mm=0 ⊂ [J1(Ω)∩H2(Ω)]×

[L2
0(Ω)∩H1(Ω)], with v0 = u0, which solves (2.9). We independently bound errors in

(3.3) and (3.2), which are due to the perturbation of the incompressibility constraint
in the linear case (section 3.1), from those which are introduced by the nonlinear
term (section 3.2), as well as those due to the decoupling strategy in Algorithm B
(section 3.3).

Remark 3.1. On putting ε = k, system (3.1)–(3.2) may be considered as a
semi-implicit temporal discretization of (β̃ ≥ 0)

vt − β̃∇div vt − νΔv + (PJ0v · ∇)v +∇π = f in ΩT ,(3.4)
div v + επ = 0 in ΩT ,(3.5)

together with v(0, ·) = u0 on Ω. For β̃ = 0, this formulation is known as a penalty
method, which is studied in [18], and [13, section 3.2]. Hence, (3.4) is a modifica-
tion thereof, which uses the additional term −β̃∇div vt to additionally enforce the
incompressibility constraint for β̃ > 0.

Another interpretation of system (3.1)–(3.2) for β = 1 comes from its reformula-
tion

(3.6) dtũm+1
k − 1

k
∇div ũm+1

k − νΔũm+1
k +

(
PJ0ũ

m
k · ∇

)
ũm+1
k = fm+1.

Hence, iterates {ũmk }m ⊂ H1
0(Ω) from Algorithm B solve an implicit temporal dis-

cretization of the penalty formulation (3.4)–(3.5), with ε = k, and β̃ = 0. Moreover,
a discrete energy law similar to (1.6) holds for solutions of (3.6), which justifies (sub-
sequence) convergence to weak solutions of (1.1)–(1.4) for k→ 0.

For β ≥ 1, system (3.1)–(3.2) combines different stabilizing mechanisms to en-
force the incompressibility constraint for β ≥ 1 for iterates {ũmk }. Note that (3.6) is
an implicit discretization which effectively describes iterates {ũmk } in this case, and
does not require one to prescribe initial data for the pressure; this is in contrast to
Algorithm B, due to the (decoupling) projection step to obtain {um}m ⊂ J0.

3.1. Perturbation analysis for the penalized formulation (3.3), (3.2);
Part I: The linear case. Let w0

k = u0. For every 0 ≤ m ≤M , let (wm+1
k , bm+1

k ) ∈
[H1

0(Ω) ∩H2(Ω)]× [L2
0(Ω) ∩H1(Ω)] be the strong solution of

dt
(
wm+1
k − β∇div wm+1

k

)− νΔwm+1
k +∇bm+1

k = Fm+1 in Ω,(3.7)

div wm+1
k + k bm+1

k = 0 in Ω,(3.8)

where Fm+1 = fm+1− (vm · ∇)vm+1, for every 0 ≤ m ≤M . By Lemma 2.1, we have

max
0≤m≤M

[‖Fm+1‖L2 + ‖dtvm+1‖L2

] ≤ C.
Problem (3.7)–(3.8) is a semidiscretization in time of a penalized version of the

nonstationary, incompressible Stokes equations. In order to verify optimal rates of
convergence with respect to k > 0 towards strong solutions of the nonstationary,
incompressible Stokes equations, we need to study the following auxiliary problem
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first: For every 0 ≤ m ≤M , let (Wm+1
k , Bm+1

k ) ∈ [H1
0(Ω)∩H2(Ω)]× [L2

0(Ω)∩H1(Ω)]
be the strong solution of

−νΔWm+1
k +∇Bm+1

k = Fm+1 − dtvm+1 in Ω,(3.9)
div Wm+1

k + kBm+1
k = 0 in Ω.(3.10)

The following convergence properties have been shown in [13, section 3.2],

(3.11) ‖Wm
k − vm‖H1 + ‖Bmk − πm‖L2 ≤ C k ‖πm‖L2 ,

for every 1 ≤ m ≤ M . By linearity of the problem (3.9)–(3.10), and Lemma 2.1, we
easily obtain for r ∈ {1, 2, 3},

max
r≤m≤M

τr−1/2
m [‖drt (Wm

k − vm) ‖H1 + ‖drt (Bmk − πm) ‖L2 ]

+

(
k

M∑
m=r

τ
2(r−1)
m−1 ‖drt (Wm

k − vm) ‖2H1

)1/2

≤ C k.(3.12)

In the next step, we bound errors (em+1
k , ηm+1

k ) := (wm+1
k −Wm+1

k , bm+1
k − Bm+1

k )
between solutions of (3.7)–(3.8) and (3.9)–(3.10). We have the following identities
(0 ≤ m ≤M),

dt
(
em+1
k − β∇div em+1

k

)− νΔem+1
k +∇ηm+1

k

= (Id− β∇div) dt
(
vm+1 −Wm+1

k

)
,(3.13)

div em+1
k + k ηm+1

k = 0,(3.14)

with em+1
k = 0 on ∂Ω, and e0

k = 0 on Ω. Let W0
k := u0. By testing (3.13)–(3.14)

with (em+1
k , ηm+1

k ), and using (3.12) we arrive at

1
2

max
1≤m≤M

[‖emk ‖2L2 + β ‖div emk ‖2L2

]
+
k2

2

M∑
m=1

[‖dtemk ‖2L2 + β ‖div dtemk ‖2L2

]

+ k
M∑
m=1

[
ν ‖∇emk ‖2L2 + k ‖ηmk ‖2L2

] ≤ C k2.(3.15)

This result, together with (3.11), establishes optimal convergence behavior for the
velocity field obtained from (3.7)–(3.8) in �∞(0, tM ;L2).

In the next step, we want to verify error bounds for the velocity gradient in
�∞(0, tM ;L2). For this purpose, we make r times “discrete derivatives” of (3.13), test
with τ2r

m+1 d
r
te
m+1
k , r ∈ {1, 2}, and use (3.15) to find

max
r≤m≤M

τ2r
m

[‖drtemk ‖2L2 + β ‖div drte
m
k ‖2L2

]

+ k
M∑
m=r

τ2r
m

[
ν ‖∇drtemk ‖2L2 + k ‖drtηmk ‖2L2

]

≤ C k2 + C k

M∑
m=r

τ2r−1
m

[
τm ‖dr+1

t (vm −Wm
k ) ‖2L2(3.16)

+
(‖drtemk ‖2L2 + β ‖div drte

m
k ‖2L2

) ]
.
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A similar argument, together with (3.15) leads to (r ≥ 1)

k

M∑
m=r

τ2r−1
m

[‖drtemk ‖2L2 + β ‖div drte
m
k ‖2L2

]
+ max
r≤m≤M

τ2r−1
m

[
ν ‖∇dr−1

t emk ‖2L2 + k ‖dr−1
t ηmk ‖2L2

]

≤ C k2 + C k
M∑
m=r

[
τ2r−1
m ‖drt (vm −Wm

k ) ‖2L2(3.17)

+ τ2(r−1)
m

(‖∇dr−1
t emk ‖2L2 + k ‖dr−1

t ηmk ‖2L2

) ]
.

We can now combine (3.16), (3.17), and use (3.15) to verify the following bound, for
r ∈ {1, 2},

max
r≤m≤M

τ2r−1
m

[
τm
[‖drtemk ‖2L2 + β ‖div drte

m
k ‖2L2

]
+ ν ‖∇dr−1

t emk ‖2L2 + k ‖drtηmk ‖2L2

]

+ k

M∑
m=r

τ2r−1
m

[
ντm ‖∇drtemk ‖2L2(3.18)

+ β ‖div drte
m
k ‖2L2 + kτm ‖drtηmk ‖2L2

]
≤ C k2.

Then, Lemma 2.1, (3.11), (3.12), and a stability result for the div-operator yields to

(3.19)
max

0≤m≤M

[
‖u(tm, ·)−wm

k ‖L2 +
√
τm ‖u(tm, ·)−wm

k ‖H1 + τm ‖p(tm, ·)− bmk ‖L2

]
≤ C k,

with the latter result being a consequence of a stability result for the divergence
operator.

3.2. Perturbation analysis for the penalized formulation (3.3), (3.2);
Part II: Extension to the nonlinear case. Because of (3.19), there remains to
bound errors (ξξξm+1, χm+1) := (ũm+1

k − wm+1
k , qm+1

k − bm+1
k ) to estimate the error

between strong solutions of (1.1)–(1.4), and (3.3), (3.2). We subtract the equations
(3.7)–(3.8) of the linear auxiliary problem from the corresponding ones (3.3)–(3.2).
For every 0 ≤ m ≤M , there holds

dt
(
ξξξm+1 − β∇div ξξξm+1

)
−νΔξξξm+1 +∇χm+1 = (vm · ∇)vm+1 − (PJ0 ũ

m
k · ∇) ũm+1

k ,(3.20)

div ξξξm+1 + k χm+1 = 0.(3.21)

We compute

−(vm · ∇)vm+1 +
(
PJ0u

m
k · ∇

)
um+1
k =

(
PJ0ξξξ

m · ∇)vm+1 +
(
PJ0 ũ

m
k · ∇

)
ξξξm+1

−(PJ0 ũ
m
k · ∇

)
(vm+1 −wm+1

k )− (PJ0(v
m −wm

k ) · ∇)vm+1.
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This observation, the skew-symmetricity property ((PJ0φφφ·∇)ψψψ,ψψψ) = 0 forψψψ ∈ H1
0(Ω),

and the H1-stability of PJ0 then lead to

1
2

max
1≤m≤M

[
‖ξξξm‖2L2 + β ‖divξξξm‖2L2

]
+
k2

2

M∑
m=1

[
‖dtξξξm‖2L2 + β ‖div dtξξξm‖2L2

]

+ k

M∑
m=1

[ν
2
‖∇ξξξm‖2L2 + k ‖χm‖2L2

]

≤
[
‖ξξξ0‖2L2 + ‖divξξξ0‖2L2

]
+ C k

M∑
m=1

‖Δvm‖2L2

[
‖ξξξm‖2L2 + ‖vm −wm

k ‖2L2

]

+
∣∣∣((PJ0ũ

m−1
k · ∇)(vm −wm

k ), ξξξm
)∣∣∣

≤ C k2 + k

M∑
m=1

‖ξξξm‖2L2 + k

M∑
m=1

[
‖∇ξξξm−1‖L2 + ‖∇(vm−1 −wm−1

k )‖L2

]

×‖∇(vm −wm
k )‖L2‖ξξξm‖1/2L2 ‖∇ξξξm‖1/2L2 + k

M∑
m=1

[
‖ξξξm‖2L2 + ‖vm −wm

k ‖2L2

]
.

We use Lemma 2.1, ii), and (3.19) to conclude with the discrete Gronwall’s inequality
that

max
1≤m≤M

[
‖ξξξm‖2L2 + β ‖divξξξm‖2L2

]
+
k2

2

M∑
m=1

[
‖dtξξξm‖2L2 + β ‖div dtξξξm‖2L2

]

+ k

M∑
m=1

[
ν ‖∇ξξξm‖2L2 + k ‖χm‖2L2

]
≤ C k2.(3.22)

Next, making “discrete time-derivatives” in (3.20), (3.21) with respect to time, and
then test the system with (τ2

m+1 dtξξξ
m+1, τ2

m+1 dtχm+1),

max
2≤m≤M

τ2
m

[
‖dtξξξm‖2L2 + β ‖div dtξξξm‖2L2

]

+ k2
M∑
m=2

τ2
m

[
‖d2
tξξξ
m‖2L2 + β ‖div dtξξξm‖2L2

]

+ k

M∑
m=2

τ2
m

[
ν ‖∇dtξξξm‖2L2 + k ‖dtχm‖2L2

]
(3.23)

≤ C k
M∑
m=2

[
τ2
m

∣∣(NLTmA , dtξξξ
m
)∣∣+ τm

(
‖dtξξξm‖2L2 + ‖div dtξξξm‖2L2

)]
,

where

NLTm+1
A =

(
PJ0dtξξξ

m · ∇)vm+1 +
(
PJ0ξξξ

m−1 · ∇)dtvm+1 +
(
PJ0dtũ

m
k · ∇

)
ξξξm+1

+
(
PJ0ũ

m−1
k · ∇)dtξξξm+1 − (PJ0dtũ

m−1
k · ∇)(vm+1 −wm+1

k )(3.24)

− (PJ0ũ
m−1
k · ∇)dt(vm+1 −wm+1

k )

− (PJ0dt(v
m −wm

k ) · ∇)vm+1 − (PJ0(v
m−1 −wm−1

k

) · ∇)dtvm+1.
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Thanks to Lemma 2.1, i), the first two terms on the right-hand side of (3.24) in (3.23)
can be easily controlled, as well as the fourth term. (Note that {dtũm+1

k } is uniformly
bounded in �∞(0, tM+1;L2(Ω)).) By Lemma 2.1, i), and (3.18), the fifth, seventh, and
eighth term on the right-hand side of (3.24) can be handled in a standard way. To
bound the third and sixth term on the right-hand side of (3.24), we use the following
reformulation:

(
PJ0dtũ

m
k · ∇

)
ξξξm+1 =

(
PJ0dt(ũ

m
k − vm) · ∇)ξξξm+1 +

(
PJ0dtv

m · ∇)ξξξm+1,(
PJ0ũ

m−1
k · ∇)dt(vm+1 −wm+1

k ) =
(
PJ0ξξξ

m−1 · ∇)dt(vm+1 −wm+1
k

)
+
(
PJ0w

m−1
k · ∇)dt(vm+1 −wm+1

k

)
.(3.25)

We use Lemma 2.1, i), (3.12), and (3.18) to obtain the uniform estimate

(3.26) max
1≤m≤M

[
‖∇wm

k ‖L2 +
√
τm ‖∇dtwm

k ‖L2

]
≤ C.

By inserting these bounds in (3.23) yields to

max
2≤m≤M

τ2
m

[
‖dtξξξm‖2L2 + β ‖div dtξξξm‖2L2

]

+ k2
M∑
m=2

τ2
m

[
‖d2
tξξξ
m‖2L2 + β ‖div d2

tξξξ
m‖2L2

]

+ k
M∑
m=2

τ2
m

[
ν ‖∇dtξξξm‖2L2 + k ‖dtχm‖2L2

]
(3.27)

≤ C k2 + k

M∑
m=2

τm

[
‖dtξξξm‖2L2 + ‖div dtξξξm‖2L2

]
.

The last term in (3.27) can be controlled, if we test (3.20) by dtξξξm+1 and the “discrete
time-derivative” version of (3.21) by χm+1,

‖dtξξξm+1‖2L2 + β‖div dtξξξm+1‖2L2 +
ν

2
dt‖∇ξξξm+1‖2L2

+
νk

2
‖∇dtξξξm+1‖2L2 +

k

2
dt‖χm+1‖2L2 +

k2

2
‖dtχm+1‖2L2(3.28)

≤ C
[
‖∇ξξξm+1‖2L2 + ‖∇(vm −wm

k )‖2L2

]
+
C

δκ
‖dtξξξm+1‖2L2 +

κ

δ
‖∇dtξξξm+1‖2L2

+
δ

τ
1/2
m+1

‖∇umk ‖2L2

[
‖∇ξξξm+1‖2L2 + ‖∇ (vm+1 −wm+1

k

) ‖2L2

]
,
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for δ, κ ≥ 1. If we choose κ = 1√
δ

and take δ sufficiently large, the last but one term
can be absorbed on the left-hand side, and we obtain

k

M∑
m=1

τm

[
‖dtξξξm‖2L2 + β ‖div dtξξξm‖2L2

]

+ max
1≤m≤M

τm

[
ν ‖∇ξξξm‖2L2 + k ‖χm‖2L2

]

+ k2
M∑
m=1

[
ντm ‖∇dtξξξm‖2L2 + k ‖dtχm‖2L2

]
(3.29)

≤ Ck
M∑
m=1

[
ν ‖∇ξξξm‖2L2 + k ‖χm‖2L2 + ν ‖∇(vm −wm

k )‖2L2

+
ν

δ3/2
τ2
m ‖∇dtξξξm‖2L2

]
.

As a consequence, (3.29) and (3.27), in combination with a stability result for the
divergence operator, give the desired bound
(3.30)

max
1≤m≤M

[
‖u(tm, ·)− umk ‖L2 +

√
τm ‖u(tm, ·)− umk ‖H1 + τm‖p(tm)− qmk ‖L2

]
≤ C k.

We finish this part with useful uniform bounds for {(ũm+1
k , qm+1

k )}Mm=0: make r−1
“discrete time-derivatives” in (3.3), (3.2), for r ∈ {1, 2}, and test with τ2(r−1)

m+1 drtu
m+1
k ;

in a second step, we make r “discrete time-derivatives,” and test with τ2r−1
m+1 d

r
tu
m+1
k .

A simple calculation then yields

max
r≤m≤M

τ2r−1
m

[
‖drt ũmk ‖2L2 + β ‖div drt ũ

m
k ‖2L2

]
(3.31)

+ k

M∑
m=r

τ2(r−1)
m

[
‖drt ũmk ‖2L2 + β ‖div drt ũ

m
k ‖2L2

]

+ k

M∑
m=r

τ2r−1
m

[
ν ‖∇drt ũmk ‖2L2 + k ‖drtqmk ‖2L2

]
≤ C,

thanks to (3.27) and (3.30). Also, we may use Lemma 2.1, i), (3.12), (3.16), and
(3.27) together with (3.21) to find

(3.32) max
1≤m≤M

[
τ2
m ‖dtqmk ‖2

]
+ k

M∑
m=1

τm ‖dtqmk ‖2 ≤ C, k2
M∑
m=2

τ2
m ‖d2

t q
m
k ‖2 ≤ C.

3.3. Perturbation analysis for the Chorin–Penalty scheme (3.1)–(3.2):
Transition from the penalty method to the projection method. In this sec-
tion, let {(um+1

k , qm+1
k )}Mm=0 denote the solution of (3.3), (3.2), and {(ũm+1

k , pm+1
k )}Mm=0

solves (3.1)–(3.2)—where the latter is the reformulation of Algorithm B. The last step
to verify Theorem 1.4 consists in bounding the error (Em,Πm) := (umk −ũmk , q

m
k −pmk ),
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which satisfies for every 1 ≤ m ≤M ,

dt
(
Em − β∇div Em

)− νΔEm +∇Πm−1 = −k∇dtqmk −Q(Em),(3.33)

div Em + kΠm = 0,(3.34)

with Q(Em+1) := (PJ0E
m · ∇)um+1

k + (PJ0 [umk − Em] · ∇)Em+1. In the next step,
we test (3.33)–(3.34) with (Em,Πm); for this purpose, we first calculate

(∇Πm−1,Em
)

=
(∇Πm,Em

)− k(∇dtΠm,Em
)

= k‖Πm‖2L2 − k2
(
dtΠm,Πm

)
(3.35)

≥ k
[
1− 2

3

]
‖Πm‖2L2 − 3k3

8
‖dtΠm‖2L2 ,

and

k
(∇dtqmk ,Em

)
= k2

(
dtq

m
k ,Π

m
)
,

as well as

∣∣(Q(Em),Em
)∣∣ ≤ C‖Em−1‖L3‖∇umk ‖L2‖Em‖L6

≤ C‖Em−1‖1/2L2 ‖∇Em−1‖1/2L2 ‖∇umk ‖L2‖∇Em‖L2 .

Therefore, we arrive at the estimate

1
2

max
1≤m≤M

[
‖Em‖2L2 + β ‖div Em‖2L2

]

+
k2

2

M∑
m=1

[
‖dtEm‖2L2 + β ‖div dtEm‖2L2

]

+ k

M∑
m=1

[
ν

2
‖∇Em‖2L2 +

[
1
3
− 1
δ

]
k ‖Πm‖2L2

]
(3.36)

≤ k4
M∑
m=1

[
3
8
‖dtΠm‖2L2 + Cδ ‖dtqmk ‖2L2

]

+
k

ν3

M∑
m=1

‖Em‖2L2‖∇um+1
k ‖4L2 , δ > 4.

Thanks to (3.34), and β ≥ 1, the first term on the right-hand side can be absorbed
on the left-hand side. The second term can be bounded by C k2, by means of (3.31)
and (3.32).
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To control the error for the pressure, we “make a time-derivative” of (3.33), test
with τ2

m dtE
m, and note (3.31), (3.32)2.

1
2

max
2≤m≤M

τ2
m

[
‖dtEm‖2L2 + β ‖div dtEm‖2L2

]

+
k2

2

M∑
m=2

τ2
m

[
‖d2
tE

m‖2L2 +
[
β − 3

4

]
‖div d2

tE
m‖2L2

]

+ k

M∑
m=2

τ2
m

[
ν ‖∇dtEm‖2L2 +

[
1
3
− 1
δ

]
k ‖dtΠm‖2L2

]
(3.37)

≤ Ck2 + Cδk
4
M∑
m=2

τ2
m ‖d2

t q
m
k ‖2L2

+ k

M∑
m=2

τm

[
‖dtEm‖2L2 + β‖div dtEm‖2L2

]

+ k

M∑
m=2

τ2
m

∣∣NLTmB
∣∣.

Here, we used (3.34) to conclude that

τ2
m

(∇dtΠm−1, dtEm
)

= τ2
m

(∇dtΠm, dtEm
)− kτ2

m

(∇d2
tΠ

m, dtEm
)

≥ kτ2
m‖dtΠm‖2L2 − k2τ2

m

(
d2
tΠ

m, dtΠm
)

≥
[
1− 2

3

]
kτ2
m‖dtΠm‖2L2 − 3

8
k3τ2

m‖d2
tΠ

m‖2L2

≥
[
1− 2

3

]
kτ2
m‖dtΠm‖2L2 − 3

8
kτ2
m‖div d2

tE
m‖2L2.

We skip the detailed study of NLTmB , since it does not involve further difficulties
superior to those detailed in subsection 3.2 at this place. The crucial term, however,
is the last but one term on the right-hand side of (3.37).

For this purpose, we test (3.33) with τm dtEm. In a first step, we observe that

τm
(∇Πm−1, dtEm

)
= τm

(∇Πm, dtEm
)

+ τmk
(
dtΠm, div dtEm

)
≥ k

2
τm

[
dt‖Πm‖2L2 + k‖dtΠm‖2L2

]
− 3

4
τm‖div dtEm‖2L2 − k2

3
τm‖dtΠm‖2L2

=
k

2
dt

[
τm‖Πm‖2L2

]
− k

2
‖Πm−1‖2L2

+
k2

6
τm‖dtΠm‖2L2 − 3

4
τm‖div dtEm‖2L2 ,

as well as

kτm
(∇dtqmk , dtEm

)
= k2τm

(
dtΠm, dtq

m
k

)
≤ 3τmk2‖dtqmk ‖2L2 +

k2

12
τm‖dtΠm‖2L2 .
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By (3.31), (3.32), and (3.36), we then obtain

k

M∑
m=1

τm

[
‖dtEm‖2 +

[
β − 3

4

]
‖div dtEm‖2

]

+
1
2

max
1≤m≤M

τm

[
ν ‖∇Em‖2 + k ‖Πm‖2

]

+
k2

12

M∑
m=1

τm

[
‖∇dtEm‖2 + k ‖dtΠm‖2

]
(3.38)

≤ Cγ k2 +
k

γ3/2

M∑
m=1

τ2
m ‖∇dtEm‖2, (γ > 1).

We may now use (3.38) to control the last but one term on the right-hand side of (3.37);
upon choosing γ > 1 sufficiently large, the last term in (3.38) may be absorbed by the
corresponding term on the left-hand side of (3.37). A standard argumentation then
establishes the bound max0≤m≤M τm ‖Πm‖ ≤ C k.

Together with (3.36) through (3.38) and the results from subsections 3.1 to 3.3,
this settles the proof of Theorem 1.4.

Remark 3.2. Choosing β ≥ 0 is sufficient to obtain all results in subsections 3.1
and 3.2. Values β ≥ 1 are needed only in subsection 3.3 to properly deal with splitting
errors in the Chorin–Penalty projection method; it is sufficient to justify the argument
below inequality (3.36), where errors due to the splitting, and computed in (3.35), are
absorbed by the term headed by β; see also section 4 for computational evidence.

4. Computational experiments. We computationally compare Chorin’s
method (Algorithm A) with its variants, i.e., Chorin–Uzawa method (Algorithm B,
for α ∈ (0, 1)) and Chorin–Penalty method ((1.19)–(1.21), (1.28), for β ≥ 1). Our
main focuses are

(i) to compare possible boundary layers of m → [p(tm, ·)− pm] ∈ L2
0(Ω), includ-

ing their evolution in time,
(ii) to compare possible transition layers caused by starting with initial pressure

data p0 for Chorin–Uzawa, and Chorin–Penalty scheme, where ‖p0−p(0, ·)‖L2

is large, and
(iii) to study convergence behavior of computed pressures for the Chorin–Uzawa

and Chorin–Penalty methods, depending on different choices of α, β.
Example 1. Let Ω = (0, 1)2 ⊂ R

2, and

u(x, y, t) =
(
x2(1− x)2 (2y − 6y2 + 4y3

)
−y2(1− y)2 (2x− 6x2 + 4x3

)), p(x, y, t) =
(
x2 + y2 − 2

3

)(
1 + t2

)
,

be the solution of the evolutionary Stokes problem; i.e., f : ΩT → R
2 is computed from

(1.1)–(1.4), where the nonlinear term in (1.1) is neglected. Let Th be an equidistant
triangulation of Ω of mesh-size h = 1/30, and k = 2j/500, j = 0, 1, 2, . . . , an equidis-
tant time-step for the time interval [0, 1]. The LBB-stable MINI-Stokes element is
used for spatial discretization of the three projection methods.

Snapshots for the pressure error in Figure 1 show marked boundary layers for the
pressure (first line), as opposed to almost uniform errors for Chorin–Uzawa (middle
line) and Chorin–Penalty (last line); comparative plots in the last line for correspond-
ing L2-errors (before being dominated by errors due to spatial discretization) moti-
vate that significant errors close to the boundary control the overall error in Chorin’s
scheme. Corresponding profiles are obtained for plots of m → div ũm.
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Fig. 1. Example 1: Errors of p(tm, ·)−pm at time tm = 1, for k = 1/500 (1st line), k = 1/1000
(2nd line), and k = 1/2000 (3rd line), and evolution plot of L2 errors (4th line), for Chorin (left),
Chorin–Uzawa (middle, α = 0, 9), and Chorin–Penalty (right, β = 1.1).

Both Chorin–Uzawa (α ∈ (0, 1)) and Chorin–Penalty (β ≥ 1) involve additional
parameters; its dependence is studied in Figure 2, and failure of convergence of the
Chorin–Penalty method is observed for some β < 1. The experiments suggest values
α ≈ 1 and β ≈ 1.

Over the last decade, different projection schemes have been developed and tested
in academic examples, whose performance crucially relies on given initial functions
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Fig. 2. Example 1: L2-errors of pressure at t = 1 for (i) Chorin–Uzawa with exact initial
pressure, for different α ∈ (0, 1) (left). (ii) Chorin–Penalty for different β ∈ (1, 100) (middle). (iii)
Loss of convergence for Chorin–Penalty for β < 1

2
(right). (k = 1/500).
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Fig. 3. Example 1: Correct vs. noncorrect initial pressures for Chorin–Uzawa (α = 0.9),
and comparison with Chorin–Penalty (β = 1.1) for k = 1/500 (left), k = 1/1000 (middle), and
k = 1/2000 (right).

q ≡ p(0, ·); cf. [6] for further details. In fact, to compute pressure initial functions in
general amounts to solve the following problem (for nonstationary Stokes)

Δq = div f(0, ·) in Ω, ∂nq =
[
f(0, ·) + νΔu0

] · n on ∂Ω,

where optimal convergence for (finite element) approximations qh ≈ q is not clear. In
our case, choosing accurate data p0 ≈ p(0, ·) for the Chorin–Uzawa method has been
pointed out to be crucial in Theorem 1.3; in contrast, Chorin–Penalty is designed
in order to avoid boundary layers for the pressure error in space, and also perform
optimally for zero initial pressure data (Theorem 1.4). Figure 3 supports these theo-
retical results: we observe marked transition layers for Chorin–Uzawa in the case of
“noncorrect” initial pressures, while L2-errors of the pressure in Chorin–Penalty are
almost instantaneously reduced to spatial discretization errors.

5. Conclusion. In recent papers [11, 12], the authors stress the importance to
construct and analyze practical projection methods under realistic regularity
assumptions—which is also the guideline in this paper. Over the last decade, sev-
eral projection methods are studied in the literature where (i) smooth solutions to
(1.1)–(1.4) and (ii) accurate initial pressure data are assumed, leaving serious doubts
on the applicablility of these results to more realistic situations of incompatible data
and limited solution’s regularity.

Projection methods are efficient methods to approximate strong solutions of the
nonstationary incompressible Navier–Stokes equations; the most well-known example
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is Chorin’s method, which suffers from marked pressure error boundary layers. We
give a first rigorous analysis of its structure in the case of existing strong solutions of
(1.1)–(1.4) (Theorem 1.2). The new Chorin–Penalty method is proposed, and optimal
(i.e., first-order) rate of convergence for the pressure is proved (Theorem 1.4), which
reflects uniform, optimal convergence behavior up to the boundary. Comparative
computational studies illustrate that the Chorin–Penalty method is exempted from
the deficiencies of the Chorin method, in the way that no significant pressure errors
arise close to the boundary.

Acknowledgment. The author is grateful to E. Carelli (Universität Tübingen)
for providing the computational tests.
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B–SERIES ANALYSIS OF STOCHASTIC RUNGE–KUTTA
METHODS THAT USE AN ITERATIVE SCHEME TO COMPUTE

THEIR INTERNAL STAGE VALUES∗
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Abstract. In recent years, implicit stochastic Runge–Kutta (SRK) methods have been devel-
oped both for strong and weak approximations. For these methods, the stage values are only given
implicitly. However, in practice these implicit equations are solved by iterative schemes such as sim-
ple iteration, modified Newton iteration or full Newton iteration. We employ a unifying approach
for the construction of stochastic B-series which is valid both for Itô- and Stratonovich-stochastic
differential equations (SDEs) and applicable both for weak and strong convergence to analyze the
order of the iterated Runge–Kutta method. Moreover, the analytical techniques applied in this paper
can be of use in many other similar contexts.

Key words. stochastic Runge–Kutta method, composite method, stochastic differential equa-
tion, iterative scheme, order, internal stage values, Newton’s method, weak approximation, strong
approximation, growth functions, stochastic B-series

AMS subject classifications. 65C30, 60H35, 65C20, 68U20

DOI. 10.1137/070704307

1. Introduction. In many applications, e.g., in epidemiology and financial
mathematics, taking stochastic effects into account when modeling dynamical sys-
tems often leads to stochastic differential equations (SDEs). Therefore, in recent
years, the development of numerical methods for the approximation of SDEs has be-
come a field of increasing interest; see, e.g., [16, 22] and references therein. Many
stochastic schemes fall into the class of stochastic Runge–Kutta (SRK) methods.
SRK methods have been studied both for strong approximation [1, 10, 11, 16], where
one is interested in obtaining good pathwise solutions, and for weak approximation
[8, 9, 16, 19, 21, 32], which focuses on the expectation of functionals of solutions.
Order conditions for these methods are found by comparing series of the exact and
the numerical solutions. In this paper, we will concentrate on the use of B-series
and rooted trees. Such series are surprisingly general; as formal series they are in-
dependent of the choice of the stochastic integral, Itô or Stratonovich, or whether
weak or strong convergence is considered. This is demonstrated in section 2. For
solving SDEs which are stiff, implicit SRK methods have to be considered, which
also has been done both for strong [4, 11, 12] and weak [7, 12, 17] approximation.
For these methods, the stage values are only given implicitly. However, in practice
these implicit equations are solved by iterative schemes like simple iteration or some
kind of Newton iterations. For the numerical solution of ODEs such iterative schemes
have been studied [13, 14], and it was shown that certain growth functions defined on
trees give a precise description of the development of the iterations. Exactly the same
growth functions apply to SRKs, as we prove in section 3. Only when these results
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are interpreted in terms of the order of the overall scheme, we distinguish Itô from
Stratonovich SDEs, weak from strong convergence. This is discussed in sections 4
and 5.

When considering strong convergence, it is difficult to implement fully implicit
SRK methods in combination with Newton iterations due to the possible singularity
of the numerical procedure. Therefore, various techniques have been developed to
circumvent this problem [4]. One possibility is the use of so-called truncated random
variables, which have finite distribution and can approximate the increment of Wiener
processes to a chosen order [4, 23]. As the concrete choice of random variables in the
numerical methods is not specified in this paper, all considerations are without any
change also valid for SRK methods with such modified random variables.

Another possibility is to use composite methods [31], which are combinations of
a semi-implicit SRK and an implicit SRK. Based on the results for conventional SRK
methods, convergence results for iterated composite methods are given in section 6.
Finally, in section 7 we present two numerical examples.

Let (Ω,A,P) be a probability space. We denote by (X(t))t∈I the stochastic
process which is the solution of either a d-dimensional Itô or Stratonovich SDE defined
by

(1.1) X(t) = x0 +
∫ t

t0

g0(X(s))ds+
m∑
l=1

∫ t

t0

gl(X(s)) � dWl(s)

with an m-dimensional Wiener process (W (t))t≥0 and I = [t0, T ]. The integral w.r.t.
the Wiener process has to be interpreted either as Itô integral with �dWl(s) = dWl(s)
or as Stratonovich integral with �dWl(s) = ◦dWl(s). We assume that the Borel-
measurable coefficients gl : R

d → R
d are sufficiently differentiable and satisfy a Lip-

schitz and a linear growth condition. For Stratonovich SDEs, we require in addition
that the gl are differentiable and that also the vectors g′lgl satisfy a Lipschitz and a
linear growth condition. Then the existence and uniqueness theorem [15] applies.

To simplify the presentation, we define W0(s) = s, so that (1.1) can be written as

(1.2) X(t) = x0 +
m∑
l=0

∫ t

t0

gl(X(s)) � dWl(s).

In the following we denote by Ξ a set of families of measurable mappings,

Ξ :=
{{ϕ(h)}h≥0 : ϕ(h) : Ω→ R is A− B-measurable ∀h ≥ 0

}
,

and by Ξ0 the subset of Ξ defined by

Ξ0 :=
{{ϕ(h)}h≥0 ∈ Ξ : ϕ(0) ≡ 0

}
.

Let a discretization Ih = {t0, t1, . . . , tN} with t0 < t1 < . . . < tN = T of the time
interval I with step sizes hn = tn+1 − tn for n = 0, 1, . . . , N − 1 be given. Now, we
consider the general class of s-stage SRK methods given by Y0 = x0 and

Yn+1 = Yn +
m∑
l=0

M∑
ν=0

(
z(l,ν)� ⊗ Id

)
gl

(
H(l,ν)

)
(1.3a)

for n = 0, 1, . . . , N − 1 with Yn = Y (tn), tn ∈ Ih, Id ∈ R
d,d the identity matrix, and

H(l,ν) = �s ⊗ Yn +
m∑
r=0

M∑
μ=0

(
Z(l,ν)(r,μ) ⊗ Id

)
gr

(
H(r,μ)

)
(1.3b)
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for l = 0, . . . ,m and ν = 0, . . . ,M with �s = (1, . . . , 1)� ∈ R
s,

gl

(
H(l,ν)

)
=
(
gl

(
H

(l,ν)
1

)�
, . . . , gl

(
H(l,ν)
s

)�)�
and

z(l,ν) ∈ Ξs0, Z(l,ν)(r,μ) ∈ Ξs,s0

for l, r = 0, . . . ,m, μ, ν = 0, . . . ,M .
The formulation (1.3) is a slight generalization of the class considered in [27] and

includes the classes of SRK methods considered in [4, 11, 18, 20, 28, 29, 30] as well as
the SRK methods considered in [12, 16, 25]. It defines a d-dimensional approximation
process Y with Yn = Y (tn).

Application of an iterative scheme yields

H
(l,ν)
k+1 = �s ⊗ Yn +

m∑
r=0

M∑
μ=0

(
Z(l,ν)(r,μ) ⊗ Id

)
gr

(
H

(r,μ)
k

)

+
m∑
r=0

M∑
μ=0

(
Z(l,ν)(r,μ) ⊗ Id

)
J

(r,μ)
k

(
H

(r,μ)
k+1 −H(r,μ)

k

)
,(1.4a)

Yn+1,k = Yn +
m∑
l=0

M∑
ν=0

(
z(l,ν)� ⊗ Id

)
gl

(
H

(l,ν)
k

)
(1.4b)

with some approximation J (r,μ)
k to the Jacobian of gr(H

(r,μ)
k ) and a predictor H(l,ν)

0 .
In the following we assume that (1.4a) can be solved uniquely at least for small enough
hn. We consider simple iterations with J (r,μ)

k = 0 (i.e., predictor-corrector methods),
modified Newton iterations with J

(r,μ)
k = Is ⊗ g′r(x0), and full Newton iterations.

2. Some notation, definitions, and preliminary results. In this section
we introduce some necessary notation and provide a few definitions and preliminary
results that will be used later.

2.1. Convergence and consistency. Here we will give the definitions for both
weak and strong convergence and results which relate convergence to consistency.

Let ClP (Rd,Rd̂) denote the space of all g ∈ Cl(Rd,Rd̂) fulfilling a polynomial
growth condition [16].

Definition 1. A time discrete approximation Y = (Y (t))t∈Ih converges weakly
with order p to X as h → 0 at time t ∈ Ih if for each f ∈ C2(p+1)

P (Rd,R) there exist
a constant Cf and a finite δ0 > 0 such that

|E(f(Y (t)))− E(f(X(t)))| ≤ Cf hp

holds for each h ∈ ]0, δ0[ .
Now, let lef(h; t, x) be the weak local error of the method starting at the point

(t, x) with respect to the functional f and step size h, i.e.,

lef(h; t, x) = E
(
f(Y (t+ h))− f(X(t+ h))|Y (t) = X(t) = x

)
.

The following theorem due to Milstein [22], which holds also in the case of general
one-step methods, shows that, as in the deterministic case, consistency implies con-
vergence.
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Theorem 1. Suppose the following conditions hold:
• The coefficients gl are continuous, satisfy a Lipschitz condition, and belong

to C
2(p+1)
P (Rd,Rd) for l = 0, . . . ,m. For Stratonovich SDEs, we require in

addition that the gl are differentiable and that also the vectors g′lgl satisfy a
Lipschitz condition and belong to C2(p+1)

P (Rd,Rd) for l = 0, . . . ,m.
• For sufficiently large r (see, e.g., [22] for details) the moments E(‖Y (tn)‖2r)

exist for tn ∈ Ih and are uniformly bounded with respect to N and n =
0, 1, . . . , N .
• Assume that for all f ∈ C2(p+1)

P (Rd,R) there exists a K ∈ C0
P (Rd,R) such

that

|lef(h; t, x)| ≤ K(x)hp+1

is valid for x ∈ R
d and t, t+ h ∈ Ih, i.e., the approximation is weak consistent

of order p.
Then the method (1.3) is convergent of order p in the sense of weak approximation.

Whereas weak approximation methods are used to estimate the expectation of
functionals of the solution, strong approximation methods approach the solution path-
wise.

Definition 2. A time discrete approximation Y = (Y (t))t∈Ih converges strongly,
respectively, in the mean square with order p to X as h → 0 at time t ∈ Ih if there
exists a constant C and a finite δ0 > 0 such that

E ‖Y (t)−X(t)‖ ≤ C hp, respectively,
√

E(‖Y (t)−X(t)‖2) ≤ C hp

holds for each h ∈ ]0, δ0[ .
In this article we will consider convergence in the mean square sense. But as by

Jensen’s inequality we have

(E ‖Y (t)−X(t)‖)2 ≤ E(‖Y (t)−X(t)‖2),
mean square convergence implies strong convergence of the same order.

Now, let lem(h; t, x) and lems(h; t, x), respectively, be the mean and mean square
local error, respectively, of the method starting at the point (t, x) with respect to the
step size h; i.e.,

lem(h; t, x) = E
(
Y (t+ h)−X(t+ h)|Y (t) = X(t) = x

)
,

lems(h; t, x) =
√

E
(
(Y (t+ h)−X(t+ h))2|Y (t) = X(t) = x

)
.

The following theorem due to Milstein [22] which holds also in the case of general one
step methods shows that in the mean square convergence case we obtain order p if the
mean local error is consistent of order p and the mean square local error is consistent
of order p− 1

2 .
Theorem 2. Suppose the following conditions hold:
• The coefficients gl are continuous and satisfy a Lipschitz condition for l =

0, . . . ,m, and E(‖X(t0)‖2) < ∞. For Stratonovich SDEs, we require in ad-
dition that the gl are differentiable and that also the vectors g′lgl satisfy a
Lipschitz condition.
• There exists a constant K independent of h such that

‖lem(h; t, x)‖ ≤ K
√

1 + ‖x‖2 hp1 , lems(h; t, x) ≤ K
√

1 + ‖x‖2 hp+ 1
2
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with p ≥ 0, p1 ≥ p + 1 is valid for x ∈ R
d, and t, t + h ∈ Ih; i.e., the

approximation is consistent in the mean of order p1 − 1 ≥ p and in the mean
square of order p− 1

2 .
Then the SRK method (1.3) is convergent of order p in the sense of mean square
approximation.

For Stratonovich SDEs, this result is also obtained by Burrage and Burrage [2].

2.2. Stochastic B-series. In this section we will develop stochastic B-series for
the solution of (1.2) as well as for the numerical solution given by (1.3). B-series for
deterministic ODEs were introduced by Butcher [6]. Today such series appear as a
fundamental tool to do local error analysis on a wide range of problems. B-series for
SDEs have been developed by Burrage and Burrage [1, 2] to study strong convergence
in the Stratonovich case, by Komori, Mitsui, and Sugiura [20] and Komori [18] to
study weak convergence in the Stratonovich case, and by Rößler [26, 27] to study
weak convergence in both the Itô and the Stratonovich case. However, the distinction
between the Itô and the Stratonovich integrals depends only on the definition of
the integrals, not on how the B-series are constructed. Similarly, the distinction
between weak and strong convergence depends only on the definition of the local
error. Thus, we find it convenient to present a uniform and self-contained theory for
the construction of stochastic B-series. We will present results and proofs in a certain
detail, since some intermediate results will be used in later sections.

Following the idea of Burrage and Burrage, we introduce the set of colored, rooted
trees related to the SDE (1.1), as well as the elementary differentials associated with
each of these trees.

Definition 3 (trees). The set of m+ 1-colored, rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Tm
is recursively defined as follows:

(a) The graph •l = [∅]l with only one vertex of color l belongs to Tl.
Let τ = [τ1, τ2, . . . , τκ]l be the tree formed by joining the subtrees τ1, τ2, . . . , τκ each by
a single branch to a common root of color l.

(b) If τ1, τ2, . . . , τκ ∈ T , then τ = [τ1, τ2, . . . , τκ]l ∈ Tl.
Thus, Tl is the set of trees with an l-colored root, and T is the union of these sets.
Definition 4 (elementary differentials). For a tree τ ∈ T the elementary differ-

ential is a mapping F (τ) : R
d → R

d defined recursively by
(a) F (∅)(x0) = x0,
(b) F (•l)(x0) = gl(x0),
(c) If τ = [τ1, τ2, . . . , τκ]l ∈ Tl, then

F (τ)(x0) = g
(κ)
l (x0) (F (τ1)(x0), F (τ2)(x0), . . . , F (τκ)(x0)) .

As will be shown in the following, both the exact and the numerical solutions,
including the iterated solutions as we will see later, can formally be written in terms
of B-series.

Definition 5 (B-series). Given a mapping φ : T → Ξ satisfying

φ(∅)(h) ≡ 1 and φ(τ)(0) ≡ 0, ∀τ ∈ T \{∅}.
A (stochastic) B-series is then a formal series of the form

B(φ, x0;h) =
∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0),
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where α : T → Q is given by

α(∅) = 1, α(•l) = 1, α(τ = [τ1, . . . , τκ]l) =
1

r1!r2! · · · rq !
κ∏
j=1

α(τj),

where r1, r2, . . . , rq count equal trees among τ1, τ2, . . . , τκ.
If φ : T → Ξs, then B(φ, x0;h) = [B(φ1, x0;h), . . . , B(φs, x0;h)]�.
The next lemma proves that if Y (h) can be written as a B-series, then f(Y (h))

can be written as a similar series, where the sum is taken over trees with a root of
color f and subtrees in T . The lemma is fundamental for deriving B-series for the
exact and the numerical solution. It will also be used for deriving weak convergence
results.

Lemma 3. If Y (h) = B(φ, x0;h) is some B-series and f ∈ C∞(Rd,Rd̂), then
f(Y (h)) can be written as a formal series of the form

(2.1) f(Y (h)) =
∑
u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0),

where Uf is a set of trees derived from T , by
(a) [∅]f ∈ Uf , and if τ1, τ2, . . . , τκ ∈ T , then [τ1, τ2, . . . , τκ]f ∈ Uf .
(b) G([∅]f )(x0) = f(x0) and

G(u = [τ1, . . . , τκ]f )(x0) = f (κ)(x0)
(
F (τ1)(x0), . . . , F (τκ)(x0)

)
.

(c) β([∅]f ) = 1 and β(u = [τ1, . . . , τκ]f ) = 1
r1!r2!...rq!

∏κ
j=1 α(τj), where r1, r2, . . . ,

rq count equal trees among τ1, τ2, . . . , τκ.
(d) ψφ([∅]f )(h) ≡ 1 and ψφ(u = [τ1, . . . , τκ]f )(h) =

∏κ
j=1 φ(τj)(h).

Proof. Writing Y (h) as a B-series, we have

f(Y (h)) =f

(∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0)

)

=
∞∑
κ=0

1
κ!
f (κ)(x0)

⎛
⎝ ∑
τ∈T\{∅}

α(τ) · φ(τ)(h) · F (τ)(x0)

⎞
⎠
κ

=f(x0) +
∞∑
κ=1

1
κ!

∑
{τ1,τ2,...,τκ}∈T\{∅}

κ!
r1!r2! · · · rq!

·
⎛
⎝ κ∏
j=1

α(τj) · φ(τj)(h)

⎞
⎠ f (κ)(x0)

(
F (τ1)(x0), . . . , F (τκ)(x0)

)
,

where the last sum is taken over all possible unordered combinations of κ trees in T .
For each set of trees τ1, τ2, . . . , τκ ∈ T we assign a u = [τ1, τ2, . . . , τκ]f ∈ Uf . The
theorem is now proved by comparing term by term with (2.1).

Remark 1. For example, in the definition of weak convergence, just f ∈ C2(p+1)
P

(Rd,R) is required. Thus f(Y (h)) can be written only as a truncated B-series, with
a remainder term. However, to simplify the presentation in the following we assume
that all derivatives of f, g0, . . . , gl exist.

We will also need the following result.
Lemma 4. If Y (h) = B(φY , x0;h) and Z(h) = B(φZ , x0;h) and f ∈ C∞(Rd,Rd̂),

then

f ′(Y (h))Z(h) =
∑
u∈Uf

β(u) ·Υ(u)(h) ·G(u)(x0)
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with

Υ([∅]f )(h) ≡ 0, Υ([u = [τ1, . . . , τκ]f )(h) =
κ∑
i=1

⎛
⎜⎝ κ∏

j=1
j �=i

φY (τj)(h)

⎞
⎟⎠φZ(τi)(h)

with β(u) and G(u)(x0) given by Lemma 3. The proof is similar to the deterministic
case (see [24]).

When Lemma 3 is applied to the functions gl on the right-hand side of (1.2) we
get the following result: If Y (h) = B(φ, x0;h), then

(2.2) gl(Y (h)) =
∑
τ∈Tl

α(τ) · φ′l(τ)(h) · F (τ)(x0)

in which

φ′l(τ)(h) =

⎧⎪⎨
⎪⎩

1 if τ = •l,
κ∏
j=1

φ(τj)(h) if τ = [τ1, . . . , τκ]l ∈ Tl.

Theorem 5. The solution X(t0 + h) of (1.2) can be written as a B-series
B(ϕ, x0;h) with

ϕ(∅)(h) ≡ 1, ϕ(•l)(h) = Wl(h), ϕ(τ = [τ1, . . . , τκ]l)(h) =
∫ h

0

κ∏
j=1

ϕ(τj)(s) � dWl(s).

Proof. Write the exact solution as some B-series X(t0 + h) = B(ϕ, x0;h). By
(2.2) the SDE (1.2) can be written as

∑
τ∈T

α(τ) · ϕ(τ)(h) · F (τ)(x0) = x0 +
m∑
l=0

∑
τ∈Tl

α(τ) ·
∫ h

0

ϕ′l(τ)(s) � dWl(s) · F (τ)(x0).

Comparing term by term we get

ϕ(∅)(h) ≡ 1, and ϕ(τ)(h) =
∫ h

0

ϕ′(τ)(s) � dWl(s) for τ ∈ Tl, l = 0, 1, . . . ,m.

The proof is completed by induction on τ .
The same result is given for the Stratonovich case in [2, 18], but it clearly also

applies to the Itô case.
The definition of the order of the tree, ρ(τ), is motivated by the fact that

EWl(h)2 = h for l ≥ 1 and W0(h) = h.
Definition 6 (order). The order of a tree τ ∈ T is defined by

ρ(∅) = 0, ρ([τ1, . . . , τκ]f ) =
κ∑
i=1

ρ(τi)

and

ρ(τ = [τ1, . . . , τκ]l) =
κ∑
i=1

ρ(τi) +

{
1 for l = 0,
1
2 otherwise.
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Table 2.1

Examples of trees and corresponding functions ρ(τ), α(τ), and ϕ(τ). The integrals ϕ(τ) are
also expressed in terms of multiple integrals J(... ) for the Stratonovich (S) and I(... ) for the Itô
(I) cases; see [16] for their definition. In bracket notation, the trees will be written as •l, [[•2]0]1,
[•1, •1]0, and [•1, [•2, •2]1]0, respectively.

τ ρ(τ) α(τ) ϕ(τ)(h)

{
1 if l = 0
1
2

if l �= 0
1 Wl(h) =

⎧⎪⎨
⎪⎩
h if l = 0

J(l) (S)

I(l) (I)

2 1
∫ h
0

∫ s1
0
W2(s2) � ds2 � dW1(s1) =

{
J(2,0,1) (S)

I(2,0,1) (I)

2 1
2

∫ h
0 W1(s)2 � ds =

{
2J(1,1,0) (S)

2I(1,1,0) + I(0,0) (I)

3 1
2

∫ h
0 W1(s1)

(∫ s1
0 W2(s2)2 � dW1(s2)

)
� ds1

=

⎧⎪⎪⎨
⎪⎪⎩

4J(2,2,1,1,0) + 2J(2,1,2,1,0) + 2J(1,2,2,1,0) (S)

4I(2,2,1,1,0) + 2I(2,1,2,1,0) + 2I(1,2,2,1,0)

+ 2I(0,1,1,0) + 2I(2,2,0,0) + I(1,0,1,0) + I(0,0,0) (I)

In Table 2.1 some trees and the corresponding values for the functions ρ, α, and ϕ
are presented.

The following result is similar to results given in [1].
Theorem 6. If the coefficients Z(l,ν),(r,μ) ∈ Ξs,s0 and z(l,ν) ∈ Ξs0, then the nu-

merical solution Y1 as well as the stage values can be written in terms of B-series

H(l,ν) = B
(
Φ(l,ν), x0;h

)
, Y1 = B(Φ, x0;h)

for all l, ν, with

Φ(l,ν)(∅)(h) ≡ �s, Φ(l,ν)(•r)(h) =
M∑
μ=0

Z(l,ν)(r,μ)
�s,(2.3a)

Φ(l,ν)(τ = [τ1, . . . , τκ]r)(h) =
M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)(τj)(h)(2.3b)

and

Φ(∅)(h) ≡ 1, Φ(•l)(h) =
M∑
ν=0

z(l,ν)
�s,(2.4a)

Φ(τ = [τ1, . . . , τκ]l)(h) =
M∑
ν=0

z(l,ν)
κ∏
j=1

Φ(l,ν)(τj)(h).(2.4b)

Proof. Write H(l,ν) as a B-series, that is

H(l,ν) =
∑
τ∈T

α(τ)
(
Φ(l,ν)(h)⊗ Id

)
(�s ⊗ F (τ)(x0)) .
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Use the definition of the method (1.3) together with (2.2) to obtain

H(l,ν) = �s ⊗ x0 +
m∑
r=0

M∑
μ=0

∑
τ∈Tr

α(τ)

((
Z(l,ν)(r,μ) ·

(
Φ(r,μ)

)′
r
(τ)(h)

)
⊗ Id
)

(�s ⊗ F (τ)(x0))

with (Φ(r,μ))′r(τ)(h) = ((Φ(r,μ)
1 )′r(τ)(h), . . . , (Φ(r,μ)

s )′r(τ)(h))�. Comparing term-by-
term gives the relations (2.3). The proof of (2.4) is similar.

To decide the weak order we will also need the B-series of the function f , evaluated
at the exact and the numerical solution. From Theorem 5, Theorem 6, and Lemma 3
we obtain

f(X(t0 + h)) =
∑
u∈Uf

β(u) · ψϕ(u)(h) ·G(u)(x0),

f(Y1) =
∑
u∈Uf

β(u) · ψΦ(u)(h) ·G(u)(x0),

with

ψϕ([∅]f )(h) ≡ 1, ψϕ(u = [τ1, . . . , τκ]f )(h) =
κ∏
j=1

ϕ(τj)(h)

and

ψΦ([∅]f )(h) ≡ 1, ψΦ(u = [τ1, . . . , τκ]f )(h) =
κ∏
j=1

Φ(τj)(h).

So, for the weak local error it follows

lef(h; t, x) =
∑
u∈Uf

β(u) · E [ψΦ(u)(h)− ψϕ(u)(h)] ·G(u)(x).

For the mean and mean square local error we obtain from Theorem 5 and Theorem 6,

lems(h; t, x) =

√√√√E

(∑
τ∈T

α(τ) · (Φ(τ)(h) − ϕ(τ)(h)) · F (τ)(x)

)2

,

lem(h; t, x) =
∑
τ∈T

α(τ) · E (Φ(τ)(h) − ϕ(τ)(h)
) · F (τ)(x).

With all the B-series in place, we can now present the order conditions for the weak
and strong convergence for both the Itô and the Stratonovich case.1 We have weak

1As usual we assume that method (1.3) is constructed such that Eψϕ(u)(h) = O(hρ(u)) ∀u ∈ Uf

and ϕ(τ)(h) = O(hρ(τ)) ∀τ ∈ T , respectively, where especially in the latter expression the O(·)-
notation refers to the L2(Ω)-norm and h → 0. These conditions are fulfilled if for i, j = 1, . . . , s,
k ∈ N = {0, 1, . . . } it holds that

(z
(l,ν)
i )2

k
=

{
O(h(2k)) l = 0

O(h(2k−1)) l > 0
, (Z

(l,ν)(r,μ)
ij )2

k
=

{
O(h(2k)) l = 0

O(h(2k−1)) l > 0
.
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consistency of order p if and only if

(2.5) EψΦ(u)(h) = Eψϕ(u)(h) +O(hp+1) ∀u ∈ Uf with ρ(u) ≤ p+
1
2
,

where ρ(u = [τ1, . . . , τκ]f ) =
∑κ

j=1 ρ(τj) ((2.5) slightly weakens conditions given in
[27]), and mean square global order p if [4]

Φ(τ)(h) = ϕ(τ)(h) +O
(
hp+

1
2

)
∀τ ∈ T with ρ(τ) ≤ p,(2.6)

E Φ(τ)(h) = Eϕ(τ)(h) +O (hp+1
) ∀τ ∈ T with ρ(τ) ≤ p+

1
2

(2.7)

and all elementary differentials F (τ) fulfill a linear growth condition. Instead of the
last requirement it is also enough to claim that there exists a constant C such that
‖g′j(y)‖ ≤ C ∀y ∈ R

m, j = 0, . . . ,M (which implies the global Lipschitz condition)
and all necessary partial derivatives exist [2].

3. B-series of the iterated solution and growth functions. In this section
we will discuss how the iterated solution defined in (1.4) can be written in terms of
B-series, that is,

H
(l,ν)
k = B

(
Φ(l,ν)
k , x0;h

)
and Y1,k = B(Φk, x0;h).

For notational convenience, in the following the h-dependency of the weight functions
will be suppressed, so Φ(τ)(h) will be written as Φ(τ). Further, all results are valid
for all l = 0, . . . ,m and ν = 0, . . . ,M .

Assume that the predictor can be written as a B-series,

H
(l,ν)
0 = B

(
Φ(l,ν)

0 , x0;h
)
,

satisfying Φ(l,ν)
0 (∅) = �s and Φ(l,ν)

0 (τ) = O(hρ(τ)) ∀τ ∈ T . The most common situation
is the use of the trivial predictor H(l,ν) = �s ⊗ x0, for which Φ(l,ν)

0 (∅) = �s and
Φ(l,ν)

0 (τ) = 0 otherwise.
The iteration schemes we discuss here differ only in the choice of J (r,μ)

k in (1.4).
For all schemes, the following lemma applies. The proof follows directly from
Lemma 3.

Lemma 7. If H(l,ν)
k = B(Φ(l,ν)

k , x0;h), then Y1,k = B(Φk, x0;h) with

Φk(∅) ≡ 1, Φk(•l) =
M∑
ν=0

z(l,ν)
�s, Φk(τ = [τ1, . . . , τκ]l) =

M∑
ν=0

z(l,ν)
κ∏
j=1

Φ(l,ν)
k (τj).

Further,

f(Y1,k) =
∑
u∈Uf

β(u) · ψΦk
(u) ·G(u)(x0)

with

ψΦk
([∅]f ) = 1, ψΦk

(u = [τ1, . . . , τκ]f ) =
κ∏
j=1

Φk(τj),

where β(u) and G(u)(x0) are given in Lemma 3.
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Fig. 3.1. Examples of trees and their growth functions for simple (h), modified Newton (r), and
full Newton (d) iterations.

We are now ready to study each of the iteration schemes. In each case, we will first
find the recurrence formula for Φ(l,ν)

k (τ). From this we define a growth function g(τ).
Definition 7 (growth function). A growth function g : T → N is a function

satisfying

(3.1)
Φ(l,ν)
k (τ) = Φ(l,ν)(τ), ∀τ ∈ T, g(τ) ≤ k
⇒ Φ(l,ν)

k+1 (τ) = Φ(l,ν)(τ), ∀τ ∈ T, g(τ) ≤ k + 1,

for all k ≥ 0.
This result should be sharp in the sense that in general there exists τ �= ∅ with

Φ(l,ν)
0 (τ) �= Φ(l,ν)(τ) and Φ(l,ν)

k (τ) �= Φ(l,ν)(τ) when k < g(τ). From Lemma 7 we also
have

(3.2)
Φk(τ) = Φ(τ) ∀τ = [τ1, . . . , τκ]l ∈ T, g′(τ) =

κ
max
j=1

g(τi) ≤ k,

ψΦk
(u) = ψΦ(τ) ∀u = [τ1, . . . , τκ]f ∈ Uf , g′(u) =

κ
max
j=1

g′(τi) ≤ k.

The growth functions give a precise description of the development of the iterations.
As we will see, the growth functions are exactly the same as in the deterministic case
(see [13, 14]). However, to get applicable results, we will at the end need the relation
between the growth functions and the order. Further, we will also take advantage of
the fact that EΦ(τ) = 0 and EψΦ(u) = 0 for some trees. These aspects are discussed
in the next sections. Examples of trees and the values of the growth functions for the
three iteration schemes are given in Figure 3.1.

The simple iteration. Simple iterations are described by (1.4a) with J (r,μ)
k = 0,

that is,

(3.3) H
(l,ν)
k+1 = �s ⊗ x0 +

m∑
r=0

M∑
μ=0

(
Z(l,ν)(r,μ) ⊗ Id

)
gr

(
H

(r,μ)
k

)
.

By (2.2) and Theorem 6 we easily get the next two results.
Lemma 8. If H(l,ν)

0 = B(Φ(l,ν)
0 , x0;h), then H

(l,ν)
k = B(Φ(l,ν)

k , x0;h), where

Φ(l,ν)
k+1 (∅) ≡ �s, Φ(l,ν)

k+1 (τ = [τ1, . . . , τκ]r) =
M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)
k (τj).

The corresponding growth function is given by

h(∅) = 0, h([τ1, . . . , τκ]l) = 1 +
κ

max
j=1

h(τj).

The function h(τ) is the height of τ , that is, the maximum number of nodes along
one branch. The functions h′(τ) and h′(u) are defined by (3.2), with g replaced by h.
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The modified Newton iteration. In this subsection, we consider the modified
Newton iteration (1.4a) with J

(r,μ)
k = Is ⊗ g′r(x0). The B-series for H(l,ν)

k and the
corresponding growth function can now be described by the following lemma.

Lemma 9. If H(l,ν)
0 = B(Φ(l,ν)

0 , x0;h), then H
(l,ν)
k = B(Φ(l,ν)

k , x0;h) with

(3.4)

Φ(l,ν)
k+1 (∅) ≡ �s,

Φ(l,ν)
k+1 (τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)
k (τj) if τ = [τ1, . . . , τκ]r ∈ T and κ ≥ 2,

M∑
μ=0

Z(l,ν)(r,μ)Φ(r,μ)
k+1 (τ1) if τ = [τ1]r ∈ T.

The corresponding growth function is given by

r(∅) = 0, r(•l) = 1, r(τ = [τ1, . . . , τκ]l) =

⎧⎨
⎩

r(τ1) if κ = 1,
1 +

κ
max
j=1

r(τj) if κ ≥ 2.

The function r(τ) is one plus the maximum number of ramifications along any
branch of the tree.

Proof. The iteration scheme (1.4a) can be rewritten in B-series notation as

(3.5)∑
τ∈T

α(τ) ·Φ(l,ν)
k+1 (τ) ⊗ F (τ)(x0) = �⊗x0

+
m∑
r=0

∑
τ∈Tr

α(τ) ·
(

M∑
μ=0

Z(l,ν)(r,μ)
(
Φ(r,μ)
k

)′
r
(τ)

)
⊗ F (τ)(x0)

+
m∑
r=0

∑
τ1∈Tr

α(τ1) ·
(

M∑
μ=0

Z(l,ν)(r,μ)
(
Φ(r,μ)
k+1 (τ1)− Φ(r,μ)

k (τ1)
))
⊗ (g′r(x0)F (τ1)(x0)),

where we have used (2.2). Clearly, Φ(l,ν)
k+1 (∅) ≡ �s for all k ≥ 0 and

Φ(l,ν)
k+1 (•r) =

M∑
μ=0

Z(l,ν)(r,μ)
�s,

proving the lemma for τ = •r = [∅]r. Next, let τ = [τ1]r, where τ1 �= ∅. Then
F (τ)(x0) = g′r(x0)F (τ1). Comparing equal terms on both sides of the equation, using
α(τ) = α(τ1), we get

Φ(l,ν)
k+1 (τ) =

M∑
μ=0

Z(l,ν)(r,μ)

((
Φ(r,μ)
k

)′
r
(τ) + Φ(r,μ)

k+1 (τ1)− Φ(r,μ)
k (τ1)

)
.

Since (Φ(r,μ)
k )′r(τ) = Φ(r,μ)

k (τ1) the lemma is proved for all τ = [τ1]r. For τ =
[τ1, . . . , τκ]r with κ ≥ 2 the last sum of (3.5) contributes nothing, thus

Φ(l,ν)
k+1 (τ) =

M∑
μ=0

Z(l,ν)(r,μ)
(
Φ(r,μ)
k

)′
r
(τ),

which concludes the proof of (3.4).
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The second statement of the lemma is obviously true for τ = ∅. Let τ be any tree
satisfying r(τ) ≤ k + 1. Then either τ = [τ1]l with r(τ1) ≤ k + 1 or τ = [τ1, . . . , τκ]l
with κ ≥ 2 and r(τi) ≤ k. In the latter case, we have by the hypothesis, by (3.4) and
Theorem 6, that

Φ(l,ν)
k+1 (τ) =

M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)(τj) = Φ(l,ν)(τ).

In the first case, it follows easily by induction on τ that Φ(l,ν)
k+1 (τ) = Φ(l,ν)(τ) since

Φ(l,ν)
k+1 (τ) =

∑M
μ=0 Z

(l,ν)(r,μ)Φ(r,μ)
k+1 (τ1).

The full Newton iteration. In this subsection, we consider the full Newton
iteration (1.4a) with

J
(r,μ)
k = g′r

(
H

(r,μ)
k

)
.

It follows that the B-series for H(l,ν)
k and the corresponding growth function satisfy.

Lemma 10. If H(l,ν)
0 = B(Φ(l,ν)

0 , x0;h), then H
(l,ν)
k = B(Φ(l,ν)

k , x0;h) with

(3.6)

Φ(l,ν)
k+1 (∅) ≡ �s,

Φ(l,ν)
k+1 (τ) =

M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)
k (τj)

+
M∑
μ=0

Z(l,ν)(r,μ)
κ∑
i=1

⎛
⎜⎝ κ∏

j=1
j �=i

Φ(r,μ)
k (τj)

⎞
⎟⎠(Φ(r,μ)

k+1 (τi)− Φ(r,μ)
k (τi)

)
,

where τ = [τ1, . . . , τκ]r and the rightmost
∏

is taken to be �s if κ = 1. The corre-
sponding growth function is given by

d(∅) = 0, d(•l) = 1,

d(τ = [τ1, . . . , τκ]l) =

{
maxκj=1 d(τj) if γ = 1,
maxκj=1 d(τj) + 1 if γ ≥ 2,

where γ is the number of subtrees in τ satisfying d(τi) = maxκj=1 d(τj).
The function d is called the doubling index of τ .
Proof. Using (2.2) and Lemma 4 the scheme (1.4a) can be written as∑

τ∈T
α(τ) ·Φ(l,ν)

k+1 (τ) ⊗ F (τ)(x0) = �⊗x0

+
m∑
r=0

∑
τ∈Tr

α(τ) ·
(

M∑
μ=0

Z(l,ν)(r,μ)
(
Φ(r,μ)
k

)′
r
(τ)

)
⊗ F (τ)(x0)(3.7)

+
m∑
r=0

∑
u∈Ugr

β(u) ·
(

M∑
μ=0

Z(l,ν)(r,μ)Υ(r,μ)
k (u)

)
⊗G(u)(x0),

where

Υ(r,μ)
k (u = [τ1, . . . , τκ]gr ) =

κ∑
i=1

⎛
⎜⎝ κ∏

j=1
j �=i

Φ(r,μ)
k (τj)

⎞
⎟⎠(Φ(r,μ)

k+1 (τi)− Φ(r,μ)
k (τi)

)
.
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From the definition of F (τ), G(u = [τ1, . . . , τκ]gr )(x0) = F (τ = [τ1, . . . , τκ]r)(x0).
The sum over all u ∈ Ugr can be replaced by the sum over all τ ∈ Tr, and the
result is proved. Next, we will prove that d(τ) satisfies the implication (3.1) given in
Definition 7. We will do so by induction on n(τ), the number of nodes in τ . Since
∅ is the only tree satisfying n(τ) = 0, and Φ(r,μ)

k+1 (∅) = Φ(r,μ)(∅) ≡ �s, the conclusion
of (3.1) is true for all τ ∈ T with n(τ) = 0. Let n̄ ≥ 1 and assume by the induction
hypothesis that the conclusion of (3.1) holds for any tree satisfying d(τ) ≤ k + 1 and
n(τ) < n̄. We will show that Φ(r,μ)

k+1 (τ̄ ) = Φ(r,μ)(τ̄ ) for all τ̄ satisfying d(τ̄ )≤k + 1 and
n(τ̄ ) ≤ n̄. Let τ̄ = [τ1, . . . , τκ]l where n(τj) < n̄ for j = 1, . . . , κ. Since d(τ̄ ) ≤ k + 1
there is at most one subtree τj satisfying d(τj) = k + 1, let us for simplicity assume
this to be the last one. Thus d(τj) ≤ k for j = 1, . . . , κ−1 and d(τκ) ≤ k + 1.
Consequently, Φ(r,μ)

k (τj) = Φ(r,μ)(τj), j = 1, . . . , κ − 1 by the hypothesis of (3.1),
and Φ(r,μ)

k+1 (τj) = Φ(r,μ)(τj), j = 1, . . . , κ by the induction hypothesis. By (3.6) and
Theorem 6,

Φ(l,ν)
k+1 (τ̄ ) =

M∑
μ=0

Z(l,ν)(r,μ)
κ∏
j=1

Φ(r,μ)
k (τj)

+
M∑
μ=0

κ∑
i=1

Z(l,ν)(r,μ)

⎛
⎜⎝ κ∏

j=1
j �=i

Φ(r,μ)
k (τj)

⎞
⎟⎠(Φ(r,μ)

k+1 (τi)− Φ(r,μ)
k (τi)

)

=
M∑
μ=0

Z(l,ν)(r,μ)

⎛
⎝κ−1∏
j=1

Φ(r,μ)
k (τj)

⎞
⎠Φ(r,μ)

k (τκ)

+
M∑
μ=0

Z(l,ν)(r,μ)

⎛
⎝κ−1∏
j=1

Φ(r,μ)(τj)

⎞
⎠(Φ(r,μ)(τκ)− Φ(r,μ)

k (τκ)
)

=Φ(l,ν)(τ̄ ),

completing the induction proof.

4. General convergence results for iterated methods. Now we will relate
the results of the previous section to the order of the overall scheme. In the following,
we assume that the predictors satisfy the conditions

(4.1)
Φ(l,ν)

0 (τ) = Φ(l,ν)(τ) ∀τ ∈ T with g(τ) ≤ G0,

Φ(l,ν)
0 (τ) ∈

{
Φ(l,ν)(τ), 0

}
∀τ ∈ T with g(τ) ≤ Ĝ0,

where G0 and Ĝ0 are chosen as large as possible. In particular, the trivial predictor
satisfies G0 = 0 while Ĝ0 =∞. We assume further that in analogy to (3.1) we have

(4.2)
Φ(l,ν)
k (τ) ∈

{
Φ(l,ν)(τ), 0

}
, ∀τ ∈ T, g(τ) ≤ k

⇒ Φ(l,ν)
k+1 (τ) ∈

{
Φ(l,ν)(τ), 0

}
, ∀τ ∈ T, g(τ) ≤ k + 1,

for all k ≥ 0. By Lemmas 8, 9, and 10 this is guaranteed for the iteration schemes
considered here.
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It follows from (3.1), (3.2), and (4.2) that

(4.3)
Φk(τ) = Φ(τ) ∀τ ∈ T with g′(τ) ≤ G0 + k,

Φk(τ) ∈ {Φ(τ), 0} ∀τ ∈ T with g′(τ) ≤ Ĝ0 + k

as well as

(4.4)
ψΦk

(u) = ψΦ(u) ∀u ∈ Uf with g′(u) ≤ G0 + k,

ψΦk
(τ) ∈ {ψΦ(u), 0} ∀u ∈ Uf with g′(u) ≤ Ĝ0 + k.

The next step is to establish the relation between the order and the growth
function of a tree. We have chosen to do so by some maximum height functions,
given by

(4.5)
GT (q) = max

τ∈T
{g′(τ) : ρ(τ) ≤ q} , GT,ϕ(q) = max

τ∈T
{g′(τ) : Eϕ(τ) �= 0, ρ(τ) ≤ q} ,

GUf
(q) = max

u∈Uf

{g′(u) : ρ(u) ≤ q} , GUf ,ψϕ(q) = max
u∈Uf

{g′(u) : Eψϕ(u) �= 0, ρ(u) ≤ q} .

Note that the definition relates to the weights of the exact, not the numerical, solution.
We are now ready to establish results on weak and strong convergence for the iterated
solution.

Weak convergence. Let p be the weak order of the underlying scheme. The
weak order of the iterated solution after k iterations is min(qk, p) if

EψΦk
(u) = EψΦ(u) ∀u ∈ Uf , ρ(u) ≤ qk +

1
2
.

If qk ≤ p we can take advantage of the fact that 0 = Eψϕ(u) = EψΦ(u) + O(hp+1)
for some u, and thereby relax the conditions to

(4.6)
ψΦk

(u) = ψΦ(u) ∀u ∈ Uf with Eψϕ(u) �= 0,
ψΦk

(u) ∈ {ψΦ(u), 0} ∀u ∈ Uf with Eψϕ(u) = 0.

By (4.4), this is fulfilled for all u of order ρ(u) ≤ min (qk, p) if

GUf ,Ψϕ

(
qk +

1
2

)
≤ G0 + k and GUf

(
qk +

1
2

)
≤ Ĝ0 + k.

The results can then be summarized in the following theorem.
Theorem 11. The iterated method is of weak order qk ≤ p after

max
{
GUf ,ψϕ

(
qk +

1
2

)
− G0,GUf

(
qk +

1
2

)
− Ĝ0

}

iterations.

Strong convergence. The strong convergence case can be treated similarly. Let
p now be the mean square order of the underlying method. The iterated solution is
of order min(p, qk) if

(4.7)

Φk(τ) = Φ(τ) ∀τ ∈ T with ρ(τ) ≤ qk,
Φk(τ) = Φ(τ) ∀τ ∈ T with ρ(τ) = qk +

1
2
, Eφ(τ) �= 0,

Φk(τ) ∈ {Φ(τ), 0} ∀τ ∈ T with ρ(τ) = qk +
1
2
, Eφ(τ) = 0.
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According to (4.3) these are satisfied if all the conditions

GT (qk) ≤ G0 + k, GT
(
qk +

1
2

)
≤ Ĝ0 + k, and GT,ϕ

(
qk +

1
2

)
≤ G0 + k

are satisfied. We can summarize this by the following theorem.
Theorem 12. The iterated method is of mean square order qk ≤ p after

max
{

max
{
GT (qk),GT,ϕ

(
qk +

1
2

)}
− G0,GT

(
qk +

1
2

)
− Ĝ0

}
iterations.

5. Growth functions and order. In this section we will discuss the relation
between the order of trees and the growth functions defined in section 3. Let us start
with the following lemma.

Lemma 13. For k ≥ 1,

h′(τ) = k ⇒ ρ(τ) ≥ k

2
+

1
2
,

r′(τ) = k ⇒ ρ(τ) ≥ k,
d′(τ) = k ⇒ ρ(τ) ≥ 2k−1.

The same result is valid for h′(u), r′(u), and g′(u).
Proof. Let Th,k, Tr,k, and Td,k be sets of trees of minimal order satisfying h(τ) = k

∀τ ∈ Th,k, r(τ) = k ∀τ ∈ Tr,k, and d(τ) = k ∀τ ∈ Td,k (see Figure 5.1), and denote
this minimal order by ρh,k, ρr,k and ρd,k. Minimal order trees are built up only by
stochastic nodes. It follows immediately that Th,1 = Tr,1 = Td,1 = {•l : l ≥ 1}. Since
ρ(•l) = 1/2 for l ≥ 1, the results are proved for k = 1. It is easy to show by induction
on k that

(5.1)

Th,k = {[τ ]l : τ ∈ Th,k−1, l ≥ 1}, ρh,k = ρh,k−1 +
1
2

=
k

2
,

Tr,k = {[•l1 , τ ]l2 : τ ∈ Tr,k−1, l1, l2 ≥ 1}, ρr,k = ρr,k−1 + 1 = k − 1
2
,

Td,k = {[τ1, τ2]l : τ1, τ2 ∈ Td,k−1, l ≥ 1}, ρd,k = 2ρd,k−1 +
1
2

= 2k−1 − 1
2
.

For each g being either h, r, or d, the minimal order trees satisfying g′(τ ′g,k) = k,
g′(ug,k) = k are τ ′g,k = [τg,k]l with τg,k ∈ Tg,k and l ≥ 1, and ug,k = [τ ′g,k]f . Both are
of order ρ(τg,k) + 1/2.

Let GT (q) and GUf
(q) be defined by (4.5). Then the following corollary holds.

Corollary 14. For q ≥ 1
2 we have

GT (q) = GUf
(q) =

⎧⎪⎨
⎪⎩

2q − 1 for simple iterations,
�q� for modified Newton iterations,
�log2(q)�+ 1 for full Newton iterations.

Fig. 5.1. Minimal order trees with g(τ) = 3. The sets Tg,3 consist of all such trees with only
stochastic nodes.
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Proof. The minimal order trees are also the maximum height/ramification num-
ber/doubling index trees, in the sense that as long as ρ(τ ′g,k) ≤ q < ρ(τ ′g,k+1) there
are no trees of order q for which the growth function can exceed k.

Let T S ⊂ T and USf ⊂ Uf be the set of trees with an even number of each kind
of stochastic nodes. Further, let T I ⊂ T0 and U If ⊂ Uf be the set of trees constructed
from the root (•0 or •f ), by a finite number of steps of the form:

(i) add one deterministic node, or
(ii) add two equal stochastic nodes, neither of them being a father of the other.

Clearly T I⊂T S and U If⊂USf . From [5, 26] we have

(5.2)

Eϕ(τ) = 0 if τ �∈
{
T S in the Stratonovich case,
T I in the Itô case,

Eψϕ(u) = 0 if u �∈
{
USf in the Stratonovich case,
U If in the Itô case.

Considering only trees for which Eϕ or Eψϕ are different from zero, we get the
following lemma.

Lemma 15. For k ≥ 1,

h′(τ) = k ⇒ ρ(τ) ≥
{

�k+1
2 � if τ ∈ T S,

k + 1 if τ ∈ T I ,

r′(τ) = k ⇒ ρ(τ) ≥
{
k if τ ∈ T S,
k + 1 if τ ∈ T I ,

d′(τ) = k ⇒ ρ(τ) ≥
{

2k−1 if τ ∈ T S ,
2k−1 + 1 if τ ∈ T I .

This result is also valid for h′(u), r′(u), and g′(u), with T · replaced by U ·f .
Proof. In the Stratonovich case, we consider only trees of integer order, which

immediately gives the results. In the Itô case, let τg,k, τ ′g,k be the minimal order
trees used in the proof of Lemma 13. Unfortunately τ ′g,k has a stochastic root, so
τ ′g,k �∈ T I , and there are no trees τ ∈ T I of order ρ(τg,k) + 1/2 satisfying g′(τ) = k.
When g is either r or d then the tree [τg, •l]0 ∈ T I if all the stochastic nodes are of
color l ≥ 1. The order of this tree is ρ(τg)+3/2, proving the result for r′(τ) and d′(τ).
Let τ̂ ′h,k ∈ T I be a tree of minimal order satisfying h′(τ̂ ′h,k) = k. Clearly, τ̂ ′h,1 can be
either [•0]0 or [•l, •l]0 with l ≥ 1, both of order 2. From the construction of trees in
T I it is clear that the height of the tree can be increased only by one for each order,
thus ρ(τ̂ ′h,k) = k + 1. The result for U If follows immediately.

Let GT,ϕ(q) and GUf ,ψϕ(q) be given by (4.5). Then the analogue of Corollary 14
is as follows.

Corollary 16. For q ≥ 1
2 we have in the Stratonovich case

GT,ϕ(q) = GUf ,ψϕ(q) =

⎧⎪⎨
⎪⎩

max{0, 2�q� − 1} for simple iterations,
�q� for modified Newton iterations,
�log2(q)�+ 1 for full Newton iterations,
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Table 5.1

Number of iterations needed to achieve order p when using the simple, modified, or full Newton
iteration scheme in the Itô or Stratonovich case for strong or weak approximation.

Stratonovich Itô

Strong/weak appr. Weak appr. Strong appr.
p simple mod. full simple mod. full simple mod. full
1
2

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 1 1 1

1 1
2

3 2 2 1 1 1 2 1 1

2 3 2 2 1 1 1 3 2 2

2 1
2

5 3 2 2 2 1 4 2 2

3 5 3 2 2 2 1 5 3 2

and in the Itô case

GT,ϕ(q) = GUf ,ψϕ(q) =

⎧⎪⎨
⎪⎩

max{0, �q� − 1} for simple iterations,
max{0, �q� − 1} for modified Newton iterations,
max{0, �log2(q)�} for full Newton iterations.

For the trivial predictor, Table 5.1 gives the number of iterations needed to achieve
a certain order of convergence. The results concerning the Stratonovich case when
considering strong approximation and using the simple iteration scheme where already
obtained by Burrage and Tian [3] analyzing predictor corrector methods.

6. Convergence results for composite methods. Composite methods have
been introduced by Tian and Burrage [31]. At each step either a semi-implicit Runge–
Kutta method or an implicit Runge–Kutta method is used in order to obtain better
stability properties, which results in the method

Yn+1 = Yn + λn

m∑
l=0

M∑
ν=0

(
z(1,l,ν)� ⊗ Id

)
gl

(
H(1,l,ν)

)

+ (1− λn)
m∑
l=0

M∑
ν=0

(
z(2,l,ν)� ⊗ Id

)
gl

(
H(2,l,ν)

)
(6.1a)

for n = 0, 1, . . . , N − 1, tn ∈ Ih, λn ∈ {0, 1} and

H(j,l,ν) = �s ⊗ Yn +
m∑
r=0

M∑
μ=0

(
Z(j,l,ν)(r,μ) ⊗ Id

)
gr

(
H(j,r,μ)

)
, j = 1, 2.(6.1b)

Here, the method coefficients with superscripts 1 are those of the implicit SRK and
the method coefficients with superscripts 2 are those of the semi-implicit SRK. Let
Φ(1), Φ(2) be the corresponding weight-functions and Φ(1)

k , Φ(2)
k be the corresponding

weight-functions of the iterated methods. Then the weight-function Φ of the composite
method is given by Φ = λ1Φ(1) + (1− λ1)Φ(2), and similarly we have for the iterated
method Φk = λ1Φ

(1)
k + (1− λ1)Φ

(2)
k . It follows that the convergence conditions (4.6)

and (4.7), respectively, are satisfied if and only if they are satisfied as well for the
underlying implicit SRK as for the semi-implicit SRK. Thus, an iterated composite
method has the same order as the original composite method, if in each step the
number of iterations is chosen according to Theorem 11 and Theorem 12, respectively.
For the trivial predictor, the number of iterations needed to achieve a certain order
of convergence is again given by Table 5.1.
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Fig. 7.1. Error of IPS applied to (7.1) without iteration, with one or two simple iterations,
and with one modified Newton iteration (the last two results nearly coincide).

7. Numerical examples. In the following, we analyze numerically the order
of convergence of three SRK methods in dependence on the kind and number of
iterations. In each example, the solution is approximated with step sizes 2−8, . . . , 2−12

and the sample average of M = 20,000 independent simulated realizations of the
absolute error is calculated in order to estimate the expectation.

As a first example, we apply the drift implicit strong order 1.5 scheme due to
Kloeden and Platen [16], implemented as a stiffly accurate SRK scheme with six
stages and denoted by IPS; i.e., for one-dimensional Wiener processes

Yn+1 = Yn +
1∑
l=0

(
z(l)� ⊗ Id

)
gl(H), H = �6 ⊗ Yn +

1∑
l=0

(
Z(l) ⊗ Id

)
gl(H),

Z(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
h 0 0 0 0 0
h 0 0 0 0 0
h 0 0 0 0 0
h 0 0 0 0 0
h
2 a −a 0 0 h

2

⎞
⎟⎟⎟⎟⎟⎟⎠
, Z(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0√
h 0 0 0 0 0

−√h 0 0 0 0 0√
h

√
h 0 0 0 0√

h −√h 0 0 0 0
I(1) b + c b− c d −d 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

z(0) =
(
h

2
, a,−a, 0, 0, h

2

)�
, z(1) =

(
I(1), b+ c, b− c, d,−d, 0)� ,

a =
I(1,0) − 1

2I(1)h

2
√
h

, b =
I(0,1)

2h
, c =

I(1,1)

2
√
h
− d, d =

I(1,1,1)

2h
,

to the nonlinear SDE [16, 21]

(7.1) dX(t) =
(

1
2X(t) +

√
X(t)2 + 1

)
dt+
√
X(t)2 + 1 dW (t), X(0) = 0,

on the time interval I = [0, 1] with the solution X(t) = sinh(t+W (t)).
The results at time t = 1 are presented in Figure 7.1, where the orders of conver-

gence correspond to the slope of the regression lines. As predicted by Table 5.1 we
observe strong order 0.5 without iteration, strong order 1.0 for one simple iteration,
and strong order 1.5 for two simple or one modified Newton iteration.
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As second example, we apply the diagonal implicit strong order 1.5 method
DIRK4 which for one-dimensional Wiener processes is given by

Yn+1 = Yn +
1∑
l=0

(
z(l)� ⊗ Id

)
gl(H), H = �3 ⊗ Yn +

1∑
l=0

(
Z(l) ⊗ Id

)
gl(H)

with coefficients2

z0 = hα, z1 = J(1)γ
(1) +

J(1,0)

h
γ(2),

Z(0) = hA, Z(1) = J(1)B
(1) +

J(1,0)

h
B(2) +

√
hB(3),

α� = (0.169775184, 0.297820839, 0.042159965, 0.490244012),

γ(1)� = (−1.008751744, 0.285118644, 0.760818846, 0.962814254),

γ(2)� = (1.507774621, 1.085932735,−1.458091242,−1.135616114),

A =

⎛
⎜⎜⎝

0.240968725 0 0 0
0.167810317 0.160243373 0 0
−0.002766912 0.473332751 0.178081733 0
0.415057712 0.115126049 0.020652745 0.130541130

⎞
⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎝

0 0 0 0
−0.476890860 0 0 0
0.514160282 0.012424879 0 0
−0.879966702 0.412866280 0.711524058 0

⎞
⎟⎟⎠ ,

B2 =

⎛
⎜⎜⎝

0 0 0 0
1.287951512 0 0 0
0.665416412 −0.686930244 0 0
0.703868780 0.876627859 −0.321270197 0

⎞
⎟⎟⎠ ,

B3 =

⎛
⎜⎜⎝

0 0 0 0
0.568300129 −0.568300129 0 0
1.614193125 −0.618659748 −0.995533377 0
0.660721631 −0.714401673 −0.896487337 0.950167380

⎞
⎟⎟⎠

to the corresponding Stratonovich version of (7.1). This method is constructed such
that the regularity of the linear system which has to be solved in each modified Newton
iteration step does not depend directly on J(1) and J(1,0).

The results at time t = 1 are presented in Figure 7.2. As predicted by Table 5.1
we observe no convergence without iteration, strong order 1.0 for one or two simple
iterations or one modified Newton iteration, and strong order 1.5 in the case of three
simple iterations or two modified Newton iterations.

2For typographical reasons, we restrict ourselves to an accuracy of 5 · 10−10. A 16-digits version
of the coefficients can be obtained on request from the authors.
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Fig. 7.2. Error of DIRK4 applied to the Stratonovich version of (7.1) without iteration, with
one, two, or three simple iterations, and with one or two modified Newton iterations (the results for
three simple iterations and two modified Newton iterations nearly coincide).

Finally, we apply the drift implicit strong order 1.0 scheme due to Kloeden and
Platen [16], implemented as a stiffly accurate SRK scheme in the form

Yn+1 = Yn +
m∑
l=0

m∑
ν=0

(
z(l,ν)� ⊗ Id

)
gl

(
H(ν)
)
,

H(ν) = �2 ⊗ Yn +
m∑
l=0

m∑
μ=0

(
Z(ν)(l,μ) ⊗ Id

)
gl

(
H(μ)
)
, ν = 0, . . . ,m,

Z(0)(0,0) =
(

0 0
h
2

h
2

)
, Z(0)(0,μ) =

(
0 0
0 0

)
, Z(0)(l,0) =

(
0 0
I(l) 0

)
,

Z(0)(l,μ) =

(
0 0

− I(μ,l)√
h

I(μ,l)√
h

)
, Z(j)(0,0) =

(
0 0
h 0

)
, Z(j)(l,l) =

(
0 0√
h 0

)
,

Z(j)(l,μ) =
(

0 0
0 0

)
for l �= μ, z(0,0) =

(
h
2 ,

h
2

)�
, z(0,μ) =

(
0, 0
)�
,

z(l,0) =
(
I(l), 0

)�
, z(l,μ) =

(
− I(μ,l)√

h
,
I(μ,l)√
h

)�
, j, l, μ = 1, . . . ,m,

and denoted by IPS10 to the following nonlinear problem of dimension two driven by
two Wiener processes in which there is no commutativity between the driving terms,

dX1(t) =
(

1
2X1(t) +

√
X1(t)2 +X2(t)2 + 1

)
dt+
√
X2(t)2 + 1 dW1(t)

+ cosX1(t) dW2(t),(7.2a)

dX2(t) =
(

1
2X1(t) +

√
X2(t)2 + 1

)
dt+
√
X1(t)2 + 1 dW1(t) + sinX2(t) dW2(t),

(7.2b)

X(0) =0.
(7.2c)

As here we don’t know the exact solution, to approximate it we use IPS10 with two
modified Newton iterations and a step size ten times smaller than the actual step size.
The multiple Itô integrals are approximated as described in [16]. The results at time
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Fig. 7.3. Error of IPS10 applied to (7.2) without iteration, with one simple iteration and with
one modified Newton iteration (the last two results nearly coincide).

t = 1 are presented in Figure 7.3. As predicted by Table 5.1 we observe strong order
0.5 without iteration and strong order 1.0 for one simple iteration or one modified
Newton iteration.

8. Conclusion. For stochastic Runge–Kutta methods that use an iterative
scheme to compute their internal stage values, we derived convergence results based on
the order of the underlying Runge–Kutta method, the choice of the iteration method,
the predictor, and the number of iterations. This was done by developing a unify-
ing approach for the construction of stochastic B-series, which is valid both for Itô-
and Stratonovich-SDEs and can be used both for weak and strong convergence. We
expect this to be useful also for the further development and analysis of stochastic
Runge–Kutta type methods.
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[9] K. Debrabant and A. Rößler, Classification of stochastic Runge–Kutta methods for the weak
approximation of stochastic differential equations, Math. Comput. Simulation, 77 (2008),
pp. 408–420.



CONVERGENCE OF ITERATED SRK METHODS 203

[10] T. C. Gard, Introduction to stochastic differential equations, Monographs and Textbooks in
Pure Appl. Math. 114, Marcel Dekker Inc., New York, 1988.

[11] D. B. Hernández and R. Spigler, Convergence and stability of implicit Runge–Kutta methods
for systems with multiplicative noise, BIT, 33 (1993), pp. 654–669.

[12] D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM J.
Numer. Anal., 38 (2000), pp. 753–769.

[13] K. R. Jackson, A. Kværnø, and S. P. Nørsett, The use of Butcher series in the analy-
sis of Newton-like iterations in Runge–Kutta formulas, Appl. Numer. Math., 15 (1994),
pp. 341–356. International Conference on Scientific Computation and Differential Equa-
tions (Auckland, 1993).

[14] K. R. Jackson, A. Kværnø, and S. P. Nørsett, An analysis of the order of Runge–Kutta
methods that use an iterative scheme to compute their internal stage values, BIT, 36 (1996),
pp. 713–765.

[15] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in
Mathematics 113, 2nd ed., Springer-Verlag, New York, 1991.

[16] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Appli-
cations of Mathematics 21, 2nd ed., Springer-Verlag, Berlin, 1999.

[17] Y. Komori, Weak first- or second-order implicit Runge–Kutta methods for stochastic dif-
ferential equations with a scalar Wiener process, J. Comput. Appl. Math., 217 (2008),
pp. 166–179.

[18] Y. Komori, Multi-colored rooted tree analysis of the weak order conditions of a stochastic
Runge–Kutta family, Appl. Numer. Math., 57 (2007), pp. 147–165.

[19] Y. Komori, Weak second-order stochastic Runge–Kutta methods for non-commutative stochas-
tic differential equations, J. Comput. Appl. Math., 206 (2007), pp. 158–173.

[20] Y. Komori, T. Mitsui, and H. Sugiura, Rooted tree analysis of the order conditions of ROW-
type scheme for stochastic differential equations, BIT, 37 (1997), pp. 43–66.
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stochastic differential equations, SIAM J. Numer. Anal., 35 (1998), pp. 1439–1451.
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[27] A. Rößler, Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for
the weak approximation of stochastic differential equations, Stoch. Anal. Appl., 24 (2006),
pp. 97–134.
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FINITE ELEMENT METHOD FOR THE SPACE AND TIME
FRACTIONAL FOKKER–PLANCK EQUATION∗

WEIHUA DENG†

Abstract. We develop the finite element method for the numerical resolution of the space and
time fractional Fokker–Planck equation, which is an effective tool for describing a process with both
traps and flights; the time fractional derivative of the equation is used to characterize the traps,
and the flights are depicted by the space fractional derivative. The stability and error estimates are
rigorously established, and we prove that the convergent order is O(k2−α +hμ), where k is the time
step size and h the space step size. Numerical computations are presented which demonstrate the
effectiveness of the method and confirm the theoretical claims.
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1. Introduction. The use of fractional calculus to deal with engineering and
physical problems has become increasingly popular in recent years [2, 7, 21, 33, 36].
The fractional approach has become a powerful modeling methodology; it is widely ap-
plied in material and mechanics, signal processing and systems identification, anoma-
lous diffusion, control and robotics, wave propagation, turbulence, seepage in frac-
tal media, friction modeling, etc. [2]. At the same time, more and more fractional
dynamical appearances are disclosed, for instance, viscoelasticity [22], colored noise
[31], boundary layer effects in ducts [39], eletromagnetic waves [17], fractional kinet-
ics [23, 41], electrode-electrolyte polarization [19], synchronization of chaos [10], and
multidirectional multiscroll attractors [9]. When the fractional differential equations
describe the asymptotic behavior of continuous time random walks, their solutions
correspond to the Lévy walks. The advantage of the fractional model basically lies in
the straightforward way of including external force terms and of calculating boundary
value problems. The complexity of these equations comes from involving pseudod-
ifferential operators that are nonlocal and have the character of history dependence
and universal mutuality.

Anomalous diffusion is one of the most ubiquitous phenomena in nature, being
observed in various fields of physics, for instance, transport of fluid in porous media,
surface growth, diffusion of plasma, diffusion at liquid surfaces, and two-dimensional
rotating flow [5, 16, 25, 38]. The processes of anomalous diffusion are various, includ-
ing processes with infinite mean-square displacement and processes with distributed
orders of fraction leading to the mean-square displacement for power laws with a
time-dependent exponent; at the same time the most often arisen anomalous diffu-
sion has the power law form 〈x2(t)〉−〈x(t)〉2 ∼ kαtγ of the mean-square displacement,
deviating from the well-known property 〈x2(t)〉 − 〈x(t)〉2 ∼ kαt of Brownian motion.
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For Lévy flights, γ is larger than one (but typically smaller than two), which is called
superdiffusion; γ = 2 corresponds to “ballistic” motion, for example, the particles of a
bomb which is exploding, and it is called subdiffusion if γ is less than one, which in gen-
eral corresponds to the divergence of microscopic time scales in random walk schemes,
i.e., traps [5, 25, 34, 35, 38, 41]. A prominent characteristic feature of Lévy flights and
traps is the probability distribution functions both on the step length for Lévy flights
and on the waiting time between steps for traps that have a powerlike tail. There is no
characteristic length or time scale in the case of flights or traps. Combining flights with
traps is a more general way to describe an anomalous process. When a process has
both flights and traps, then γ depends on the competition between flights and traps;
that is, the process can be subdiffusion, superdiffusion, or normal diffusion (Brownian
motion). Fractional derivatives play a key role in characterizing anomalous diffusion,
including the space fractional Fokker–Planck (advection-dispersion) equation describ-
ing Lévy flights, the time fractional Fokker–Planck equation depicting traps, and
the space and time fractional Fokker–Planck equation characterizing the competition
between Lévy flights and traps [3, 4, 16, 18, 20, 23, 25, 28, 32, 34, 35, 38, 41].

The Fokker–Planck equation (named after Adriaan Fokker and Max Planck) de-
scribes the time evolution of the probability density function of the position and the
velocity of a particle, which is one of the classical, widely used equations of statisti-
cal physics. For the numerical algorithms of the time fractional Fokker–Planck-type
equation and the space fractional Fokker–Planck-type equation, there is already some
progress covering the finite difference method, the finite element method, and some
random approaches [11, 12, 13, 15, 18, 27, 28, 32, 40]. However, published papers on
the numerical algorithm of the space and time fractional Fokker–Planck equation are
very sparse. Using the Monte Carlo approach for this equation, Magdziarz and Weron
[30] positively answer a question raised by Metzler and Klafter [34]: Can one see a
competition between subdiffusion and Lévy flights in the framework of the fractional
Fokker–Planck dynamics? Herein, we focus on developing the finite element method
for the space and time fractional Fokker–Planck equation [30, 34, 35, 41], describing
the competition between Lévy flights and traps under the influence of an external
potential U(x), given by

∂

∂t
p(x, t) = 0D

1−α
t

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p(x, t),(1.1)

where p(x, t) is the probability density, prime stands for the derivative w.r.t. the space
coordinate, κα denotes the anomalous diffusion coefficient with physical dimension
[mμ s−α], ηα represents the generalized friction coefficient possessing the dimension
[kg sα−2], α ∈ (0, 1), and μ ∈ (1, 2) throughout this paper. Here, the operators

0D
1−α
t p(x, t) =

1
Γ(α)

∂

∂t

∫ t

0

(t− τ)α−1p(x, τ)dτ

and ∇μ = 1
2aD

μ
x + 1

2xD
μ
b ; aD

μ
x and xD

μ
b are the left and right Riemann–Liouville

space fractional derivatives of order μ, respectively, described by

aD
μ
xp(x, t) = D2

aD
−(2−μ)
x p(x, t) =

1
Γ(2− μ)

d2

dx2

∫ x

a

(x− ξ)1−μp(ξ, t)dξ

and

xD
μ
b p(x, t) = (−D)2xD

−(2−μ)
b p(x, t) =

1
Γ(2− μ)

d2

dx2

∫ b

x

(ξ − x)1−μp(ξ, t)dξ.
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Letting 0D
α−1
t perform on both sides of (1.1) and according to the attributes of

the Riemann–Liouville and the Caputo derivatives [11], we obtain the equivalent form
of (1.1) as

Dα
∗ p(x, t) =

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p(x, t),(1.2)

where Dα
∗ is the Caputo derivative and it is defined by

Dα
∗ p(x, t) =

1
Γ(1− α)

∫ t

0

(t− τ)−α ∂p(x, τ)
∂τ

dτ.

There are several ways to discrete the time fractional derivative and speed its compu-
tation [8, 27, 29, 36]. Here we use the one provided by Lin and Xu in [27] to discrete
the left-hand side time Caputo derivative and exploit the finite element method to
approximate the right-hand side space fractional derivative. This approach based on
the temporal backward differentiation and the spatial finite element method obtains
estimates of (2−α)-order convergence in time and μ-order convergence in space. The
time-stepping scheme is shown to be unconditionally stable. The numerical example
is provided, and the real physical cases are simulated, which illustrate the effectiveness
of the method and support the theoretical claims.

In section 2, we introduce the temporal discretization of (1.2) and the abstract
setting, fractional derivative spaces, for the analysis of the finite element approxima-
tion of the space and time fractional Fokker–Planck equation. Section 3 is devoted to
the stability analysis of the time-stepping scheme and the detailed error analysis of
semidiscretization on time and of full discretization. In section 4, numerical experi-
ments are carried out, and some of their results are compared with the exact solution.
Some concluding remarks are given in the last section.

2. Preliminaries: Discretization of the Caputo derivative and the frac-
tional derivative spaces. For the completeness of the paper, in this section we
introduce the scheme to discretize the temporal Caputo derivative and the fractional
derivative spaces; for more detailed discussions see [27] and [12, 13], respectively.

For the finite difference of the Caputo derivative, let tm := mk, m = 0, 1, . . . ,M ,
where k := T

M is the time-step length, so we have the following formulation of the
Caputo derivative [27]:

Dα
∗ p(x, tm+1) =

1
Γ(1− α)

m∑
j=0

∫ tj+1

tj

(tm+1 − τ)−α ∂p(x, τ)
∂τ

dτ

=
1

Γ(1− α)

m∑
j=0

p(x, tj+1)− p(x, tj)
k

∫ tj+1

tj

dτ

(tm+1 − τ)α + rm+1
k

=
1

Γ(2− α)

m∑
j=0

p(x, tm+1−j)− p(x, tm−j)
kα

dj + rm+1
k ,(2.1)

where dj = (j + 1)1−α − j1−α. Furthermore,

rm+1
k ≤ c̃pk2−α,(2.2)

where c̃p is a constant depending only on p. Let us define the discrete fractional
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differential operator Lαt by

Lαt p(x, tm+1) :=
1

Γ(2− α)

m∑
j=0

dj
p(x, tm+1−j)− p(x, tm−j)

kα
.

Then (2.1) reads

Dα
∗ p(x, tm+1) = Lαt p(x, tm+1) + rm+1

k .(2.3)

In what follows, we introduce the left, right, and symmetric fractional derivative
spaces.

Definition 2.1 (left fractional derivative [12, 24, 37]). Let q be a function defined
on R, β > 0, n be the smallest integer greater than β (n−1 ≤ β < n), and σ = n−β.
Then the left fractional derivative of order β is defined to be

Dβq := Dn−∞D−σx q(x) =
1

Γ(σ)
dn

dxn

∫ x

−∞
(x− ξ)σ−1q(ξ)dξ.

Definition 2.2 (right fractional derivative [12, 24, 37]). Let q be a function
defined on R, β > 0, n be the smallest integer greater than β (n − 1 ≤ β < n), and
σ = n− β. Then the right fractional derivative of order β is defined to be

Dβ∗q := (−D)nxD−σ∞ q(x) =
(−1)n

Γ(σ)
dn

dxn

∫ ∞
x

(ξ − x)σ−1q(ξ)dξ.

Note. If supp(q) ⊂ (a, b), then Dβq = aD
β
xq and Dβ∗q = xD

β
b q, where aD

β
xq and

xD
β
b q are the left and right Riemann–Liouville fractional derivatives, respectively, of

order β defined as

aD
β
xq =

1
Γ(σ)

dn

dxn

∫ x

a

(x− ξ)σ−1q(ξ)dξ

and

xD
β
b q =

(−1)n

Γ(σ)
dn

dxn

∫ b

x

(ξ − x)σ−1q(ξ)dξ.

Definition 2.3 (left fractional derivative space [12]). Let β > 0. Define the
seminorm

|q|Jβ
L(R) := ‖Dβq‖L2(R)

and the norm

‖q‖Jβ
L(R) :=

(
‖q‖2L2(R) + |q|2

Jβ
L(R)

)1/2

,

and let JβL(R) denote the closure of C∞(R) with respect to ‖ · ‖Jβ
L(R).

Definition 2.4 (right fractional derivative space [12]). Let β > 0. Define the
seminorm

|q|Jβ
R(R) := ‖Dβ∗q‖L2(R)
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and the norm

‖q‖Jβ
R(R) :=

(
‖q‖2L2(R) + |q|2

Jβ
R(R)

)1/2

,

and let JβR(R) denote the closure of C∞(R) with respect to ‖ · ‖Jβ
R(R).

Definition 2.5 (symmetric fractional derivative space [12]). Let β > 0, β 
=
n− 1/2, n ∈ N . Define the seminorm

|q|Jβ
S (R) :=

∣∣∣(Dβq,Dβ∗q
)
L2(R)

∣∣∣1/2
and the norm

‖q‖Jβ
S(R) :=

(
‖q‖2L2(R) + |q|2

Jβ
S (R)

)1/2

,

and let JβS (R) denote the closure of C∞(R) with respect to ‖ · ‖Jβ
S (R).

Definition 2.6 (see [12]). Let β > 0. Define the seminorm

|q|Hβ(R) :=
∥∥ |ω|β q̂∥∥

L2(R)

and the norm

‖q‖Hβ(R) :=
(
‖q‖2L2(R) + |q|2Hβ(R)

)1/2

,(2.4)

and let Hβ(R) denote the closure of C∞(R) with respect to ‖ · ‖Hβ(R).
Note. In this paper, instead of (2.4), we prefer to use

‖q‖Hβ(R) :=
(
‖q‖2L2(R) + α0κα

∣∣∣∣cos
(
β

2
π

)∣∣∣∣ |q|2Hβ(R)

)1/2

,(2.5)

where α0 = Γ(2− α)kα; it is well known that these two definitions are equivalent [1].
Lemma 2.7 (see [12]). Let β > 0 be given. Then(

Dβq,Dβ∗q
)

= cos(βπ)‖Dβq‖2L2(R).(2.6)

Lemma 2.8 (see [12]). Let β > 0. The spaces JβL(R), JβR(R), and Hβ(R) are
equivalent, with equivalent seminorms and norms; and in fact

| · |Jβ
L(R) = | · |Jβ

R(R) = | · |Hβ(R),

in particular, when β 
= n − 1/2, n ∈ N . The spaces JβL(R) (JβR(R) or Hβ(R)) and
JβS (R) are equivalent, with equivalent seminorms and norms, and

| · |Jβ
S (R) = | cos(βπ)| | · |Jβ

L(R).

Definition 2.9 (see [12]). Define the spaces JβL(Ω), JβR(Ω), and JβS (Ω) as the
closures of C∞(Ω) under their respective norms.

Definition 2.10 (see [12]). Define the spaces JβL,0(Ω), JβR,0(Ω), and JβS,0(Ω) as
the closures of C∞0 (Ω) under their respective norms.
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Lemma 2.11 (see [12]). Let β > 0. Then the spaces JβL,0(Ω), JβR,0(Ω), and
Hβ

0 (Ω) are equivalent. Also, if β 
= n − 1
2 , n ∈ N , the seminorms and norms of

JβL,0(Ω), JβR,0(Ω), and Hβ
0 (Ω) are equivalent, and JβS,0(Ω) and JβL,0(Ω) (JβR,0(Ω) or

Hβ
0 (Ω)) are equivalent with equivalent seminorms and norms.

Lemma 2.12 (fractional Poincaré–Friedrichs [12]). For q ∈ Hβ
0 (Ω), we have

‖q‖L2(Ω) ≤ c|q|Hβ
0 (Ω),

and for 0 < s < β, s 
= n− 1
2 , n ∈ N ,

|q|Hs
0 (Ω) ≤ c|q|Hβ

0 (Ω).

Lemma 2.13. The left and right Riemann–Liouville fractional integral operators
are adjoint w.r.t. the L2(a, b) inner product, i.e.,(

aD
−β
x p, q

)
L2(a,b)

=
(
p, xD

−β
b q

)
L2(a,b)

∀β > 0,

where aD
−β
x and xD

−β
b are defined by

aD
−β
x p =

1
Γ(β)

∫ x

a

(x− ξ)β−1p(ξ)dξ

and

xD
−β
b q =

1
Γ(β)

∫ b

x

(ξ − x)β−1q(ξ)dξ.

Proof. Interchanging the order of integration leads to(
aD
−β
x p, q

)
L2(a,b)

=
1

Γ(β)

∫ b

a

∫ x

a

(x− ξ)β−1p(ξ)q(x)dξdx

=
1

Γ(β)

∫ b

a

p(ξ)
∫ b

ξ

(x− ξ)β−1q(x)dxdξ

= (p, xD
−β
b q)L2(a,b).

3. Variational formulation and finite element approximation. Letting
T > 0, Ω = (a, b), rewriting (1.2), and making it subject to the given initial and
boundary conditions, we have

Dα
∗ p(x, t) =

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p(x, t), 0 < t ≤ T, x ∈ Ω,(3.1)

with initial and boundary conditions

p(x, 0) = g(x), x ∈ Ω,(3.2)
p(a, t) = p(b, t) = 0, 0 ≤ t ≤ T.(3.3)

Because of (2.3), using Lαt p(x, tm+1) as an approximation of Dα
∗ p(x, tm+1) leads

to the following time-discrete scheme of (3.1):

Lαt p
m+1(x) =

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1(x), m = 0, 1, . . . ,M − 1,(3.4)

where pm+1(x) is an approximation of p(x, tm+1).
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The scheme (3.4) can be recast as, with simplification by omitting the dependence
of pm+1(x) on x,

pm+1 − α0

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1 = pm −

m−1∑
j=0

dj+1p
m−j +

m∑
j=1

djp
m−j.(3.5)

For the first time step, that is, m = 0, the scheme simply reads

p1 − α0

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p1 = p0,(3.6)

and for the remaining steps, the equivalent form of (3.5) is

pm+1 − α0

[
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1

(3.7)

= (1 − d1)pm +
m−1∑
j=1

(dj − dj+1)pm−j + dmp
0, m ≥ 1.

So the complete semidiscrete scheme of (3.1) is (3.6) and (3.7), together with the
boundary conditions

pm+1(a) = pm+1(b) = 0, m ≥ 0,(3.8)

and the initial condition

p0(x) = g(x), x ∈ Ω.(3.9)

The variational formulation of (3.7) subject to the boundary condition (3.8) reads
as follows: Find pm+1 ∈ H

μ
2
0 (Ω) such that

(
pm+1, q

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1, q

)
(3.10)

= (1 − d1)(pm, q) +
m−1∑
j=1

(dj − dj+1)(pm−j , q) + dm(p0, q) ∀q ∈ H
μ
2
0 (Ω).

3.1. Stability analysis and error estimates for the semidiscrete scheme.
In this subsection, we discuss the stability and error estimates for the weak time-
discrete problem. First, let us introduce the denotation

B(p, q) := −
([

∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p, q

)
,

and we have the following lemma for B(p, q).
Lemma 3.1. Let U ′′(x) ≤ 0 for any x ∈ Ω, q ∈ H

μ
2
0 (Ω). Then B(q, q) ≥

κα| cos(μ2π)| |q|2
H

μ
2
0 (Ω)

.
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Proof. To expand the expression, we obtain

B(q, q)

= −
∫ b

a

U ′′(x)
ηα

q2dx−
∫ b

a

U ′(x)
ηα

∂q

∂x
qdx

− κα
2

∫ b

a

(
D2

aD
−(2−μ)
x q

)
qdx− κα

2

∫ b

a

(
D2

xD
−(2−μ)
b q

)
qdx

= −1
2

∫ b

a

U ′′(x)
ηα

q2dx+
κα
2

(∫ b

a

(
aD
−(2−μ)
x Dq

)
Dqdx+

∫ b

a

(
xD
−(2−μ)
b Dq

)
Dqdx

)

≥ κα
2

(∫ b

a

(
aD
−(2−μ)
x Dq

)
Dqdx+

∫ b

a

(
xD
−(2−μ)
b Dq

)
Dqdx

)

=
κα
2

(∫ b

a

(
aD
−(1−μ

2 )
x Dq

)
xD
−(1−μ

2 )
b Dqdx+

∫ b

a

(
xD
−(1−μ

2 )
b Dq

)
aD
−(1−μ

2 )
x Dqdx

)

= κα

∫ b

a

(
aD

μ
2
x q
)
·
(
−xD

μ
2
b q
)
dx

= −κα cos
(μ

2
π
)
|q|2
H

μ
2
0 (Ω)

.

In the above calculations, Lemmas 2.7, 2.8, and 2.11 are used, and some of the
properties of fractional operators [11, 26], such as aD

−(2−μ)
x = aD

−(1−μ
2 )

x aD
−(1−μ

2 )
x ,

aD
−(2−μ)
x Dq = DaD

−(2−μ)
x q, and xD

−(2−μ)
b Dq = DxD

−(2−μ)
b q, when q ∈ H

μ
2
0 (Ω), are

also utilized.
The following theorem presents the stability results for the weak semidiscrete

problem (3.10).
Theorem 3.2. Let U ′′(x) ≤ 0 for any x ∈ Ω. The weak semidiscrete scheme

(3.10) is unconditionally stable in the sense that for any time-step length k > 0, it
holds that ∥∥pm+1

∥∥
H

μ
2
0 (Ω)

≤ ‖p0‖L2 , m = 0, 1, . . . ,M − 1.

Proof. The induction will be used to prove this theorem. When m = 0, we have

(
p1, q

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p1, q

)
=
(
p0, q

) ∀q ∈ H
μ
2
0 (Ω).

Taking q = p1 and using (2.5) and Lemma 3.1, we obtain∥∥p1
∥∥2

H
μ
2
0 (Ω)

≤ (p0, p1
)
.

Applying the inequality ‖p1‖L2(Ω) ≤ ‖p1‖
H

μ
2
0 (Ω)

and the Schwarz inequality, we attain
immediately ∥∥p1

∥∥
H

μ
2
0 (Ω)

≤ ∥∥p0
∥∥
L2(Ω)

.

Assume we have proven∥∥pj∥∥
H

μ
2
0 (Ω)

≤ ∥∥p0
∥∥
L2(Ω)

, j = 1, 2, . . . ,m;(3.11)
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we will prove ‖pm+1‖
H

μ
2
0 (Ω)

≤ ‖p0‖L2(Ω). Letting q = pm+1 in (3.10) gives

(
pm+1, pm+1

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1, pm+1

)

= (1 − d1)
(
pm, pm+1

)
+
m−1∑
j=1

(dj − dj+1)
(
pm−j, pm+1

)
+ dm

(
p0, pm+1

)
.

Further using Lemma 3.1 and (3.11), we have

∥∥pm+1
∥∥2

H
μ
2
0 (Ω)

≤ (1− d1) ‖pm‖L2(Ω)

∥∥pm+1
∥∥
L2(Ω)

+
m−1∑
j=1

(dj − dj+1)
∥∥pm−j∥∥

L2(Ω)

∥∥pm+1
∥∥
L2(Ω)

+ dm
∥∥p0
∥∥
L2(Ω)

∥∥pm+1
∥∥
L2(Ω)

≤
⎡
⎣(1− d1) +

m−1∑
j=1

(dj − dj+1) + dm

⎤
⎦∥∥p0

∥∥
L2(Ω)

∥∥pm+1
∥∥
H

μ
2
0 (Ω)

=
∥∥p0
∥∥
L2(Ω)

∥∥pm+1
∥∥
H

μ
2
0 (Ω)

.

Then we conclude ∥∥pm+1
∥∥
H

μ
2
0 (Ω)

≤ ∥∥p0
∥∥
L2(Ω)

.

By virtue of (2.3), the weak semidiscrete scheme (3.10) is formally of (2−α)-order
accuracy. Now we carry out the rigorous error analysis. From now on, we denote by
c (or c(α0) if it depends on α0 given in (2.5)) a generic constant which may not be
the same at different occurrences.

Theorem 3.3. Let U ′′(x) ≤ 0 for any x ∈ Ω, p be the exact solution of (3.1)–
(3.3), and {pm}Mm=0 be the solution of (3.10) with the boundary and initial conditions
(3.8) and (3.9); then the error estimates are

(1) when 0 < α < 1,

‖p(tm)− pm‖
H

μ
2
0 (Ω)

≤ cp,αTαk2−α, m = 1, 2, . . . ,M,(3.12)

where cp,α := cp/(1− α), with constant cp defined in (3.15);
(2) when α→ 1,

‖p(tm)− pm‖
H

μ
2
0 (Ω)

≤ cpTk, m = 1, 2, . . . ,M,(3.13)

where cp is defined in (3.15).
For the convenience of denotation in the proof, let us define the error term by

rm+1 := α0r
m+1
k ;(3.14)

then from (2.2) we have∣∣rm+1
∣∣ = Γ(2− α)kα

∣∣rm+1
k

∣∣ ≤ Γ(2− α)c̃pk2 = cpk
2.(3.15)
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Proof of Theorem 3.3. (1) The proof of the idea using the mathematical induction
is similar to Theorem 3.2 of [27]. Let us first consider the case 0 ≤ α < 1. We would
like to prove the estimate

‖p(tj)− pj‖
H

μ
2
0 (Ω)

≤ cpd−1
j−1k

2, j = 1, 2, . . . ,M.(3.16)

Denote em = p(tm)− pm. For j = 1, from (3.1), (3.6), and (3.15), we obtain the error
equation

(
e1, q

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
e1, q

)
=
(
r1, q

) ∀q ∈ H
μ
2
0 (Ω).(3.17)

Taking q = e1 and using Lemma 3.1 yields
∥∥e1∥∥2

H
μ
2
0 (Ω)

≤ ∥∥r1∥∥
L2(Ω)

∥∥e1∥∥
L2(Ω)

.

This, together with (3.15), gives∥∥p(t1)− p1
∥∥
H

μ
2
0 (Ω)

≤ cpd−1
0 k2.

So, (3.16) is verified for the case j = 1. Suppose now that (3.16) holds for all j =
1, 2, . . . ,m; we prove it holds also for j = m+ 1.

Combining (3.1), (3.10), and (3.15) leads to

(
em+1, q

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
em+1, q

)
(3.18)

= (1 − d1) (em, q) +
m−1∑
j=1

(dj − dj+1)
(
em−j , q

)
+
(
rm+1, q

) ∀q ∈ H
μ
2
0 (Ω).

Taking q = em+1 in (3.18) and using Lemma 3.1 yields

∥∥em+1
∥∥2

H
μ
2
0 (Ω)

≤ (1− d1)‖em‖L2(Ω)

∥∥em+1
∥∥
L2(Ω)

+
m−1∑
j=1

(dj − dj+1)
∥∥em−j∥∥

L2(Ω)

∥∥em+1
∥∥
L2(Ω)

+
∥∥rm+1

∥∥
L2(Ω)

∥∥em+1
∥∥
L2(Ω)

.

According to the induction assumption, we have

∥∥em+1
∥∥
H

μ
2
0 (Ω)

≤
⎛
⎝(1− d1)d−1

m−1 +
m−1∑
j=1

(dj − dj+1)d−1
m−j−1

⎞
⎠ cpk

2 + cpk
2

≤
⎛
⎝(1− d1) +

m−1∑
j=1

(dj − dj+1) + dm

⎞
⎠ cpd

−1
m k2

= cpd
−1
m k2.

Therefore, the estimate (3.16) is proved.
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A direct computation shows that m−αd−1
m−1 = 1 when m = 1, and m−αd−1

m−1

increasingly tends to 1
1−α as 1 < m→ +∞. Therefore,

m−αd−1
m−1 ≤

1
1− α, m = 1, 2, . . . ,M.(3.19)

For all m such that mk ≤ T , we obtain

‖p(tm)− pm‖
H

μ
2
0 (Ω)

≤ cpd−1
m−1k

2 = cpm
−αd−1

m−1m
αk2

≤ cp 1
1− α (mk)αk2−α = cp,αT

αk2−α.

(2) Further consider the case α→ 1. In this case, cp,α tends to infinity as α→ 1,
so the estimate (3.12) has no meaning. We need an estimate of another form. The
proof is similar to the procedure in case (1).

Noting the fact that jk ≤ T for all j = 1, 2, . . . ,M , we want to prove

‖p(tj)− pj‖
H

μ
2
0 (Ω)

≤ cpjk2, j = 1, 2, . . . ,M.(3.20)

When j = 1, the estimate holds from (3.16). Suppose now that (3.20) holds for
j = 1, 2, . . . ,m; we prove it also remains true for j = m+ 1. Based on the induction
assumption and the estimates of the right-hand side of the error equation, the details
of which are omitted, we get

∥∥em+1
∥∥
H

μ
2
0 (Ω)

≤
⎛
⎝(1− d1) +

m−1∑
j=1

(dj − dj+1) + dm

⎞
⎠ cp(m+ 1)k2 = cp(m+ 1)k2.

Then (3.20) holds, and (3.13) is proved.

3.2. Existence, uniqueness, and regularity of weak solutions for (3.10).
First, we further study the variational problem (3.10) for fixed m, where we suppose
pj , j = 1, 2, . . . ,m, are known quantities and pm+1 is an unknown variable. We
introduce the following denotations:

B̃
(
pm+1, q

)
:=
(
pm+1, q

)
+ α0B

(
pm+1, q

)
,

f := (1− d1)pm +
m−1∑
j=1

(dj − dj+1)pm−j + dmp
0,

and

F̃ (q) := (f, q).

Then we can recast (3.10) as

B̃
(
pm+1, q

)
= F̃ (q) ∀q ∈ H

μ
2
0 (Ω).(3.21)

We show that there exists a unique solution to (3.21). To do this, we need to establish
the coercivity and continuity of B̃(·, ·).

Lemma 3.4. Let U ′′(x) ≤ 0 for any x ∈ Ω and q ∈ H
μ
2
0 (Ω). The bilinear form

B̃(q, q) ≥ ‖q‖2
H

μ
2
0 (Ω)

; i.e., it is coercive over H
μ
2
0 (Ω).
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Proof. According to Lemma 3.1,

B̃(q, q) = (q, q) + α0B(q, q)

≥ (q, q) + α0κα

∣∣∣cos
(μ

2
π
)∣∣∣ |q|2

H
μ
2
0 (Ω)

= ‖q‖2
H

μ
2
0 (Ω)

.

The proof is completed.
Lemma 3.5. The bilinear form B̃(·, ·) is continuous on H

μ
2
0 (Ω) × H

μ
2
0 (Ω); i.e.,

there exists a constant c(α0) such that
∣∣∣B̃(p, q)

∣∣∣ ≤ c(α0)‖p‖
H

μ
2
0 (Ω)

‖q‖
H

μ
2
0 (Ω)

∀p, q ∈ H
μ
2
0 (Ω).

Proof. From the definition of |B̃(p, q)| we have
∣∣∣B̃(p, q)

∣∣∣ = |(p, q) + α0B(p, q)|

=

∣∣∣∣∣(p, q)− α0

∫ b

a

U ′′(x)
ηα

pqdx− α0

∫ b

a

U ′(x)
ηα

∂p

∂x
qdx

− α0
κα
2

∫ b

a

(
D2

aD
−(2−μ)
x p

)
qdx− α0

κα
2

∫ b

a

(
D2

xD
−(2−μ)
b p

)
qdx

∣∣∣∣∣
≤ |(p, q)|+ α0

∣∣∣∣∣
∫ b

a

U ′′(x)
ηα

pqdx

∣∣∣∣∣+ α0

∣∣∣∣∣
∫ b

a

U ′(x)
ηα

∂p

∂x
qdx

∣∣∣∣∣
+α0

∣∣∣∣∣κα2
∫ b

a

(Dμp)qdx

∣∣∣∣∣+ α0

∣∣∣∣∣κα2
∫ b

a

(Dμ∗p)qdx

∣∣∣∣∣ .
Using the equivalence of norms, the fractional Poincaré–Friedrichs inequality, and
Lemma 2.13, ∣∣∣∣∣

∫ b

a

U ′(x)
ηα

∂p

∂x
qdx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

D
μ
2 pD(1−μ

2 )∗
(
U ′(x)
ηα

q

)∣∣∣∣∣
≤ |p|

J
μ
2

L,0(Ω)

∣∣∣∣U ′(x)ηα
q

∣∣∣∣
J

1− μ
2

R,0 (Ω)

≤ c(α0)‖p‖
H

μ
2
0 (Ω)

‖q‖
H

μ
2
0 (Ω)

and ∣∣∣∣∣κα2
∫ b

a

(Dμp)qdx

∣∣∣∣∣ =

∣∣∣∣∣κα2
∫ b

a

(
D

μ
2 p
)
D

μ
2 ∗qdx

∣∣∣∣∣
≤ κα

2
|p|

J
μ
2

L,0(Ω)
|q|
J

μ
2

R,0(Ω)

≤ c(α0)‖p‖
H

μ
2
0 (Ω)
‖q‖

H
μ
2
0 (Ω)

,
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and similarly

∣∣∣∣∣κα2
∫ b

a

(Dμ∗p)qdx

∣∣∣∣∣ =

∣∣∣∣∣κα2
∫ b

a

(
D

μ
2 ∗p
)
D

μ
2 qdx

∣∣∣∣∣ ≤ c(α0)‖p‖
H

μ
2
0 (Ω)
‖q‖

H
μ
2
0 (Ω)

.

Thus,

∣∣∣B̃(p, q)
∣∣∣

≤ ‖p‖L2(Ω)‖q‖L2(Ω) + α0

∥∥∥∥U ′′(x)ηα

∥∥∥∥
∞
‖p‖L2(Ω)‖q‖L2(Ω) + c(α0)‖p‖

H
μ
2
0 (Ω)

‖q‖
H

μ
2
0 (Ω)

≤ c(α0)‖p‖
H

μ
2
0 (Ω)

‖q‖
H

μ
2
0 (Ω)

.

The proof is completed.
Lemma 3.6. The linear functional F̃ (·) is continuous over H

μ
2
0 (Ω).

Proof. Using Theorem 3.2 and Minkowski’s inequality leads to f ∈ H
μ
2
0 (Ω) ⊂

H−
μ
2 (Ω). Then the result of this lemma follows from

|F̃ (q)| ≤ ‖f‖
H− μ

2 (Ω)
‖q‖

H
μ
2 (Ω)

.

According to Lemmas 3.4, 3.5, and 3.6, B̃ and F̃ satisfy the hypotheses of the
Lax–Milgram theorem, and the solution pm+1 is bounded by f . So we have the
following theorem.

Theorem 3.7. Let U ′′(x) ≤ 0 for any x ∈ Ω. There exists a unique solution
pm+1 ∈ H

μ
2
0 (Ω) to (3.10) satisfying

∥∥pm+1
∥∥
H

μ
2
0 (Ω)

≤ ‖f‖
H− μ

2 (Ω)
.(3.22)

In order to establish the error estimate in the following subsection, we need to
prove ‖pm+1‖Hμ

0 (Ω) ≤ ‖f‖L2(Ω). For the proof of this result, we need the following
lemma.

Lemma 3.8. Let U ′′(x) ≤ 0 for any x ∈ Ω, f ∈ L2(Ω), and pm+1 satisfy (3.7)–
(3.9). If, in addition, for μ

2 ≤ s < 1, pm+1 ∈ Hs(Ω) ∩H
μ
2
0 (Ω) and satisfies

∥∥pm+1
∥∥
Hs(Ω)

≤ c(α0)‖f‖L2(Ω),(3.23)

then pm+1 ∈ Hs+ μ
2− 1

2 (Ω) with estimate

∥∥pm+1
∥∥
Hs+ μ

2 − 1
2 (Ω)

≤ c(α0)‖f‖L2(Ω).(3.24)

Proof. Note that as 1
2 < s < 1, 0 < 2s− 1 < 1, we can write

D2s−1pm+1 = aD
−γ
x Dpm+1, with γ = 2− 2s.
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Since pm+1 satisfies

(
1− α0

U ′′(x)
ηα

)
pm+1−α0

(
U ′(x)
ηα

∂

∂x
+
κα
2

(
D2

aD
−(2−μ)
x +D2

xD
−(2−μ)
b

))
pm+1 = f,

multiplying both sides by D2s−1pm+1 and integrating over Ω, we have

α0κα
2

((
D2

aD
−(2−μ)
x pm+1, aD

−γ
x Dpm+1

)
+
(
D2

xD
−(2−μ)
b pm+1, aD

−γ
x Dpm+1

))
=
((

1− α0
U ′′(x)
ηα

)
pm+1, aD

−γ
x Dpm+1

)
+ α0

(
U ′(x)
ηα

∂pm+1

∂x
, aD

−γ
x Dpm+1

)
− (f, aD−γx Dpm+1

)
.

First, we bound each of the terms on the right-hand side of the above equation. Using
the Cauchy–Schwarz inequality and (3.23) leads to

∣∣− (f, aD−γx Dpm+1
)∣∣ ≤ ‖f‖L2(Ω)

∣∣Pm+1
∣∣
J2s−1

L (Ω)

≤ c‖f‖L2(Ω)

∣∣Pm+1
∣∣
Js

L(Ω)
, since 2s− 1 < s,

≤ c‖f‖L2(Ω)

∣∣Pm+1
∣∣
Hs(Ω)

≤ c‖f‖L2(Ω).

Because of Lemma 2.13, we have

∣∣∣∣
(
U ′(x)
ηα

∂pm+1

∂x
, aD

−γ
x Dpm+1

)∣∣∣∣
=
∣∣∣∣
(
xD
− γ

2
b

(
U ′(x)
ηα

∂pm+1

∂x

)
, aD

− γ
2

x Dpm+1

)∣∣∣∣
≤
∥∥∥∥xD− γ

2
b

(
U ′(x)
ηα

∂pm+1

∂x

)∥∥∥∥
L2(Ω)

∥∥∥aD− γ
2

x Dpm+1
∥∥∥
L2(Ω)

=
∥∥∥∥xD− γ

2
b

(
D

(
U ′(x)
ηα

pm+1

)
−D

(
U ′(x)
ηα

)
pm+1

)∥∥∥∥
L2(Ω)

∥∥∥aD− γ
2

x Dpm+1
∥∥∥
L2(Ω)

≤
(∥∥∥∥Ds∗

(
U ′(x)
ηα

pm+1

)∥∥∥∥
L2(Ω)

+
∥∥∥∥D
(
U ′(x)
ηα

)
pm+1

∥∥∥∥
L2(Ω)

)∥∥∥aD− γ
2

x Dpm+1
∥∥∥
L2(Ω)

≤ (c|pm+1|Hs(Ω) + c‖pm+1‖L2(Ω)

) |pm+1|Hs(Ω)

≤ c(α0)‖pm+1‖Hs(Ω).

For the remaining term we have

∣∣∣∣
((

1− α0
U ′′(x)
ηα

)
pm+1, aD

−γ
x Dpm+1

)∣∣∣∣ ≤
∥∥∥∥1− α0

U ′′(x)
ηα

∥∥∥∥
∞

∥∥pm+1
∥∥
L2(Ω)

∣∣pm+1
∣∣
J2s−1

L (Ω)

≤ c‖f‖2L2(Ω).
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Further we bound the two terms of the left-hand side:∣∣∣(D2
aD
−(2−μ)
x pm+1, aD

−γ
x Dpm+1

)∣∣∣
= − (Dμ−1pm+1,D2spm+1

)
= − (Dμ−1pm+1,D2s−μ+1Dμ−1pm+1

)
= −

(
D(s−μ

2 + 1
2 )∗Dμ−1pm+1,Ds− μ

2 + 1
2 Dμ−1pm+1

)
=
∣∣Dμ−1pm+1

∣∣2
J

s− μ
2 + 1

2
S (Ω)

≥ c ∣∣Dμ−1pm+1
∣∣2
J

s− μ
2 + 1

2
L (Ω)

= c
∣∣pm+1

∣∣2
J

s+ μ
2 − 1

2
L (Ω)

.

Similarly, we obtain∣∣∣(D2
xD
−(2−μ)
b pm+1, aD

−γ
x Dpm+1

)∣∣∣ ≥ c ∣∣pm+1
∣∣2
J

s+ μ
2 − 1

2
R (Ω)

.

Based on the above estimates and the equivalence of the spaces Js+
μ
2− 1

2
L (Ω), Js+

μ
2− 1

2
R (Ω),

Hs+ μ
2− 1

2 (Ω), and |pm+1|2L2(Ω) ≤ c|pm+1|2
J

s+ μ
2 − 1

2
R (Ω)

, the stated results follow.

Theorem 3.9. Let U ′′(x) ≤ 0 for any x ∈ Ω, f ∈ L2(Ω), and pm+1 satisfy
(3.7)–(3.9). Then pm+1 ∈ Hμ(Ω) with

∥∥pm+1
∥∥
Hμ(Ω)

≤ c(α0)‖f‖L2(Ω), μ 
= 3
2
,(3.25)

∥∥pm+1
∥∥
Hμ−ε(Ω)

≤ c(α0)‖f‖L2(Ω), μ =
3
2
, 0 < ε <

1
2
.(3.26)

Proof. First, we must establish an estimate for pm+1 in the H1 norm. In order
to do this, we repeatedly use Lemma 3.8 in an induction argument.

Suppose that pm+1 ∈ H jμ
2 − j−1

2 (Ω) for j ∈ N such that jμ
2 − j−1

2 < 1, with

∥∥pm+1
∥∥
H

jμ
2 − j−1

2 (Ω)
≤ c(α0)‖f‖L2(Ω).

By Lemma 3.8, pm+1 ∈ H (j+1)μ
2 − j

2 with∥∥pm+1
∥∥
H

(j+1)μ
2 − j

2 (Ω)
≤ c(α0)‖f‖L2(Ω).

For j = 1 we have that pm+1 ∈ H
μ
2
0 (Ω), so the initial step is valid. We repeat this

process for j = 1, j = 2, j = . . . , until j = K, where

Kμ

2
− K − 1

2
< 1 and

(K + 1)μ
2

− K

2
≥ 1.

For this value of j, we have pm+1 ∈ H1
0 (Ω) ⊂ H (K+1)μ

2 −K
2 (Ω) with the estimate∥∥pm+1

∥∥
H1(Ω)

≤ c(α0)‖f‖L2(Ω).
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Now, multiplying both sides of (3.7) by Dμpm+1 and integrating over Ω, similar to
the estimates in the proof of Lemma 3.8, we have

c(α0)
∥∥pm+1

∥∥2

Jμ
L(Ω)

+ c(α0)
∥∥pm+1

∥∥
Jμ

L(Ω)

∥∥pm+1
∥∥
Jμ

R(Ω)
≤ c(α0)‖f‖L2(Ω)

∥∥pm+1
∥∥
Jμ

L(Ω)
,

where the three c(α0) terms generally are not equal.
When μ 
= 3

2 , the three norms JμL(Ω), JμR(Ω), and Hμ(Ω) are equivalent; then
the stated result (3.25) follows. As μ = 3

2 , because of the fact that 0 < ε < 1
2 , the

following holds:∣∣pm+1
∣∣
Hμ−ε(Ω)

≤ c ∣∣pm+1
∣∣
Jμ

L(Ω)
and

∣∣pm+1
∣∣
Hμ−ε(Ω)

≤ c ∣∣pm+1
∣∣
Jμ

R(Ω)
,

so the stated result (3.26) holds.

3.3. Finite element approximation and error estimates in the space and
error estimates for full discretization. Denote {Sh} to be a family of partitions
of Ω with grid parameter h, and associated with Sh define the finite-dimensional
subspace Xh to be the basis of the piecewise polynomials of order n−1, where n ∈ N .
Denote Ihpm+1 to be the piecewise interpolation polynomial of pm+1 in Sh, being
uniquely determined. We have the well-known approximation property.

Lemma 3.10 (approximation property [6]). Let pm+1 ∈ H l(Ω), 0 < l ≤ n, and
0 ≤ s ≤ l. Then there exists a constant c(α0) depending on Ω such that

‖pm+1 − Ihpm+1‖Hs(Ω) ≤ c(α0)hl−s‖pm+1‖Hl(Ω).(3.27)

Let p̃m+1
h be the solution of the finite-dimensional variational problem

B̃
(
p̃m+1
h , qh

)
= F̃ (qh) ∀qh ∈ Xh.(3.28)

We definite the energy norm associated with (3.21) as

∥∥pm+1
∥∥
E

:= B̃
(
pm+1, pm+1

) 1
2 .(3.29)

According to Lemmas 3.4 and 3.5, we have the norm equivalence of ‖·‖E and ‖·‖
H

μ
2
0 (Ω)

.

Theorem 3.11. Let U ′′(x) ≤ 0 for any x ∈ Ω and pm+1 be the solution to (3.21).
There exists a unique solution to (3.28) satisfying the estimate∥∥pm+1 − p̃m+1

h

∥∥
E
≤ c(α0) inf

qh∈Xh

∥∥pm+1 − qh
∥∥
E
≤ c(α0)

∥∥pm+1 − Ihpm+1
∥∥
E
.(3.30)

Proof. Since Xh is a subset of the space H
μ
2
0 (Ω), (3.28) satisfies the hypothesis

of the Lax–Milgram lemma over the finite-dimensional subspace. Then the existence
and uniqueness hold for (3.28). The estimate (3.30) follows from Ceá’s lemma.

Combining the previous results into an estimate for pm+1 − p̃m+1
h leads to the

following corollary.
Corollary 3.12. Let U ′′(x) ≤ 0 for any x ∈ Ω, pm+1 ∈ H

μ
2
0 (Ω) ∩ H l(Ω)

(μ2 ≤ l ≤ n) solve (3.21), and p̃m+1
h solve (3.28). Then there exists a constant c(α0)

such that ∥∥pm+1 − p̃m+1
h

∥∥
H

μ
2 (Ω)

≤ c(α0)hl−
μ
2
∥∥pm+1

∥∥
Hl(Ω)

.(3.31)

Applying the Aubin–Nitsche trick derives the convergence estimate in the L2 norm.
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Theorem 3.13. Let U ′′(x) ≤ 0 for any x ∈ Ω, pm+1 ∈ H
μ
2
0 (Ω)∩H l(Ω) (μ2 ≤ l ≤

n) solve (3.21), and p̃m+1
h solve (3.28). Then there exists a constant c(α0) such that

∥∥pm+1 − p̃m+1
h

∥∥
L2(Ω)

≤ c(α0)hl
∥∥pm+1

∥∥
Hl(Ω)

, μ 
= 3
2
,(3.32)

∥∥pm+1 − p̃m+1
h

∥∥
L2(Ω)

≤ c(α0)hl−ε
∥∥pm+1

∥∥
Hl(Ω)

, μ =
3
2
, 0 < ε <

1
2
.(3.33)

Proof. Introduce the adjoint problem: Find ω ∈ H
μ
2
0 (Ω) such that

B̃(ω, q) =
(
pm+1 − p̃m+1

h , q
) ∀q ∈ H

μ
2
0 (Ω).(3.34)

Theorem 3.9 implies that, for μ 
= 3
2 , ω satisfies the regularity estimate

‖ω‖Hμ(Ω) ≤ c(α0)
∥∥pm+1 − p̃m+1

h

∥∥
L2(Ω)

.

Substituting q = pm+1 − p̃m+1
h and using the Galerkin orthogonality, we obtain

∥∥pm+1 − p̃m+1
h

∥∥2

L2(Ω)
= B̃

(
ω, pm+1 − p̃m+1

h

)
= B̃

(
ω − Ihω, pm+1 − p̃m+1

h

)
≤ c(α0)

∥∥ω − Ihω∥∥
H

μ
2 (Ω)

∥∥pm+1 − p̃m+1
h

∥∥
H

μ
2 (Ω)

≤ c(α0)h
μ
2 ‖ω‖Hμ(Ω)

∥∥pm+1 − p̃m+1
h

∥∥
H

μ
2 (Ω)

≤ c(α0)h
μ
2
∥∥pm+1 − p̃m+1

h

∥∥
L2(Ω)

∥∥pm+1 − p̃m+1
h

∥∥
H

μ
2 (Ω)

.

Thus, we have the estimate

∥∥pm+1 − p̃m+1
h

∥∥
L2(Ω)

≤ c(α0)h
μ
2
∥∥pm+1 − p̃m+1

h

∥∥
H

μ
2 (Ω)

.

Further applying (3.31), we get (3.32). Because of (3.26) in Theorem 3.9, we can
similarly prove (3.33) with μ = 3

2 .
Let pjh be the computational value at time tj of full discretization; i.e., {pjh}Mj=1

satisfy for all qh ∈ Xh

(
pm+1
h , qh

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
pm+1
h , qh

)
(3.35)

=

⎛
⎝(1− d1)pmh +

m−1∑
j=1

(dj − dj+1)p
m−j
h + dmp

0
h, qh

⎞
⎠ .

Now we aim at deriving the estimates for ‖p(tm) − pmh ‖
H

μ
2
0 (Ω)

and ‖p(tm) −
pmh ‖L2(Ω), being given in the following theorem.

Theorem 3.14. Let U ′′(x) ≤ 0 for any x ∈ Ω, p be the exact solution of
(3.1)–(3.3), and {pmh }Mm=0 be the solution of problem (3.35) with the initial condition
p0
h = Ihg. Suppose p ∈ H1([0, T ], H

μ
2
0 (Ω) ∩H l(Ω)) (μ2 ≤ l ≤ n), then we have
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(1) when 0 < α < 1,

‖p(tm)− pmh ‖H μ
2 (Ω)

≤ cpT
α

1− α
(
k2−α + c(α0)k−αhl−

μ
2 ‖p‖L∞(Hl(Ω))

)
,

‖p(tm)− pmh ‖L2(Ω) ≤ cpT
α

1− α
(
k2−α + c(α0)k−αhl‖p‖L∞(Hl(Ω))

)
, μ 
= 3

2
,

‖p(tm)−pmh ‖L2(Ω) ≤ cpT
α

1− α
(
k2−α + c(α0)k−αhl−ε‖p‖L∞(Hl(Ω))

)
, μ =

3
2
, 0 < ε <

1
2
;

(2) when α→ 1,

‖p(tm)− pmh ‖H μ
2 (Ω)

≤ cpT
(
k + c(α0)k−1hl−

μ
2 ‖p‖L∞(Hl(Ω))

)
,

‖p(tm)− pmh ‖L2(Ω) ≤ cpT
(
k + c(α0)k−1hl‖p‖L∞(Hl(Ω))

)
, μ 
= 3

2
,

‖p(tm)− pmh ‖L2(Ω) ≤ cpT
(
k + c(α0)k−1hl−ε‖p‖L∞(Hl(Ω))

)
, μ =

3
2
, 0 < ε <

1
2
,

where cp is given in (3.15).
Proof. From (2.3), (3.4), (3.5), and (3.14), we know that {p(tj)}Mj=1 satisfy ∀q ∈

H
μ
2
0 (Ω)

(p(tm+1), q)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
p(tm+1), q

)
(3.36)

=

⎛
⎝(1− d1)p(tm) +

m−1∑
j=1

(dj − dj+1)p(tm−j) + dmp(t0), q

⎞
⎠+

(
rm+1, q

)
.

Let π
μ
2
h be the H

μ
2 -orthogonal projection operator from H

μ
2
0 to Xh, associated with

the energy norm defined in (3.29), i.e., for all qh ∈ Xh,

(
π

μ
2
h p(tm+1), qh

)
− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
π

μ
2
h p(tm+1), qh

)
(3.37)

=

⎛
⎝(1− d1)p(tm) +

m−1∑
j=1

(dj − dj+1)p(tm−j) + dmp(t0), qh

⎞
⎠+

(
rm+1, qh

)
.

Let ẽm+1
h = π

μ
2
h p(tm+1) − pm+1

h and em+1
h = p(tm+1) − pm+1

h ; by subtracting (3.35)
from (3.37), we obtain

(
ẽm+1
h , qh

)− α0

([
∂

∂x

U ′(x)
ηα

+ κα∇μ
]
ẽm+1
h , qh

)
(3.38)

=

⎛
⎝(1 − d1)emh +

m−1∑
j=1

(dj − dj+1)e
m−j
h + dme

0
h, qh

⎞
⎠+

(
rm+1, qh

)
.

Taking qh = ẽm+1
h in (3.38) and using the triangular inequality ‖em+1

h ‖
H

μ
2 (Ω)

≤
‖ẽm+1
h ‖

H
μ
2 (Ω)

+ ‖p(tm+1)− π
μ
2
h p(tm+1)‖H μ

2 (Ω)
, from Corollary 3.12 we have
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∥∥em+1
h

∥∥
H

μ
2 (Ω)

≤ (1− d1)‖emh ‖L2(Ω) +
m−1∑
j=1

(dj − dj+1)‖em−jh ‖L2(Ω)

+ dm
∥∥e0h∥∥L2(Ω)

+
∥∥rm+1

∥∥
L2(Ω)

+
∥∥∥p(tm+1)− π

μ
2
h p(tm+1)

∥∥∥
H

μ
2 (Ω)

(3.39)

≤ (1− d1)‖emh ‖L2(Ω) +
m−1∑
j=1

(dj − dj+1)‖em−jh ‖L2(Ω)

+ dm
∥∥e0h∥∥L2(Ω)

+ cpk
2 + c(α0)hl−

μ
2 ‖p(tm+1)‖Hl(Ω).

Similarly, taking qh = ẽm+1
h in (3.38) and using the triangular inequality ‖em+1

h ‖L2(Ω) ≤
‖ẽm+1
h ‖L2(Ω) + ‖p(tm+1) − π

μ
2
h p(tm+1)‖L2(Ω) and ‖ẽm+1

h ‖L2(Ω) ≤ ‖ẽm+1
h ‖

H
μ
2 (Ω)

, from
Theorem 3.13 we have

∥∥em+1
h

∥∥
L2(Ω)

≤ (1− d1)‖emh ‖L2(Ω) +
m−1∑
j=1

(dj − dj+1)
∥∥∥em−jh

∥∥∥
L2(Ω)

+ dm
∥∥e0h∥∥L2(Ω)

+
∥∥rm+1

∥∥
L2(Ω)

+
∥∥∥p(tm+1)− π

μ
2
h p(tm+1)

∥∥∥
L2(Ω)

(3.40)

≤ (1− d1)‖emh ‖L2(Ω) +
m−1∑
j=1

(dj − dj+1)
∥∥∥em−jh

∥∥∥
L2(Ω)

+ dm
∥∥e0h∥∥L2(Ω)

+ cpk
2 + c(α0)hl̃‖p(tm+1)‖Hl(Ω),

where l̃ = l if μ 
= 3
2 and l̃ = l − ε, 0 < ε < 1

2 , if μ = 3
2 .

It is at this point that we distinguish two cases for α; from (3.39) and (3.40)
the stated results are obtained by following the same lines as in Theorem 3.3, so the
remaining details are omitted.

4. Numerical experiments and simulation of physical systems. In this
section, we confirm the theoretical analysis by doing numerical computations with
a smooth initial condition and then simulate the real physical cases with the δ dis-
tribution as the initial condition. The trial space used in the space finite element
approximation is taken as Xh to be the basis with piecewise linear polynomials, i.e.,
n = 2.

In this paper, both the space and time derivatives of (3.1) are fractional. It is
worth noting that fractional derivatives are nonlocal operators. Consequently, when
approximating the space derivative, a sparse coefficient matrix [14], having the char-
acteristic of using a finite element basis for the classical differential equation, does
not occur. For the time derivative, because of its nonlocal property, we need to do a
summation operation, the right-hand side of (3.35), in each time step. But it is pos-
sible to reduce the computational cost, since the fractional derivative has the short
memory principle [8].

First, for confirming the theoretical prediction, we consider the problem (3.1)–
(3.3) but, without loss of generality, add a force term h(x, t) on the right-hand side
of (3.1). Now the problem has the analytical solution

p(x, t) = t2(x− a)2(x − b)2,
if taking

U(x) = 3x, κα = ηα = 1.
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Table 4.1

Experimental error results with fixed time step size k = 0.0001, a = −2, b = −2.

h ‖p(T ) − pM
h ‖L2(Ω) Convergent rate

1/2 3.077979 · 10−2

1/4 9.020087 · 10−3 1.77

1/8 2.603326 · 10−3 1.79

Table 4.2

Computational error results with fixed space step length h = 0.05, a = −2, b = −2.

k ‖p(T ) − pM
h ‖L2(Ω) Convergent rate

1/10 1.646337 · 10−2

1/20 8.455413 · 10−3 0.96

1/40 4.270158 · 10−3 0.99

It can be checked that the corresponding initial condition and force term are, respec-
tively,

g(x) = 0,

h(x, t) =
2Γ(2)

Γ(3 − α)
t2−α(x − a)2(x− b)2 − 6t2((x− a)(x − b)2 + (x− a)2(x− b))

− 1
2
t2
(

Γ(5)
Γ(5− μ)

(
(x− a)4−μ + (b − x)4−μ)− 2(b− a) Γ(4)

Γ(4 − μ)
(
(x− a)3−μ

+ (b− x)3−μ)+ (b− a)2 Γ(3)
Γ(3− μ)

(
(x− a)2−μ + (b − x)2−μ)) .

We compute the errors ‖p(T )− pMh ‖L2(Ω) at time T = 1, with space fractional order
μ = 1.8 and time fractional order α = 0.8. In Table 4.1, with fixed time-step size,
choosing different space step lengths leads to the experimental convergent rate in
space. In Table 4.2, we fix space step size; using different time step lengths leads to
the numerical convergent rate in time.

Further we simulate the real physical cases for (3.1)–(3.3) with absorbing bound-
ary conditions and still taking U(x) = 3x, κα = ηα = 1, but using the δ distribution
as the initial condition. The noteworthy features are the appearance of cusps when
the time fractional order α 
= 1.0, and the tail of the probability density function p
decays as a power law when the space fractional order μ 
= 2.0. See Figure 1, where
p(x, t| 0, 0) is the unnormalized probability density at (x, t) starting from t = 0 with
δ(x) as the initial distribution, and a = −2, b = −2, k = 0.01, and h = 0.02.

5. Conclusions. So far, it seems that no other published research takes into
account the numerical method and detailed numerical error analysis for the space and
time fractional partial differential equation, besides the stochastic approach used in
[30]. In this paper, we have developed and analyzed an efficient numerical method
for a partial differential equation with fractional derivatives in both space and time,
the space and time fractional Fokker–Planck equation, which has a strong physical
background, for example, characterizing the anomalous diffusion with both traps and
flights. First, based on the properties of the Riemann–Liouville and Caputo deriva-
tives, the formulation of the original equation is transformed. The time fractional
derivative is discretized by using a backward differentiation, having (2 − α)-order
accuracy.
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(a) α = 1.0, μ = 2.0.
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(b) α = 1.0, μ = 1.5.
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(c) α = 0.5, μ = 2.0.
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(d) α = 0.3, μ = 1.6.
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(c) α = 0.6, μ = 1.6.
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(d) α = 0.6, μ = 1.4.

Fig. 1. The evolution of p(x, t | 0, 0), where the solid line “−” stands for the solution when
t = 0.3, the dashed-dotted line “−.” stands for the solution when t = 0.6, and the dashed line
“−−” stands for the solution when t = 1.0 (p(x, t| 0, 0) is the unnormalized probability density at
(x, t) starting from t = 0 with δ(x) as the initial distribution, and a = −2, b = −2, k = 0.01, and
h = 0.02).

We then derived the variational formation of the semidiscrete scheme; its stability
is rigorously proved. Use of the finite element method to approximate the space
fractional derivative results in full discretization with μ-order convergence in space
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and (2 − α)-order convergence in time. Our numerical experiments are in agreement
with the theoretical analysis. The real physical cases are also simulated.

A key difference between fractional derivatives and the classical derivatives is that
fractional derivatives are nonlocal operators. The matrix generated by finite element
approximation in space is no longer sparse, and in the time direction, when advancing
one step, we need to sum up all of the previous computed results’ multiplied variational
coefficients. So the computational cost, storage requirement, and time spent are
expensive. Fortunately, although fractional derivatives have global dependence, they
have the short memory principle. This principle works well for computing fractional
ODEs [8]. Our future research along this direction is to investigate the effective ways
of using the short memory principle for computing partial differential equations with
both space and time fractional derivatives so as to reduce the computational cost.
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[9] W. H. Deng and J. H. Lü, Design of multi-directional multi-scroll chaotic attractors based on

fractional differential systems via switching control, Chaos, 16 (2006), article 043120.
[10] W. H. Deng, Generalized synchronization in fractional order systems, Phys. Rev. E, 75 (2007),

article 056201.
[11] W. H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput.

Phys., 227 (2007), pp. 1510–1522.
[12] V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection

dispersion equation, Numer. Methods Partial Differential Equations, 22 (2005), pp. 558–
576.

[13] V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent,
nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), pp. 572–
591.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[15] R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A
discrete random walk approach, Nonlinear Dynam., 29 (2002), pp. 129–143.

[16] I. Goychuk, E. Heinsalu, M. Patriarca, G. Schmid, and P. Hänggi, Current and universal
scaling in anomalous transport, Phys. Rev. E, 73 (2006), article 020101.

[17] O. Heaviside, Electromagnetic Theory, Chelsea, New York, 1971.
[18] E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, and P. Hänggi, Fractional Fokker-

Planck dynamics: Numerical algorithm and simulations, Phys. Rev. E, 73 (2006), article
046133.

[19] M. Ichise, Y. Nagayanagi, and T. Kojima, An analog simulation of noninteger order transfer
functions for analysis of electrode processes, J. Electroanal. Chem., 33 (1971), pp. 253–265.

[20] G. Jumarie, A Fokker-Planck equation of fractional order with respect to time, J. Math. Phys.,
33 (1992), pp. 3536–3542.

[21] S. M. Kenneth and R. Bertram, An Introduction to the Fractional Calculus and Fractional
Differential Equations, Wiley-Interscience, New York, 1993.



226 WEIHUA DENG

[22] R. C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl.
Mech., 51 (1984), pp. 229–307.

[23] D. Kusnezov, A. Bulgac, and G. D. Dang, Quantum levy processes and fractional kinetics,
Phys. Rev. Lett., 82 (1999), pp. 1136–1139.

[24] J. L. Lavoie, T. J. Osler, and R. Tremblay, Fractional derivatives and special functions,
SIAM Rev., 18 (1976), pp. 240–268.

[25] E. K. Lenzi, R. S. Mendes, K. S. Fa, and L. C. Malacarne, Anomalous diffusion: Fractional
Fokker-Planck equation and its solutions, J. Math. Phys., 44 (2003), pp. 2179–2185.

[26] C. P. Li and W. H. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187
(2007), pp. 777–784.

[27] Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the time-fractional
diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533–1552.

[28] F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck
equation, J. Comput. Appl. Math., 166 (2004), pp. 209–219.

[29] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704–719.
[30] M. Magdziarz and A. Weron, Competition between subdiffusion and Lévy flights: A Monte

Carlo approach, Phys. Rev. E, 75 (2007), article 056702.
[31] B. Mandelbrot, Some noises with 1/f spectrum, a bridge between direct current and white

noise, IEEE Trans. Inform. Theory, 13 (1967), pp. 289–298.
[32] M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, Finite difference methods for two-

dimensional fractional dispersion equation, J. Comput. Phys., 211 (2006), pp. 249–261.
[33] R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal

equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999),
pp. 3563–3567.

[34] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional
dynamics approach, Phys. Rep., 339 (2000), pp. 1–77.

[35] R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equa-
tions, fractional Fokker-Planck equations, and physical motivation, Chem. Phys., 284
(2002), pp. 67–90; see also references therein.

[36] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[37] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives: Theory and

Applications, Gordon and Breach, London, 1993.
[38] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observations of anomalous diffusion and
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RAPID SOLUTION OF THE WAVE EQUATION IN
UNBOUNDED DOMAINS∗

L. BANJAI† AND S. SAUTER†

Abstract. In this paper we propose and analyze a new, fast method for the numerical solution of
time domain boundary integral formulations of the wave equation. We employ Lubich’s convolution
quadrature method for the time discretization and a Galerkin boundary element method for the spa-
tial discretization. The coefficient matrix of the arising system of linear equations is a triangular block
Toeplitz matrix. Possible choices for solving the linear system arising from the above discretization
include the use of fast Fourier transform (FFT) techniques and the use of data-sparse approxima-
tions. By using FFT techniques, the computational complexity can be reduced substantially while
the storage cost remains unchanged and is, typically, high. Using data-sparse approximations, the
gain is reversed; i.e., the computational cost is (approximately) unchanged while the storage cost
is substantially reduced. The method proposed in this paper combines the advantages of these two
approaches. First, the discrete convolution (related to the block Toeplitz system) is transformed
into the (discrete) Fourier image, thereby arriving at a decoupled system of discretized Helmholtz
equations with complex wave numbers. A fast data-sparse (e.g., fast multipole or panel-clustering)
method can then be applied to the transformed system. Additionally, significant savings can be
achieved if the boundary data are smooth and time-limited. In this case the right-hand sides of
many of the Helmholtz problems are almost zero, and hence can be disregarded. Finally, the pro-
posed method is inherently parallel. We analyze the stability and convergence of these methods,
thereby deriving the choice of parameters that preserves the convergence rates of the unperturbed
convolution quadrature. We also present numerical results which illustrate the predicted convergence
behavior.
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1. Introduction. Boundary value problems governed by the wave equation

∂2
t u−Δu = f

arise in many physical applications such as electromagnetic wave propagation or the
computation of transient acoustic waves. Since such problems are typically formu-
lated in unbounded domains, the method of integral equations is an elegant tool for
transforming this partial differential equation (PDE) into an integral equation on the
bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [19]), the development
of fast numerical methods for integral equations in the field of hyperbolic problems
is still in its infancy compared to the multitude of fast methods for elliptic boundary
integral equations (cf. [38] and references therein). Existing numerical discretization
methods include collocation methods with some stabilization techniques (cf. [7], [8],
[14], [15], [16], [33], [37]), and Laplace–Fourier methods coupled with Galerkin bound-
ary elements in space (see [3], [12], [17], [20]). Numerical experiments can be found,
e.g., in [21].
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In [18] a fast version of the marching-on-in-time (MOT) method is presented
which is based on a suitable plane wave expansion of the arising potential, which
reduces the storage and computational costs.

We here employ the convolution quadrature method for the time discretization
and a Galerkin boundary element method in space. The convolution quadrature
method for the time discretization has been developed in [29], [30], [31], [32]. It pro-
vides a straightforward way to obtain a stable time stepping scheme using the Laplace
transform of the kernel function. For applications to problems such as viscoelastic
and poroelastic continua see [40], [41], [42].

The coefficient matrix in the arising system of linear equation is a block-triangular
Toeplitz matrix consisting of N blocks of dimension M ×M , where N denotes the
number of time steps and M is the number of spatial degrees of freedom. Due to the
nonlocalness of the arising boundary integral operators, the M ×M matrix blocks are
densely populated.

In the literature, there exist (at least) two alternatives for solving this system
efficiently. In [24], fast Fourier transform (FFT) techniques are employed, which make
use of the Toeplitz structure of the system matrix, and the computational complexity
is reduced to O(M2N log2N), while the storage complexity stays atO(NM2). In [23],
[22], [28], the M ×M block matrices are approximated by data-sparse representations
based on a cutoff and panel-clustering strategy. This leads to a significant reduction
of the storage complexity. The computational complexity is reduced compared to the
O (N2M2

)
cost of the naive approach but increased compared to the computational

cost of the FFT approach.
Also the classical Galerkin discretization of the retarded boundary integral equa-

tion (see [3], [20]), leads to a block Toeplitz system matrix, where the matrix blocks
are of size M ×M and sparse. More precisely, the number of nonzero entries in the
block Toeplitz matrix is, for piecewise constant boundary elements, of order O(M2)
and, for piecewise linear boundary elements, of order O(M2+ 1

8 ) for this approach.
Here, the total cost for the computation of a full Galerkin approximation sums up
to O(M2N) for piecewise constant boundary elements and to O(N2M3/2) for piece-
wise linear boundary elements. A drawback of this approach, however, is that the
numerical quadrature for computing the coefficients of the system matrix has to be
carried out on the intersections of the boundary element mesh with the discrete light
cone. The stable handling of these intersections and the implementation is especially
complicated for curved panels.

In this paper, we propose a new approach which combines the advantages of the
FFT technique with the sparse approximation. We transfer the block Toeplitz system
to the Fourier image by the discrete Fourier transform and then face the problem of
computing approximate solutions of Helmholtz problems at different (complex) wave
numbers. These Helmholtz problems are fully decoupled, and hence can be efficiently
solved on parallel computers. Relatively standard, fast methods (e.g., fast multipole
method, hierarchical matrices) for the solution of frequency domain scattering can
effectively be applied to these problems; see [9], [35], and [5]. It may also be possible
to further reduce the computational cost of assembling the matrices by using the
techniques for multifrequency analysis described in [27], [44]. Further, we also show
that if the boundary data are sufficiently smooth and compatible and of limited time
duration, instead of N , only O(N ε), for any fixed ε > 0, Helmholtz systems need to
be solved. Our method is similar and shares some properties (the need to solve a
series of elliptic problems and the intrinsic parallelizability) of certain methods for
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parabolic equations; see [26], [43]. A related, interesting variation of the convolution
quadrature for convolution kernels whose Laplace transform is sectorial can be found
in [39].

2. Integral formulation of the wave equation. Let Ω ⊂ R
3 be a Lipschitz

domain with boundary Γ; typically, e.g., in scattering problems, Ω is an unbounded
domain. In this paper, we present efficient methods for numerically solving the ho-
mogeneous wave equation

(2.1a) ∂2
t u−Δu = 0 in Ω× (0, T )

with initial conditions

(2.1b) u(·, 0) = ∂tu(·, 0) = 0 in Ω

and boundary conditions

(2.1c) u = g on Γ× (0, T )

on a time interval (0, T ) for some T > 0. For its solution, we employ an ansatz as a
single layer potential

(2.2) u(x, t) =
∫ t

0

∫
Γ

k(x− y, t− τ)φ(y, τ)dΓydτ , (x, t) ∈ Ω× (0, T ) ,

where k(z, t) is the fundamental solution of the wave equation,

(2.3) k(z, t) =
δ(t− ‖z‖)

4π‖z‖ ,

with δ(t) being the Dirac delta distribution. The ansatz (2.2) satisfies the homo-
geneous equation (2.1a) and the initial conditions (2.1b). The extension x → Γ is
continuous, and hence the unknown density φ in (2.2) is determined via the boundary
conditions (2.1c), u(x, t) = g(x, t). This results in the boundary integral equation for
φ,

(2.4)
∫ t

0

∫
Γ

k(x− y, t− τ)φ(y, τ)dΓydτ = g(x, t) ∀(x, t) ∈ Γ× (0, T ) .

Existence and uniqueness results for the solution of the continuous problem are proved
in [31] and [3, Prop. 3].

3. Numerical discretization.

3.1. Time discretization via convolution quadrature. For the time dis-
cretization, we employ the convolution quadrature approach which has been devel-
oped by Lubich in [29], [30], [31] and Lubich and Schneider in [32]. We do not recall
the theoretical framework here but directly apply the approach to the wave equation.
We make use of the following notation for the time convolution:

V (∂t)φ :=
∫ t

0

v(t− τ)φ(τ)dτ,

where V denotes the Laplace transform of the operator v; for the reasons behind
using this notation see [29]. Note that, for the retarded single layer potential (2.2),
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v is a parameter-dependent integral operator, i.e., (v(t− τ)φ(τ)) (x) =
∫
Γ
k(x − y,

t− τ)φ(τ, y)dΓy (where we write φ(τ, y) for (φ(τ)) (y)) and V (s) is the Laplace trans-
form of v given by (3.4).

To discretize the time convolution we split the time interval [0, T ] into N+1 time
steps of equal length Δt = T/N and compute an approximate solution at the discrete
time levels tn = nΔt. The continuous convolution operator V (∂t) at the discrete
times tn is replaced by the discrete convolution operator, for n = 0, 1, . . . , N ,

(3.1)
(
V (∂Δt

t )φΔt
)
(tn) :=

n∑
j=0

ωΔt
n−j(V )φΔt(tj) .

The convolution weights ωΔt
n (V ) are defined below (see (3.3)); whenever the under-

lying operator v, respectively, V , is clear from the context, we will write ωΔt
n . The

time-discrete problem is given as follows: Find φj(·) = φΔt(·, tj), such that

(3.2)
n∑
j=0

(
ωΔt
n−jφj

)
(x) = gn(x) , n = 1, . . . , N, x ∈ Γ,

where gn(x) is some approximation to g(x, tn), or g(x, tn) itself.
For the derivation, the general framework, and various applications, we refer the

reader to [29], [30], [31], and for our concrete problem to [23]. If the time discretization
is related to the unconditionally stable backward difference formula of second order
(BDF2) scheme, the convolution weights ωΔt

n are implicitly defined by

(3.3) V

(
γ(ζ)
Δt

)
=
∞∑
n=0

ωΔt
n ζn, |ζ| < 1.

Here, V (s) : H−1/2(Γ) → H1/2(Γ), Re s > 0, is the single layer potential for the
Helmholtz operator ΔU − s2U = 0,

(3.4) (V (s)ϕ) (x) =
∫

Γ

K(‖x− y‖, s)ϕ(y)dΓy, where K(d, s) :=
e−sd

4πd
.

Note that K is the Laplace transform of the original time domain kernel function
(2.3). The function γ (ζ) is the quotient of the generating polynomials of the BDF2
scheme and is given by

γ (ζ) =
1
2
(
ζ2 − 4ζ + 3

)
.

3.2. A decoupled system of Helmholtz problems. As recommended in
[29, 31], the convolution weights ωΔt

j can be numerically computed by applying the
trapezoidal rule to its representation as a contour integral,

(3.5) ωΔt
j (V ) =

1
2πi

∮
C

V (γ(ζ)/Δt)
ζj+1

dζ,

where C can be chosen as a circle centered at the origin of radius λ < 1. The
approximate convolution weights are then given by the scaled inverse discrete Fourier
transform

ωΔt,λ
j (V ) :=

λ−j

N + 1

N∑
l=0

V (sl)ζ
lj
N+1, where ζN+1 = e

2πi
N+1 , sl =

γ(λζ−lN+1)
Δt

.
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Let us extend the above two formulae to negative indices j < 0; note that this implies
ωΔt
j = 0 for j < 0. As N → ∞ or λ → 0, we have ωΔt

j − ωΔt,λ
j = O(λN+1),

j = −N, . . . , N ; see Proposition 5.4. By extending the sum in (3.1) to j = N and
substituting the approximate weights in (3.2), we obtain the following new system of
equations for the new unknown φΔt,λ:

(3.6)
(
V (∂Δt,λ

t )φΔt,λ
)

(tn) :=
N∑
j=0

ωΔt,λ
n−j (V )φλj = gn, n = 0, 1, . . . , N.

The effect of the approximation on the difference between φΔt,λ and φΔt is discussed
later. Substituting the definition of ωΔt,λ in (3.6), we obtain the system of equations

(3.7)
λ−n

N + 1

N∑
l=0

(
V (sl)φ̂l

)
(x)ζnlN+1,= gn(x), n = 0, 1, . . . , N,

where

φ̂l :=
N∑
j=0

λjφλj ζ
−lj
N+1.

Note that the inverse transform is given by

(3.8) φλl =
λ−l

N + 1

N∑
j=0

φ̂jζ
lj
N+1.

Now, notice that, after multiplying by λn, applying the discrete Fourier transform
with respect to n to both sides gives N + 1 decoupled problems as follows:

(3.9)
(
V (sl)φ̂l

)
(x) = ĝl(x) ∀x ∈ Γ,

where

ĝl(x) =
N∑
n=0

λngn(x)ζ−lnN+1.

We have thereby reduced the problem of solving numerically the wave equation
to a system of Helmholtz problems with complex wave numbers sl, l = 0, 1, . . . , N .
An example of the range of frequencies is given in Figure 1.

Remark 3.1. An important remark to make here is that

V
(
∂Δt,λ
t

)
φΔt,λ = g implies φΔt,λ = V −1

(
∂Δt,λ
t

)
g.

This can be seen by applying the scaled discrete inverse Fourier transform (see (3.8))
to

φ̂l = V −1(sl)ĝl,

thereby obtaining

φλn =
λ−n

N + 1

N∑
l=0

φ̂lζ
nl
N+1 =

λ−n

N + 1

N∑
l=0

V −1(sl)ĝlζnlN+1 =
N∑
j=0

ωΔt,λ
n−j (V −1)gj .

The last step is obtained from the definition of ĝl and ωΔt,λ
n (V −1); see also (3.6) and

(3.7). This fact will help us in obtaining optimal error and stability estimates.
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Fig. 1. A range of complex frequencies for N = 256, T = 2, and λN = 10−4. For this example
it holds that Re sn > 4.6, n = 0, 1, . . . , N .

3.3. Spatial discretization. Galerkin boundary element methods. In the
previous section we derived the following semidiscrete problem: For n = 0, 1, . . . , N,
find φλn ∈ H−1/2 (Γ) such that

(3.10)
N∑
j=0

ωΔt,λ
n−j φ

λ
j = gn, n = 0, 1, . . . , N.

We have further shown that the above system is equivalent to a system of decoupled
Helmholtz equations

(3.11)
(
V (sl)φ̂l

)
(x) = ĝl(x) ∀x ∈ Γ.

In this paper we use a Galerkin boundary element method for the spatial dis-
cretization. Let G be a regular (in the sense of Ciarlet [11]) boundary element mesh
on Γ consisting of shape regular, possibly curved, triangles. For a triangle τ ∈ G, the
(regular) pull-back to the reference triangle τ̂ := conv

{(
0
0

)
,
(
1
0

)
,
(
0
1

)}
is denoted by

χτ : τ̂ → τ . The space of piecewise constant, discontinuous functions is

S−1,0 := {u ∈ L∞ (Γ) : ∀τ ∈ G : u|τ ∈ P0} ,
and, alternatively, we consider the space of continuous, piecewise linear functions

S0,1 :=
{
u ∈ C0 (Γ) : ∀τ ∈ G : (u ◦ χτ )|τ ∈ P1

}
for the space discretization. As a basis for S−1,0, we choose the characteristic functions
for the panels τ ∈ G, while the basis for S0,1 consists of the standard hat functions,
lifted to the surface Γ. The general notation is S for the boundary element space and
(bm)Mm=1 for the basis. The mesh width is given by

h := max
τ∈G

hτ , where hτ := diam (τ) .
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For the space-time discrete solution at time tn we employ the ansatz

(3.12) φh,λn (y) =
M∑
m=1

φn,mbm(y) ,

where (φn,m)Mm=1 ∈ R
M are the nodal values of the discrete solution at time step tn.

Therefore, for the Helmholtz problems (3.11), the corresponding ansatz is

(3.13) φ̂hl (y) =
M∑
m=1

φ̂l,mbm(y),

where the relationship between φ̂l,m and φn,m is given by φ̂l,m =
∑N

n=0 λ
nφn,mζ

ln
N+1.

To solve for the coefficients φ̂l,m we impose the integral equations (3.11) not
pointwise but in a weak form as follows: Find φ̂hl ∈ S of the form (3.13) such that

(3.14)
M∑
m=1

φ̂l,m

∫
Γ

∫
Γ

K(‖x− y‖, sl)bm(y)bk(x)dΓydΓx =
∫

Γ

ĝl(x) bk(x)dΓx,

for l = 0, 1, . . . , N, k = 1, 2, . . . ,M . Note that this is equivalent to imposing (3.10) in
a weak form in order to compute φh,λn .

4. Algorithmic realization and sparse approximation. Applying the
Galerkin boundary element method to the time-discrete equations (3.1) obtained by
convolution quadrature results in a block-triangular, block Toeplitz system, where
each block is a dense Galerkin boundary element matrix; see [31] and [22]. This block
system can be solved by using FFT techniques (see [24]), with computational complex-
ity of O(M2N log2N) and a storage complexity of O(M2N). Alternatively (see [28]),
one can approximate the block matrices An by a cutoff strategy and panel-clustering
and directly solve the system without the FFT. This reduces the storage cost signifi-
cantly, while the computational complexity is O(M2N1+s), where the small value of
s depends on the chosen discretization. By rewriting (3.1) as a system of decoupled
Helmholtz problems, we are able to combine the advantages of both approaches.

We note that also the classical Galerkin discretization of the retarded boundary
integral equation leads to a block Toeplitz system. Solving this system (see [3], [20])
nevertheless results in suboptimal, higher than linear, computational complexity.

4.1. Reduction of the number of Helmholtz problems to be solved. A
closer look at the Helmholtz problems tells us that only half of the problems need
to be solved. Since φ̂l, ĝl, and sl are discrete Fourier transforms of real data, we
know that they are, for l = 1, 2, . . . , 	N2 +1
, the complex conjugates of φ̂j , ĝj, sj , for
j = �N2 + 2�, . . . , N + 1; for the case of sl see Figure 1. Most importantly, for us this
means that

(4.1) φ̂N+2−j = φ̂j , j = 1, 2, . . . ,
⌈
N

2
+ 1
⌉
.

Depending on the properties of the right-hand side g, it is possible to avoid
the solution of a much larger number of Helmholtz problems without destroying the
accuracy of the overall approximation. A particularly favorable case arises if g as a
function of time can be extended to R as a smooth function with support contained
in [0, T ].
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Fig. 2. We plot max‖x‖=1 |ĝn(x)| for N = 256, T = 2, λN = 10−8, and where g(x, t) is the
Gaussian pulse given by (6.5). The solution to the nth Helmholtz problem, with n in the central
plateau in the above plot, is accurately approximated by zero.

Let us assume that for some x ∈ Γ, g(x, ·) ∈ C∞([0, T ]), and that

∂nt g(x, 0) = ∂nt g(x, T ) = 0 ∀n ∈ N0.

Further, define gλ(x, t) := λt/Δtg(x, t). Then it is clear that gλ(x, ·) ∈ C∞([0, T ])
and that also all the partial derivatives with respect to time vanish at the end points
of the time interval [0, T ]. The reason for defining this function is that ĝn(x) is an
approximation of a Fourier coefficient of gλ(x, t), as we see next.

Let gλ(x, ·) be extended to the domain [0, T + Δt] by zero (i.e., in a smooth way)
and further extended to R in a periodic way with period T + Δt. Let then

gλ(x, t) =
∞∑

j=−∞
aj e

2πit
T+Δt , aj =

1
T + Δt

∫ T+Δt

0

gλ(x, τ)e
−2πijτ
T+Δt dτ

be its Fourier expansion. Approximating the integral in the definition of the coef-
ficients aj by the trapezoidal rule, we obtain exactly the values 1

N+1 ĝj(x), where,
assuming N is even,

aj ≈ 1
N + 1

N∑
n=0

gλ(x, tn)e
−2πijn

N+1 =
1

N + 1
ĝj(x) for 0 ≤ j ≤ N

2
.

See Figure 2 for an example of a right-hand side with the above properties and the
decay of its Fourier coefficients. The solutions of Helmholtz problems with right-hand
sides that are close to zero (i.e., all the right-hand sides on the central plateau in
Figure 2) can be set to zero with no adverse affect on the accuracy of the overall
method.
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Remark 4.1. A right-hand side g with the above properties can be thought of as
a smooth signal of finite durability. If g does not have these properties, it may still
be possible to split the signal into a number of smooth and time-limited signals.

4.2. Data-sparse approximation. To find a solution to (3.9) we need to solve
a number of dense linear systems, each of size M ×M . The cost of solving a single
system by a direct method is O(M3), and if a good preconditioner for an iterative
method is available, this can be reduced to O(M2). In both cases the storage costs
are O(M2). The cost of recovering the values φj,m from φ̂l,m is negligible since it can
be done exactly (if we ignore errors due to finite precision arithmetic) and efficiently
using the FFT in time O(MN logN); see also Remark 5.11.

One possibility for reducing these costs is to use panel-clustering or fast multipole
techniques. We explain the basic idea behind these methods.

Let An be the nth linear system to be solved in (3.9), i.e.,

(An)kj =
∫

Γ

∫
Γ

K(‖x− y‖, sn)bj(y)bk(x)dΓydΓx.

Further, we denote by I the index set I := {1, 2, . . . ,M}, refer to subsets τ ⊂ I as
clusters, and define corresponding subsets of the boundary Γ by

Γτ := ∪j∈τ supp bj .

We call a pair of clusters τ × σ a block. The corresponding block of the matrix An is
then given by

(An|τ×σ)kj =

{
(An)kj if k ∈ τ and j ∈ σ,
0 otherwise.

In the following definition, B(c, r) denotes the ball centered at c ∈ R
3 and radius

r > 0.
Definition 4.2. A block b = τ × σ is said to be η-admissible, for some η < 1, if

there exist rτ , rσ > 0 and cτ , cσ ∈ R
3 such that

rτ + rσ ≤ η‖cτ − cσ‖ and Γτ ⊂ B(cτ , rτ ), Γσ ⊂ B(cσ, rσ).

For an admissible block, our goal is to find a separable approximation of the
following fundamental solution:

(4.2) K(|x− y|, s) ≈
L∑

l,k=1

uτk(x)s
τ,σ
kl v

σ
l (y), x ∈ Γτ , y ∈ Γσ.

As indicated by the notation, we require that the basis functions uτk(·) (respectively,
vσl (·)) depend only on the cluster τ (respectively, σ), and that the coefficients sbk,l de-
pend only on the block cluster b = τ ×σ. Such an expansion allows us to approximate
the block An|τ×σ of the matrix by a low rank matrix as follows:

(4.3) An|τ×σ ≈ USV �,
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where

(U)kl :=

{∫
Γτ
uτl (x)bk(x)dΓx if k ∈ τ, l = 1, . . . , L,

0 otherwise,
(4.4)

(V )jl :=

{∫
Γσ
vσl (y)bj(y)dΓy if j ∈ σ, l = 1, . . . , L,

0 otherwise,
(4.5)

and (S)lm := sτ,σlm . Note that for An|τ×σ we need O(|τ ||σ|) amount of storage, whereas
for USV � we need O(|τ |L + |σ|L). If L � max{|τ |, |σ|}, it is significantly advanta-
geous to use the low rank approximation of the block.

An extensive literature exists on the use of these methods to speed up the solution
of the Helmholtz integral equations discretized by Galerkin boundary elements [2],
[5], [13], [35], [36]. Most of this literature is, however, focused on the Helmholtz
problem with a purely real wave number. For a purely real wave number the single
layer potential representation is not always invertible; therefore certain stabilization
methods need to be used. In our case the imaginary part of the wave number is strictly
positive and we can use the single layer representation. The details of applying these
“fast” methods to our case, together with algorithms and complexity estimates, will
be given in a forthcoming paper. Here we investigate the effect of perturbations, due
to the application of the fast methods, on the stability and accuracy. We assume that
the kernel function K(·, sl) in (3.9) is replaced by a separable approximationKpc(·, sl)
such that

(4.6) |K(d, sl)−Kpc(d, sl)| ≤ δ

d
for some δ > 0.

The solution of the resulting perturbed system is denoted by φ̂pc
l,m. To obtain a uniform

approximation (4.6), the length of expansion L needs to depend both on the block
cluster b = τ × σ and on sl. Typically L is chosen so that

(4.7) L ≥ C
(

Re sl‖cτ − cσ‖+ log
1
δ

)d−1

,

where C depends on the admissibility parameter η, and d = 2, 3 is the space dimen-
sion. Explicit and sharp estimates on the optimal choice of L are difficult to obtain,
especially for complex wave numbers. In practice, one would estimate the error by a
product of a Bessel function and a Hankel function; see, e.g., [1], [9]. Nevertheless, an
important observation that can be made is that once L is greater than some threshold,
the threshold depending on sl, the convergence is exponential. This means that high
accuracy can be obtained at little extra cost.

5. Error analysis. In the previous section we have introduced a method to
reduce the numerical solution of the wave equation to a system of Helmholtz problems.
We have also described two ways of reducing the cost of solving these systems by
introducing further approximations. In this section we investigate the stability and
convergence of both the basic method and the further approximations. This allows
us to adjust the control parameters of these methods to the required accuracy in an
optimal way.

Let the approximation to the unknown density φ(x, tn) obtained by the pure
Lubich’s method, i.e., with exact convolution weights, be given by φhn ∈ S. In [31] it
is proved that if the data g are sufficiently smooth and compatible, then

(5.1) ‖φhn(·)− φ(·, tn)‖H−1/2(Γ) ≤ C(Δt2 + hm+3/2),
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where m = 0 for a piecewise constant basis and m = 1 for a piecewise linear basis.
By “smooth and compatible” we mean that g ∈ H5

0 ([0, T ];H1/2(Γ)), where

Hr
0 ([0, T ];H1/2(Γ)) :=

{
g : Γ× [0, T ]→ R : there exists g∗ ∈ Hr(R;H1/2(Γ))

with g = g∗|[0,T ] and g∗ ≡ 0 on (−∞, 0)
}
,

Hr(R;H1/2(Γ)) :=
{
g : Γ× R→ R :

∫ ∞
−∞

(1 + |ω|)2r‖(Fg)(·, ω)‖2H1/2(Γ)dω <∞
}
,

and F denotes the integral Fourier transform with respect to the time variable t ∈ R.
Our goal is to prove that the parameters in our method can be chosen so that

convergence rates in (5.1) are preserved.

5.1. Errors due to the perturbation of ωΔt
n . Let Vh(s) : S → S be defined

by

(Vh(s)ϕ, ψ)L2(Γ) := (V (s)ϕ, ψ)L2(Γ) ∀ϕ, ψ ∈ S.
Whenever necessary, we will identify the inner product (·, ·)L2(Γ) with its extension to
the dual pairing H−1/2(Γ) × H1/2(Γ). The solution by the convolution quadrature,
i.e., with exact weights, is given by (see equation (5.5) in [31])

φh = V −1
h (∂Δt

t )gh,

whereas with the perturbed weights the solution is given by

φh,λn =
(
V −1
h (∂Δt,λ

t )gh
)

(tn)

(see Remark 3.1), where gh ∈ S is the L2-projection of g on S as follows:

(gh, ψ)L2(Γ) = (g, ψ)L2(Γ) ∀ψ ∈ S.
For the remainder of the paper we will make use of the following notation:

(5.2) ‖ · ‖+1 = ‖ · ‖H1/2(Γ)←H−1/2(Γ) and ‖ · ‖−1 = ‖ · ‖H−1/2(Γ)←H1/2(Γ).

Lemma 5.1. Let Re s ≥ σ0 > 0. Then

‖V −1
h (s)‖−1 ≤ Cstab

min(1, σ0)
|s|2.

Proof. The result follows immediately from the definition of Vh(s) and the coer-
civity estimate for V (s) as follows (see [3]):

Re (sV (s)ψ, ψ)L2(Γ) ≥ C−1
stab

min(1, σ0)
|s| ‖ψ‖2H−1/2(Γ).

Remark 5.2. For ω ∈ R, there holds

γ
(
λeiω

)
=

(λ+ 3) (1− λ) + 8 (1− λ) λ sin2 ω
2 + 8λ2 sin4 ω

2

2

− iλ sinω
(
2 (1− λ) + λ

(
1 + 2 sin2 ω

2

))
.
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For the real part, we obtain the estimate

Re(γ
(
λeiω

)
/Δt) ≥

(
1− λ

2
+ 4λ2 sin4 ω

2

)/
Δt.

For 0 ≤ λ < 1, we have the uniform bound with respect to ω,

Re
γ
(
λeiω

)
Δt

≥ Re
γ (λ)
Δt

=
(3 + λ)(1 − λ)

2Δt
≥ 3(1− λ)

2Δt
.

For the modulus, the (rough) upper estimate holds as follows:∣∣∣∣∣γ
(
λeiω

)
Δt

∣∣∣∣∣ ≤ C

Δt
with C = 53/2.

Lemma 5.3. Let Wh(s) := V −1
h (s)/s2. Then,

(5.3) ‖ωΔt
j (Wh)‖−1 ≤ 2CstabeT.

Further, for sufficiently smooth and compatible g, the identities

(5.4) V −1
h (∂Δt

t )g = Wh(∂Δt
t )

(
(∂Δt
t )2g

)
and, for N ≥ 4,

(5.5) V −1
h (∂Δt,λ

t )g = Wh(∂
Δt,λ
t )

(
(∂Δt
t )2g

)
,

hold, where (∂Δt
t )2g denotes the twofold application of the multistep approximation,

which in our case is the BDF2 scheme.
Proof. The bound for ‖ωΔt

j (Wh)‖−1 follows from the Cauchy estimate by choosing
the circle with radius e−Δt/T as the integration contour in (3.5), Remark 5.2, and
Lemma 5.1 as follows:

‖ωΔt
j (Wh)‖−1 ≤ ejΔt/T max

‖z‖=1

∥∥∥Wh

(
γ(e−Δt/T z)/Δt

)∥∥∥
−1

≤ Cstab

min(1, (1− e−Δt/T )/(2Δt))
ejΔt/T ≤ 2CstabTe

j/N .

Applying the (scaled) inverse discrete Fourier transform to the identity V −1
h (sl)ĝl =

Wh(sl)s2l ĝl, we see that V −1
h (∂Δt,λ

t )gh = Wh(∂
Δt,λ
t )g̃h, where

g̃hn =
λ−n

N + 1

N+1∑
l=0

ĝhl s
2
l ζ
ln
N+1, sl =

γ(λζ−lN+1)
Δt

.

The inverse discrete Fourier transform of s2l is

(5.6)
1

N + 1

N+1∑
l=0

(
γ(λζ−lN+1)

Δt

)2

ζljN+1 ≈
λj

2πi

∮
C

(γ(λζ)/Δt)2

ζj+1
dζ =

λj

Δt2
δj ,

where

(γ(ζ))2 =
∞∑

k=−∞
δkζ

k =
(

3
2
− 2ζ +

1
2
ζ2

)2

.
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Since (γ(ζ))2 is a polynomial of order 4 and N ≥ 4, the coefficients λj

Δt2 δj are repro-
duced exactly, without any quadrature error in (5.6). Therefore

g̃hn =
1

Δt2

n∑
j=0

δn−jghj ,

which is exactly the result of applying the BDF2 multistep method twice, where it
is implicitly assumed that g(t) = 0 for t ≤ 0. The result for V −1

h (∂Δt
t )gh is proved

similarly, but with no restriction on N ; see also [31].
Proposition 5.4. Let 0 < λ < 1. Then

‖V −1
h (∂Δt

t )gh − V −1
h (∂Δt,λ

t )gh‖H−1/2(Γ) ≤ 2CstabeT
2 λN+1

1− λN+1
Δt−1.

Proof. Let aj := λjωΔt
j (Wh), and let âj := λjωΔt,λ

j (Wh), Wh(s) = V −1
h (s)/s2.

Then âj is the discrete Fourier transform approximation to aj for j = −N, . . . , N and
(see [25])

‖aj − âj‖−1 =

∥∥∥∥∥
∞∑
l=1

aj+l(N+1) + aj−l(N+1)

∥∥∥∥∥
−1

≤
∞∑
l=1

‖aj+l(N+1)‖−1

≤ λj
∞∑
l=1

λl(N+1)‖ωΔt
j+l(N+1)‖−1 ≤ 2CstabeTλ

j λN+1

1− λN+1
,

where we have used the bound (5.3). Therefore

‖ωΔt
j (Wh)− ωΔt,λ

j (Wh)‖−1 ≤ 2CstabT
λN+1

1− λN+1
,

and the result follows from the definition of the discrete convolution and identities
(5.4) and (5.5).

Theorem 5.5. Let the exact solution φ(·, t) be in Hm+1(Γ) for any t ∈ [0, T ],
data g ∈ H5

0 ([0, T ];H1/2(Γ)), 0 < λ < 1, and let the boundary element space be
S = Sm−1,m for m ∈ {0, 1}. Then the discrete solution

φh,λn =
(
V −1
h (∂Δt,λ

t )gh
)

(tn)

satisfies the error estimate

‖φh,λn − φ(·, tn)‖H−1/2(Γ) ≤ Cg
(

λN+1

1− λN+1
T 2Δt−1 + Δt2 + hm+3/2

)
,

where Cg depends on the right-hand side g, Cstab, and the time interval length T .
Proof. The result is a direct consequence of Proposition 5.4 and (5.1); see [31,

Theorem 5.4].

5.2. Error due to the perturbation of Vh(s). We investigate the effect of
perturbing Vh(s), in particular the effect of approximate evaluation of the kernel
K(d, s) by separable expansions. If these perturbations could be chosen to be analytic
in s, then a stability and error estimate from Lemma 5.5 in [31] could be used, in
which there is no loss of powers of Δt. Unfortunately due to numerical stability issues
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(see [5], [9], [34]), this is not the case for the problem at hand, i.e., different expansions
need to be used for different values of s. Hence we will simply assume that

(5.7) ‖V εh (sl)− Vh(sl)‖+1 ≤ ε, l = −N,−N + 1, . . . , N − 1, N,

and investigate how this perturbation affects the final solution.
Lemma 5.6. Let Re s > σ0 > 0 and ε < 1

2C
−1
stab

min(1,σ0)
|s|2 . Then (V εh (s))−1 is

bounded and

‖ (V εh (s))−1 ‖−1 ≤ 2Cstab
|s|2

min(1, σ0)
.

Proof. Let us write

V εh (s) = Vh(s)
[
I − V −1

h (s) (Vh(s)− V εh )
]
.

From the estimate ‖V −1
h (s)‖−1 ≤ Cstab|s|2/min(1, σ0) (see Lemma 5.1), we see that

ε < 1
2C
−1
stab min(1, σ0)/|s|2 is sufficient for (V εh (s))−1 to exist and to be bounded as

above.
Lemma 5.7. Let minl=0,1,...,N Re sl > σ0 > 0 and ε < 1

2Cstab
min(1,σ0)

maxl=0,1,...,N |sl|2 .
Then

‖ωΔt,λ
j (Qh)− ωΔt,λ

j (Qεh)‖−1 ≤ CTλ−jεΔt−1,

where

C =
(

Cstab

min(1, σ0)

)2

, Qh(s) :=
V −1
h (s)
s4

, and Qεh(s) :=
(V εh (s))−1

s4
.

Proof. Using the fact that Q−1
h (s) = s4Vh(s), we obtain the bound

‖Qh(sl)−Qεh(sl)‖−1 = ‖Qh(sl)(s4l V εh (sl)− s4l Vh(sl))Qεh(sl)‖−1 ≤
(

Cstab

min(1, σ0)

)2

ε.

From this and the definition of the perturbed convolution weights, the result
follows.

Let us define the solution of the ε-perturbed convolution equation by

φλ,h,ε := (V εh )−1(∂Δt,λ
t )g = Qεh(∂

Δt,λ
t )

(
(∂Δt
t )4g

)
and, as before,

φλ,h := V −1
h (∂Δt,λ

t )g = Qh(∂
Δt,λ
t )

(
(∂Δt
t )4g

)
.

In the next result we estimate the difference between the two.
Proposition 5.8. Let minl=0,1,...,N Re sl > σ0 > 0, let

ε <
1
2
Cstab

min(1, σ0)
maxl=0,1,...,N |sl|2 ,

and let the data g be sufficiently smooth and compatible. Then

‖φλ,h,εn − φt,λ,hn ‖H−1/2(Γ) ≤ CεT 2λ−NΔt−2,
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with C > 0 as in Lemma 5.7.
Proof. The result is a direct consequence of the above lemma.
The above result, together with Remark 5.2, implies that to obtain optimal con-

vergence it is sufficient to insure that ε ≤ CλNΔt4.
Let us now investigate the effect of perturbations on the kernel function K(d, s).

In order to do this, we assume

(5.8) |K(‖x− y‖, sl)−Kpc(‖x− y‖, sl)| ≤ δ 1
‖x− y‖ ∀x, y ∈ Γ

for l = 0, 1, . . . , N , and define the operator V pc
h (s) : S → S by

(V pc
h (s)ψ, ϕ)L2(Γ) =

∫
Γ

∫
Γ

Kpc(‖x− y‖, s)ψ(y)ϕ(x)dΓydΓx.

Proposition 5.9. Let (5.8) hold. Then, there exists C0 > 0 such that

‖V pc
h (sl)− Vh(sl)‖+1 ≤ C0h

−1δ.

Hence if δ ≤ 1
2C0Cstabh

min(1,σ0)
maxl |sl|2 ≤ ChΔt2, the estimate

‖pcφλ,hn − φλ,hn ‖H−1/2(Γ) ≤ CδTh−1λ−NΔt−2

holds, where

pcφλ,h = (V pc
h )−1 (∂Δt,λ

t )g.

Proof. Let ϕ ∈ S. The well-known L2-continuity of the single layer potential for
the Laplacian and a scaling inequality for boundary element functions lead to

‖(V pc
h (sl)− V pc

h (sl))ϕ‖H1/2(Γ)

≤ δ sup
ψ∈S(Γ)

‖ψ‖
H−1/2(Γ)

=1

∫
Γ×Γ

|ϕ (y)| |ψ (x)| 1
‖x− y‖dsxdsy

≤ Cδ sup
ψ∈S(Γ)

‖ψ‖
H−1/2(Γ)

=1

‖ϕ‖L2(Γ) ‖ψ‖L2(Γ) ≤ Ch−1δ ‖ϕ‖H−1/2(Γ) .

The estimate of the error in the solution is then a direct consequence of Proposition 5.8
and Remark 5.2.

In the following result, the binary relation A � B is used to denote the existence
of a constant C independent of any discretization parameters such that A ≤ CB.
Further, A ∼ B implies A � B and B � A.

Corollary 5.10. Let the conditions of Theorem 5.5 be satisfied, let (5.8) hold,
and let

hm+3/2 � Δt2, λN+1 ∼ Δt3, δ � λNhΔt4 � h7m/2+25/4.

Then the optimal rate of convergence is achieved,

‖pcφλ,hn − φ(·, tn)‖H−1/2(Γ) ≤ CΔt2,
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where C depends on the data g.
Remark 5.11. According to the above result, λ should be chosen as λ ∼ Δt3/(N+1)

= e
3

N+1 log T
N . Since the rounding errors, in the same manner as the errors due to panel-

clustering, are magnified by λ−j , λ should be chosen in the interval
√

eps < λN < 1,
where eps is the machine accuracy. In IEEE double precision this is approximately
10−16; therefore the accuracy of the method is limited by the choice λ > 10−8/N . This
accuracy limit can, however, be improved if an n-trapezoidal rule is used to compute
the weights ωΔt,λ

j with n = jN , j > 1.
Remark 5.12. The condition on the accuracy of the panel-clustering approxima-

tion is rather stringent. However, since the convergence of the separable expansion is
exponential for a large enough length of expansion L (see (4.7)), the computational
costs of the panel-clustering method depend only logarithmically on the required ac-
curacy. Therefore the overall computational cost is not significantly affected.

If we had assumed that V pc
h (s)− Vh(s) is analytic in s and could be bounded by

C|s|2, we could be obtained significantly better error estimates by using Lemma 5.5
in [31]. Unfortunately, due to the well-known numerical stability issues with the mul-
tipole expansions for the Helmholtz kernel [5], [9], [34], different types of expansions
need to be used for different admissible blocks; the choice of the expansion depends
on the wave number sl and the size of the block. This restricts us from using the
more favorable results of Lemma 5.5 in [31].

5.3. Error due to the reduction of the number of linear systems.
Corollary 5.13. Let 0 ≤ λ < 1 and σl = Re sl. Then

‖φ̂hl ‖H−1/2(Γ) ≤ C1(Δt)−2‖ĝl‖H1/2(Γ),

where C1 = 53 Cstab
min(1,σl)

.
Proof. The result is a direct consequence of Lemma 5.1 and Remark 5.2.
Let Nz ⊂ {0, 1, . . . , N} determine the Helmholtz problems, the solution of which

will be computed; the rest will be approximated by zero. Then we define the resulting
approximation to φh,λ by

∅φh,λn (x) :=
λ−n

N + 1

∑
l∈Nz

φ̂hl (x)ζ
ln
N+1.

Corollary 5.14. Let n ∈ {0, 1, . . . , N}. If

max
l/∈Nz

‖ĝl‖H1/2(Γ) ≤ C−1
1 λn(Δt)4,

then we obtain optimal order convergence at time step tn:

‖∅φh,λn − φh,λn ‖H−1/2(Γ) ≤ Δt2.

Proof. The proof follows directly from Corollary 5.13.
Next we show that if the right-hand side is smooth and of finite duration, it

is sufficient to solve only a few Helmholtz systems. Let us introduce the space of
functions that are zero at both t = 0 and t = T as follows:

Hr
00([0, T ];H1/2(Γ)) :=

{
g : Γ× [0, T ]→ R : there exists g∗ ∈ Hr(R;H1/2(Γ))

with g = g∗|[0,T ] and supp g∗ ⊂ [0, T ]
}
.
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Theorem 5.15. Let g ∈ Hr
00([0, T ];H1/2(Γ)) for some r ≥ 3.5, and let ε > 0

be given. For any N ∈ N let λ := ε
1
N . Then, Nz can be chosen so that #Nz ≤

Cε−
1

r+1/2N
4

r+1/2 and the optimal order convergence is retained. The constant C de-
pends on r, (log ε)/T , and g.

Proof. Let gλ(x, t) := λt/Δtg(x, t) = ε
t
T g(x, t) = et

log ε
T g(x, t) on t ∈ [0, T ]. Then

we see that gλ is independent of N and that gλ ∈ Hr
00([0, T ];H1/2(Γ)). Then for ω ∈

R, ‖(Fgλ)(·, ω)‖H1/2(Γ) = o(|ω|−r−1/2). Taking ωj = 2πj/(T + Δt) = 2πjN/(T (N +
1)), we define

aj := ‖(Fgλ)(·, ωj)‖H1/2(Γ) = o(j−r−1/2), j ∈ Z.

Then using the aliasing formula (see [25]), we arrive at the following estimate for ĝn,
n = 1, . . . , N/2− 1:

‖ĝn‖H1/2(Γ) ≤ an +
∑

k>N/2

ak = o(n−r−1/2 +N−r+1/2) = o(n−r−1/2).

The constants in the o(·) notation depend only on r, (log ε)/T , ε, and g. The result
now follows from Corollary 5.14.

6. Numerical experiments. In this section we present the results of numerical
experiments. Except for one simple example, the experiments will be done in two
dimensions. All the steps in the method remain the same in two dimensions, except
that the fundamental solution for the wave equation is given by

(6.1) k2D(d, t) =
H(t− d)

2π
√
t2 − d2

,

where H is the Heaviside function,

H(t) =

{
0 for t < 0,

1 for t > 0.

The Laplace transform K2D(d, s) is again the fundamental solution of the Helmholtz
equation ΔU − s2U as follows:

(6.2) K2D(d, s) =
i
4
H

(1)
0 (isd),

where H(1)
0 (·) is the zero order Hankel function of the first kind.

Let us consider the case of Γ being the unit ball in R
2 or R

3 and a right-hand
side that is separable in the time and the spatial variables: g(x, t) = g(t)e(x), where
e(x) is an eigenfunction of the single layer potential V (s) with the eigenvalue λl(s).
In two dimensions the eigenfunctions are the complex exponentials eilθ and λl(s) =
iπ
2 Jl(is)Hl(is), whereas in three dimensions these are the spherical harmonics Y ml (θ, ϕ)
with λl(s) = −sjl(is)hl(is); we have used the standard polar/spherical coordinates to
describe the eigenfunctions. Here Jl(·) (respectively, jl(·)) are cylindrical (respectively,
spherical) Bessel functions of order l, whereas H(1)

l (·) (respectively, h(1)
l (·)) are the

cylindrical (respectively, spherical) Hankel functions of the first kind and order l. The
problem of finding the unknown density φ(x, t) can then be reduced to the single,
time, dimension. This can be seen by replacing the fundamental solution k in the
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single layer representation formula by the inverse Laplace transform of its Laplace
transform K as follows:

g(t)e(x) =
∫ t

0

∫
Γ

k(t− τ, ‖x− y‖)φ(τ, x)dΓydτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτ
∫

Γ

K(s, ‖x− y‖)φ(t− τ, y)dΓydτds

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτ (V (s)φ(t − τ, ·))(x)dτds, x ∈ Γ, for some σ > 0.

Therefore, we can use the ansatz φ(x, t) = φ(t)e(x) to reduce the problem to finding
φ(t) such that

g(t) =
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτλl(is)φ(t− τ)dτds.

Hence we need to solve a convolution integral equation in one dimension as follows:

(6.3) g(t) =
∫ t

0

λ̌l(τ)φ(t − τ)dτ,

where λ̌l(·) is the inverse Laplace transform of λl(·). The latter equation can then be
solved by Lubich’s original method, which makes use of only λl(·) and not its inverse
Laplace transform. The first few numerical examples will be of this type.

6.1. Radial solution of scattering by unit sphere. In this example we con-
sider the three-dimensional case, Γ = S

2. Let g(x, t) = g(t) be constant for a fixed
time t, i.e., e(x) = 2

√
πY 0

0 = 1. In this particularly simple case it can be shown that

φ(t) = 2g′(t), t ∈ [0, 2].

The restriction to the interval [0, 2] is a consequence of the fact that the diameter of
the sphere is 2. For time t > 2 the expression for φ(t) is more complicated.

The right-hand side of the nth Helmholtz problem is a constant,

ĝn =
N∑
j=0

λjg(tj)ζ
−nj
N+1,

and the solution of the Helmholtz problem is also a constant and is given by

φ̂n =
ĝn

λ0(sn)
.

The approximation to the unknown density at time step tn is given by

φn :=
λ−n

N + 1

N∑
j=0

φ̂jζ
nj
N+1.

If λ is chosen small enough, theoretical estimates predict the following behavior of
the error: (

N∑
n=0

Δt|φ(tn)− φn|2
)1/2

≤ CΔt2.
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Table 1

The results for scattering by unit sphere with g(x, t) = sin5(t) and λ = Δt3/N .

N Error Rate
4 1.44 –/–
8 0.45 1.68
16 0.12 1.90
32 0.032 1.94
64 0.0081 1.96
128 0.0020 1.99
256 0.00051 1.99
512 0.00013 2.00
1024 3.2 × 10−5 2.00

One more detail needs to be fixed before the experiments can be started, namely, the
choice of λ. Recall that λ needs to be chosen small enough to insure stability and
accuracy (see Theorem 5.5) but also large enough to avoid numerical instability issues
(see Remark 5.11). As suggested in Remark 5.11, we make the choice

(6.4) λ = max(Δt3/N , eps
1

2N ).

Numerical results for the scattering by unit sphere are given in Table 1 and show that
our theoretical estimates are sharp for this example.

6.2. A nonradial example. In this example we consider the two-dimensional
case. We pick the right-hand side to be g(x, t) = h(t) cos(lθ), where for the space
variable we use the polar coordinate system r ∈ R≥0, θ ∈ [0, 2π). Since cos(lθ) is
an eigenfunction of the single layer potential V (sn), the Helmholtz problems can be
solved exactly. However, to investigate the effect of spatial discretization we solve the
problems using the Galerkin method, and hence obtain an approximation φh,λ(tn, θ)
of the unknown density. To investigate the error, we use the fact that φ(θ, t) =
φ(t) cos(lθ) and solve with high accuracy for φ(t) by applying Lubich’s method to the
one-dimensional problem (6.3). The error measure we use is the following:

‖φ− φh,λ‖−1/2,l2 :=

(
N∑
n=0

Δt‖φ(tn) cos(l·)− φh,λ(tn, ·)‖2H−1/2(Γ)

)1/2

.

The theory predicts the above error to be proportional to hm+3/2 +Δt2, where m = 0
for the Galerkin basis of piecewise constant functions and m = 1 for the basis of
piecewise linear functions. In all the experiments, we choose λ as in (6.4). To see
if the spatial discretization has introduced significant errors, we compute the error
obtained when the Helmholtz problems are solved exactly. The results are given in
the following table:

N 4 8 16 32 64 128

‖φ− φh,λ‖−1/2,l2 0.61 0.24 0.077 0.022 0.0057 0.0015

Comparing these results to Tables 2 and 3, we see that the error due to the discretiza-
tion in space is not significant.

6.3. Reduction of the number of systems. Let us now consider a signal that
is smooth and of nearly limited time duration as follows:

(6.5) g(r, t) = cos(5t− r.α) exp(−1.5(5t− r.α− 5)2), α = (1, 0).
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Table 2

The results for scattering by the unit disk with g(x, t) = sin5(t) cos(3x) and the piecewise con-
stant Galerkin basis S = S−1,0. M is chosen so that h3/2 ∝ Δt2.

N M ‖φ− φh,λ‖−1/2,l2 Rate

4 16 0.78 –/–
8 40 0.27 1.54
16 102 0.084 1.68
32 254 0.023 1.83
64 640 0.0062 1.93
128 1610 0.0016 1.98

Table 3

The results for scattering by the unit disk with g(x, t) = sin5(t) cos(3x) and the piecewise linear
Galerkin basis S = S0,1. M is chosen so that h5/2 ∝ Δt2.

N M ‖φ− φh,λ‖−1/2,l2 Rate

4 22 0.66 –/–
8 40 0.26 1.34
16 68 0.082 1.67
32 116 0.023 1.84
64 204 0.0060 1.93
128 352 0.0015 1.99

Table 4

The results for scattering by the unit disk where the incoming wave is a Gaussian pulse and the
piecewise linear Galerkin basis S = S1,0 is used. The column #Nz shows the number of Helmholtz
problems actually solved.

N #Nz M ‖φ− ∅φh,λ‖−1/2,l2 Rate

4 3 24 2.9 –/–
8 5 40 2.9 −0.03
16 9 68 1.4 1.09
32 17 116 0.42 1.70
64 24 204 0.11 1.92
128 24 352 0.028 1.98
256 24 612 0.0072 1.99

For such a Gaussian pulse our theory predicts that only O(N ε), for any fixed ε > 0,
Helmholtz systems need to be solved to obtain optimal convergence; see also Figure 2.
The results for scattering by the unit disk and for piecewise-linear basis functions
S = S1,0 are given in Table 4. Since we approximate by zero only the solutions of
those Helmholtz problems whose right-hand sides are zero almost to machine precision,
the number of Helmholtz problems #Nz is constant for large enough N . For this
more complicated problem, for each N we have used as the reference solution the
numerical solution using 2N steps in time and the corresponding number of nodes in
the discretization in space.

7. Conclusion. We have described a method that requires the solution of a
number of Helmholtz problems to obtain an approximate solution of the wave equa-
tion in an unbounded, homogeneous medium. We have proved stability and optimal
convergence results for this approach. Further, we have indicated ways in which to
efficiently solve the resulting system of Helmholtz problems. The stability and con-
vergence results of the perturbations introduced by the efficient solvers have also been
presented.

The fast methods we propose using are typically capable of computing a matrix-
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vector product in almost linear time, i.e., O(M logaM), of a single dense M ×M
system arising from the discretization of the Helmholtz single layer potential. In order
to solve efficiently the linear system by an iterative method requiring only matrix-
vector multiplication, a good preconditioner is needed. The investigation of such a
preconditioner is beyond the scope of this paper. With a preconditioned iterative
solver we expect to obtain computational costs which scale linearly, up to logarithmic
terms, with respect to the number of unknowns NM . An important observation
is that in some cases only a few Helmholtz systems need to be solved. Although
this does not change the overall complexity (the discrete Fourier transformation still
requires O(MN logN) operations), it can hugely reduce the absolute time for the
computation. The storage costs will also scale linearly since at any one time only a
single linear system representing the discretization of a Helmholtz problem needs to
be stored. Since all the NM coefficients φj,n are stored, the storage costs are not
better than linear. Crucially, since the Helmholtz problems to be solved are entirely
decoupled, the proposed method is easily parallelizable.

These asymptotic estimates significantly improve both the storage and computa-
tional costs compared to the previously proposed approaches for the solution of the
wave equation using the convolution quadrature discretization in time; see [24] and
[22], [23], [28]. The asymptotic costs of the MOT method presented in [10], [18] are
also almost linear in the number of degrees of freedom. Advantages of our method
include the intrinsic parallel nature of the method, proven convergence and stability
properties, and the relatively simple implementation details. In a forthcoming paper,
algorithmic details for the data sparse approximations, a more in-depth asymptotic
complexity analysis, and large-scale computational results will be presented.

Acknowledgments. We gratefully acknowledge the fruitful discussions with Ch.
Lubich which led to significant improvements in the perturbation analysis.
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Abstract. We propose a semidiscrete in time semi-implicit numerical scheme for the infinite
Prandtl model for convection. Besides the usual finite time convergence, this scheme enjoys the
additional highly desirable feature that the stationary statistical properties of the scheme converge
to those of the infinite Prandtl number model at vanishing time step. One of the key characteristics
of the scheme is that it preserves the dissipativity of the infinite Prandtl number model uniformly in
terms of the time step. So far as we know, this is the first rigorous result on convergence of stationary
statistical properties of numerical schemes for infinite dimensional dissipative complex systems.
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1. Introduction. Many dynamical systems arising in applications are dissipa-
tive complex systems in the sense that they possess a compact global attractor and
the dynamics on the global attractor are complex/chaotic [39]. Well-known examples
include the simple Lorenz 63 model, Lorenz 96 model, the Navier–Stokes equations at
large Reynolds number or Grashoff number, the Boussinesq system for convection at
large Rayleigh number, the Kuramoto–Sivashinsky equation at large spatial size, and
many models for the atmosphere, ocean, weather, and climate, etc. The dynamics of
these systems are typically very complex/chaotic with generic sensitive dependence
on data. Therefore, it is hardly meaningful to discuss long time behavior of a sin-
gle trajectory for this kind of complex system. Instead, we should study statistical
properties of the system since they are physically much more relevant than single
trajectories [33, 15, 31, 29]. If the system reaches some kind of stationary state, then
the objects that characterize the stationary statistical properties are the invariant
measures or stationary statistical solutions of the system.

With a given complex system, analytical exact expressions for statistical proper-
ties are extremely rare, just as exact solution formulas are rare for single trajectory.
Therefore we naturally turn to numerical methods, especially with today’s power-
ful computers and ever advancing computational technologies. The natural question
then is what kind of numerical schemes would provide good approximations for the
stationary statistical properties.

In terms of trajectory approximations, we are not aware of any effective long time
integrator for dissipative complex/chaotic systems in general unless the long time dy-
namics is trivial or the trajectory under approximation is stable [21, 17, 28]. It is not
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at all clear whether those numerical methods that provide efficient and accurate ap-
proximations of the continuous complex dynamical system on a finite time interval are
able to provide meaningful approximation for stationary statistical properties of the
system since small errors (truncation and rounding) may accumulate and grow over a
long time (think about the usual error estimates with a coefficient that grows exponen-
tially in time due to the existence of chaotic behavior/positive Lyapunov exponent).
Here we forego the idea of long time fidel approximation of any single trajectory, but
ask if it is possible to approximate the mean or statistical properties faithfully. The
numerical study of stationary statistical properties of complex system still is a very
challenging task since it involves long time integration (so that the statistical aver-
aging is computed utilizing time averaging under the assumption of ergodicity) and
computation of a large number of trajectories (if no ergodicity is assumed).

We will demonstrate in this paper that a semidiscrete in time and semi-implicit
scheme for the infinite Prandtl number model for convection is able to capture sta-
tionary statistical properties of the underlying infinite Prandtl number model. It
seems that one of the key ingredients in the convergence of the stationary statistical
properties is the uniformly dissipativity of the scheme; i.e., the scheme is dissipative
uniformly with respect to the time step. Although this scheme may not approximate
individual trajectory faithfully for a long time due to the accumulation of truncation
and rounding errors and abundant instability/chaos, we will show that stationary sta-
tistical properties characterized by the invariant measures (stationary statistical solu-
tions) of the scheme converge to those of the continuous-in-time system. This gives
us strong evidence that these kinds of uniformly dissipative schemes are appropriate
schemes in investigating statistics.

Although the idea of uniform dissipativity and convergence of stationary statis-
tical properties is illustrated on the infinite Prandtl number model for convection
and semidiscretization in time only, we believe that the methodology works for many
more complex/chaotic dynamical systems [39] and fully discretized approximations.
The key ingredients are uniform (in mesh size) dissipativity and finite time uniform
convergence (see [48] for a somewhat general statement). The choice of the infinite
Prandtl number model is both for its physical significance (see the next section) and
for the sake of simplicity in exposition.

The idea of uniformly dissipative approximation for a dissipative dynamical sys-
tem is a very natural one. Since the continuous-in-time dynamical system is dissi-
pative (possess a global attractor), it is natural to consider numerical schemes that
preserve the dissipativity in the sense that the solutions to the schemes should pos-
sess global attractors that are uniformly compact in some appropriate sense (say the
union of the global attractors is precompact). These uniformly dissipative schemes
are usually implicit in some way (to ensure long time stability) and therefore have not
been very popular in practice so far. What we shall demonstrate below is that some
of these uniformly dissipative schemes enjoy a highly desirable property in terms of
approximating stationary statistical properties: the stationary statistical properties
of the schemes converge to those of the continuous-in-time dynamical systems. We
hope that our work will stimulate further study, both analytical and numerical, on
approximating statistical properties of dissipative systems.

Earlier works on long time behavior of numerical schemes for dissipative systems
mainly focused on the two-dimensional incompressible Navier–Stokes system and the
Kuramoto–Sivashinsky equation (see [17, 22, 26, 36, 40, 13, 14, 25] among others)
and the notion of long time stability or dissipativity. The uniform bound in the
phase space and a finer/smaller space is called long time stability or dissipativity in
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these works (some of the authors derived only uniform bound/long time stability in
the phase space without other bounds that are necessary for ensuring the uniform
dissipativity of the scheme). We prefer the term uniform dissipativity since long time
stability could be misleading in the sense that it may imply the scheme is global
in time, stable in one single phase space only, which is not sufficient to ensure the
existence of the global attractor. Also, none of the authors discussed stationary
statistical properties of their schemes. To the best of our knowledge, our work is the
first in establishing the convergence of stationary statistical properties and therefore
the usefulness of uniformly dissipative schemes in approximating stationary statistical
properties. An announcement of the main results presented here can be found in [10].

The manuscript is organized as follows: we give an introduction in the first section;
in section 2 we propose a semidiscrete (discrete in time) scheme for the infinite Prandtl
number model and verify that it is uniformly dissipative and enjoys the property that
the stationary statistical properties of the scheme converge to those of the continuous-
in-time model; we then provide our conclusion and remarks in the third section.

2. A uniformly dissipative scheme for the infinite Prandtl number
model.

2.1. The infinite Prandtl number model for convection. One of the fun-
damental systems in fluid dynamics is the Boussinesq system for Raleigh–Bénard
convection, which is a model for convection; i.e., fluid motion induced by differential
heating under Boussinesq approximation [41, 16]. We assume that the fluids occupy
the (nondimensionalized) region Ω = [0, Lx]× [0, Ly]× [0, 1] with periodicity imposed
in the horizontal directions for simplicity.

The Boussinesq system exhibits extremely rich phenomena (see, for instance, [16,
41] and the recent reviews [4, 37]). In fact, the Boussinesq system is considered a fun-
damental paradigm for nonlinear dynamics including instabilities and bifurcations,
pattern formation, chaotic dynamics, and fully developed turbulence [27]. On the
other hand, we have very limited mathematical knowledge on the system. There-
fore various physically relevant simplifications are highly desirable in order to make
progress.

For fluids such as silicone oil or the earth’s mantle, the Prandtl number is large;
therefore, we may formally set the Prandtl number to infinity in the nondimensional
Boussinesq system, and we arrive at the following (see, for instance, [4, 6, 8, 18, 41]
among others) infinite Prandtl number model (nondimensional):

∇p = Δu +RakT, ∇ · u = 0, u|z=0,1 = 0,(2.1)

∂T

∂t
+ u · ∇T = ΔT, T |z=0 = 1, T |z=1 = 0,(2.2)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of
the fluid, T is the temperature of the fluid, k is a unit vector in the z direction, and
Ra is the Rayleigh number measuring the ratio of differential heating over overall
dissipation.

It is well known that for complex systems such as a convection system at large
Rayleigh number where turbulent/chaotic behavior abounds (see, for instance, [6,
16, 27, 4, 37]), statistical properties for such systems are much more important and
physically relevant than single trajectories [33, 15, 29, 31].

Although there have been extensive works on heat transport in Rayleigh–Bénard
convection [1, 4, 6, 7, 18, 37, 23, 24], basic statistical properties of the system, such
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as the heat transport in the vertical direction quantified by the Nusselt number and
the mean velocity field, are not very well understood. On the other hand, the infinite
Prandtl number model is much simpler than the Boussinesq system since the Navier–
Stokes equations are replaced by the Stokes equations (and therefore the phase space is
that of the temperature only). We also know that the statistics of the infinite Prandtl
number model are close to those of the Boussinesq system at large Prandtl number
[44, 45, 46]. Therefore it makes sense for us to study some fundamental statistical
properties of convection utilizing the simple infinite Prandtl number model since we
can generally expect to push to a physically more interesting higher Rayleigh number
without sacrificing accuracy with the currently available computing resource.

In our case of infinite Prandtl number convection at large Rayleigh number, even
the computation on order one time scale (diffusive time scale) is a challenge since it
is in fact a long time integration in disguise. To see this, we can rewrite the infinite
Prandtl number model as

∂T

∂t
+RaA−1(kT ) · ∇T = ΔT, T |z=0 = 1, T |z=1 = 0,(2.3)

where A denotes the Stokes operator with viscosity one and the associated boundary
conditions. It is then apparent that this is an advection dominated problem (large
Péclet number) for large Rayleigh number Ra. We divide both sides of the equation
by Ra and introduce the fast time scale τ = Ra t, for which we may rewrite the infinite
Prandtl number model in the following alternative form with an order one advection
term

∂T

∂τ
+A−1(kT ) · ∇T =

1
Ra

ΔT.(2.4)

It appears that the leading order dynamics at large Rayleigh number is the nonlocal
advection equation ∂T

∂τ +A−1(kT ) · ∇T = 0. However, this is valid only on order one
time scale for the fast time τ . What we are interested in is order one time scale for
the diffusive time t, which means a long time for the fast time τ (of the order of Ra).

2.2. A semidiscrete in time scheme. In this subsection, we provide a specific
semidiscrete in time convergent dissipative scheme for the infinite Prandtl number
model. The scheme is semi-implicit and utilizes a background temperature profile.
Indeed, consider a generic background temperature profile τ(z) which satisfies the
nonhomogeneous Dirichlet boundary condition of T . We introduce the perturbative
temperature field θ = T − τ . The exact form of the background profile τ to be used
will be specified below. It is easy to see that θ satisfies the following equation:

∂θ

∂t
+RaA−1(kθ) · ∇θ +RaA−1(kθ)3τ ′(z) = Δθ + τ ′′(z), θ|z=0,1 = 0,(2.5)

and we are searching for a solution in the space H1
0,per (the subspace of H1 with zero

trace in the z direction and periodic in the horizontal directions). Here A−1(kθ)3
represents the third component (vertical velocity) of A−1(kθ).

The semi-implicit semidiscrete in time scheme that we propose is given by

θn+1 − θn
k

+RaA−1(kθn) · ∇θn+1 + RaA−1(kθn+1)3τ ′(z) = Δθn+1 + τ ′′(z),(2.6)

where θn denotes the approximate solution at time kn where k is the time step. A
more accurate notation would be θnk to indicate the dependence on the time step k.
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However, we will suppress the k dependence in the notion for simplicity except in the
convergence proof.

Note that the scheme is linear although the PDE is nonlinear.
Also, we would arrive at a different scheme if we were to discretize in time first

and then apply the translation/background profile (see (3.2) for the case of λ = 0).
Following the pioneering works of Constantin and Doering [7, 8], we set back-

ground temperature profile τ to be a locally smoothed (mollified) version of the fol-
lowing piecewise linear function:

τ(z) =

⎧⎪⎨
⎪⎩

1− z
2δ , 0 ≤ z ≤ δ,

1
2 , δ ≤ z ≤ 1− δ,

1−z
2δ , 1− δ ≤ z ≤ 1.

(2.7)

The choice of the parameter δ will be specified later.
We would like to remark here that the typical choice of τ being the conduction

state 1 − z is not a good one. In fact, the linearized equation is unstable in this
case [6] and the solutions (to the linearized problem) grow without bound for generic
initial data. Therefore we have to utilize the nonlinear term (this is where the new
background profile comes into the picture) to stabilize the whole system. It is also
worthwhile to point out that boundary conditions play an important role in the stabi-
lization process. For instance, if we choose τ = 1− z (the pure conduction state) and
utilize periodicity for the perturbative variables in all three directions (the so-called
homogeneous Rayleigh–Bénard convection), then the nonlinear system is not stable
[5] (look at solutions that are z independent).

2.3. Well-posedness. The well-posedness of the discrete scheme follows from
the Lax–Milgram theorem [30].

The weak formulation of the scheme can be derived by multiplying the scheme
(2.6) by a test function ψ ∈ H1

0,per and integrating by parts. The weak formulation
of the discrete scheme can be rewritten into the form

Bn(θn+1, ψ) = Ln(ψ),(2.8)

where

Bn(θn+1, ψ)(2.9)

=
(

1
k
θn+1 +RaA−1(kθn) · ∇θn+1 +RaA−1(kθn+1)3τ ′, ψ

)
+ (∇θn+1,∇ψ),

Ln(ψ)(2.10)

= −
(
τ ′(z),

∂ψ

∂z

)
+
(

1
k
θn, ψ

)
.

It is easy to see that Bn is a continuous bilinear form on H1
0,per ×H1

0,per , and Ln is a
continuous linear functional on H1

0,per. We need only verify the coercivity for Bn in
order to show the solvability thanks to the Lax–Milgram theorem.

For this purpose we notice that, thanks to the specific form of the background pro-
file τ given in (2.7), the homogeneous boundary conditions for θn+1, (A−1(kθn+1))3,
∇(A−1(kθn+1))3, elliptic regularity (for the Stokes operator), and Poincaré inequality
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(three times), there exists a constant c1 independent of k, n,Ra, such that

Ra

∣∣∣∣
∫

Ω

τ ′(z)(A−1(kθn+1))3θn+1

∣∣∣∣ ≤ c1 δ2Ra‖∇θn+1‖2 ≤ 1
4
‖∇θn+1‖2(2.11)

provided that we choose1

δ = (4c1Ra)−
1
2 .(2.12)

Therefore

Bn(θn+1, θn+1) ≥ 1
k
‖θn+1‖2 +

3
4
‖∇θn+1‖2(2.13)

which proves the coercivity. Here and elsewhere ‖θ‖ =
√∫

Ω
|θ|2 denotes the spatial

L2 norm of θ, and ‖θ‖∞ = esssupΩ|θ| denotes the spatial L∞ norm of θ.
This ends the proof of the well-posedness of the discrete scheme.

2.4. Uniform dissipativity. Next, we prove the uniform dissipativity. Here
and below, the cjs denote generic constants independent of k, n (but which may
depend on the Rayleigh number).

We first derive a uniform bound in the L2 space. For this purpose we take the
inner product of the scheme with ψ = θn+1 and utilize the identity (a − b, a) =
1
2 (|a|2 − |b|2 + |a − b|2) together with the estimate on the destabilizing term (2.11),
and we have

1
2k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2

≤ ‖τ ′‖‖∇θn+1‖+Ra

∣∣∣∣
∫

Ω

τ ′(z)(A−1(kθn+1))3θn+1

∣∣∣∣
≤ ‖τ ′‖2 +

1
2
‖∇θn+1‖2.

Therefore, there exists a constant c2 such that

1
k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2 ≤ 2‖τ ′‖2 ≤ c2Ra 1
2(2.14)

which further implies, thanks to the Poincaré inequality, that

(1 + k)‖θn+1‖2 ≤ ‖θn‖2 + c2kRa
1
2 .(2.15)

This leads to, with the help of a simple iteration,

‖θn+1‖2 ≤ (1 + k)−(n+1)‖θ0‖2 + c2Ra
1
2 .(2.16)

This is a uniform estimate in the L2 space.
A byproduct of this estimate is that

1
N

N∑
n=0

‖∇θn+1‖2 ≤ ‖θ0‖
2

kN
+ c2Ra

1
2 ,(2.17)

which is a bound on the Nusselt number in this discretized case for largeN (see the def-
inition later for Nusselt number (2.58, 2.59)), and a bound in L2(H1) for the scheme.

1The choice of τ or δ given here is not optimal. A near optimal choice would be δ ∼ Ra−
1
3 , but

the control on the linear destabilizing term is much longer [8, 12, 46]. We use the simple one since
the optimal bound is not our goal here.
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We also have
N∑
n=0

‖θn+1 − θn‖2 ≤ ‖θ0‖2 + c2kNRa
1
2 .(2.18)

In order to obtain uniform estimates in H1, we take the inner product of the
scheme with ψ = −Δθn+1, and we have

1
2k

(‖∇θn+1‖2 − ‖∇θn‖2 + ‖∇(θn+1 − θn)‖2) + ‖Δθn+1‖2

≤ ‖τ ′′‖‖Δθn+1‖+Ra‖τ ′‖‖A−1(kθn+1)‖∞‖Δθn+1‖
+Ra‖A−1(kθn)‖∞‖∇θn+1‖‖Δθn+1‖

≤ ‖τ ′′‖‖Δθn+1‖+ c3Ra‖τ ′‖‖θn+1‖‖Δθn+1‖+ c4Ra‖θn‖‖θn+1‖ 1
2 ‖Δθn+1‖ 3

2

≤ 1
2
‖Δθn+1‖2 + c5,

where we have applied the regularity result for the Stokes operator, the Sobolev
imbedding of H2 into L∞, interpolation inequality, the uniform L2 estimate (2.16),
and Hölder type inequality.

This implies that

(1 + k)‖∇θn+1‖2 ≤ ‖∇θn‖2 + 2c6k,(2.19)

which further implies, with the help of a simple iteration, that

‖∇θn+1‖2 ≤ (1 + k)−n‖∇θ1‖2 + 2c6.(2.20)

This is the desired uniform estimates in the H1 space; i.e., there is a uniform in k
bounded absorbing ball in H1 which attracts all solutions with L2 initial data.

Uniform estimates in Sobolev spaces with more derivatives can be derived just as
in the case of a continuous-in-time system. Here we demonstrate that the H2 norm of
the solution is asymptotically uniformly bounded in time; i.e., there is an absorbing
ball in H2 which attracts all solutions with L2 initial data uniformly for all k.

For this purpose we apply Δ to both sides of the scheme (2.6) and then multiply
the scheme by Δθn+1 and integrate over the domain. This leads to the following:

1
2k

(‖Δθn+1‖2 − ‖Δθn‖2 + ‖Δ(θn+1 − θn)‖2) + ‖∇Δθn+1‖2

≤ ‖τ (4)‖‖Δθn+1‖+Ra(‖Δ(A−1(kθn))‖L6‖∇θn+1‖L3

+2‖∇A−1(kθn)‖L∞‖∇2θn+1‖)‖Δθn+1‖
+Ra(‖Δ(A−1(kθn+1))‖‖τ ′‖L∞ + 2‖∇(A−1(kθn+1))‖‖∇τ ′‖L∞

+‖A−1(kθn+1)‖‖Δτ ′‖L∞)‖Δθn+1‖
≤ c7(‖Δθn+1‖+ ‖Δθn+1‖2)
≤ c8(‖Δθn+1‖+ ‖∇Δθn+1‖‖∇θn+1‖)

≤ 1
2
‖∇Δθn+1‖2 + c9,
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where we have applied the identity
∫
A−1(kθn)∇Δθn+1Δθn+1 = 0, Hölder’s inequal-

ity, elliptic regularity, Sobolev imbedding, Cauchy–Schwarz, and interpolation in-
equality.

This leads to the inequality

(1 + k)‖Δθn+1‖2 ≤ ‖Δθn‖2 + 2c9k,(2.21)

which further implies, with the help of a simple iteration,

‖Δθn+1‖2 ≤ (1 + k)−n+1‖Δθ2‖2 + 2c9.(2.22)

This is the desired uniform estimates in the H2 space, i.e., there is a uniform in k
bounded absorbing ball in H2 which attracts all solutions with L2 initial data.

To summarize, we have the following lemma.
Lemma 1 (uniform bound/dissipativity). There exists a constant c9 independent

of the time step k such that the scheme (2.6) possesses an absorbing ball in H1 and
H2 with radius 2

√
c9 which attracts all bounded sets in L2.

2.5. Consistency and convergence. Here we check the consistency first since
this is what we need in the following.

Multiplying the scheme (2.6) by k(θn+1−θn) and integrating over the domain we
have

‖θn+1 − θn‖2 ≤ k
{
−1

2
(‖∇θn+1‖2 − ‖∇θn‖2 + ‖∇(θn+1 − θn)‖2)

+‖τ ′‖‖∇(θn+1 − θn)‖+ c10‖θn‖∞‖∇θn+1‖‖θn+1 − θn‖

+c11‖θn+1‖∞‖τ ′‖‖θn+1 − θn‖
}

≤ k(c12 + c13‖θn+1 − θn‖),

where we have applied the Cauchy–Schwarz inequality, Hölder’s inequality, elliptic
regularity, and uniform bounds in H1 (2.20).

This implies the following consistency result :

‖θn+1 − θn‖ ≤ c14k 1
2 ,(2.23)

provided that θ0 ∈ H1
0,per.

If we assume θ0 ∈ H1
0,per

⋂
H2, we may deduce from the scheme (2.6) and the

uniform bound (2.22) the following stronger consistency result:

‖θn+1 − θn‖ ≤ c15k.(2.24)

Next, we show that the solutions to the scheme converge to the solution of the
infinite Prandtl number model in L2(0, T ∗, L2) for any given time T ∗ > 0 as k → 0.

For this purpose, we rewrite the scheme (2.6) as

∂θ̃k(t)
∂t

+ RaA−1(kθk(t)) · ∇θk(t+ k) +RaA−1(kθk(t+ k))3τ ′(z)(2.25)

= Δθk(t+ k) + τ ′′(z),
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where

θk(t) = θnk , t ∈ [nk, (n+ 1)k),(2.26)

θ̃k(t) = θnk +
t− nk
k

(θn+1
k − θnk ), t ∈ [nk, (n+ 1)k).(2.27)

The estimates (2.16, 2.17) imply that θk and θ̃k are uniformly (in k) bounded in
L∞(0, T ∗;L2) and L2(0, T ∗;H1

0,per). Hence we have a subsequence, still denoted θk

and θ̃k and θ, θ̃ ∈ L∞(0, T ∗;L2)
⋂
L2(0, T ∗;H1

0,per) such that

θk ⇀ θ, weak * in L∞(0, T ∗;L2),(2.28)

θk ⇀ θ, weak in L2(0, T ∗;H1
0,per),(2.29)

θ̃k ⇀ θ̃, weak * in L∞(0, T ∗;L2),(2.30)

θ̃k ⇀ θ̃, weak in L2(0, T ∗;H1
0,per).(2.31)

It is also easy to check, thanks to (2.18), for any a < T ∗,

∫ T∗−a

0

‖θk(t+ k)− θk(t)‖2 dt ≤ c16k,(2.32)

∫ T∗

0

‖θk(t)− θ̃k(t)‖2 dt ≤ c17k.(2.33)

Therefore

θ = θ̃,(2.34)

θk(·+ k) ⇀ θ, weak * in L∞(0, T ∗;L2),(2.35)

θk(·+ k) ⇀ θ, weak in L2(0, T ∗;H1
0,per).(2.36)

Furthermore, thanks to a compactness theorem due to Témam ([38, Ch. 13, Theo-
rem 13.3], which states that a bounded set G ⊂ L1(0, T ∗;Y )

⋂
Lp(0, T ∗;X), p > 1

with X,Y being two Banach spaces and the injection of Y into X being compact,
and supg∈G

∫ T∗−a
0 ‖g(a + s) − g(s)‖pX ds → 0, as a → 0, is necessarily precompact

in Lq(0, T ∗;X) ∀q ∈ [1, p)), there exists a sub-subsequence of θ̃k which converges
strongly in Lq(0, T ∗;L2) ∀q ∈ [1, p). Indeed, testing the scheme (2.25) against a test
function v and integrating from t to t+ a, we have

|(θ̃k(t+ a)− θ̃k(t), v)|(2.37)

≤
∫ t+a

t

{‖∇θk(s+ k)‖‖∇v‖

+‖τ ′‖‖∂v
∂z
‖+Ra ‖A−1(kθk(s))‖L∞‖θk(s+ k)‖‖∇v‖

+Ra ‖A−1(kθk(s+ k))3‖L∞‖τ ′‖‖v‖} ds

≤ c18‖∇v‖a 1
2 ,
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where we have applied the regularity for the Stokes operator, Sobolev imbedding,
Poincaré inequality, and the a priori estimates in L∞(L2) and L2(H1) valid for L2

initial data. Now set v = θ̃k(t + a) − θ̃k(t) and utilize the L2(H1) estimate on θ̃k.
Then we have ∫ T∗−a

0

‖θ̃k(t+ a)− θ̃k(t)‖2 ≤ c19a 1
2 .(2.38)

This implies the strong convergence by Témam’s compactness theorem.
Combining this strong convergence in Lq(L2), q ∈ [1, 2) with the uniform L∞

(0, T ∗;L2) estimate, we conclude that the sub-subsequence in fact converges strongly
in Lq(0, T ∗;L2) ∀q ∈ [1,∞). Hence we may summarize the a priori estimates as

θk(·), θk(·+ k), θ̃k(·), θ̃k(·+ k)→ θ(·), in Lq(0, T ∗;L2) ∀q ∈ [1,∞),(2.39)

θk(·), θk(·+ k), θ̃k(·), θ̃k(·+ k) ⇀ θ(·), weakly in L2(0, T ∗;H1
0,per).(2.40)

Now for any φ ∈ H1
0,per and ψ ∈ C1([0, T ∗]) with ψ(T ∗) = 0, we can rewrite the

scheme (2.25) in the following weak form:∫ T∗

0

∫
Ω

{
−θ̃k(x, t)φ(x)ψ′(t) +RaA−1(kθk(x, t)) · ∇θk(x, t+ k)φ(x)ψ(t)

+RaA−1(kθk(x, t+ k))3τ ′(z)φ(x)ψ(t) +∇θk(x, t+ k) · ∇φ(x)ψ(t)(2.41)

+τ ′(z)
∂

∂z
φ(x)ψ(t)

}
dxdt

=
∫

Ω

θ0(x)φ(x)ψ(0) dx.

Utilizing the strong Lq(L2) convergence (2.39) and the weak L2(H1
0,per) convergence

(2.40) together with elliptic regularity, we can pass to the limit as k → 0 and arrive at∫ T∗

0

∫
Ω

{
−θφψ′ +RaA−1(kθ) · ∇θφψ +RaA−1(kθ)3τ ′φψ(2.42)

+∇θ · ∇φψ + τ ′
∂

∂z
φψ

}
dxdt =

∫
Ω

θ0φψ(0),

which is exactly the weak form of the infinite Prandtl number model. Since the infinite
Prandtl number model possesses a unique solution, θ must be the unique solution;
hence, the whole sequence of θk and θ̃k converges to θ as any subsequence has a
sub-subsequence that converges to the same limit θ.

We summarize the result here as the following lemma.
Lemma 2 (consistency and convergence). For any given T ∗ > 0 and θ0 ∈ L2,

the solution to the numerical scheme (2.25) converges to the solution of the infinite
Prandtl number model; i.e.,

θk(·), θk(·+ k), θ̃k(·), θ̃k(·+ k)→ θ(·) in Lq(0, T ∗;L2) ∀q ∈ [1,∞),(2.43)

θk(·), θk(·+ k), θ̃k(·), θ̃k(·+ k) ⇀ θ(·) weakly in L2(0, T ∗;H1
0,per),(2.44)

where θ is the unique solution to the infinite Prandtl number model.
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Moreover, if θ0 ∈ H1
0,per

⋂
H2, then there exists a generic constant c15 indepen-

dent of k, n such that

‖θn+1 − θn‖ ≤ c15k.(2.45)

We have established Lq(L2) ∀q < ∞ convergence of the numerical scheme. Uni-
form in time convergence (on finite time interval, i.e., L∞(0, T ∗;L2)) of the scheme
can be established as well if we assume all the compatibility conditions needed (so
that the exact solution is smooth enough up to the initial time t = 0; see [38] for the
case of Navier–Stokes equations). If no high order compatibility condition is assumed,
then one can show the uniform in time convergence on any finite interval modulus an
initial layer (see [20] for the case of Navier–Stokes equations). Uniform convergence
without enough compatibility conditions is needed for the proof of convergence of the
global attractors [48], but not required here and hence we skip the details.

2.6. Convergence of the stationary statistical properties. As we men-
tioned earlier, for complex systems with chaotic/turbulent behavior, statistical prop-
erties are much more important than individual trajectories. In fact it is essentially
hopeless to try to find approximation schemes that possess the property that the
approximate trajectory remain close to the “true” trajectory for all time due to abun-
dant sensitive dependence on data and positive Lyapunov exponents.2 Therefore, the
natural question to ask is if stationary statistical properties are well approximated.
These stationary statistical properties are characterized by stationary statistical so-
lutions or invariant measures of the system. Hence the question that we ask here is if
the invariant measures of the discrete time approximation approximate the invariant
measures of the continuous-in-time infinite Prandtl number model.

We first observe that the numerical scheme (2.6) can be viewed as a discrete time
dynamical system on the phase space L2 with the notation

θn+1 = Fk(θn).(2.46)

Thanks to the well-posedness result, we see that Fk in fact maps L2 into H1
0,per, and

F 2
k maps L2 into H1

0,per

⋂
H2 by elliptic regularity. Moreover, the discrete dynamical

system is uniformly (in k) dissipative thanks to the uniform H1 estimate (2.20).
Therefore, this dynamical system possesses a compact global attractor in H1 which
attracts all bounded sets in L2. This leads to the existence of invariant measures via
a classical Krylov–Bogliubov argument [42, 15] for the numerical scheme (the discrete
dynamical system).

We recall the definition of invariant measures.
Definition 1 (invariant measures). A Borel probability measure μk on L2 is

called an invariant measure for Fk if

∫
L2

Φ(Fk(θ))dμk =
∫
L2

Φ(θ)dμk(2.47)

for all bounded continuous test functional Φ.
The set of all invariant measures for Fk is denoted IMk.

2There is a notable exception when the system possesses an explicit hyperbolic structure for
which numerical shadowing may be possible [35].
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We also recall that a Borel probability measure μ on L2 is an invariant measure, or
stationary statistical solution, for the infinite Prandtl number model for convection if

1. ∫
L2
‖∇θ‖2 dμ(θ) <∞,(2.48)

2. ∫
L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z)(2.49)

+Δθ + τ ′′(z),Φ′(θ) > dμ(θ) = 0

for any cylindrical test functional Φ(θ) = φ((θ, w1), . . . , (θ, wm)), where φ is
a C1 function on Rm, {wj , j ≥ 1} are the eigenfunctions of Δ which form
an orthonormal basis for L2 and wj ∈ H1

0,per

⋂
C2 ∀j, and <,> denotes the

H−1, H1
0,per duality,

3. ∫
L2

∫
Ω

{|∇θ|2 +Ra(A−1(kθ))3θτ ′ − τ ′′θ} dx dμ(θ) ≤ 0.(2.50)

The set of all stationary statistical solutions for the infinite Prandtl number model is
denoted IM.

Roughly speaking, the first condition says that the invariant measures are sup-
ported on the smaller and finer space of H1, the second condition is the differential
form of the weak formulation of the invariance of the measure under the flow, and the
third condition is a statistical version of the energy inequality.

Now let μk ∈ IMk be a sequence of invariant measures. Thanks to the uniform
estimate in H1 (2.20), we see that the support of μk is contained in a bounded ball in
H1 independent of k. Therefore, thanks to the Prokhorov compactness theorem and
Rellich compactness theorem [3, 30], the sequence μk is weakly precompact in the set
of all Borel probability measures on L2; hence it must contain a weakly convergent
subsequence (still denoted {μk}) which converges to a Borel probability measure μ.
Our goal is to show that μmust be an invariant measure of the infinite Prandtl number
model.

The first condition in the definition is easily verified since the global attractors
for the discrete dynamical systems are uniformly bounded in H1 independent of the
time step k, and the invariant measures are supported on the global attractor [15, 48].

In order to check the second condition, i.e., the differential form of the weak
formulation of invariance, we let Φ(θ) = φ((θ, w1), . . . , (θ, wm)) = φ(y1, . . . , ym) be a
cylindrical test functional. Notice that

Φ′(θ) =
m∑
j=1

∂

∂yj
φ((θ, w1), . . . , (θ, wm))wj .(2.51)

Hence, denoting by <,> the duality between H−1 and H1
0,per, we have∫

L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z) + Δθ + τ ′′(z),Φ′(θ) > dμ(θ)

=
∫
L2
< −RaA−1(kθ) · ∇θ −RaA−1(kθ)3τ ′(z)
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+Δθ + τ ′′(z),
m∑
j=1

∂φ

∂yj
((θ, w1), · · · , (θ, wm))wj > dμ(θ)

=
∫
L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjθ −RaA−1(kθ)3τ ′(z)wj

+Δwjθ + τ ′′(z)wj) dx dμ(θ)

= lim
k→0

∫
L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjθ −RaA−1(kθ)3τ ′(z)wj

+Δwjθ + τ ′′(z)wj) dx dμk(θ)

= lim
k→0

∫
L2

m∑
j=1

∂φ

∂yj

∫
Ω

(RaA−1(kθ) · ∇wjFk(θ)−RaA−1(kFk(θ))3τ ′(z)wj

+ΔwjFk(θ) + τ ′′(z)wj) dx dμk(θ)

= lim
k→0

∫
L2
< −RaA−1(kθ) · ∇Fk(θ) −RaA−1(kFk(θ))3τ ′(z)

+ΔFk(θ) + τ ′′(z),Φ′(θ) > dμk(θ)

= lim
k→0

∫
L2
<
Fk(θ)− θ

k
,Φ′(θ) > dμk(θ)

= lim
k→0

∫
L2

1
k

(Φ(Fk(θ)) − Φ(θ)) dμk(θ)

= 0,

where we have used the boundedness and continuity of ∂φ
∂yj

on the union of the support
of μk, the consistency estimate (2.24), the invariance of μk under Fk, and the following
straightforward estimates valid on the union of the support of the μks (uniformly
bounded in H1

0,per

⋂
H2):

∣∣∣∣
∫

Ω

A−1(kθ) · ∇wj(Fk(θ)− θ) dx
∣∣∣∣ ≤ c‖Fk(θ)− θ‖ = O(k)→ 0,

∣∣∣∣
∫

Ω

(A−1(k(Fk(θ) − θ)))3τ ′(z)wj dx
∣∣∣∣ ≤ c‖Fk(θ)− θ‖ = O(k)→ 0,

∣∣∣∣
∫

Ω

Δwj(Fk(θ)− θ) dx
∣∣∣∣ ≤ c‖Fk(θ)− θ‖ = O(k)→ 0,

< Fk(θ) − θ,Φ′(θ) > = Φ(Fk(θ))− Φ(θ) + o(‖Fk(θ) − θ‖)
= Φ(Fk(θ))− Φ(θ) + o(k),

the weak convergence of μk to μ, the scheme, and the invariance of μk.
This proves the differential form of the weak invariance of μ under the infinite

Prandtl number dynamics, i.e., 2 of Definition 1.
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The energy type inequality 3 of Definition 1 can be verified easily as well. For
this purpose, we first show that any invariant measure μk of the numerical scheme
(2.6) must satisfy the same energy type estimate. The desired continuous one will be
the limit as the time step approaches zero.

We first show that the invariant measures for Fk also satisfy the energy inequality.
For this purpose we multiply the scheme (2.6) by θn+1 and integrate over the domain,
and we then have

1
2k

(‖θn+1‖2 − ‖θn‖2 + ‖θn+1 − θn‖2) + ‖∇θn+1‖2

+
∫

Ω

(−τ ′′θn+1 +Ra τ ′A−1(kθn+1)3θn+1) = 0.

This can be rewritten using the discrete dynamical system notation Fk as
1
2k

(‖Fk(θ)‖2 − ‖θ‖2 + ‖Fk(θ) − θ‖2) + ‖∇Fk(θ)‖2(2.52)

+
∫

Ω

(−τ ′′Fk(θ) +Ra τ ′A−1(kFk(θ))3Fk(θ)) = 0.

Integrating this identity with respect to the invariant measure μk and utilizing
the invariance of μk under Fk, we have∫

L2

∫
Ω

(|∇Fk(θ)|2 − τ ′′Fk(θ) +Ra τ ′A−1(kFk(θ))3Fk(θ))dx dμk(θ)(2.53)

= − 1
2k

∫
L2
‖Fk(θ)− θ‖2dμk(θ) ≤ 0.

Utilizing the invariance of μk under Fk again in the lower order terms we have∫
L2

(‖∇Fk(θ)‖2 +
∫

Ω

(−τ ′′θ +Ra τ ′(A−1(kθ))3θ) dx) dμk(θ) ≤ 0.(2.54)

Now we recall that the support of μk is uniformly bounded in H1 and hence, since
the wjs are the eigenfunctions of Δ which form an orthonormal basis in L2, wj also
forms a complete orthogonal system in H1

0,per (with the inner product between f and
g given by

∫
Ω∇f · ∇g),

‖∇Fk(θ)‖2 = lim
m→∞

m∑
j=1

(∇Fk(θ),∇wj)2
‖∇wj‖2 = lim

m→∞

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2 .

Therefore ∫
L2
‖∇Fk(θ)‖2 dμk(θ) =

∫
L2

lim
m→∞

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2 dμk(θ)

= lim
m→∞

∫
L2

m∑
j=1

(Fk(θ),Δwj)2

‖∇wj‖2 dμk(θ)

= lim
m→∞

∫
L2

m∑
j=1

(θ,Δwj)2

‖∇wj‖2 dμk(θ)

=
∫
L2
‖∇θ‖2 dμk(θ),(2.55)
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where we have used the uniform boundedness of ‖∇θ‖ and ‖∇Fk(θ)‖ on the support
of μk, the Lebesque dominated convergence theorem and the invariance of μk under
Fk.

Hence we see that μk also satisfies the energy inequality, i.e.,∫
L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ) ≤ 0.(2.56)

Next, we take the limit as k approaches zero. The last two terms in the discrete
energy inequality above converge to the right limit by the very definition of weak
convergence of μk to μ. As for the leading order quadratic term, we have

∫
‖∇θ‖2 dμ(θ) = lim

m→∞

m∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2 dμ(θ)

= lim
m→∞ lim

k→0

m∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2 dμk(θ)

≤ lim inf
k→0

∞∑
j=1

∫
(θ,Δwj)2

‖∇wj‖2 dμk(θ)

= lim inf
k→0

∫
‖∇θ‖2 dμk(θ).

This implies that∫
L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμ(θ)

≤ lim inf
k→0

∫
‖∇θ‖2 dμk(θ) + lim

k→0

∫
L2

∫
Ω

(−τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ)

≤ lim inf
k→0

∫
L2

∫
Ω

(|∇θ|2 − τ ′′θ +Ra τ ′(A−1(kθ))3θ) dμk(θ)

≤ 0.(2.57)

This completes the proof of the energy type inequality (3 in Definition 1) for the limit
probability measure μ. Therefore we conclude that the limit μ must be an invariant
measure of the infinite Prandtl number model.

Sometimes we impose a stronger version of the statistical energy inequality in
the definition of stationary statistical solutions: we require that the statistical ver-
sion of the energy inequality be true on any energy shells e1 ≤ ‖θ‖ ≤ e2 instead
of just one infinite shell from zero to infinity. Such a kind of energy inequalities is
useful in some applications in the Navier–Stokes case (see, for instance, [15]). They
can be verified with a little bit of extra work which involves approximating the fi-
nite difference by differentiation and utilizing the uniform in H2 estimates (invariant
measures are supported in a bounded ball in H2). We shall supply details elsewhere.
Likewise it is sometimes useful to have a stronger version of the invariance of μ un-
der the continuous-in-time dynamics either as a straightforward pullback invariance
or differential form of the weak invariance with a broader class of test functionals
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that are bounded on bounded sets of L2, Fréchet differentiable for θ ∈ H1
0,per with

Φ′(θ) ∈ H1
0,per, and the derivative is continuous and bounded as a function from

H1
0,per to H1

0,per . It can be shown that these variations yield the same definition just
as in the case of two-dimensional Navier–Stokes equations [15].

Next, we turn our attention to one of the most important statistical quantities
in convection: the heat transport in the vertical direction quantified by the Nusselt
number. More specifically, we consider the limit of heat transport in the vertical
direction; i.e., the Nusselt number, as the step size approaches zero. We first recall
the definition of the Nusselt number.

Definition 2 (Nusselt number). For the infinite Prandtl number model, the
nondimensional averaged heat transport in the vertical direction is defined as

Nu = sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

|∇T (x, s)|2 dxds

= 1 +Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kT (x, s))3T (x, s) dxds

= 1 +Ra sup
θ0∈L2

lim sup
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds.(2.58)

Likewise, the nondimensional averaged heat transport in the vertical direction for
the discrete in time scheme (2.6) is defined as

Nuk = 1 +Ra sup
θ0∈L2

lim sup
N→∞

1
NLxLy

N∑
n=1

∫
Ω

A−1(kθn(x))3θn(x) dx.(2.59)

It is well known that long time averages defined through Banach (generalized)
limits are spatial averages with respect to appropriate invariant measures of the un-
derlying dynamical system [2, 15, 42, 43, 47]. Moreover, for a given continuous test
functional ϕ0 (in the application here ϕ0(θ) = 1 + Ra

LxLy

∫
Ω
A−1(kθ(x))3θ(x) dx), and

a particular trajectory (initial data), there exists a particular Banach limit, LIM0,
so that LIM0

1
t

∫ t
0 ϕ0(θ(s)) ds = lim sup 1

t

∫ t
0 ϕ0(θ(s)) ds [46, 47]. Therefore, when

combined with the Prokhorov’s compactness theorem, we deduce the existence of an
invariant measure μk ∈ IMk such that

Nuk = 1 +
Ra

LxLy

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμk .(2.60)

Hence by the weak convergence result that we just proved, we see that for any sequence
of Nuk (and hence μk) there exists a subsequence (still denoted Nuk and μk) and
μ ∈ IM such that

lim
k→0

Nuk = 1 +
Ra

LxLy
lim
k→0

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμk

= 1 +
Ra

LxLy

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdμ

≤ 1 +
Ra

LxLy
sup
ν∈IM

∫
L2

∫
Ω

A−1(kθ(x))3θ(x) dxdν

= 1 +
Ra

LxLy
sup
θ0∈L2

lim
t→∞

1
tLxLy

∫ t

0

∫
Ω

A−1(kθ(x, s))3θ(x, s) dxds,(2.61)
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where we have used the weak convergence of μk to μ, the compactness of the set of
all invariant measures due to Prokhorov’s theorem and the a priori estimates, and the
fact that extremal points of the set of invariant measures are ergodic (in the sense
that phase space spatial average and time average are the same) [2, 43, 46].

To summarize, we have proved the following main result.
Theorem 1 (convergence of stationary statistical properties). Let μk be an

arbitrary invariant measure of the numerical scheme (2.6) with time step k, i.e.,
μk ∈ IMk, and let Nuk be the Nusselt number characterizing the heat transport in
the vertical direction for the scheme with time step k defined in (2.59). Then each sub-
sequence of μk must contain a sub-subsequence (still denoted {μk}) and an invariant
measure μ of the infinite Prandtl number model so that μk weakly converges to μ; i.e.,

μk ⇀ μ, k → 0.(2.62)

Moreover, the Nusselt number converges in an upper semicontinuous fashion in the
sense that

lim sup
k→0

Nuk ≤ Nu.(2.63)

In particular, this implies that the convergent numerical schemes will not overestimate
the Nusselt number asymptotically.

Notice that our asymptotic lower bound on the Nusselt number for the infinite
Prandtl number model nicely complements the rigorous upper bound for the Nusselt
number using a variational approach proposed by Constantin and Doering [7, 8].

3. Conclusions and remarks. Our main result clearly demonstrated the use-
fulness of the uniformly dissipative scheme that we proposed in terms of approximating
stationary statistical properties of the infinite Prandtl number model for convection
since the stationary statistical properties of the scheme converge to those of the con-
tinuous time model. To the best of our knowledge, this is the first rigorous result
proving convergence of stationary statistical properties of numerical schemes to those
of the continuous-in-time dynamical system under approximation. Our result may
be viewed as a partial generalization of Lax’s equivalence theorem in the sense that
consistency and long time stability (uniform dissipativity) imply convergence of sta-
tionary statistical properties. We would like to emphasize that the methodology here
can be applied to much more general dissipative systems (with chaotic behavior for
relevance) although we have treated the infinite Prandtl number model only [48]. We
hope that our work will stimulate further study on numerical schemes for approxi-
mating statistical properties of dissipative dynamical systems.

The convergence of the stationary statistical properties relies on the uniform
bound in a space which is compactly embedded in the phase space (it is H1

0,per in
the infinite Prandtl number case which is compactly imbedded in the phase space L2

by Rellich’s theorem). Simply having a uniform bound in the phase space may not
imply the convergence of the statistical properties. (We could construct schemes that
possess an absorbing ball in L2 but not in H1.) Therefore, we would rather use the
uniformly dissipative terminology instead of the global in time stability used by many
other authors, which could mean uniform boundedness in the phase space only.

The convergence that we derived here is actually semiconvergence since different
subsequences may converge to different invariant measures of the continuous-in-time
dynamical system. There is no convergence rate either. This is perhaps the generic
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picture in the sense that the result here is nearly optimal without additional assump-
tion on the continuous dynamical system. One very useful physical assumption is the
mixing of the continuous system. Indeed, if we assume that the continuous system is
exponentially mixing with a rate of r [43], i.e., there is a physically relevant invariant
measure μ so that∣∣∣∣1t

∫ t

0

Φ(θ(x, s)) ds −
∫

Φ(θ(x)) dμ
∣∣∣∣ ≤ c exp (−rt)(3.1)

for all appropriate test functionals Φ(θ) and almost all trajectories, then approxi-
mating a specific statistical quantity

∫
Φ(θ(x)) dμ becomes a finite time integration

problem. Indeed, supposing the given tolerance level is 2ε, we first fix a time t so that
c exp (−rt) ≤ ε (the time t is usually large for small mixing rate r). We then adjust
our mesh size (small time step or mesh size) so that∣∣∣∣∣1t

∫ t

0

Φ(θ(x, s)) ds − 1
N

N∑
n=1

Φ(θn)

∣∣∣∣∣ ≤ ε,
where Nk = t with k being the time step. Hence the infinite time approximation
of a stationary statistical property becomes the problem of approximation on finite
time interval [0, t] for appropriate numerical schemes (say uniformly dissipative). This
motivates us to work on higher order schemes so that the integration on [0, t] can be
calculated quickly.

Of course we do not have exponential mixing for generic dissipative complex/cha-
otic dynamical systems. One way to circumvent this difficulty is by considering noisy
systems since our environment is intrinsically noisy. Exponential mixing can be veri-
fied for many dissipative systems with appropriate additive white noise [11, 49, 32, 29,
50]. Hence there is a strong incentive to generalize the notion of uniformly dissipative
schemes to approximations of continuous-in-time stochastic dynamical systems (both
SDE and SPDE; see [32] for the case of SDE and fully implicit approach). We will
report results in this direction at another time.

The scheme that we presented here is not the only scheme that is able to cap-
ture stationary statistical properties of the underlying continuous system. The fully
implicit backward Euler scheme is a uniformly dissipative scheme as one can read-
ily verify. However, the backward Euler is nonlinear in the unknown and hence the
computational cost at each time step is expected to be higher. There are other linear
implicit uniformly dissipative schemes. For instance one may check that the following
family of schemes is uniformly dissipative for λ ∈ [0, 1]:

θn+1 − θn
k

+ RaA−1(kθn) · ∇θn+1 +Ra (A−1(k(λθn+1 + (1− λ)θn)))3τ ′(z)(3.2)

= Δθn+1 + τ ′′(z).

However, it seems that this family of schemes is uniformly dissipative under small
time step restriction k ≤ 1

Ra2 . This kind of restriction may be expected since the
linearly unstable modes grow as the Rayleigh number grows; hence the time step
should reflect this through CFL condition. On the other hand, we observe that for
the case of λ = 0, the scheme is the same as

T n+1 − T n
k

+RaA−1(kT n) · ∇T n+1 = ΔT n+1,
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whose inviscid part is stable (satisfies maximum principle). Hence if the viscous
scheme is unstable, then the viscous term plays a destabilizing role. We also no-
tice that the case with λ = 0 corresponds to discretization in time first followed by
translation, as we mentioned in section 2.2.

It is also worthwhile to point out that at the time discretization only stage we
should anticipate an implicit scheme due to the CFL condition.

An issue that we have not addressed here is spatial discretization. Since we have
utilized the background temperature profile τ in our uniform dissipativity argument,
it is expected that we need to resolve small scales within the background profile. A
similar issue for the Navier–Stokes was investigated earlier [9]. We will report the
details at another time.

Another issue that we have not addressed here is the behavior of the global attrac-
tors. We fully anticipate an upper semicontinuity result. The proof is a modification
of the classical one [39, 34, 19] since we will not have uniform in time convergence of
trajectories on finite time interval. In fact, we will have uniform in time convergence
after a transitional period of time due to the fact that the points on the global attrac-
tors of the scheme may not satisfy high order compatibility condition for the infinite
Prandtl number model and hence the solution may have an initial transitional layer
(see [20] for the case of two-dimensional Navier–Stokes equations). We will report
this at another time as well.
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and Andy Majda.
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Abstract. A mixed spectral method is proposed and analyzed for the Stokes problem in a
semi-infinite channel. The method is based on a generalized Galerkin approximation with Laguerre
functions in the x direction and Legendre polynomials in the y direction. The well-posedness of this
method is established by deriving a lower bound on the inf-sup constant. Numerical results indicate
that the derived lower bound is sharp. Rigorous error analysis is also carried out.
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1. Introduction. The Stokes problem plays an important role in fluid dynamics
and in solid mechanics, and its numerical approximation has attracted much attention
during the last three decades (see, for instance, [10, 5, 4] and the references therein).
Most of these investigations have been concentrated on problems in bounded domains.

There is, however, a need to consider numerical approximations to the Stokes
problem in unbounded domains. In particular, the flow in a channel and flow pass a
cylinder/sphere have important theoretical and practical applications. In most pre-
vious investigations for these problems, an artificial boundary is introduced, and an
approximate boundary condition at the artificial boundary has to be used. The accu-
racy of these methods usually depends on how far downstream the artificial boundary
is (cf. [17]). Therefore, even when high-order or spectral methods are applied for these
problems, one can not achieve high-order or spectral accuracy for the original problem
due to the approximation made to the “unknown” outflow boundary conditions.

We shall take a different approach in this paper. More precisely, we shall con-
sider the problem directly in the unbounded domain without introducing an artificial
boundary. In fact, many other problems in science and engineering are also set in
unbounded domains, and there have been some investigations in using Laguerre poly-
nomials/functions to approximate PDEs on semi-infinite intervals (see, among others,
[8, 12, 18, 11, 15]). However, all these works are concerned with Poisson-type elliptic
equations. To the best of our knowledge, no result is available for spectral methods
to the Stokes problem in semi-infinite channels. Thus, results in this paper are the
first of its kind and will play an important role for the numerical approximation of
Stokes and Navier–Stokes equations in unbounded domains.
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More precisely, we consider the Stokes equations in a semi-infinite channel and
introduce a mixed formulation based on Laguerre functions in the x direction and
Legendre polynomials in the y direction. It is worthwhile to emphasize that we use
Laguerre functions instead of Laguerre polynomials because the latter behaves wildly
at infinity and is not suitable for approximation to flows which are well-behaved at
infinity (cf. [18]). The well-posedness of this mixed formulation relies on the veri-
fication of the so-called inf-sup condition (cf. [1, 6]). The main contribution of this
paper is the derivation of a lower bound on the inf-sup constant. We shall also present
numerical results which indicate that the derived lower bound is sharp.

The rest of the paper is organized as follows. In the next section, we intro-
duce some notations, derive some useful inverse inequalities for Laguerre functions
and Legendre polynomials, and present the mixed Laguerre–Legendre formulation
for the Stokes problem. Section 3 is devoted to deriving a lower bound for the inf-
sup constant. In section 4, we carry out a complete error analysis for the mixed
Laguerre–Legendre approximation. Finally, we present some implementation details
and numerical results in section 5.

2. Mixed Laguerre–Legendre approximation. We start by introducing some
notations. Let R+ = (0,+∞), Λ = (−1, 1), Ω = R+ × Λ, and Γ = ∂Ω. Let ω > 0
be a weight function on Ω; we denote by (u, v)Ω,ω :=

∫
Ω
uvωdΩ the inner product of

L2
ω(Ω), whose norm is denoted by ‖ · ‖ω,Ω. We use Hm

ω (Ω) and Hm
0,ω(Ω) to denote

the usual weighted Sobolev spaces, with norm ‖ · ‖m,ω,Ω. In cases where no confusion
would arise, ω (if ω ≡ 1) and Ω may be dropped from the notations. Let M and N
be the discretization parameters in x and in y. We denote by c a generic positive con-
stant independent of the discretization parameters, and we use the expression A � B
to mean that A ≤ cB. Throughout this paper we will use boldface letters to denote
vectors and vector functions for ease of reading.

Let Lk(x) be the Laguerre polynomial of degree k; we denote the Laguerre func-
tion by

L̂i(x) = Li(x)e−x/2

and set

PM = span{Li(x), i = 0, 1, . . . ,M}
and

P̂M = span{L̂i(x), i = 0, 1, . . . ,M}.
We now recall some definitions and related results which will be used in what

follows.
Let ω(x) = e−x, and let

L2
ω(R+) :=

{
v; ve−x/2 ∈ L2

(
R+

)}
=
{
v;
∫ ∞

0

v2ωdx <∞
}
.

The space L2
ω(R+) is endowed with the norm ‖ · ‖0,ω,R+ (also denoted by ‖ · ‖0,ω or

‖ · ‖ω when there is no confusion), defined by

‖v‖0,ω,R+ =
(∫ ∞

0

v2ωdx

)1/2

.
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Let πxM be the L2
ω-orthogonal projector from L2

ω(R+) into PM (R+) defined by∫ ∞
0

(v − πxMv)φMωdx = 0, ∀v ∈ L2
ω

(
R+

)
, φM ∈ PM

(
R+

)
.

The projector πxM can be characterized by the following expression:

πxMv(x) =
M∑
m=0

αmLm(x) ∀v(x) =
∞∑
m=0

αmLm(x).(2.1)

We define the operator π̂xM from L2(R+) into P̂M (R+) by (cf. [18])

π̂xMv(x) = e−x/2πxM (v(x)ex/2) ∀v ∈ L2
(
R+

)
.

It can be easily verified that

(2.2)
∫ ∞

0

(π̂xMv − v)φMdx =
∫ ∞

0

(
πxM

(
v(x)ex/2

)
− v(x)ex/2

)
e−x/2φMdx

= 0 ∀φM ∈ P̂M

(
R+

)
.

Consequently, π̂xM is the orthogonal projector from L2(R+) into P̂M (R+).
We now present several useful results. We start with an inverse inequality for

Laguerre functions.
Lemma 2.1. For all φM ∈ P̂M (R+), we have

‖∂xφM‖0,R+ � M‖φM‖0,R+ .

Proof. Let φM (x) =
∑M
k=0 φ̃kL̂k(x). Then, ‖φM‖20,R+ =

∑M
k=0 φ̃

2
k and

∂xφM (x) =
M∑
k=0

φ̃kL̂′k(x) =
M∑
k=0

φ̃k

(
L′k(x)−

1
2
Lk(x)

)
e−

x
2 .

Hence, the desired result is a direct consequence of the above and the inverse inequality
for Laguerre polynomials (cf. [4]).

We now denote by PN(Λ) the space of polynomials of degree less than or equal to
N in Λ, and let πyN be the standard L2-orthogonal projector from L2(Λ) into PN (Λ).

Lemma 2.2. For all φN ∈ PN (Λ) ∩H1
0 (Λ), we have

‖φN‖0,Λ ≤ N1/2‖πyN−2φN‖0,Λ.

Remark 2.1. A proof of the above result, with a constant in front of N1/2, can
be found in [3]. In fact, a more precise computation as in [3] shows that the constant
can be bounded by one.

A similar result with respect to P̂M (R+) ∩H1
0 (R+) is as follows.

Lemma 2.3. For all φM ∈ P̂M (R+) ∩H1
0 (R+), we have

‖φM‖0,R+ ≤ (M + 1)1/2‖π̂xM−1φM‖0,R+ .

Proof. Writing φM in the form

φM (x) =
M∑
m=0

αmLm(x)e−x/2,
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we derive from (2.1) that

π̂xM−1φM (x) = e−x/2πxM−1

(
M∑
m=0

αmLm(x)

)
= e−x/2

M−1∑
m=0

αmLm(x).

Hence,

φM (x) = π̂xM−1φM (x) + αMLM (x)e−x/2,

and by using the orthogonality relation,

‖φM‖20,R+ = ‖π̂xM−1φM (x)‖20,R+ + α2
M

∫ ∞
0

(
LM (x)e−x/2

)2

dx.(2.3)

Note that φM (0) = 0 implies that

α0 + α1 + · · ·+ αM = 0,

from which

|αM | = |α0 + · · ·+ αM−1| ≤
[
M−1∑
m=0

α2
m

]1/2

M1/2.(2.4)

Combining (2.3) and (2.4) gives

‖φM‖20,R+ ≤ ‖π̂xM−1φM (x)‖20,R+ +M

M−1∑
m=0

α2
m = (M + 1)‖π̂xM−1φM (x)‖20,R+ .

Now we consider the mixed Laguerre–Legendre approximation. Let PM,N(Ω) be
the space of all polynomials in Ω of degree ≤M in the x direction and ≤ N in the y
direction, i.e.,

PM,N(Ω) := span{Li(x)Lj(y), i = 0, 1, . . . ,M ; j = 0, 1, . . . , N},
where Li(x) and Lj(y) are, respectively, Laguerre and Legendre polynomials of degree
i and j, satisfying∫ 1

−1

∫ ∞
0

Li(x)Lj(y)Lm(x)Ln(y)e−xdxdy =
2

2n+ 1
δimδjn.

We also define

P̂M,N(Ω) := span
{
L̂i(x)Lj(y), i = 0, 1, . . . ,M ; j = 0, 1, . . . , N

}
.

Let us denote by N the pair of parameters (M,N) and set

XN = H1
0 (Ω)2 ∩ P̂M,N(Ω)2, MN = L2(Ω) ∩ P̂M−1,N−2(Ω).

Lemma 2.4. For all ψ ∈ H2(Ω) ∩H1
0 (Ω), we have

‖ψ‖22,Ω �
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
2

0,Ω

+
∥∥∥∥∂2ψ

∂x2

∥∥∥∥
2

0,Ω

.(2.5)
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Proof. For all ψ ∈ H2(Ω), with ψ(x,±1) = 0 ∀x ∈ (0,+∞), we have

|ψ(x, y)|2 =
∣∣∣∣
∫ y

−1

∂ψ(x, s)
∂s

ds

∣∣∣∣
2

≤
∫ y

−1

(
∂ψ(x, s)
∂s

)2

ds

∫ y

−1

ds

≤ (y + 1)
∫ 1

−1

(
∂ψ(x, s)
∂s

)2

ds.

Therefore,

∫ 1

−1

ψ2(x, y)dy ≤
∫ 1

−1

(y + 1)dy
∫ 1

−1

(
∂ψ(x, s)
∂s

)2

ds = 2
∫ 1

−1

(
∂ψ(x, y)
∂y

)2

dy.(2.6)

As a consequence,

‖ψ‖20,Ω =
∫ ∞

0

∫ 1

−1

ψ2(x, y)dydx ≤ 2
∫ ∞

0

∫ 1

−1

(
∂ψ(x, y)
∂y

)2

dydx(2.7)

= 2
∥∥∥∥∂ψ∂y

∥∥∥∥
2

0,Ω

.

Using (2.7), we find

∥∥∥∥∂ψ∂y
∥∥∥∥

2

0,Ω

=
∫ ∞

0

∫ 1

−1

(
∂ψ

∂y

)2

dydx = −
∫ ∞

0

∫ 1

−1

∂2ψ

∂y2
ψdydx

≤
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
0,Ω

‖ψ‖0,Ω ≤
√

2
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
0,Ω

∥∥∥∥∂ψ∂y
∥∥∥∥

0,Ω

,

from which we derive

∥∥∥∥∂ψ∂y
∥∥∥∥

2

0,Ω

≤ 2
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
2

0,Ω

.

We then derive from (2.7) and the above that

‖ψ‖20,Ω ≤ 4
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
2

0,Ω

.(2.8)

On the other hand, applying (2.7) to ∂ψ
∂x with ψ ∈ H1

0 (Ω), we obtain

∥∥∥∥∂ψ∂x
∥∥∥∥

2

0,Ω

≤2
∥∥∥∥ ∂2ψ

∂y∂x

∥∥∥∥
2

0,Ω

.(2.9)

Furthermore, we have, for all ψ ∈ H1
0 (Ω),

2
∥∥∥∥ ∂2ψ

∂y∂x

∥∥∥∥
2

0,Ω

= 2
∫ 1

−1

∫ ∞
0

(
∂2ψ

∂x2

)(
∂2ψ

∂y2

)
dxdy ≤

∥∥∥∥∂2ψ

∂x2

∥∥∥∥
2

0,Ω

+
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
2

0,Ω

.(2.10)
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Finally, combining the above inequalities leads to

‖∇ψ‖21,Ω =
∥∥∥∥∂ψ∂x

∥∥∥∥
2

1,Ω

+
∥∥∥∥∂ψ∂y

∥∥∥∥
2

1,Ω

=
∥∥∥∥∂ψ∂x

∥∥∥∥
2

0,Ω

+
∣∣∣∣∂ψ∂x

∣∣∣∣
2

1,Ω

+
∥∥∥∥∂ψ∂y

∥∥∥∥
2

0,Ω

+
∣∣∣∣∂ψ∂y

∣∣∣∣
2

1,Ω

=
∫ 1

−1

∫ ∞
0

[(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2

+
(
∂2ψ

∂x2

)2

+ 2
(
∂2ψ

∂x∂y

)2

+
(
∂2ψ

∂y2

)2
]
dxdy

≤
∫ 1

−1

∫ ∞
0

[
4
(
∂2ψ

∂x∂y

)2

+
(
∂2ψ

∂x2

)2

+ 3
(
∂2ψ

∂y2

)2
]
dxdy

≤
∫ 1

−1

∫ ∞
0

[
3
(
∂2ψ

∂x2

)2

+ 5
(
∂2ψ

∂y2

)2
]
dxdy

= 3
∥∥∥∥∂2ψ

∂x2

∥∥∥∥
2

0,Ω

+ 5
∥∥∥∥∂2ψ

∂y2

∥∥∥∥
2

0,Ω

.

This estimate, together with (2.7), yields (2.5).
Now we set up the Stokes problem in a semi-infinite channel as depicted below:

⎧⎪⎪⎨
⎪⎪⎩
−Δu+∇p = f in Ω,

∇ · u = 0 in Ω,
u|Γ = 0,

lim
x→∞u = 0.

(2.11)

(0,-1)

(0, 1)

Ω

Γ

Γ

Γ �

�y

x

Its weak formulation is as follows: Find (u, p) ∈ H1
0 (Ω)2 × L2(Ω) such that{

(∇u,∇v)− (p,∇ · v) = (f ,v) ∀v ∈ H1
0 (Ω)2,

(q,∇ · u) = 0 ∀q ∈ L2(Ω).(2.12)

Then, the mixed Laguerre–Legendre spectral approximation to (2.12) is as follows:
Find uN ∈ XN , pN ∈MN such that{

(∇uN ,∇vN )N − (pN ,∇ · vN )N = (f ,vN )N ∀vN ∈ XN ,
(qN ,∇ · uN )N = 0 ∀qN ∈MN ,(2.13)

where the discrete inner product (·, ·)N is defined by

(φ, ψ)N =
M∑
p=0

N∑
q=0

φ
(
ξ̂p, ξq

)
ψ
(
ξ̂p, ξq

)
ω̂pωq,

where {ξ̂p, ω̂p}p=0,1,...,N are the Laguerre–Gauss–Radau points and the associated
weights, such that the following quadrature rule holds:∫ ∞

0

ϕ(x)dx =
M∑
p=0

ϕ
(
ξ̂p
)
ω̂p ∀ϕ(x) ∈ P̂2M

(
R+

)
;
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{ξq, ωq}q=0,1,...,N are the Legendre–Gauss–Lobatto points and the associated weights,
such that the following quadrature rule holds:∫ 1

−1

ϕ(y)dy =
N∑
q=0

ϕ(ξq)ωq, ∀ϕ(y) ∈ P2N−1(Λ).

It is well known that, since the coercivity and continuity of the bilinear form (∇wN ,
∇vN )N and the continuity of the bilinear form (∇ · vN , qN )N are evident, the well-
posedness of the mixed formulation (2.13) relies on the so-called inf-sup condition
[6]:

inf
qN∈MN

sup
vN∈XN

−(∇ · vN , qN )N
‖vN ‖1,Ω‖qN ‖0,Ω ≥ βN > 0,(2.14)

where βN is called the inf-sup constant. The next section is devoted to the estimation
of this constant.

3. Estimation of the inf-sup constant. The main result in this section is
what follows.

Theorem 3.1.

inf
qN∈MN

sup
vN∈XN

−(∇ · vN , qN )N
‖vN ‖1,Ω‖qN‖0,Ω � 1

M
.(3.1)

Remark 3.1. It is surprising that the inf-sup constant is independent ofN , since it
is well known that the inf-sup constant of the Legendre–Legendre P 2

N −PN−2 method
in Λ2 is of order N−

1
2 (see, for instance, [3]), and we have found numerically that in

the Legendre–Legendre case in Λ2, the corresponding inf-sup constant behaves like
max{ 1√

M
, 1√

N
}, where M,N are, respectively, the degrees of Legendre polynomials

used in the x and y directions. However, our numerical results in section 5 indicate
that the estimate (3.1) is sharp.

The proof of this result will be accomplished with a series of lemmas, which
we present below. The confirmation of the result will be done by the numerical
experiments carried out later.

Lemma 3.1. Given qN ∈ MN , the problem of finding ψN ∈ H1
0 (Ω) ∩ P̂M,N(Ω)

such that

(ΔψN , rN ) = −(qN , rN ) ∀rN ∈MN(3.2)

admits a unique solution satisfying

‖ψN‖2,Ω � M‖qN‖0,Ω.(3.3)

Proof. Obviously, problem (3.2) defines a system with the number of unknowns
equal to the number of equations, so the existence of such a function ψN is guaranteed
by estimate (3.3), which we prove below.

By definition (3.2), we have

(ΔψN , r1(x)r2(y)) = −(qN , r1(x)r2(y)), ∀r1 ∈ P̂M−1

(
R+

)
, ∀r2 ∈ PN−2(Λ).

This implies∫ ∞
0

qN (x, y)r1(x)dx = −πyN−2

∫ ∞
0

ΔψN (x, y)r1(x)dx

= −
∫ ∞

0

πyN−2(ΔψN (x, y))r1(x)dx∀r1 ∈ P̂M−1

(
R+

)
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and consequently

qN (x, y) = −π̂xM−1 ◦ πyN−2(ΔψN (x, y)) = −π̂xM−1 ◦ πyN−2

(
∂2ψN
∂x2

+
∂2ψN
∂y2

)

= −π̂xM−1 ◦ πyN−2

∂2ψN
∂x2

− π̂xM−1

∂2ψN
∂y2

= −πyN−2 ◦ π̂xM−1

∂2ψN
∂x2

− π̂xM−1

∂2ψN
∂y2

.

Hence,

‖qN ‖20,Ω =
∥∥∥∥π̂xM−1

∂2ψN
∂y2

∥∥∥∥
2

0,Ω

+
∥∥∥∥πyN−2 ◦ π̂xM−1

∂2ψN
∂x2

∥∥∥∥
2

0,Ω

+ 2
∫
Ω

π̂xM−1

∂2ψN
∂y2

πyN−2 ◦ π̂xM−1

∂2ψN
∂x2

=
∥∥∥∥π̂xM−1

∂2ψN
∂y2

∥∥∥∥
2

0,Ω

+
∥∥∥∥πyN−2 ◦ π̂xM−1

∂2ψN
∂x2

∥∥∥∥
2

0,Ω

+ 2
∫

Ω

∂2ψN
∂y2

π̂xM−1

∂2ψN
∂x2

.(3.4)

Observing that

π̂xM−1

∂2ψN
∂x2

=
∂2ψN
∂x2

− 1
4
(
I − π̂xM−1

)
ψN ,(3.5)

where I denotes the identity operator, then the last term in (3.4) can be rewritten as∫
Ω

∂2ψN
∂y2

π̂xM−1

∂2ψN
∂x2

=
∫

Ω

∂2ψN
∂y2

∂2ψN
∂x2

− 1
4

∫
Ω

∂2ψN
∂y2

(
I − π̂xM−1

)
ψN .

For the first term on the right-hand side, we have, by integration by parts,∫
Ω

∂2ψN
∂y2

∂2ψN
∂x2

=
∫

Ω

∂2ψN
∂x∂y

∂2ψN
∂x∂y

.

To estimate the second term, we write

ψN =
M∑
m=0

αm(y)Lm(x)e−x/2 ∈ H1
0 (Ω) ∩ P̂M,N (Ω).(3.6)

Then, we have with αm(y) ∈ P
0
N (Λ),m = 0, 1, . . . ,M , and by using the orthogonality

of the Laguerre polynomials,

−1
4

∫
Ω

∂2ψN
∂y2

(
I − π̂xM−1

)
ψN = −1

4

∫
Ω

[
M∑
m=0

α′′m(y)Lm(x)e−x/2
]
αM (y)LM (x)e−x/2

= −1
4

M∑
m=0

∫ ∞
0

(∫ 1

−1

α′′m(y)αM (y)dy
)
Lm(x)LM (x)e−xdx

= −1
4

∫ 1

−1

α′′M (y)αM (y)dy

=
1
4

∫ 1

−1

α′M (y)α′M (y)dy.
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Combining the above estimates leads to∫
Ω

∂2ψN
∂y2

π̂xM−1

∂2ψN
∂x2

=
∫

Ω

∂2ψN
∂x∂y

∂2ψN
∂x∂y

+
1
4

∫ 1

−1

α′M (y)α′M (y)dy.(3.7)

Hence, by using (3.7) and Lemma 2.3 in (3.4), we obtain

‖qN ‖20,Ω =
∥∥∥∥π̂xM−1

∂2ψN
∂y2

∥∥∥∥
2

0,Ω

+
∥∥∥∥πyN−2 ◦ π̂xM−1

∂2ψN
∂x2

∥∥∥∥
2

0,Ω

(3.8)

+ 2
∫

Ω

(
∂2ψN
∂x∂y

)2

dxdy +
1
2

∫ 1

−1

(α′M (y))2dy

� M−1

∥∥∥∥∂2ψN
∂y2

∥∥∥∥
2

0,Ω

+
∥∥∥∥∂2ψN
∂x∂y

∥∥∥∥
2

0,Ω

.

On the other hand, from the inverse inequality in the x direction (cf. Lemma 2.1) and
the Poincare inequality in the y direction, we have∥∥∥∥∂2ψ

∂x2

∥∥∥∥
0,Ω

� M

∥∥∥∥∂ψ∂x
∥∥∥∥

0,Ω

� M

∥∥∥∥ ∂2ψ

∂x∂y

∥∥∥∥
0,Ω

∀ψ ∈ H1
0 (Ω) ∩ P̂M,N (Ω).

Using the above inequality and Lemma 2.4 in (3.8) gives

‖qN ‖20,Ω � M−1

∥∥∥∥∂2ψN
∂y2

∥∥∥∥
2

0,Ω

+M−2

∥∥∥∥∂2ψN
∂x2

∥∥∥∥
2

0,Ω

� M−2‖ψN ‖22,Ω.
This leads to (3.3).

Lemma 3.2. For all qN ∈ MN , there exists zN ∈ (P̂M,N (Ω) ∩ H1
0 (Ω)) ×

(P̂M,N+1(Ω) ∩H1
0 (Ω)) such that

(∇ · zN , rN ) = −(qN , rN ) ∀rN ∈MN
and

‖zN‖1,Ω � M‖qN‖0,Ω.
Proof. For any qN ∈MN , let ψN be defined by (3.2) and wN = ∇ψN . Then, we

have wN ∈ P̂M,N (Ω)2 satisfying⎧⎨
⎩

(∇ ·wN , rN ) = −(qN , rN ) ∀rN ∈MN ,
wN · τ = 0,
‖wN‖1,Ω � M‖qN‖0,Ω,

(3.9)

where τ is the unit tangent vector along ∂Ω.
We now construct a lifting function φN ∈ P̂M,N+1(Ω) such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂φN
∂τ

= −wN · n on Γ,

∂φN
∂n

= 0 on Γ,

‖φN ‖2,Ω � ‖wN‖1,Ω,

(3.10)
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where n is the outward normal to ∂Ω. To this end, we define three functions on the
boundaries Γ1 = {(x, 1), 0 ≤ x < ∞}, Γ2 = {(0, y),−1 ≤ y ≤ 1}, Γ3 = {(x,−1), 0 ≤
x <∞}, respectively, as follows:

b1N (x, y) = −
∫ x

∞
(wN · n)(σ, y)dσ,

b2N (x, y) = b1N (0, 1)−
∫ y

1

(wN · n)(x, σ)dσ,

b3N (x, y) = b2N (0,−1)−
∫ x

0

(wN · n)(σ, y)dσ.

Then, it can be easily verified that bjN (j = 1, 2, 3) satisfy the following continuity
conditions:

b1N (0, 1) = b2N (0, 1),
b2N (0,−1) = b3N (0,−1),
∂b1N
∂τ

(0, 1) = −wN · n(0, 1) = 0 =
∂b2N
∂τ

(0, 1),

∂b2N
∂τ

(0,−1) = −wN · n(0,−1) = 0 =
∂b3N
∂τ

(0,−1),

∂2b1N
∂x∂y

(0, 1) =
∂2b2N
∂x∂y

(0, 1) = 0,

∂2b2N
∂x∂y

(0,−1) =
∂2b3N
∂x∂y

(0,−1) = 0.

The above conditions, together with the fact that bjN ∈ P̂M,N+1(Ω) (j = 1, 2, 3),
guarantee that there exists a φN ∈ P̂M,N+1(Ω) satisfying (see [2])⎧⎨

⎩
φN = bjN on Γj , j = 1, 2, 3,
∂φN
∂n

= 0 on Γ,
(3.11)

and

‖φN ‖2,Ω �
3∑
j=1

‖bjN ‖3/2,Γ � ‖wN · n‖1/2,Γ � ‖wN ‖1,Ω.

Moreover, it is seen that the first equality of (3.11) implies

∂φN
∂τ

= −wN · n on Γ.

This completes the construction of the lifting function φN . Now, let

zN = wN + rotφN ,

then zN ∈ P̂M,N(Ω)× P̂M,N+1(Ω) and

zN · n|Γ = wN · n+ rotφN · n = wN · n+
∂φN
∂τ

= 0,

zN · τ |Γ = wN · τ + rotφN · τ =
∂φN
∂n

= 0,
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which means zN ∈ (P̂M,N (Ω) ∩H1
0 (Ω))× (P̂M,N+1(Ω) ∩H1

0 (Ω)). Moreover, we have

(∇ · zN , rN ) = (∇ ·wN , rN ) + (∇ · rotφN , rN ) = −(qN , rN ) ∀rN ∈MN ,
and, by (3.9) and the last inequality of (3.10),

‖zN‖1,Ω = ‖wN + rotφN ‖1,Ω ≤ ‖wN ‖1,Ω + ‖rotφN ‖1,Ω
� ‖wN ‖1,Ω � M‖qN ‖0,Ω.

(3.12)

The proof is complete.
Lemma 3.3. For all qN ∈MN , there exists vN ∈ XN such that

(∇ · vN , rN ) = −(qN , rN ) ∀rN ∈MN
and

‖vN ‖1,Ω � M‖qN‖0,Ω.

Proof. For given qN , let zN := (z(1)
N , z

(2)
N ) ∈ (P̂M,N (Ω)∩H1

0 (Ω))× (P̂M,N+1(Ω) ∩
H1

0 (Ω)) be a function associated to qN in Lemma 3.2. Then, the second component
of zN can be written under form

z
(2)
N =

N+1∑
i=2

αi(x)e−x/2(Li(y)− Li−2(y)),

with αi(x) ∈ PM (R+) ∩H1
0 (R+), i = 2, . . . ,M + 1. We decompose z(2)

N into

z
(2)
N = z̃

(2)
N + z̄

(2)
N ,

with

z̃
(2)
N =

N∑
i=2

αi(x)e−x/2(Li(y)− Li−2(y)),

z̄
(2)
N = αN+1(x)e−x/2(LN+1(y)− LN−1(y)),

and let

vN =
(
z
(1)
N , z̃

(2)
N
)
.

Then, it is seen that vN ∈ XN , moreover, for all rN ∈MN , by using the orthogonality
of the Legendre polynomials, we have

(∇ · vN , rN ) =
(
∂xz

(1)
N + ∂y z̃

(2)
N , rN

)
=
(
∂xz

(1)
N + ∂y z̃

(2)
N , rN

)
−
(
αN+1(x)e−x/2(LN+1(y)− LN−1(y)), ∂yrN

)
=
(
∂xz

(1)
N + ∂y z̃

(2)
N , rN

)
+
(
αN+1(x)e−x/2∂y(LN+1(y)− LN−1(y)), rN

)
=
(
∂xz

(1)
N + ∂yz

(2)
N , rN

)
= (∇ · zN , rN )
= −(qN , rN ).
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It remains to prove ‖vN ‖1,Ω � ‖zN ‖1,Ω. Since z̃(2)
N = z

(2)
N − z̄(2)

N , we need only to
prove ‖z̄(2)

N ‖1,Ω � ‖z(2)
N ‖1,Ω. First, we have

∂xz̄
(2)
N = ∂x

(
αN+1(x)e−x/2

)
(LN+1(y)− LN−1(y)),

∂xz
(2)
N =

N+1∑
i=2

∂x

(
αi(x)e−x/2

)
(Li(y)− Li−2(y))

= ∂x

(
αN+1(x)e−x/2

)
LN+1(y) + ∂x

(
αN (x)e−x/2

)
LN(y) + · · · ,

thus ∥∥∥∂xz(2)
N
∥∥∥2

0,Ω
=
∫ 1

−1

[∫ ∞
0

(
∂x

(
αN+1(x)e−x/2

))2

dy

]
LN+1(y)2dx+ · · ·

�
∥∥∥∂x (αN+1(x)e−x/2

)∥∥∥2

0,R+

1
N + 1 + 1/2

≥ 1
6

∣∣∣αN+1(x)e−x/2
∣∣∣2
1,R+

(
2

2N + 3
+

2
2N − 1

)

=
1
6

∣∣∣αN+1(x)e−x/2
∣∣∣2
1,R+

(‖LN+1‖20,Λ + ‖LN−1‖20,Λ
)

�
∥∥∥∂xz̄(2)

N
∥∥∥2

0,Ω
.

Similarly, we have ∥∥∥z(2)
N
∥∥∥2

0,Ω
�
∥∥∥z̄(2)
N
∥∥∥2

0,Ω
.

Second, from

∂yz̄
(2)
N = αN+1(x)e−x/2(L′N+1(y)− L′N−1(y)) = αN+1(x)e−x/2(2N + 1)LN(y),

∂yz
(2)
N =

N+1∑
i=2

αi(x)e−x/2(L′i(y)− L′i−2(y)) =
N+1∑
i=2

αi(x)e−x/2(2i− 1)Li−1(y),

we derive that

∥∥∥∂yz(2)
N
∥∥∥2

0,Ω
=
N+1∑
i=2

∥∥αi(x)e−x/2∥∥2

0,R+(2i− 1)2‖Li−1‖20,Λ

≥ ∥∥αN+1(x)e−x/2
∥∥2

0,R+(2N + 1)2‖LN‖20,Λ
=
∥∥∂y z̄(2)

N
∥∥2

0,Ω
.

Combining all above estimations together gives∥∥∥z(2)
N
∥∥∥2

1,Ω
�
∥∥∥z̄(2)
N
∥∥∥2

1,Ω
,

which yields ∥∥∥v(2)
N
∥∥∥

1,Ω
=
∥∥∥z̃(2)
N
∥∥∥

1,Ω
=
∥∥∥z(2)
N − z̄(2)

N
∥∥∥

1,Ω
�
∥∥∥z(2)
N
∥∥∥

1,Ω
.
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This gives

‖vN ‖1,Ω � ‖zN‖1,Ω � M‖qN‖0,Ω.
Proof of Theorem 3.1. For all qN ∈MN , let vN ∈ XN be the associated function

given in Lemma 3.3, then

−(∇ · vN , qN )N
‖vN ‖1,Ω‖qN ‖0,Ω =

−(∇ · vN , qN )
‖vN ‖1,Ω‖qN ‖0,Ω =

(qN , qN )
‖vN ‖1,Ω‖qN ‖0,Ω

=
‖qN ‖0,Ω
‖vN ‖1,Ω � 1

M
.

This means (3.1) holds.
Corollary 3.1. For all f ∈ C0(Ω)2, problem (2.13) admits a unique solution

(uN , pN ) satisfying

‖uN ‖1,Ω +
1
M
‖pN ‖0,Ω � ‖f‖L∞(Ω).(3.13)

Proof. First, it can be checked that, for each uN ∈ XN ,vN ∈ XN ,

|(∇uN ,∇vN )N | ≤ 3 ‖uN ‖1‖vN ‖1,
(∇vN ,∇vN )N ≥ |vN |21 ≥

1
3
‖vN ‖21.

Then, thanks to the above inequalities and (3.1), the well-posedness of problem (2.13)
and stability estimate (3.13) are straightforward consequences of the abstract inf-sup
theory (cf. [1, 6]).

4. Error estimation. We start with some notations and definitions which are
needed in the following error analysis. Denote ωr(x) = xre−x, ω̂r(x) = xr, and, in
particular, we set ω(x) = ω0(x), ω̂(x) = ω̂0(x). Then, for any non-negative integer r,
we define two Banach spaces

Âr(R+) := {v; v is measurable on R+ and ‖v‖Âr,R+ <∞},
Ar(R+) := {v; v is measurable on R+ and ‖v‖Ar,R+ <∞},

equipped, respectively, with the following norms:

‖v‖Âr,R+ =

(
r∑

k=0

|v|2
Âk,R+

) 1
2

, with |v|Âk,R+ =
∥∥∂kxv∥∥ωk,R+ ∀v ∈ Âr

(
R+

)
,

‖v‖Ar,R+ =

(
r∑

k=0

|v|2Ak,R+

) 1
2

, with |v|Ak,R+ =
∥∥∂kxv∥∥ω̂k,R+ ∀v ∈ Ar

(
R+

)
.

We now recall several approximation results. Let πxM and π̂xM be the projection
operators defined in section 2.

Lemma 4.1 (cf. [19]). For any v ∈ Âr(R+) and integer r ≥ s ≥ 0,

‖v − πxMv‖Âs,R+ � M (s−r)/2|v|Âr ,R+ .(4.1)

A direct consequence of Lemma 4.1 is that, for any integer r ≥ 0, v ∈ Ar(R+),

‖v − π̂xMv‖0,R+ � M−r/2
∣∣ex/2v∣∣

Âr,R+ .(4.2)
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Denote WM = {v ∈ PM (R+); v(0) = 0}, and let πx,01,M : H1
0,ω(R+) → WM be the

H1
0,ω(R+)-orthogonal projection operator defined by

∫ ∞
0

(
πx,01,Mv

)′
φ

′
Mωdx =

∫ ∞
0

v
′
φ

′
Mωdx ∀φM ∈ WM .

Lemma 4.2. If v ∈ H1
0,ω(R+), ∂xv ∈ Âr−1(R+), and integer r ≥ 1, then

∥∥v − πx,01,Mv
∥∥

1,ω,R+ � M
1
2− r

2 |∂xv|Âr−1,R+ .

Proof. Given v ∈ H1
0,ω(R+), let vM (z) =

∫ z
0
πxM−1∂xv(x)dx ∀z ∈ R+, then

vM ∈ WM and ∂xvM (x) = πxM−1(∂xv(x)). Hence, by Lemma 2.2 of [11] and Lemma
4.1,

‖v − πx,01,Mv‖1,ω,R+ ≤ ‖v − vM‖1,ω,R+ � |v − vM |1,ω,R+

= ‖∂xv − πxM−1(∂xv)‖ω,R+ � M
1
2− r

2 |∂xv|Âr−1,R+ .

Now we set ŴM = {ve−x/2; v ∈ WM} and define the projection operator π̂x,01,M

from H1
0 (R+) into ŴM by

π̂x,01,Mv(x) := e−x/2πx,01,M

(
v(x)ex/2

) ∀v ∈ H1
0

(
R+

)
.

Then, it follows from Lemma 4.2 that, for r ≥ 1,

(4.3)∥∥v − π̂x,01,Mv
∥∥

1,R+ =
∥∥vex/2 − πx,01,M

(
ex/2v(x)

)∥∥
1,ω,R+ � M

1
2− r

2
∣∣∂x(ex/2v(x))∣∣Âr−1,R+ .

For r ≥ 1, we introduce the space, suitable for analyzing the approximation properties
of the Laguerre interpolation (cf. [19]),

Br(R+) := {v; v is measurable on R+ and ‖v‖Br,R+ <∞},

with norm

‖v‖Br,R+ =

(
r∑

k=1

∥∥∥x(r−1)/2(x + 1)1/2∂kxv
∥∥∥2

0,R+

)1/2

.

Let IxM be the Laguerre–Gauss–Radau interpolation, and define ÎxMv(x) = e−x/2IxM
(ex/2v(x)); the following result is proved in [19].

Lemma 4.3. For any v ∈ Br(R+), and 0 ≤ μ ≤ 1 ≤ r,∥∥v − ÎxMv∥∥μ,R+ � (lnM)1/2Mμ+1/2−r/2(∣∣ex/2v∣∣
Âr ,R+ +

∣∣∂x(ex/2v)∣∣Âr−1,R+

)
� (lnM)1/2Mμ+1/2−r/2‖v‖Br,R+ .

Let πy,01,N : H1
0 (Λ)→ P

0
N (Λ) be the H1

0 (Λ)-orthogonal projector defined by

∫ 1

−1

∂y(v − πy,01,Nv)∂yφdy = 0 ∀φ ∈ P
0
N (Λ).
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Then, it follows from [3] that, for all s ≥ 1 and all v ∈ H1
0 (Λ) ∩Hs(Λ), it holds that∥∥v − πy,01,Nv

∥∥
k,Λ

� Nk−s‖v‖s,Λ, k = 0, 1.(4.4)

We denote by L2(Λ, Ar(R+)) the space of the measurable functions v : Λ→ Ar(R+)
such that

‖v‖Ar;0 :=
{∫

Λ

‖v(·, y)‖2Ar,R+dy

} 1
2

<∞.

Moreover, for any nonnegative integer s, we define

Hs
(
Λ, L2

(
R+

))
:=

{
v;
∂jv

∂yj
∈ L2

(
Λ, L2

(
R+

))
, 0 ≤ j ≤ s

}
.

The norm of this space is given by

‖v‖0;s =

⎧⎨
⎩

s∑
j=0

∥∥∥∥∂jv∂yj

∥∥∥∥
2

0,Ω

⎫⎬
⎭

1
2

=

⎧⎨
⎩

s∑
j=0

∥∥∥∥∂jv∂yj

∥∥∥∥
2

0;0

⎫⎬
⎭

1
2

.

Now, for any nonnegative integer r and s, we define

Ar;s(Ω) := Hs
(
Λ, L2

(
R+

)) ∩ L2
(
Λ, Ar

(
R+

))
,

with the following norm:

‖v‖Ar;s =
{‖v‖2Ar;0 + ‖v‖20;s

} 1
2 ∀v ∈ Ar;s(Ω).

We also define

B̄r;s(Ω) := Hs
(
Λ, L2

(
R+

)) ∩H1
(
Λ, Br−1

(
R+

)) ∩ L2
(
Λ, Ar

(
R+

))
,

Y m;n(Ω) := Hn
(
Λ, L2

(
R+

)) ∩H1
(
Λ, Am−1

(
R+

)) ∩Hn−1
(
Λ, H1

(
R+

))
∩L2

(
Λ, Am

(
R+

))
,

equipped, respectively, with the following norms:

‖v‖B̄r;s =
(
‖v‖20;s + ‖v‖2Br−1;1 + ‖v‖2Ar;0

) 1
2
,

‖v‖Ym;n =
(
‖v‖20;n + ‖v‖2Am−1;1 + ‖v‖21;n−1 + ‖v‖2Am;0

) 1
2
.

Theorem 4.1. If the solution (u, p) of problem (2.12) satisfies u ∈ H1
0 (Ω)2 ∩

Y m;n(Ω)2 ∩C(Ω), p ∈ Am−1;n−1(Ω) ∩C(Ω), m ≥ 1, n ≥ 1 and f ∈ B̄r;s(Ω)2 ∩C(Ω),
r ≥ 1, s ≥ 1, then the solution (uN , pN ) of (2.13) admits the following error estimates:

‖u− uN ‖1,Ω �
(
M

1
2−m

2 +N1−n)(M‖u‖Ym;n + ‖p‖Am−1;n−1)
+
(
(lnM)

1
2M1− r

2 +N−s
)‖f‖B̄r;s ,

‖p− pN ‖0,Ω � M
[(
M

1
2−m

2 +N1−n)(M‖u‖Ym;n + ‖p‖Am−1;n−1)

+
(
(lnM)

1
2M1− r

2 +N−s
)‖f‖B̄r;s

]
.
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Proof. Let

VN := {vN ∈ XN ; (pN ,∇ · vN )N = 0 ∀pN ∈MN}.
Then, for all vN ∈ XN ,wN ∈ VN ,

(∇wN ,∇vN )− (∇wN ,∇vN )N = (∇(wN − u),∇vN ) + (∇u,∇vN )
− (∇wN ,∇vN )N

�
(|u−wN |1,Ω +

∣∣u− π̂x,01,Mπ
y,0
1,N−1u

∣∣
1,Ω

)|vN |1,Ω
+
∣∣wN − π̂x,01,Mπ

y,0
1,N−1u

∣∣
1,Ω
|vN |1,Ω

�
(|u−wN |1,Ω +

∣∣u− π̂x,01,Mπ
y,0
1,N−1u

∣∣
1,Ω

)|vN |1,Ω.
This result, together with Theorem IV.2.5 and Remark IV.2.7 of [3], leads to

|u− uN |1,Ω � inf
wN∈VN

(
|u−wN |1,Ω + sup

vN∈XN

(∇wN ,∇vN )− (∇wN ,∇vN )N
|vN |1,Ω

)

+ inf
qN∈MN

‖p− qN ‖0,Ω + sup
vN∈XN

(f ,vN )N − (f ,vN )
|vN |1,Ω

� inf
wN∈VN

|u −wN |1,Ω +
∣∣u− π̂x,01,Mπ

y,0
1,N−1u

∣∣
1,Ω

+ inf
qN∈MN

‖p− qN ‖0,Ω

+ sup
vN∈XN

(f ,vN )N − (f ,vN )
|vN |1,Ω

� M inf
vN∈XN

|u− vN |1,Ω +
∣∣u− π̂x,01,Mπ

y,0
1,N−1u

∣∣
1,Ω

+ inf
qN∈MN

‖p− qN ‖0,Ω + sup
vN∈XN

(f ,vN )N − (f ,vN )
|vN |1,Ω .

And,

‖p− pN ‖0,Ω � M

[∣∣u− π̂x,01,Mπ
y,0
1,N−1u

∣∣
1,Ω

+ inf
qN∈MN

‖p− qN ‖0,Ω

+M inf
vN∈XN

|u− vN |1,Ω + sup
vN∈XN

(f ,vN )N − (f ,vN )
|vN |1,Ω

]
.

Now, for all fM,N−1 ∈ P̂M,N−1(Ω)2, we have

(f ,vN )N − (f ,vN ) �
(∥∥f − IyN ÎxMf∥∥0,Ω

+ ‖f − fM,N−1‖0,Ω
)|vN |1,Ω.

We know from the interpolation results of IyN and ÎxM that∥∥f − IyN ÎxMf∥∥0,Ω
≤ ‖f − IyNf‖0;0 +

∥∥IyN(f − ÎxMf)∥∥0;0

� N−s‖f‖0;s +
∥∥f − ÎxMf∥∥0;1

� N−s‖f‖0;s + (lnM)
1
2M1− r

2 ‖f‖Br−1;1 .

Furthermore,

‖f − fM,N−1‖0,Ω ≤
∥∥f − πyN−1 ◦ π̂xMf

∥∥
0;0

� N−s‖f‖0,s +M−
r
2 ‖f‖Ar;0 .
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Combining the above two inequalities, we get

(f ,vN )N − (f ,vN ) �
(
(lnM)

1
2M1− r

2 +N−s
)
‖f‖B̄r;s |vN |1,Ω.

Now we estimate infvN∈XN |u− vN |1,Ω. Since

|u− vN |1,Ω =
∥∥∥∥ ∂

∂x
(u− vN )

∥∥∥∥
0,Ω

+
∥∥∥∥ ∂∂y (u− vN )

∥∥∥∥
0,Ω

,

by choosing vN = π̂x,01,Mπ
y,0
1,Nu, we know from the approximation results of π̂x,01,M and

πy,01,N that∥∥∥∥ ∂

∂x
(u − vN )

∥∥∥∥
0,Ω

≤
∥∥∥∥ ∂

∂x

(
u− π̂x,01,Mu

)∥∥∥∥
0,Ω

+
∥∥∥∥ ∂

∂x
π̂x,01,M

(
u− πy,01,Nu

)∥∥∥∥
0,Ω

� M
1
2−m

2
∣∣∂x(ex/2u)∣∣Âm−1;0

+N1−n
∥∥∥∥ ∂

∂x
π̂x,01,Mu

∥∥∥∥
0;n−1

� M
1
2−m

2 ‖u‖Am;0 +N1−n
∥∥∥∥ ∂

∂x

(
ex/2u

)∥∥∥∥
ω0;n−1

� M
1
2−m

2 ‖u‖Am;0 +N1−n‖u‖1;n−1;

∥∥∥∥ ∂∂y (u − vN )
∥∥∥∥

0,Ω

≤
∥∥∥∥ ∂∂y (u− πy,01,Nu

)∥∥∥∥
0,Ω

+
∥∥∥∥ ∂∂yπy,01,N

(
u− π̂x,01,Mu

)∥∥∥∥
0,Ω

� N1−n‖u‖0;n +M
1
2−m

2

∣∣∣∣ex/2 ∂∂yπy,01,N−1u

∣∣∣∣
Âm−1;0

� N1−n‖u‖0;n +M
1
2−m

2 ‖u‖Am−1;1.

Combining the above two results leads to

inf
vN∈XN

|u− vN |1,Ω ≤
∣∣u− π̂x,01,Mπ

y,0
1,Nu

∣∣
1,Ω

�
(
M

1
2−m

2 +N1−n)‖u‖Ym;n .

Similarly, we have∣∣u− π̂x,01,Mπ
y,0
1,N−1u

∣∣
1,Ω

�
(
M

1
2−m

2 +N1−n)‖u‖Ym;n .

Now it remains to estimate infqN∈MN ‖p− qN ‖0,Ω. By using the known properties of
the projectors π̂xM and πyN in [16], it follows that

inf
qN∈MN

‖p− qN ‖0,Ω ≤ ‖p− πyN−2 ◦ π̂xM−1p‖0;0
� (N − 2)1−n‖p‖0;n−1 + ‖p− π̂xM−1p‖0;0
� N1−n‖p‖0;n−1 +M

1
2−m

2 ‖p‖Am−1;0

�
(
M

1
2−m

2 +N1−n)‖p‖Am−1;n−1.

As a direct consequence of the above estimates, we finally obtain

‖u− uN ‖1,Ω �
(
M

1
2−m

2 +N1−n)(M‖u‖Ym;n + ‖p‖Am−1;n−1)
+
(
(lnM)

1
2M1− r

2 +N−s
)‖f‖B̄r;s ,

‖p− pN ‖0,Ω � M
[(
M

1
2−m

2 +N1−n)(M‖u‖Ym;n + ‖p‖Am−1;n−1)

+
(
(lnM)

1
2M1− r

2 +N−s
)‖f‖B̄r;s

]
.
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5. Numerical results and discussions. We start with some implementation
details. Let uN = (u1

N , u
2
N )t, and we write

urN (x, y) =
N−1∑
j=1

M∑
i=1

urN
(
ξ̂i, ξj

)
ĥi(x)hj(y), r = 1, 2,

where hj ∈ PN (Λ) (0 ≤ j ≤ N) are the Legendre–Gauss–Lobatto interpolants satis-
fying hj(ξq) = δqj , while ĥi ∈ P̂M (R+) (0 ≤ i ≤ M) are the Laguerre–Gauss–Radau
interpolants satisfying ĥi(ξ̂q) = δqi. We use uN to denote the vector consisting of the
values of uN at the nodes (ξ̂i, ξj)1≤i≤M,1≤j≤N−1.

Similarly, we write

pN (x, y) =
N−1∑
j=1

M∑
i=1

pN
(
ζ̂i, ζj

)
�̂i(x)�j(y),

where (ζ̂i)1≤i≤M and (ζj)1≤j≤N−1 are, respectively, the Laguerre–Gauss and Legendre–
Gauss points, and �j ∈ PN−2(Λ) (1 ≤ j ≤ N−1) are the Legendre–Gauss interpolants
satisfying �j(ξq) = δqj , while �̂i ∈ P̂M−1(R+) (1 ≤ i ≤ M) are the Laguerre–Gauss
interpolants satisfying �̂i(ζ̂q) = δqi. We use pN to denote the vector consisting of the
values of pN at the nodes (ζ̂i, ζj)1≤i≤M,1≤j≤N−1.

Inserting the expansions of uN and pN into (2.13), the resulting set of algebraic
equations can be written under a matrix form:

ANuN +DN pN = BNfN ,(5.1)

DT
NuN = 0,(5.2)

where fN is a vector representation of the f at the nodes (ξ̂i, ξj). The matrices AN ,
DN , and BN are block-diagonal matrices with 2 blocks each. The blocks of AN are
the discrete Laplace operators, and those of DN are associated to the different com-
ponents of the discrete gradient operators, while blocks of BN are the mass matrices
with respect to each component of f .

Eliminating uN from (5.1)–(5.2), we obtain

(5.3) DT
NA

−1
N DN︸ ︷︷ ︸
SN

pN = DT
NA

−1
N BN fN .

The matrix SN := DT
NA

−1
N DN is usually referred as the Uzawa matrix. A typical

procedure for solving (5.1)–(5.2) is to first solve pN from (5.3) and then solve uN
from the Poisson equation (5.1) with known pN .

The Uzawa matrix is of dimension M×(N−1), full, symmetric, and semidefinite.
A usual procedure is to use a preconditioned conjugate gradient procedure with the
Gauss mass matrix B̃N as a preconditioner [3, 7, 9, 14]. Each outer iteration requires
the inversion of two Laplace operators (AN matrix), which can be carried out by
the fast diagonalization method (see [13]). Hence, the efficiency of the method is
dictated by the condition number κN of B̃−1

N SN . Another important consequence of
the inf-sup constant is that κN = 1

β2
N

[14].
The first computational investigation is concerned with the sharpness of the lower

bound on the inf-sup constant derived in section 3. In the left of Figure 1, we plot



A LAGUERRE–LEGENDRE SPECTRAL METHOD 289

0.8 1 1.2 1.4 1.6 1.8 2
log(M)

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2
N=12
N=16
N=24

0 10 20 30 40 50 60 70 80
N

10
−3

10
−2

10
−1

M=12
M=16
M=24

Fig. 1. Left: inf-sup constant βN vs. M in log-log scale; right: inf-sup constant βN vs. N .
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Fig. 2. Spectra of the Uzawa operator for three different values of N with M = N .

the variations of βN versus (vs.) M in log-log scale for several N . We observe that
βN is independent of N while it decays as 1

M . In the right of Figure 1, we plot the
variations of βN vs. N for several M . We observe that βN remains to be constant
as we vary N with M fixed. These results are fully consistent with Theorem 3.1,
indicating that our estimate for the inf-sup constant is sharp.

In view of inverting the Uzawa operator, the knowledge of the eigenvalues’ distri-
bution of the matrix B̃−1

N SN may help to design adapted preconditioners for (5.3).
The efficiency of the iterating methods depends on how the preconditioners affect the
eigenvalues of SN . In Figure 2 we plot all of the eigenvalues of B̃−1

N SN for some
values of M = N ∈ {12, 16, 24}.

The first feature of the spectra is the similarity of their distribution for different
values of N with M = N . Another interesting aspect is a strong concentration of
the eigenvalues around the largest value 1. It is known that this type of clustering
is very advantageous for the conjugate gradient iteration since the contribution of
the eigenspaces associated with a given multiple eigenvalue is resolved in only one
iteration.
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Fig. 3. The velocity (◦) and pressure (�) errors as a function of N with M = N : left, in L2

norm; right, in L∞ norm.

We now present some numerical tests to validate the error estimates. We consider
the Stokes problem with the following analytical solution:

u =
(

sin(x) cos(y)e−x

(sin(x)− cos(x)) sin(y)e−x

)
, p = cos(x) cos(y)e−x.

In Figure 3, we plot, in a semilogarithmic scale, the L2-velocity and the L2-
pressure errors (top figure), and the L∞-velocity and the L∞-pressure errors (bottom
figure) with respect to N with M = N . We observe that the errors converge expo-
nentially, which is a typical behavior for spectral methods with analytical solutions.

Finally, in order to justify the use of compatible discrete velocity and pressure
spaces, we show via a simple test that the equal-order velocity-pressure approximation
PM,N(Ω)2×PM,N(Ω) is ill-posed. In Figure 4, we present the velocity and the pressure
errors in the L2-norm as a function of N with M = N . Obviously the pressure fails
to converge when the polynomial degree increases. The reason for this failure is that
there are spurious pressure modes in the pressure space, similar to the well-known case
of the Legendre–Legendre P 2

N − PN method for the Stokes problem in a rectangular
domain.
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Fig. 4. The velocity and pressure errors as a function of N(M = N) by the incompatible
PM,N (Ω)2 × PM,N (Ω) method.

In summary, we have presented a mixed Laguerre–Legendre spectral method for
the Stokes problem on a semi-infinite channel. We established the well-posedness
of this method by deriving a lower bound on the inf-sup constant and presented
numerical results which indicated that the derived lower bound is sharp. We have
also derived error estimates by using the inf-sup condition and the Laguerre and
Legendre approximation properties.
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OPTIMAL IMPORTANCE SAMPLING PARAMETER SEARCH FOR
LÉVY PROCESSES VIA STOCHASTIC APPROXIMATION∗

REIICHIRO KAWAI†

Abstract. The author proposes stochastic approximation methods of finding the optimal mea-
sure change by the exponential tilting for Lévy processes in Monte Carlo importance sampling vari-
ance reduction. In accordance with the structure of the underlying Lévy measure, either a constrained
or unconstrained algorithm of the stochastic approximation is chosen. For both cases, the almost sure
convergence to a unique stationary point is proved. Numerical examples are presented to illustrate
the effectiveness of our method.

Key words. Esscher transform, Girsanov theorem, Monte Carlo simulation, infinitely divisible
distribution, stochastic approximation algorithm, variance reduction
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1. Introduction. The importance sampling method is aimed at reducing the
variance of independently and identically distributed (i.i.d.) Monte Carlo summands
by appropriately transforming the underlying probability measure, from which in-
terested random variables or stochastic processes are generated, so as to put more
weight on important events and less on undesirable ones. Due to its practical effec-
tiveness, it has long been thought of as one of the most important variance reduction
methods in the Monte Carlo simulation and has been intensively studied with a view
towards a wide range of applications, such as mathematical finance, queueing theory,
and sequential analysis, to mention just a few. For its principle with some numerical
examples, see, for instance, section 4.6 of Glasserman [7].

In the importance sampling “variance” reduction, the optimal measure change
means nothing but the one attaining the minimal variance of i.i.d. Monte Carlo sum-
mands. In the Gaussian framework, the Girsanov measure change is often indexed by
a single parameter, that is, the drift parameter, and several attempts have been made
to find its optimum. In financial applications, for example, Glasserman, Heidelberger,
and Shahabuddin [6] propose an optimization procedure to find a nearly optimal mea-
sure change in pricing financial derivatives, while Su and Fu [14] and Arouna [1] apply
the stochastic approximation so as to search for the root of the gradient of the Monte
Carlo variance with respect to the measure change parameter.

The aim of the present work is to apply the idea of [1, 14] to Lévy processes
without the Brownian motion, or equivalently after discretization, infinitely divisible
laws without Gaussian component. In general, the measure change for Lévy processes
involves every single jump, which forms the sample paths. (See section 33 of Sato [12]
for details. For an importance sampling method with such intricate measure changes,
see Kawai [8].) In this paper, we, however, restrict our attention to the simplest
measure change, often called the Esscher transform, which has only to look at the
terminal marginals. The Esscher transform is nothing but the well-known exponential
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tilting of laws and is thus indexed by a single (multidimensional) parameter. As we
will investigate later, a crucial difficulty in the case of Lévy processes without Gaussian
component is that, depending on the structure of the underlying Lévy measure, the
exponential tilting parameter might have to stay in a suitable compact set, while the
drift parameter of the Gaussian distribution may be arbitrarily taken.

The rest of the paper is organized as follows. Section 2 recalls the Esscher trans-
form and the principle of the importance sampling variance reduction, and constructs
the basis of our analysis. In section 3, the almost sure convergence of the stochastic
approximation is proved separately for the constrained and unconstrained algorithms,
depending on the structure of the underlying Lévy measure. Section 4 illustrates the
effectiveness of our method via numerical examples for both constrained and uncon-
strained stochastic approximation algorithms. Finally, section 5 concludes.

2. Preliminaries. Let us begin with some notations which will be used through-
out the text. N is the collection of all positive numbers, with N0 := {0} ∪ N. R

d is
the d-dimensional Euclidean space with the norm ‖ · ‖ and the inner product 〈·, ·〉,
R
d
0 := R

d \ {0} and B(Rd0) is the Borel σ-field of R
d
0. (Ω,F ,P) is our underlying

probability space. Leb(·) denotes the Lebesgue measure, while P|Ft is the restriction
of a probability measure P to the σ-field Ft. Denote by ∇ the gradient, and by Hess[·]
the Hessian matrix. The interval (0,−1] is understood to be [−1, 0). The expression
f(x) ∼ g(x) means f(x)/g(x) tends to 1. The identity in law is denoted by L=. We
say that a stochastic process {Xt : t ≥ 0} in R

d is a Lévy process if it has independent
and stationary increments, if it is continuous in probability, and if X0 = 0, a.s. By the
Lévy–Khintchine representation theorem, the characteristic function of its marginal
law is uniquely given by

E

[
ei〈y,Xt〉

]
= exp

[
t

(
i〈y, γ〉−1

2
〈y,Ay〉+

∫
Rd

0

(
ei〈y,z〉 − 1− i〈y, z〉�(0,1](‖z‖)

)
ν(dz)

)]
,

where γ ∈ R
d, A is a symmetric nonnegative-definite d × d matrix, and ν is a Lévy

measure on R
d
0, that is,

∫
Rd

0
(‖z‖2 ∧ 1)ν(dz) < +∞. If the above holds, then we say

that the Lévy process {Xt : t ≥ 0} is generated by the triplet (γ,A, ν). In this
paper, we restrict our attention to pure-jump Lévy processes, that is, we set A ≡ 0
throughout. Moreover, we also assume that all components are nondegenerate. A
function f : R

d → [0,∞) is said to be submultiplicative if there exists a positive
constant a such that f(x+ y) ≤ af(x)f(y) for x, y ∈ R

d. Letting c ∈ R, γ ∈ R
d, and

b > 0, if f(x) is submultiplicative on R
d, then f(cx+γ)b is submultiplicative, and the

functions ‖x‖∨ 1, e〈c,x〉 are submultiplicative, and a product of two submultiplicative
functions is submultiplicative. We recall an important moment property of Lévy
processes, which will be used often in what follows.

Theorem 2.1 (Sato [12], Theorem 25.3). Let f be a submultiplicative, locally
bounded, measurable function on R

d, and let {Xt : t ≥ 0} be a Lévy process in
R
d with Lévy measure ν. Then, E[f(Xt)] is finite for every t > 0 if and only if∫
‖z‖>1 f(z)ν(dz) < +∞.

2.1. Esscher transform. Among the density transformations of Lévy processes,
there is a simple class ending up with looking only at the marginals, which is built via
the exponential tilting. The class is often called the Esscher transform in mathematical
finance and actuarial science. Let {Xt : t ≥ 0} be a Lévy process in R

d generated by
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(γ, 0, ν), and let (Ft)t≥0 be the natural filtration of {Xt : t ≥ 0}. Define

Λ1 :=
{
λ ∈ R

d : EP

[
e〈λ,X1〉

]
< +∞

}
=

{
λ ∈ R

d :
∫
‖z‖>1

e〈λ,z〉ν(dz) < +∞
}
,

where the second equality holds by Theorem 2.1. We impose the condition Leb(Λ1) >
0 throughout. Clearly, the set Λ1 contains the origin and is convex. For λ ∈ Λ1, we
denote by ϕ the cumulant generating function of the marginal law at unit time of
{Xt : t ≥ 0} under the probability measure P; that is, ϕ(λ) := ln EP[e〈λ,X1〉]. For ease
in notation, we also write ϕt(λ) := ln EP[e〈λ,Xt〉], t > 0, in view of

ϕt(λ) = ln EP

[
e〈λ,Xt〉

]
= t lnEP

[
e〈λ,X1〉

]
= tϕ(λ),

where the second equality holds by the infinite divisibility of the marginal laws of
Lévy processes. Note that ϕ(λ) is continuous and ∇ϕ(λ) is well defined in λ ∈ Λ1.
Under the probability measure Qλ, where λ ∈ Λ1 and which is defined via the Radon–
Nikodym derivative, for every t ∈ (0,+∞),

dQλ

dP

∣∣∣
Ft

=
e〈λ,Xt〉

EP

[
e〈λ,Xt〉

] = e〈λ,Xt〉−ϕt(λ), P-a.s.,

the stochastic process {Xt : t ≥ 0} is again a Lévy process generated by (γλ, 0, νλ),
where γλ = γ +

∫
‖z‖≤1 z(νλ − ν)(dz), and

(2.1) νλ(dz) = e〈λ,z〉ν(dz).

Then, the probability measures P|Ft and Qλ|Ft are mutually absolutely continuous
for every t ∈ (0,+∞). We also have EQλ

[e−〈λ,X1〉] < +∞, and

dP

dQλ

∣∣∣
Ft

=
(
dQλ

dP

∣∣∣
Ft

)−1

= e−〈λ,Xt〉+ϕt(λ), Qλ-a.s.

For t > 0, let p be a probability density function on R
d of the random vector Xt under

P, provided that it is well defined. Then, a density function pλ of Xt under Qλ is
given by

(2.2) pλ(x) = e〈λ,x〉−ϕt(λ)p(x), x ∈ R
d.

2.2. Importance sampling variance reduction. Suppose we are interested
in evaluating

C := EP[F (X)]

by Monte Carlo simulation, where F (X) := F ({Xt : t ∈ [0, T ]}) ∈ L2(Ω,FT ,P), and
assume P(F (X) �= 0) > 0. In view of the equality

EP[F (X)] = EQλ

[
dP

dQλ

∣∣∣
FT

F (X)
]

= EQλ

[(
dQλ

dP

∣∣∣
FT

)−1

F (X)

]

= EQλ

[
e−〈λ,XT 〉+ϕT (λ)F (X)

]
,
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define a set

Λ2 := Λ1 ∩
{
λ ∈ R

d : EP

[
e−〈λ,XT 〉F (X)2

]
< +∞

}
,

and suppose that Leb(Λ2) > 0. Let us now give a lemma, whose proof will be often
adapted in what follows.

Lemma 2.2. The set Λ2 is convex.
Proof. For any λ1, λ2 ∈ Λ2, and for any m ∈ (0, 1) and n = 1 −m, the Hölder

inequality gives

EP

[
e−〈mλ1+nλ2,XT 〉F (X)2

]
≤ EP

[
e−〈λ1,XT 〉F (X)2

]m
EP

[
e−〈λ1,XT 〉F (X)2

]n
< +∞.

The claim then follows from the convexity of Λ1.
For λ ∈ Λ2, the variance under the probability measure Qλ is given by

V (λ) := EQλ

[(
dP

dQλ

∣∣∣
FT

)2

F (X)2
]
− C2

= EP

[(
dQλ

dP

∣∣∣
FT

)−1

F (X)2
]
− C2

= EP

[
e−〈λ,XT 〉+ϕT (λ)F (X)2

]
− C2.

Define also a set

Λ3 := Λ2 ∩
{
λ ∈ R

d : EP

[
‖XT ‖2e−〈λ,XT 〉F (X)2

]
< +∞

}
,

and assume that Leb(Λ3) > 0.
Proposition 2.3. The set Λ3 is convex and V (λ) is strictly convex in λ ∈ Λ3.
Proof. The convexity of Λ3 can be proved in a similar manner to the proof of

Lemma 2.2.
Since λ ∈ Λ3, by the Hölder inequality, we have

EP

[
‖XT ‖e−〈λ,XT 〉F (X)2

]2
≤ EP

[
e−〈λ,XT 〉F (X)2

]
EP

[
‖XT ‖2e−〈λ,XT 〉F (X)2

]
< +∞,

and thus with the help of the dominated convergence theorem, we obtain the gradient

∇V (λ) = EP

[
(∇ϕT (λ)−XT )e−〈λ,XT 〉+ϕT (λ)F (X)2

]
,

and also the Hessian

Hess[V (λ)]

= EP

[(
Hess[ϕT (λ)] + (∇ϕT (λ) −XT )(∇ϕT (λ) −XT )′

)
e−〈λ,XT 〉+ϕT (λ)F (X)2

]
.

Then, we have for y ∈ R
d
0,

y′Hess[V (λ)]y

= EP

[(
y′Hess[ϕT (λ)]y + 〈y,∇ϕT (λ) −XT 〉2

)
e−〈λ,XT 〉+ϕT (λ)F (X)2

]
> 0,
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since Hess[ϕT (λ)] reduces to the variance-covariance matrix of the random vector XT

under the probability measure Qλ, which is clearly positive definite.
Remark 2.4. The definition of the sets Λ2 and Λ3 is less intuitive and is of less

practical use. We may instead give more intuitive definition in connection with the
Lévy measure by giving up some part of its domain as

Λ′2 =

{
λ ∈ R

d :
∫
‖z‖>1

e−q〈λ,z〉ν(dz)

< +∞,EP

[|F (X)|2p] < +∞, 1
p

+
1
q

= 1 for some p > 1

}
,

and

Λ′3 =

{
λ ∈ R

d :
∫
‖z‖>1

‖z‖2qe−q〈λ,z〉ν(dz)

< +∞,EP

[|F (X)|2p] < +∞, 1
p

+
1
q

= 1 for some p > 1

}
.

It is easy to check that both Λ′2 and Λ′3 are convex, and that Λ′2 ⊆ Λ2, Λ′3 ⊆ Λ3, and
Λ′3 ⊆ Λ′2. They are derived as follows. By the Hölder inequality, with 1/p+ 1/q = 1
for some p > 1 and for k = 0, 2,

EP

[
‖XT ‖ke−〈λ,XT 〉F (X)2

]
≤ EP

[|F (X)|2p]1/p EP

[
‖XT ‖kqe−q〈λ,XT 〉

]1/q
.

By Theorem 2.1, the finiteness of the second expectation of the above right-hand side
for each k = 0, 2 is equivalent to

∫
‖z‖>1 ‖z‖kqe−q〈λ,z〉ν(dz) < +∞ for corresponding

k. This, with k = 0, asserts the definition of Λ2, while the definition of Λ3 is verified
with k = 2.

Meanwhile, as soon as F (X) reduces to f(XT ) with f being submultiplicative,
the set Λ3 is identical to{

λ ∈ R
d :
∫
‖z‖>1

[
e〈λ,z〉 ∨

(
‖z‖2e−〈λ,z〉f(z)2

)]
ν(dz) < +∞

}
,

by Theorem 2.1.

3. Convergence of stochastic approximation algorithms. We begin with
recalling the stochastic approximation algorithms. Let {Xn,t : t ∈ [0, T ]}n∈N be i.i.d.
copies of the stochastic process {Xt : t ∈ [0, T ]}. For ease in notation, we will write
Xn := Xn,T for n ∈ N, and F (X)n := F ({Xn,t : t ∈ [0, T ]}). Let H be a connected
set in R

d with {0} ∈ H , and define a sequence {Yn}n∈N of random vectors in R
d by

Yn+1 = (∇ϕ(λn)−Xn+1) e−〈λn,Xn+1〉+ϕ(λn)F (X)2n+1,

where λ0 ∈ H , {λn}n∈N is a sequence of random vectors in R
d iteratively generated

by

(3.1) λn+1 = ΠH [λn − εnYn+1] ,
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where ΠH is the projection onto the constraint setH and where {εn}n∈N0 is a sequence
of positive constants satisfying

(3.2)
∑
n∈N0

εn = +∞,
∑
n∈N0

ε2n < +∞.

Moreover, define the filtration (Gn)n∈N0 by Gn := σ({λk}k≤n, {Xk}k≤n).
In what follows, the term “the constrained algorithms” means the algorithms

where the constraint set H in (3.1) is not R
d and the sequence {λn}n∈N0 is required

to stay in the set, while by “the unconstrained algorithms,” we mean the ones whose
constraint setH is extended to R

d; that is, the elements of {λn}n∈N0 may be arbitrarily
taken in R

d.
Define a set

Λ4 := Λ1 ∩
{
λ ∈ R

d : EP

[
‖XT‖ke−2〈λ,XT 〉F (X)4

]
< +∞, k = 0, 2

}
.

We will below see that the algorithm is unconstrained if Λ4 = R
d. It is, however,

difficult to check whether or not that is the case, since the the operator F is involved.
Meanwhile, to have an unconstrained algorithm, we need at least Λ4 ⊆ Λ1 = R

d. In
this sense, let us give a rough illustration of the situation in the following.

Lemma 3.1. If the Lévy measure ν has a compact support, then Λ1 = R
d. If∫

‖z‖>1 e
‖z‖1+δ

ν(dz) < +∞ for some δ > 0, then Λ1 = R
d.

3.1. Constrained algorithms. The following proves the almost sure conver-
gence of the constrained algorithms. Their gradient-based structure simplifies the
argument.

Theorem 3.2. Assume that Leb(Λ4) ∈ (0,+∞), and λ0 ∈ Λ4. Let H be a
compact set such that H ⊆ Λ4. Then, there exists λ∗ ∈ H such that the sequence
{λn}n∈N0 in (3.1) converges P-a.s. to λ∗. Moreover, V (λ∗) ≤ V (0).

Proof. First, note that EP[e−〈λ,XT 〉F (X)2] < +∞ since EP[e−2〈λ,XT 〉F (X)4] <
+∞, and that by the Cauchy–Schwarz inequality,

EP

[
‖XT ‖2e−〈λ,XT 〉F (X)2

]2
≤ EP

[‖XT ‖2
]
EP

[
‖XT ‖2e−2〈λ,XT 〉F (X)4

]
< +∞.

Hence, Λ4 ⊆ Λ3. The convexity of Λ4 can be proved in a similar manner to the proof
of Lemma 2.2. Moreover, we have

EP

[
‖XT ‖e−2〈λ,XT 〉F (X)4

]2
≤ EP

[
e−2〈λ,XT 〉F (X)4

]
EP

[
‖XT ‖2e−2〈λ,XT 〉F (X)4

]
< +∞.

Now, since

sup
n∈N

EP

[‖Yn‖2] ≤ sup
λ∈H

EP

[
‖∇ϕT (λ) −XT ‖2e−2〈λ,XT 〉+2ϕT (λ)F (X)4

]
,

and since ‖∇ϕ(λ)‖ < +∞ and ϕ(λ) < +∞, for λ ∈ H , the expectation of the above
right-hand side is finite if and only if EP[‖XT‖ke−2〈λ,XT 〉F (X)4] < +∞ for each
k = 0, 1, 2. This proves supn∈N EP[‖Yn‖2] < +∞. Since Λ4 is convex, it follows from
Theorem 2.1 (p. 127) of Kushner and Yin [11] that the sequence {λn}n∈N0 converges
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P-a.s. to a unique stationary point in H . The last claim holds by the strict convexity
of V on H .

Remark 3.3. It is not clear whether or not there exists λ ∈ H such that ∇V (λ) =
0, and thus the above stationary point λ∗ ∈ H does not necessarily attain∇V (λ∗) = 0.
If, however, there happens to exist λ ∈ H such that ∇V (λ) = 0, then ∇V (λ∗) = 0 is
guaranteed by the strict convexity of V on Λ4.

Remark 3.4. We may give some modifications of the set Λ4 so that it looks more
intuitive, as in Remark 3.3. If F (X) = f(XT ) with f being submultiplicative, then
Λ4 can be rewritten as

Λ4 =

{
λ ∈ R

d :
∫
‖z‖>1

[
e〈λ,z〉 ∨ ‖z‖2e−2〈λ,z〉f(z)4

]
ν(dz) < +∞

}
.

Otherwise, by the Hölder inequality,

Λ′4 =

{
λ ∈ R

d :
∫
‖z‖>1

‖z‖2qe−2q〈λ,z〉ν(dz)

< +∞,EP

[|F (X)|4p] < +∞, 1
p

+
1
q

= 1 for some p > 1

}
,

which is a convex subset of Λ4.

3.2. Unconstrained algorithms. We begin with the main result.
Proposition 3.5. If Λ4 = R

d and if there exists c > 0 such that

(3.3) M := inf
‖y‖=1

∫
‖z‖≤c

〈y, z〉2�[0,+∞) (〈y, z〉) ν(dz) > 0,

then there exists a unique λ∗ ∈ R
d such that ∇V (λ∗) = 0.

Remark 3.6. In most applications, Lévy processes are chosen to have indepen-
dent components, each of which possesses small jumps in both positive and negative
directions. Then, their Lévy measures are supported on all the axes of R

d, that is,

ν(dz1, . . . , dzd) =
d∑
k=1

δ0(dz1) · · · δ0(dzk−1)νk(dzk)δ0(dzk+1) · · · δ0(dzd),

for some Lévy measures {νk}k=1,...,d on R0. We then get

M = inf
‖y‖=1

d∑
k=1

y2
k

∫
zk∈(0,sgn(yk)c]

z2
kνk(dzk) > 0.

In Example 4.2 below, we discretize the sample paths of Lévy processes with both pos-
itive and negative jumps on a finite time horizon into a few independent increments,
and thus the condition (3.3) holds true.

Proof. By Proposition 2.3 with Λ3 ⊇ Λ4 = R
d, it suffices to show that lim‖λ‖↑+∞

V (λ) = +∞. First, note that with a suitable γc ∈ R
d,

ϕ(λ) − 〈λ, γc〉 =
∫
‖z‖>c

(
e〈λ,z〉 − 1

)
ν(dz) +

∫
‖z‖≤c

(
e〈λ,z〉 − 1− 〈λ, z〉

)
ν(dz).
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The first component of the right-hand side above is bounded from below by −ν({z ∈
R
d
0 : ‖z‖ > c}) since Λ1 = R

d. For the second component, since ex−1−x ≥ 0, x ∈ R,
we have ∫

‖z‖≤c

(
e〈λ,z〉 − 1− 〈λ, z〉

)
ν(dz)

≥ inf
‖y‖=1

∫
‖z‖≤c

(
e‖λ‖〈y,z〉 − 1− ‖λ‖〈y, z〉

)
ν(dz)

≥ inf
‖y‖=1

∫
‖z‖≤c

(
e‖λ‖〈y,z〉 − 1− ‖λ‖〈y, z〉

)
�[0,+∞) (〈y, z〉) ν(dz)

≥M‖λ‖2.
Therefore, we get

EP

[
e−〈λ,XT 〉+ϕT (λ)F (X)2

]
= eϕT (λ)−T 〈λ,γc〉EP

[
e−〈λ,XT−Tγc〉F (X)2

]
≥ eϕT (λ)−T 〈λ,γc〉EP

[
e−‖λ‖‖XT−Tγc‖F (X)2� (‖XT − Tγc‖ ≤M‖λ‖/2)

]
≥ eT (M‖λ‖2/2−ν({z∈R

d
0 :‖z‖>c}))

EP

[
F (X)2�(‖XT − Tγc‖ ≤M‖λ‖/2)

]
,

which explodes as ‖λ‖ ↑ +∞. This proves the claim.
The unconstrained algorithms often show a rough numerical behavior. This phe-

nomenon is mainly due to the extremely fast grow of EP[‖∇ϕT (λ) − XT ‖2
e−2〈λ,XT 〉+2ϕT (λ)F (X)4] with respect to ‖λ‖. Alternatively, Chen, Guo and Gao [4]
proposes a projection procedure. In essence, by forcing the iterates to stay in an
increasing sequence of compact sets, the procedure avoids the explosion of the algo-
rithm during the early stage. Meanwhile, we adapt the results of Chen and Zhu [3]
and Delyon [5]. Let {Hn}n∈N0 be an increasing sequence of compact sets such that
∪n∈N0Hn = R

d, and modify the algorithm (3.1) as

(3.4) λn+1 = ΠHσ(n) [λn − εnYn+1] ,

where σ(n) counts the number of projections up to the nth step.
Theorem 3.7. Assume that Λ4 = R

d and that there exists a unique λ∗ such that
∇V (λ∗) = 0. Then, the sequence {λn}n∈N0 in (3.4) converges P-a.s. to λ∗. Moreover,
limn↑+∞ σ(n) < +∞, P-a.s.

Proof. Let m ∈ N and define for n ∈ N0,

Mn :=
n∑
k=0

εk (Yk+1 − EP [Yk+1 | Gk])�(‖λk‖ < m).

By Proposition 3.5 and the results in [3, 5], we are only to show that for each m ∈ N,
{Mn}n∈N0 converges P-a.s. Since the sequence {Mn}n∈N0 is a martingale with respect
to the filtration (Gn)n∈N0 , it suffices to show that {Mn}n∈N0 is a L2-martingale. To
this end, for each m ∈ N, we will show that, P-a.s.,∑
n∈N0

ε2nEP

[‖Yn+1‖2�(‖λn‖ ≤ m)
∣∣Gn]

=
∑
n∈N0

ε2nEP

[
‖∇ϕT (λn)−XT ‖2 e−2〈λn,XT 〉+2ϕT (λn)F (X)4� (‖λn‖ ≤ m)

∣∣Gn] < +∞.
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We begin with proving that for each m ∈ N, the following four quantities are well
defined:

C1(m) := sup
‖λ‖≤m

∣∣∣∣∣
∫
‖z‖>1

(
e〈λ,z〉 − 1

)
ν(dz)

∣∣∣∣∣ ,
C2(m) := sup

‖λ‖≤m

∣∣∣∣∣
∫
‖z‖≤1

(
e〈λ,z〉 − 1− 〈λ, z〉

)
ν(dz)

∣∣∣∣∣ ,
C3(m) := sup

‖λ‖≤m

∫
‖z‖>1

‖z‖e〈λ,z〉ν(dz),

C4(m) := sup
‖λ‖≤m

∫
‖z‖≤1

‖z‖
∣∣∣e〈λ,z〉 − 1

∣∣∣ ν(dz).
Clearly, C1(m) is finite since Λ1 = R

d and ν({z ∈ R
d
0 : ‖z‖ > 1}) < +∞, while the

finiteness of C2(m) follows from e〈λ,z〉 − 1 − 〈λ, z〉 ∼ 〈λ, z〉2 ≤ ‖λ‖2‖z‖2 as ‖z‖ ↓ 0.
For C3(m), the Hölder inequality gives the assertion, that is, with 1/p+ 1/q = 1 for
some p > 1,

∫
‖z‖>1

‖z‖e〈λ,z〉ν(dz) ≤
[∫
‖z‖>1

‖z‖pν(dz)
]1/p [∫

‖z‖>1
e〈qλ,z〉ν(dz)

]1/q

< +∞,

again with the help of Λ1 = R
d. Finally, the finiteness of C4(m) holds by ‖z‖|e〈λ,z〉−

1| ∼ ‖z‖|〈λ, z〉| ≤ ‖λ‖‖z‖2 as ‖z‖ ↓ 0.
Let us now proceed to the main part of the proof. First, as previously, note that

ϕ(λ)− 〈λ, γ〉 =
∫
‖z‖>1

(
e〈λ,z〉 − 1

)
ν(dz) +

∫
‖z‖≤1

(
e〈λ,z〉 − 1− 〈λ, z〉

)
ν(dz).

Both the first and the second integrals of the right-hand side above are well defined
due to the finiteness of C1(m) and C2(m), respectively. Hence, we get

|ϕ(λ) − 〈λ, γ〉| ≤ C1(m) + C2(m) =: C5(m).

Next, note that

∇ (ϕ(λ) − 〈λ, γ〉) =
∫
‖z‖>1

ze〈λ,z〉ν(dz) +
∫
‖z‖≤1

z
(
e〈λ,z〉 − 1

)
ν(dz),

where the passages to the gradient operator are verified by the finiteness of C3(m)
and C4(m), and thus

‖∇ (ϕ(λ) − 〈λ, γ〉)‖ ≤ C3(m) + C4(m) =: C6(m).

In total, we get for each m ∈ N,

EP

[
‖∇ϕT (λ) −XT ‖2 e−2〈λ,XT 〉+2ϕT (λ)F (X)4� (‖λ‖ ≤ m)

∣∣Gn]
≤ EP

[
(‖XT − γT ‖+ C6(m)T )2 e−2〈λ,XT−γT 〉+2C5(m)TF (X)4� (‖λ‖ ≤ m)

∣∣Gn] ,
which is bounded P-a.s., since Λ4 = R

d. The proof is complete.
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4. Numerical illustrations. In this section, we give two numerical examples,
corresponding to the constrained algorithm and the unconstrained one. We will eval-
uate the efficiency of the importance sampling variance reduction by the ratio of
variances (vratio), defined by

(vratio) :=
VarP(F (X))

VarQλN
((dP/dQλN )F (X))

.

Example 4.1 (constrained algorithm). Let X := (X1, . . . , X5)′ be an infinitely
divisible random vector with independent and identically distributed components un-
der the probability measure P, where the common Lévy measure ν on R0 for each
component is of the Meixner type of Schoutens and Teugels [13]. It is characterized
by three parameters (a, b, d) in the form

ν(dz) = d
exp(bz/a)
z sinh(πz/a)

dz, z ∈ R0,

where a > 0, b ∈ (−π, π), and d > 0, while the probability density function p of X1 is
given in closed form by

(4.1) p(x) =
(2 cos(b/2))2d

2aπΓ(2d)
ebx/a

∣∣∣∣Γ
(
d+

ix

a

)∣∣∣∣
2

.

We can derive that

Λ1 =

{
λ ∈ R :

∫
|z|>1

eλzν(dz) < +∞
}5

=
(−π − b

a
,
π − b
a

)5

,

and that for λ ∈ Λ1,

ϕ(λ) =
5∑

k=1

2d
[
ln
(

cos
b

2

)
− ln

(
cos

b+ aλk
2

)]
,

and

∇ϕ(λ) =
(

2ad tan
b+ aλ1

2
, . . . , 2ad tan

b+ aλ5

2

)′
.

Consider an Asian payoff

F (X) = max

[
0,

1
5

5∑
k=1

S0e
∑k

l=1Xl−kϕ((1,0,0,0,0)′) −K
]
.

For the condition EP[|F (X)|2p] < +∞, it is sufficient to have
∫
|z|>1 e

2pzν(dz) < +∞.
With p > 1, we get p ∈ (1,+∞)∩((−π−b)/(2a), (π−b)/(2a)), provided that π−b > 2a.
Next, the condition

∫
|z|>1 |z|2qe−qλzν(dz) < +∞ yields b/a− qλ ∈ (−π/a, π/a), and

in view of the interval of q, we get

Λ′2 = Λ1 ∩
(
b− π
a

([
1− 2a

π − b
]
∧ 1
)
,
b+ π

a

([
1− 2a

π − b
]
∧ 1
))5

,
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provided that π − b > 2a. In a similar manner, we can prove Λ′3 = Λ′2 and

Λ′4 = Λ1 ∩
(
b− π
2a

([
1− 4a

π − b
]
∧ 1
)
,
b+ π

2a

([
1− 4a

π − b
]
∧ 1
))5

,

provided that π − b > 4a.
We set the parameters of the Meixner distribution (a, b, d) = (0.1, 0.0, 1.0), and

thus an effective domain is approximately Λ′4 = (−13.707963, 13.707963)5. The con-
straint set H must be compact, so it is safe to set H = [−13.70796, 13.70796]5 ⊂ Λ′4.
We generate N = 1e+ 5 Monte Carlo runs with the full help of the closed form den-
sity function (4.1). With those runs, we perform the constrained algorithm (3.1)
with εn = α/(n + 1) and λ0 = {0}. We examine three cases: the ATM case
(K = 100), an OTM case (K = 125), and a deep OTM case (K = 150). The
left figures in Figure 1 draw a sequence {‖∇V (λn)‖}n∈N0 of the absolute gradient lev-
els, which is “desired” to achieve limn↑+∞ ‖∇V (λn)‖ = 0, P-a.s. (As pointed out in
Remark 2.4, it is not clear whether or not the constraint set H contains λ∗ such that
∇V (λ∗) = 0.) The figures on the right present the convergence of the Monte Carlo
estimate EP[F (X)] (MC) and that of the importance sampling Monte Carlo estimate
EQλN

[(dP/dQλN )F (X)] (IS MC), of which λN is the exponential tilting parameter
obtained after N = 1e+ 5 of the stochastic approximation iterations, while the three
vertical lines indicate C̃ := EQλN

[(dP/dQλN )F (X)], 0.99C̃ and 1.01C̃.
The absolute gradient level tends to decrease as desired, and the resulting impor-

tance sampling succeeds in reducing the Monte Carlo variance. The absolute gradient
level seems to have already converged to zero, while we have observed that a compo-
nent of {λn}n∈N0 seems to stay at the upper boundary (= +13.70796) in the ATM
(K = 100) and in the OTM (K = 125). Those are delicate issues in the constrained
algorithms.

Example 4.2 (unconstrained algorithm). Let X := (X1, . . . , X5)′ be an infinitely
divisible random vector in R

5 with independent and identically distributed compo-
nents, whose common Lévy measure ν on R0 of each component is given in the form
of the standard Gaussian density function,

ν(dz) =
1√
2π
e−

1
2 z

2
dz.

Evidently, for each λ ∈ R,
∫
|z|>1 e

λzν(dz) < +∞. Letting λ := (λ1, . . . , λ5)′, with the
help of the independence of the components, we get Λ1 = R

5,

ϕ(λ) =
5∑

k=1

(
e

1
2λ

2
k − 1

)
,

and

∇ϕ(λ) =
(
λ1e

1
2λ

2
1 , . . . , λ5e

1
2λ

2
5

)′
.

Due to the compound Poisson structure, the random vector under the probability
measure P can be generated via

X
L=

(
N1∑
n=1

W1,n, . . . ,

N5∑
n=1

W5,n

)′
,
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Fig. 1. Results for the constrained algorithm; {‖∇V (λn)‖}n∈N0 (left figures), while EP[F (X)]
(MC) and EQλN

[(dP/dQλN
)F (X)] (IS MC) (right figures).

where {Nn}n≤5 is a sequence of i.i.d. Poisson random variables with unit parameter
and {Wk,n}k≤5,n∈N is an i.i.d. standard Gaussian random array. In view of (2.1), the
Lévy measure under the probability measure Qλ is given by

νλ(dz) = eλzν(dz) =
1√
2π
e

1
2λ

2
e−

1
2 (z−λ)2dz,

which is just like a drift shift of the Gaussian density by λ (up to the constant e
1
2λ

2
).

Hence, the random vector under the new probability measure Qλ can be generated
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via the identity

X
L=

(
N1∑
n=1

(W1,n + λ1) , . . . ,
N5∑
n=1

(W5,n + λ5)

)′

=

(
N1∑
n=1

W1,n + λ1N1, . . . ,

N5∑
n=1

W5,n + λ5N5

)′
,(4.2)

where {Nn}n≤5 is now a sequence of i.i.d. Poisson random variables with parameter
e

1
2λ

2
(≥ 1) and where {Wk,n}k≤5,n∈N remains to be an i.i.d. standard Gaussian random

array. For any λ ∈ R
d
0, the componentwise variance tends to increase by factor

e
1
2λ

2
k , since EQλ

[
∑Nk

n=1Wk,n] = EQλ
[Nk]EQλ

[Wk,1], while the drift shift λk is further
accelerated by factor e

1
2λ

2
k on average.

Consider a digital payoff

F (X) = �(S1 < 100−K,S2 > 100 +K,S3 < 100−K,S4 > 100 +K,S5 < 100−K),

for a suitable K and where Sn = 100 exp[
∑n

k=1Xk − nϕ((1, 0, 0, 0, 0)′)], n ≤ 5. Since
|F (X)| ≤ 1, P-a.s., we get Λ4 = R

5. We generate N = 1e+ 5 Monte Carlo runs and
perform the unconstrained algorithm (3.4) with εn := α/(n + 1), Hn := {λ ∈ R

d :
‖λ‖ ≤ 10 ln(100(n + 1))}, and λ0 := {0}. We examine the three cases; K = 5, 20,
and 40. We present the results in Figure 2, where the three vertical lines in the right
figures here indicate C̃ := EQλN

[(dP/dQλN )F (X)], 0.98C̃ and 1.02C̃.
In similar to the results in Example 4.1, the algorithm reduces the absolute gra-

dient level, and the resulting importance sampling succeeds in reducing the Monte
Carlo variance. Unlike in the constrained algorithm case, we know that there exists a
unique optimum λ∗ which makes the absolute gradient level zero. It seems that the
zero is fairly attained.

Remark 4.3. In the above numerical illustrations, we have chosen the Lévy
measures of the Meixner type and of the Gaussian density. It is a clear reason of the
choice that they are somewhat invariant with respect to the Esscher transform owing
to the exponential component of their Lévy measure and thus remain very easy to
generate in simulation even after the measure change. It should be mentioned here
that from a computational point of view, Lévy measures without such an invariance
property may not be a good candidate for simulation in our framework. However, this
should not be a crucial drawback since most recent popular Lévy measures possess
an exponential component, for instance, the Lévy measure of gamma processes.

5. Concluding remarks. In this paper, we have developed stochastic approxi-
mation methods of finding the optimal measure change for Lévy processes in Monte
Carlo importance sampling variance reduction. Our analysis is valid on the basis of
the restriction to the exponential tilting measure change, that is, limiting the density
to a function the terminal value XT . Nevertheless, our method should be applica-
ble to a variety of applications since its principle is not specific to the structure of
the Monte Carlo estimator itself. It may be of interest to extend to the intricate
series representation setting of [8] by using characterizing parameters of the Lévy
measure in the stochastic approximation procedure. Extensions to an optimal pa-
rameter search for the combined importance sampling and control variates variance
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Fig. 2. Results for the unconstrained algorithm; {‖∇V (λn)‖}n∈N0 (left figures), while EP[F (X)]
(MC) and EQλN

[(dP/dQλN
)F (X)] (IS MC) (right figures).

reduction are studied using a two-time-scale version of the stochastic approximation
algorithm in subsequent papers [9, 10].
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Abstract. The convergence of reachable sets for nonconvex differential inclusions is considered.
When the right-hand side in the differential inclusion is a compact-valued, Lipschitz continuous set-
valued function it is shown that the convergence in Hausdorff distance of reachable sets for a forward
Euler discretization is linear in the time step.
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1. Introduction. A natural method to approximate solutions to a differential
inclusion is the forward Euler method. Before this method is described, some notation
is introduced. We denote by B the closed unit ball in R

d. The Minkowski sum of two
nonempty sets C,D ⊂ R

d, is defined by

C +D =
{
c+ d | c ∈ C and d ∈ D},

the multiplication by a scalar, λ > 0, by

λC =
{
λc | c ∈ C},

and the sum of an element c ∈ R
d and a set C by

c+ C =
{
c
}

+ C.

The Hausdorff distance is given by

H(C,D) = inf
{
λ ≥ 0 | C ⊂ D + λB and D ⊂ C + λB

}
,

and the convex hull of a set C is denoted co(C). The Euclidean norm is denoted | · |.
The differential inclusion to be studied is

x′(t) ∈ F (x(t)),
x(0) = x0,

(1.1)

where x0 ∈ R
d is the starting position. The function F is set-valued R

d � R
d, i.e., for

each x ∈ R
d, F (x) is a subset of R

d. It is assumed that the images F (x) are compact
sets, uniformly bounded in the sense that

(1.2) |y| ≤ K for all y ∈
⋃

x∈Rd

F (x),
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and are Lipschitz continuous with respect to the Hausdorff distance:

(1.3) H(F (x), F (y)
) ≤ L|x− y| for all x, y ∈ R

d.

These assumptions are made for the sake of convenient notation, and could clearly
be relaxed. We could, e.g., change the global Lipschitz continuity in (1.3) to local
Lipschitz continuity, since, by the boundedness of F , the solutions to the differential
inclusion remain in a bounded set in the finite time interval we will consider. It is
also possible to treat the nonautonomous inclusion x′(t) ∈ F (t, x(t)) with the theory
presented for the autonomous inclusion (1.1), if there is Lipschitz continuity in both
space and time, i.e.,

(1.4) H(F (t, x), F (s, y)
) ≤ L(|t− s|+ |x− y|).

This is done by introducing the variable z = (t, x) ∈ R
d+1, which solves the inclusion

z′ ∈ F̃ (z),
z(0) = (0, x0),

(1.5)

where F̃ (z) =
(
1, F (z1, zs)

)
, and where z1 is the first coordinate of the vector z and

zs is the vector containing the last d coordinates in z. Note that the inclusion (1.5)
is autonomous in the variable z, with a right-hand side which by (1.4) is Lipschitz
continuous with constant

√
2L.

By a solution to the differential inclusion in some interval, say [0, T ], we mean an
absolutely continuous function x : [0, T ]→ R

d such that (1.1) holds almost everywhere
in [0, T ]. General theory on differential inclusions can be found in [2, 3, 8]. This paper
is about how well reachable sets of the differential inclusion can be approximated by
reachable sets of a forward Euler discretization of it. The interval [0, T ] is split into N
equal parts so that the step length is Δt = T/N . We shall consider solutions {ξn}Nn=0
to the forward Euler discretized inclusion

ξn+1 ∈ ξn + ΔtF (ξn), n = 0, 1, . . . , N − 1,
ξ0 = x0.

(1.6)

For convex differential inclusions, i.e., those where the function F is convex-
valued, it has been shown in [9] that the forward Euler method converges with rate
one. If the differential inclusion (1.1) is not convex, the relaxation theorem, restated
in Theorem 2.2 (see also [2]), gives that its set of solutions is dense in the set of
solutions to its convexified version, where F (x) has been changed to the convex hull
co
(
F (x)

)
. Therefore, a straightforward way to approximate solutions of a nonconvex

differential inclusion is to first convexify, and then to use the convergence result for
the Euler method applied to convex differential inclusions, mentioned above. The new
result presented here, in Theorem 2.5, is that the forward Euler method is convergent
with rate one, even without the step of convexification.

The convergence result in Theorem 2.5 is weaker than the result for convex prob-
lems in [9] in two ways. First, the convergence is in the sense of the Hausdorff distance
between reachable sets, to be explained in section 2, whereas the result for convex
problems concerns convergence of entire solution paths. Second, the reachable sets
to the forward Euler scheme are shown to be of the order d2Δt from the reachable
sets to the original differential inclusion (1.1), measured in Hausdorff distance; i.e.,
there is a dependence on the dimension which is not present in the result for convex
differential inclusions.
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A benefit of using the forward Euler method directly, without convexifying, is that
when applied to optimal control problems, the minimization in the approximating
optimization problem might be over a finite set. The connection with optimal control
is discussed further in section 2.1.

It will be shown that the Hausdorff distance between reachable sets for (1.1) and
(1.6) is of the order Δt. When this is proved we use the fact that the forward Euler
method for convex differential inclusions converges with rate one. The convexified
variant of (1.6) is therefore also introduced:

ηn+1 ∈ ηn + Δt co
(
F (ηn)

)
, n = 0, 1, . . . , N − 1,

η0 = x0.
(1.7)

In this paper the forward Euler method for approximating differential inclusions
is treated. This method is studied for convex problems in [1, 9, 13, 14]. For convex
differential inclusions there are also other methods available; for surveys on such
approximation methods, see [10, 15]. Under a condition of strong convexity, a Runge–
Kutta-type scheme is shown to be convergent of order two in [18]. In [19] the second
order convergence is established for linear differential inclusions that are convex, but
not necessarily strongly convex.

2. The convergence result. Introduce the reachable sets

Cn =
{
x(nΔt) | x : [0, T ]→ R

d solution to (1.1)
}
,

Dn =
{
ξn | {ξi}Ni=0 solution to (1.6)

}
,

En =
{
ηn | {ηi}Ni=0 solution to (1.7)

}
.

(2.1)

The main result is that the Hausdorff distance between the sets Cn and Dn is of the
order Δt. The proof uses two previously known results, and a new one. Before stating
these, a lemma about the Lipschitz continuity of co

(
F (x)

)
is formulated.

Lemma 2.1. Let F be a function from R
d into the compact subsets of R

d which
satisfies (1.3). Then

H(co(F (x)
)
, co
(
F (y)

)) ≤ L|x− y|.
Proof. This is a direct consequence of the fact that for any nonempty compact

sets A and B in R
d,

H(co(A), co(B)
) ≤ H(A,B),

a fact which may be found in, e.g., [20].
We now formulate the known results used in the proof of the convergence result for

nonconvex differential inclusions in Theorem 2.5. The first is the relaxation theorem
(see, e.g., [2]), which states that the set of solutions to the differential inclusion (1.1)
is dense in the set of solutions to its convexified version, where F (x) has been changed
to co

(
F (x)

)
.

Theorem 2.2. Let F be a Lipschitz continuous function from R
d into the

nonempty compact subsets of R
d. Let y : [0, T ]→ R

d be a solution to

y′(t) ∈ co
(
F
(
y(t)

))
, y(0) = x0.

Then for every positive ε, there exists a solution x : [0, T ]→ R
d to (1.1) such that for

all t ∈ [0, T ], |x(t) − y(t)| ≤ ε.
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The relaxation theorem makes it possible to move from the setting of nonconvex
differential inclusions to the convex one. For convex differential inclusions it has been
proved in [9] that the forward Euler method converges with rate one. The result in
[9] is formulated in a slightly more general setting than here, but we give a version
adapted to the present assumptions.

Theorem 2.3. Let F be a function from R
d into the nonempty compact convex

subsets of R
d, which satisfies (1.2) and (1.3). For any solution x : [0, T ] → R

d to
(1.1) there exists a solution {ξn}Nn=0 to (1.6) such that

(2.2) max
0≤n≤N

|x(nΔt)− ξn| ≤ KLTeLTΔt.

Moreover, for any solution {ξn}Nn=0 to (1.6) there exists a solution x : [0, T ]→ R
d to

(1.1) such that (2.2) holds. Hence the sets Cn and Dn, defined in (2.1), satisfy

(2.3) max
0≤n≤N

H(Cn, Dn) ≤ KLTeLTΔt.

Remark 2.4. Even though the constant in front of Δt in (2.2) and (2.3) does not
occur explicitly in [9], it can be found by working through the proofs.

One method for approximation of (1.1) is to use a forward Euler scheme with a
convexified right-hand side. Theorems 2.2 and 2.3 show that this method converges
with order one. This paper, however, concerns the forward Euler scheme with the
right-hand side unchanged. What remains to show in order to prove the desired
convergence for this method is that the Hausdorff distance between the reachable sets
to (1.6) and to (1.7) is of the order Δt. This is shown in section 3, but first we state
the result for the forward Euler method for nonconvex differential inclusions.

Theorem 2.5. Let F be a function from R
d into the nonempty compact subsets

of R
d which satisfies (1.2) and (1.3). Then the sets Cn and Dn, defined in (2.1),

satisfy

(2.4) max
0≤n≤N

H(Cn, Dn) ≤ (KeLT
(
Kd(d+ 1) + LT

)
+ 2Kd

)
Δt.

Proof. Theorem 2.2 implies that

C̄n =
{
y(nΔt) | y : [0, T ]→ R

d solves y′(t) ∈ co
(
F
(
y(t)

))
, y(0) = x0

}
,

where the bar denotes set closure. Lemma 2.1 and Theorem 2.3 imply that

(2.5) max
0≤n≤N

H(C̄n, En) ≤ KLTeLTΔt,

while Theorem 3.6 says that

(2.6) max
0≤n≤N

H(Dn, En) ≤ (KeLTd(d+ 1) + 2Kd
)
Δt.

Since H(Cn, Dn) = H(C̄n, Dn), (2.4) follows by (2.5) and (2.6).
Let us compare Theorem 2.5 with other results regarding the convergence of the

forward Euler method for differential inclusions. First, we note that the constant
in front of Δt in (2.4) depends on the dimension d, while such explicit dependence
on the dimension is not present in the estimate for convex differential inclusions in
Theorem 2.3. Although this dependence on d might be weaker, it is not possible to
avoid it completely. Consider, e.g., the case when F is constant and consists of the
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1x

2x

Fig. 2.1. Part of the sets Cn (shaded) and Dn (dots), for some n, in two dimensions when
F = {(0, 0), (1, 0), (0, 1)}. The closest distance between the dots is Δt, so the distance “center of
square”—“corner of square” is 1

2

√
2Δt, and hence H(Cn, Dn) = 1

2

√
2Δt. The analogous situation

in dimension d gives H(Cn, Dn) = 1
2

√
dΔt.

unit vectors in the coordinate directions in R
d, together with the zero vector. In this

situation the Hausdorff distance between the sets Cn and Dn in Theorem 2.5 will be
of the order

√
dΔt; see Figure 2.1. In [11] the same square root dependence on the

dimension is shown to hold when the integral of a nonconvex set-valued function is
approximated by Riemann sums.

In [12], equation (1.1) is considered with F a function from R
d into the compact

convex subsets of R
d. The forward Euler approximation is however performed with

the scheme

ξn+1 ∈ ξn + ΔtG(ξn), n = 0, 1, . . . , N − 1,
ξ0 = x0,

where G(x) is either ∂F (x), the boundary points of F (x), or extF (x), the set of
extreme points of F . When G(x) = ∂F (x), linear convergence is proved, while the
result for G(x) = extF (x), assuming Lipschitz continuity of G, only is convergence of
order

√
Δt. Theorem 2.5 covers the same situation if we let extF (x) in [12] be the F

we are using in this paper. It improves the half-order convergence in [12] partially,
since it proves linear convergence. The convergence in Theorem 2.5 is however of a
weaker form as it gives convergence of the sets Dn to the sets Cn, for all n, while the
result in [12] is of the same kind as in Theorem 2.3, i.e., convergence of approximating
paths. The result in Theorem 2.5 is however what is needed in many applications.
The relevance for optimal control is discussed in the following section.

2.1. Convergence of approximations in optimal control. We will consider
the optimal control problem to minimize the functional

(2.7)
∫ T

0
h
(
x(t), α(t)

)
dt+ g

(
x(T )

)
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over all solutions to the equation

(2.8) x′(t) = f
(
x(t), α(t)

)
, x(0) = xs,

where α : [0, T ] → D is the control variable. In order to be able to use the result in
Theorem 2.5 to prove a convergence result for approximations of optimal control, the
following result on equivalence between control problems and differential inclusions is
needed. The theorem is taken from [2, Corollary 1, p. 91].

Theorem 2.6. Let f : R
d ×D → R

d be continuous where D is a compact sepa-
rable metric space and assume that there exist a T > 0 and an absolutely continuous
x : [0, T ]→ R

d such that

(2.9) x′(t) ∈
⋃

a∈D

f
(
x(t), a

)
for almost every t ∈ [0, T ].

Then there exists a Lebesgue measurable α : [0, T ] → D such that for almost every
t ∈ [0, T ], (2.8) holds.

Remark 2.7. The theorem shows that every solution to the differential inclusion
(2.9) is also a solution to the control equation (2.8) with a measurable control α. That
every solution to (2.8) is a solution to (2.9) is obvious. Hence the solution sets to the
control equation and the corresponding differential inclusion coincide.

With this duality between optimal control and differential inclusions, it is possible
to use Theorem 2.5 to prove the following convergence result for the optimal value of
the functional in (2.7).

Theorem 2.8. Let D and f satisfy the conditions in Theorem 2.6, and let
h : R

d ×D → R be continuous. Let also f and h be such that the set-valued function
J : R

d+1 � R
d+1 defined by J(y) =

⋃
a∈D

(
f(x, a), h(x, a)

)
, where x is the vector

consisting of the d first components in y, has compact values, and is uniformly bounded
and uniformly Lipschitz continuous in R

d. Let the function g : R
d → R be uniformly

Lipschitz continuous. Furthermore, let xs be an element in R
d, let T be a positive real

number, and split the interval [0, T ] into N equal parts of length Δt = T/N . Then

|u− ū| = O(Δt),

where the values u and ū are defined by

u = inf
{∫ T

0
h
(
x(t), α(t)

)
dt+ g

(
x(T )

) | α : [0, T ]→ D measurable,

x : [0, T ]→ R
d measurable and satisfies (2.8) a.e. in [0, T ]

}
,

(2.10) ū = inf

{
Δt

N−1∑
0

h(xn, αn) + g(xN ) |

xn+1 = xn + Δtf(xn, αn), x0 = xs, αn ∈ D for all 0 ≤ n ≤ N − 1
}
.

Remark 2.9. The conditions on the set-valued function J , appearing in the
theorem, are satisfied, e.g., if the set D is a compact subset of a Euclidean space R

n
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(any n), and the functions f and h are uniformly bounded and uniformly Lipschitz
continuous in R

d ×D.
Proof. The value u can be written as

u = inf
{
g̃
(
y(T )

) | y : [0, T ]→ R
d+1 measurable and

y′(t) = p
(
y(t), α(t)

)
a.e. t ∈ [0, T ], y(0) = (xs, 0), α : [0, T ]→ D measurable

}
,

where p(y, a) =
(
f(x, a), h(x, a)

)
, g̃(y) = g(x) + yd+1, and x and yd+1 are the d first

components and the last component in y, respectively. The function p inherits the
fact that it satisfies the conditions in Theorem 2.6 from f and h. Hence it is possible
to express the value u in yet another way,

u = inf
{
g̃
(
y(T )

) | y : [0, T ]→ R
d+1 measurable,

y′(t) ∈ J(y(t)), a.e. t ∈ [0, T ], y(0) = (xs, 0)
}
.

Similarly, the value ū can be written as

ū = inf
{
g̃(yN ) | yn+1 ∈ yn + ΔtJ(yn) for all 0 ≤ n ≤ N − 1, y0 = (xs, 0)

}
.

Pick an ε > 0 and let z : [0, T ]→ R
d+1 be an absolutely continuous function such

that z′(t) ∈ J(z(t)) for a.e. t ∈ [0, T ], z(0) = (xs, 0), and such that g̃
(
z(T )

) ≤ u+ ε.
As J satisfies the conditions in Theorem 2.5, it follows that there exists {zn}N0

with |zN − z(T )| = O(Δt) such that zn+1 ∈ zn + ΔtJ(zn) for 0 ≤ n ≤ N and
z0 = (xs, 0). The terminal cost function g̃ inherits Lipschitz continuity from g, and
therefore |g̃(zN ) − g̃(z(T ))| = O(Δt). Since ū ≤ g̃(zN ), it follows that there exists
a constant C which is independent of Δt such that ū − u ≤ CΔt + ε. As ε was
arbitrary it may be removed from this expression. The relation u − ū ≤ CΔt is
proved similarly.

In cases where the control set D is finite, the minimization in (2.10) is over a
finite set, while convexification generally results in minimization over infinite sets.

The result in the theorem uses a minimization directly in the control variable.
Another method for approximation of optimal control problems based on analysis of
the underlying Hamilton–Jacobi equation can be found in [17]. General theory for
optimal control problems can be found in [5, 6, 7, 8, 16].

3. Convexification of the forward Euler scheme. In order to be able to
show that the distance between the solution sets to (1.6) and (1.7) is of the order
Δt we introduce two set-valued maps. Let ϕ and ψ be functions from R

d into the
nonempty compact subsets of R

d, defined by

ϕ(x) = x+ ΔtF (x),

ψ(x) = x+ Δt co
(
F (x)

)
.

If A is a subset of R
d we define

ϕ(A) =
⋃

x∈A

ϕ(x),

and similarly for the set-valued maps ψ and F . The solution set to the forward Euler
equation (1.6) is given by iterates of the function ϕ, while the solution set to (1.7) is
given by iterates of ψ. We therefore introduce the notation

ϕn(x0) = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n

(x0),
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and similarly for ψ.
It will be shown that

(3.1) max
0≤n≤N

H(ϕn(x0), ψn(x0)
)

= O(Δt).

Since we have the immediate inclusion

ϕn(x0) ⊂ ψn(x0),

this amounts to proving that

(3.2) ψn(x0) ⊂ ϕn(x0) +O(Δt)B for all 0 ≤ n ≤ N.

When proving this, the Carathéodory theorem will play an important role.
Theorem 3.1. The convex hull of an arbitrary subset A of R

d is given by

co(A) =

{
d+1∑
i=1

λiai | ai ∈ A, λi ≥ 0,
d+1∑
i=1

λi = 1

}
.

For a proof, see, e.g., [4].
The first step in establishing (3.2) is to show that

(3.3) ψd+1(x0) ≈ ψd
(
ϕ(x0)

)
.

Theorem 3.2 shows that equality holds in (3.3) when F is constant.
Theorem 3.2. Let P be any nonempty subset of R

d. For any integer s ≥ d it
holds that

(3.4) (s+ 1) co(P ) = P + s co(P ).

Proof. We begin by considering the case when P is a set containing d+ 1 points,

P = {pi}d+1
i=1 ,

which do not lie in a (d − 1)-dimensional hyperplane; i.e., the dimension of co(P ) is
d. To start with, (3.4) is shown with s = d. It holds that

P + d co(P ) ⊂ (d+ 1) co(P ),

since

co
(
P + d co(P )

)
= co(P ) + d co(P ) = (d+ 1) co(P ).

It therefore remains to show that

(3.5) P + d co(P ) ⊃ (d+ 1) co(P ).

The polytope spanned by P is translated so that it is centered at the origin of R
d;

i.e., it is assumed that

d+1∑
i=1

pi = 0.
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Denote by Q a polytope spanned by d+ 1 unit vectors, {qi}d+1
i=1 , directed so that the

angle between any two unit vectors is the same as the angle between any other two
vectors and such that

d+1∑
i=1

qi = 0.

There exists a linear transformation A : R
d → R

d such that A
(
co(P )

)
= Q. It can be

constructed by demanding that Api = qi, i = 1, . . . , d. Then also

Apd+1 = A(−p1 − p2 − · · · − pd) = −q1 − q2 − · · · qd = qd+1.

All the sets pi+d co(P ), i = 1, . . . , d+1 contain the zero vector. Furthermore, all these
sets have d faces lying in the same planes as d faces of (d+ 1) co(P ). The remaining
face of pi + d co(P ) is parallel to the remaining face of (d + 1) co(P ). Assume there
exists a point p ∈ (d+ 1) co(P ) such that p /∈ P + d co(P ). Denote by ei the outward
normal of the face of A

(
pi + d co(P )

)
which contains the origin. It must then hold

that

(3.6) ei ·Ap > 0, i = 1, . . . , d+ 1.

Because of the symmetry,
∑d+1

i=1 ei = 0, which contradicts (3.6). Hence (3.5) holds.
By this it easily follows that (3.4) holds also for s > d in the situation where P

contains d+ 1 points and has a d-dimensional convex hull:

P + s co(P ) = P + d co(P ) + (s− d) co(P )
= (d+ 1) co(P ) + (s− d) co(P ) = (s+ 1) co(P ).

Now consider the case when P is any subset of R
d such that co(P ) has dimension

d. Denote by {Pd} the set of all subsets of P with d + 1 elements, such that the
dimension of co(Pd) is d. By Carathéodory’s theorem (Theorem 3.1) it then follows
that

co(P ) =
⋃
{Pd}

co(Pd).

With the result for sets containing d+ 1 points already proved, we have that

(s+ 1) co(P ) =
⋃
{Pd}

(s+ 1) co(Pd) =
⋃
{Pd}

(
Pd + s co(Pd)

) ⊂ P + s co(P ).

As before, P + s co(P ) ⊂ (s+ 1) co(P ), since their convex hulls coincide. It therefore
holds that P + s co(P ) = (s+ 1) co(P ).

It remains to show that (3.4) also holds when the dimension of co(P ) is lower
than d. In this case there exists a vector v ∈ R

d such that R ≡ v + P is contained in
a linear subspace which also contains the origin. Consider the linear subspace of the
dimension equal to the dimension of co(P ). By what has already been proved, (3.4)
holds for the set R. This together with the fact that

co(R) = v + co(P )

implies that

v + P + s
(
v + co(P )

)
= (s+ 1)

(
v + co(P )

)
,



EULER FOR NONCONVEX DIFFERENTIAL INCLUSIONS 317

so that (3.4) holds also for P .
When F is not constant, equality does not hold in (3.3), but instead we have the

following inclusion.
Theorem 3.3.

(3.7) ψd+1(x0) ⊂ ψd
(
ϕ(x0)

)
+KLd(d+ 1)Δt2B for any x0 ∈ R

d.

Proof. By the definition of ψ, and by the simple fact that F (ψi(x0)) ⊃ F (x) for
x ∈ ψi(x0), it follows that

(3.8) ψd+1(x0) ⊂ x0 + Δt co
(
F (x0)

)
+ Δt co

(
F
(
ψ(x0)

))
+ · · ·+ Δt co

(
F
(
ψd(x0)

))
.

The boundedness of F implies

H(ψi(x0), x0
) ≤ iKΔt,

and by the Lipschitz continuity of co(F ) (Lemma 2.1) it therefore holds that

co
(
F
(
ψi(x0)

)) ⊂ co
(
F (x0)

)
+ iKLΔtB.

This fact in (3.8) yields

ψd+1(x0) ⊂ x0 + (d+ 1)Δt co
(
F (x0)

)
+

d∑
i=1

iKLΔt2B

= x0 + (d+ 1)Δt co
(
F (x0)

)
+KL

d(d+ 1)
2

Δt2B

= x0 + ΔtF (x0) + dΔt co
(
F (x0)

)
+KL

d(d+ 1)
2

Δt2B,

(3.9)

where the last equality follows by Theorem 3.2. Once again, the Lipschitz continuity
of co(F ) is used, so that

co
(
F (x0)

) ⊂ co
(
F
(
ψi
(
ϕ(x0)

)))
+ (i+ 1)KLΔtB.

This fact will be used to prove that

(3.10) x0 + ΔtF (x0) + dΔt co
(
F (x0)

) ⊂ ψd
(
ϕ(x0)

)
+KL

d(d+ 1)
2

Δt2B.

Let z be any element in x0 + ΔtF (x0) + dΔt co
(
F (x0)

)
. It then holds that

z = x0 + Δtx1 + Δtx2 + · · ·Δtxd+1,

where x1 ∈ F (x0), and x2, . . . , xd+1 ∈ co
(
F (x0)

)
. Now let x̃1 = x1, let x̃2 be

the projection of x2 on co
(
F (x0 + Δtx̃1)

)
(i.e., the element in co

(
F (x0 + Δtx̃1)

)
such that d

(
x2, co

(
F (x0 + Δtx̃1)

))
= |x̃2 − x2|), let x̃3 be the projection of x3 on

co
(
F (x0 + Δtx̃1 + Δtx̃2)

)
, and so on. The Lipschitz continuity of co(F ) (Lemma 2.1)

implies that

|x̃i − xi| ≤ (i− 1)KLΔt for i = 2, . . . , d+ 1.

From this (3.10) follows, which together with (3.9) gives (3.7).
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The next step to establish (3.2) is to show that

ψd+n(x0) ⊂ ψd
(
ϕn(x0)

)
+O(Δt)B.

This is done in Theorems 3.4 and 3.5. The desired result, relation (3.2), follows from
this and is given in Theorem 3.6.

Theorem 3.4. Assume that

(3.11) ψd+n(x0) ⊂ ψd
(
ϕn(x0)

)
+ εB.

Then

(3.12) ψd+n+1(x0) ⊂ ψd
(
ϕn+1(x0)

)
+
(
KLd(d+ 1)Δt2 + ε(1 + LΔt)

)
B.

Proof. By (3.11),

(3.13) ψd+n+1(x0) ⊂ ψ
(
ψd
(
ϕn(x0)

)
+ εB

)
.

Consider elements

z ∈ ψ(ψd
(
ϕn(x0)

)
+ εB

)
,

x ∈ ψd
(
ϕn(x0)

)
+ εB

such that z ∈ x + Δt co
(
F (x)

)
. Let x′ be an element in ψd

(
ϕn(x0)

)
such that

|x′ − x| ≤ ε. The Lipschitz continuity of co(F ) (Lemma 2.1) gives the inclusion

co
(
F (x)

) ⊂ co
(
F (x′)

)
+ LεB.

It therefore holds that

z ∈ x′ + Δt co
(
F (x′)

)
+ ε(1 + LΔt)B = ψ(x′) + ε(1 + LΔt)B.

Hence,

ψ
(
ψd
(
ϕn(x0)

)
+ εB

) ⊂ ψd+1(ϕn(x0)
)

+ ε(1 + LΔt)B

⊂ ψd(ϕn+1(x0)
)

+
(
KLd(d+ 1)Δt2 + ε(1 + LΔt)

)
B,

where the last inclusion follows from Theorem 3.3. Together with (3.13) this shows
(3.12).

Theorem 3.5. For all 1 ≤ n ≤ N − d the following inclusion holds:

ψd+n(x0) ⊂ ψd
(
ϕn(x0)

)
+KeLTn/Nd(d+ 1)ΔtB

⊂ ψd
(
ϕn(x0)

)
+KeLTd(d+ 1)ΔtB.

(3.14)

Proof. By Theorems 3.3 and 3.4 there are constants εn satisfying

ε1 = KLd(d+ 1)Δt2,

εn+1 = KLd(d+ 1)Δt2 + εn(1 + LΔt) for n ≥ 1
(3.15)

such that

ψd+n(x0) ⊂ ψd
(
ϕn(x0)

)
+ εnB.
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By (3.15) the constants εn satisfy

εn = KLd(d+ 1)Δt2
n−1∑
i=0

(1 + LΔt)i = KLd(d+ 1)Δt2
(1 + LΔt)n − 1

LΔt

= K
(
(1 + LΔt)n − 1

)
d(d+ 1)Δt ≤ KeLTn/Nd(d+ 1)Δt

≤ KeLTd(d+ 1)Δt,

which proves (3.14).
Theorem 3.6. For all 0 ≤ n ≤ N the following inclusion holds:

(3.16) ψn(x0) ⊂ ϕn(x0) +
(
KeLTd(d+ 1) + 2Kd

)
ΔtB.

Hence the sets Dn and En, defined in (2.1), satisfy

max
0≤n≤N

H(Dn, En) ≤ (KeLTd(d+ 1) + 2Kd
)
Δt.

Proof. The bound (1.2) on the function F implies that for any m ≥ 1

ψd
(
ϕm(x0)

) ⊂ ϕm(x0) +KdΔtB ⊂ ϕd+m(x0) + 2KdΔtB.

Together with Theorem 3.5 this implies (3.16) when n ≥ d+ 1. When n ≤ d it holds
that

(3.17) ψn(x0) ⊂ ϕn(x0) + 2KnΔtB ⊂ ϕn(x0) + 2KdΔtB,

so (3.16) holds for all 0 ≤ n ≤ N .
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STABILITY PRESERVATION ANALYSIS FOR FREQUENCY-BASED
METHODS IN NUMERICAL SIMULATION OF FRACTIONAL

ORDER SYSTEMS∗
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Abstract. In this paper, the frequency domain-based numerical methods for simulation of
fractional order systems are studied in the sense of stability preservation. First, the stability boundary
curve is exactly determined for these methods. Then, this boundary is analyzed and compared with
an accurate (ideal) boundary in different frequency ranges. Also, the critical regions in which the
stability does not preserve are determined. Finally, the analytical achievements are confirmed via
some numerical illustrations.
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1. Introduction. Fractional calculus as an extension of ordinary calculus is a
mathematical topic with more than 300 years of history. Even though fractional cal-
culus has a long history, its application to physics and engineering has attracted lots of
attention only in the last few decades. It has been found that many real-world physical
systems can be described by fractional differential equations. For instance, the frac-
tional derivatives have been widely used in the mathematical modeling of viscoelastic
materials [1, 2]. Some electromagnetic problems are described using fractional dif-
ferintegration operators [3]. The anomalous diffusion phenomena in inhomogeneous
media can be explained by noninteger derivative-based equations of diffusion [4, 5].
The RLC interconnect model of a transmission line is a fractional order model [6].
Heat conduction as a dynamical process can be more adequately modeled by frac-
tional order models rather than their integer order counterparts [7]. In biology, it has
been deduced that the membranes of the cells of a biological organism have fractional
order electrical conductance [8] and then are classified in a group of noninteger order
systems. In economy, it is known that some finance systems can display fractional
order dynamics [9]. More examples from fractional order dynamics can be found in
[10, 11] and references therein. Also, in recent years fractional order dynamic systems
have been widely studied in the design and practice of control systems (for example,
[12, 13, 14, 15, 16, 17]).

Although the integer order models can be considered as a special form of the
more general fractional order models, there are basic differences between fractional
order and integer order models. The main difference between them arises from an
inherent attribute of fractional derivatives. In fact, the fractional derivatives are
not local operators in opposition with integer derivatives that are local operators
[11]. In other words, the fractional derivative of a function depends on its whole
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past values. This property makes a fractional order model behave like a system with
an “infinite memory” or “long memory.” Due to this property, simulation of these
systems is more complicated [18]. Up to now, some analytic methods have been pro-
posed to find numerical solution of the fractional differential equations (for example,
[19, 20, 21, 22, 23, 24]). Since convergence, stability, and existence of bound for the
estimation error have been proved for analytic methods, these direct methods are reli-
able and can be properly used for simulating fractional order systems. However, since
the long memory behavior of these systems directly appears in the direct methods,
simulation of fractional order systems via these methods sometimes requires a very
long simulation time. Applying some ideas such as the short memory (fixed mem-
ory) principle and penalizing some forms of inaccuracy [11] may partly reduce the
computational cost of time domain methods [25].

There is another popular way to simulate fractional order systems which is based
on frequency domain approximation of fractional operators [26, 27, 28, 29, 30, 31, 32].
Simulation of a fractional order system by using rational approximation of the frac-
tional operators consists of two steps as follows. First, the fractional order equation
of the system is converted to the frequency domain, and the Laplace transform of the
fractional integral operator is replaced by its integer order approximation. Then, the
approximated equation in frequency domain is transformed back into the time domain.
The resulted ordinary differential equation can now be numerically solved by applying
the well-known numerical methods such as Runge–Kutta or the Adams–Bashforth–
Moulton algorithm. Contrary to using direct methods, simulation of fractional order
systems via using fractional operator approximation is simple, because, in this case,
an ordinary differential system is simulated instead of the original fractional order
system. But, unfortunately it has been shown that the results of simulations using
the fractional operator approximation are not always reliable and the frequency-based
numerical methods have some limitations in special cases [33, 34]. In this paper, a
rigorous stability analysis is done to clear the problems arising from using frequency
domain approximation in numerical simulations of fractional order systems. We show
that this approximation can cause undesired changes in the stability. More precisely,
stable systems may be converted to unstable approximated systems and vice versa.

This paper is organized as follows. Section 2 summarizes the basic concepts in the
fractional calculus. Section 3 contains the main results of stability investigation for a
frequency domain-based approximated system. Results of section 3 are numerically
verified in section 4, and, finally, conclusions in section 5 close the paper.

2. Basic concepts. By extending the concept of integer order integral and
derivative, the fractional integral and derivative have been defined. The definition
of fractional integral is an outgrowth of the Cauchy formula for evaluating the inte-
gration. The qth order fractional integral of function f(t) with respect to t is defined
by [11]:

(1) Jqf(t) =
1

Γ(q)

∫ t

0
(t− τ)q−1f(τ)dτ,

where Γ is the Gamma function. Also, there are some definitions for fractional deriva-
tives [11]. The Riemann–Liouville definition is the simplest and easiest definition to
use. Based on this definition, the qth order fractional derivative of function f(t) with
respect to t and the terminal value 0 is given by

(2)
dqf(t)
dtq

=
1

Γ(m− q)
dm

dtm

∫ t

0
(t− τ)m−q−1f(τ)dτ,
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where m is the first integer larger than q , i.e., m−1 ≤ q < m. The Laplace transform
of the Riemann–Liouville derivative is given as follows:

(3) L

{
dqf(t)
dtq

}
= sqL{f(t)} −

m−1∑
k=0

sk
dq−k−1f(0)
dtq−k−1 , m− 1 < q ≤ m.

Unfortunately, the Riemann–Liouville fractional derivative appears unsuitable to be
treated by the Laplace transform technique in that it requires knowledge of the non-
integer order derivatives of the function at t = 0. The mentioned problem does not
exist in the Caputo definition of the fractional derivative. This definition of derivative,
which is sometimes called a smooth fractional derivative, is described as

(4)
dqf(t)
dtq

=

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(m− q)

∫ t

0

f (m)(τ)
(t− τ)q+1−m dτ, m− 1 < q ≤ m,

dm

dtm
f(t), q = m,

where m is the first integer larger than q. The Laplace transform of the Caputo
fractional derivative is

(5) L

{
dqf(t)
dtq

}
= sqL{f(t)} −

m−1∑
k=0

sq−1−kf (k)(0), m− 1 < q ≤ m.

Contrary to the Riemann–Liouville fractional derivative, only integer order derivatives
of function f appear in the Laplace transform of the Caputo fractional derivative. For
zero initial conditions, (5) reduces to

(6) L

{
dqf(t)
dtq

}
= sqL{f(t)}.

A fractional order linear time invariant system can be represented in the following
state space form:

(7)

⎧⎨
⎩
dqx

dtq
= Ax +Bu,

y = Cx,

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are states, inputs, and outputs vectors of the
system and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and q is the fractional commensurate
order, respectively. Now, we state two stability theorems from the fractional calculus.

Theorem 1 (see [35]). The following autonomous system

(8)
dqx

dtq
= Ax, x(0) = x0,

where 0 < q ≤ 1, x ∈ Rn, and A is an n×n matrix is asymptotically stable if and only
if |arg(λ)| > qπ/2 is satisfied for all eigenvalues (λ) of matrix A. Also, this system
is stable if and only if |arg(λ)| ≥ qπ/2 is satisfied for all eigenvalues (λ) of matrix A
with those critical eigenvalues satisfying |arg(λ)| = qπ/2 have geometric multiplicity
equal to algebraic multiplicity.

Theorem 1 can be proved by finding the solution of system (8) based on the
eigenfunction of the smooth derivation operator for an eigenvalue and checking the
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Fig. 1. Stability region of fractional order linear time invariant system with order 0 < q ≤ 1.

asymptotic behavior of this eigenfunction [35, 36]. The stable and unstable regions for
0 < q ≤ 1 is shown in Figure 1. In this paper, we will denote the stable and unstable
regions for 0 < q ≤ 1 by Cq− and Cq+, respectively. Now, consider the following
commensurate fractional order system:

(9)
dqx

dtq
= f(x),

where 0 < q ≤ 1 and x ∈ Rn. The equilibrium points of system (9) are calculated by
solving the following equation:

(10) f(x) = 0.

Theorem 2 (see [37]). The equilibrium points of system (9) are locally asymp-
totically stable if all eigenvalues (λ) of the Jacobian matrix J = ∂f/∂x evaluated at
the equilibrium points satisfy

(11) | arg (λ)| > qπ/2.

3. Analysis of frequency-based approximated model. There are many dif-
ferent methods to find frequency domain approximation of fractional operators (for
example, see [38, 39, 40, 41, 42, 43]). In most of these methods, first a frequency
range [ωL, ωH ] is chosen and then an integer order transfer function is determined to
approximate the fractional operator in the selected frequency range. Suppose that
the fractional integral operator 1/sq is approximated by transfer function G(s) in the
given frequency range [ωL, ωH ]:

(12)
1
sq

≈
[ωL,ωH ]

G(s).

The main criticism that can be raised about using approximation in (12) in sim-
ulation of the fractional order system (9) is eliminating the inherent attribute of a
fractional order system, i.e., omitting its long memory characteristics. In fact, the
fractional integral operator 1/sq is a nonlocal operator, whereas its approximation
(G(s)) does not have this property. Hence, replacing 1/sq by transfer function G(s)
causes the role of history to be ignored in simulation of the fractional order system (9).
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Consequently, none of the simulations done via using frequency domain approxima-
tion of the fractional operators can preserve the long memory attribute of a fractional
order system. Moreover, using approximation in (12) in simulation of the fractional
order system (9) may cause some inaccuracies in the number and the location of fixed
points. Fixed points of the original system are achieved by solving (10), whereas the
fixed points of its frequency-based approximated model are solutions of the following
equation:

(13) f(x) = gx,

where g is the inverse of the steady state gain of the approximating filter G(s) [34]. If
the steady state gain of the approximating filter is infinite, fixed points of the approx-
imated system and the fixed points of the original system are the same. Otherwise,
the number and the location of fixed points of the original system and the approx-
imated one may be different. In this section, our aim is to analyze stability of the
approximated integer order system and compare it with that of the original fractional
order system. First, the fractional order linear systems are considered and then the
results of linear case are extended to a field of fractional order nonlinear systems.

3.1. Linear case. Suppose that the original system is a fractional order linear
time invariant system described by

(14)
dqx

dtq
= Ax,

where x ∈ Rn, 0 < q < 1, and A ∈ Rn×n. Also, without loss of generality, let the
approximating filter G(s) be strictly proper as described below:

(15) G(s) =
bm−1s

m−1 + · · ·+ b1s+ b0
sm + am−1sm−1 + · · ·+ a1s+ a0

.

The approximated model using the filter (15) is

(16)
dm

dtm
x+(am−1In−bm−1A)

dm−1

dtm−1 x+ · · ·+(a1In−b1A)
d

dt
x+(a0In−b0A)x = 0.

According to (13), the original system (14) and the approximated system (16) have
the same fixed points if the inverse of the steady state gain of the approximating filter
G(s), i.e., a0/b0, is not an eigenvalue of the matrix A. The high order descriptor
system (16) can be realized by a first order state space model as

(17) ˙̃x = Mx̃,

where

(18) M =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

b0A− a0In b1A− a1In · · · bm−1A− am−1In

⎤
⎥⎥⎥⎦ .

M is an mn×mn matrix and x̃ ∈ Rmn [34, 44]. The original system is asymptotically
stable if and only if all eigenvalues of the matrix A are settled in stable region Cq−

(Figure 1), whereas the approximated system is asymptotically stable if and only if

(19) Re(eig(M)) < 0.

In the following theorem, we state a property for eigenvalues of the matrix M .
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Theorem 3. If the matrix A is diagonalizable in the complex field C, then eigen-
values of the matrix M defined by (18) depend only on the coefficients a0, . . . , am−1,
b0, . . . , bm−1 and eigenvalues of A.

Proof. Since the matrix A is diagonalizable in the complex field C, there is a
complex matrix Q such that Q−1AQ is a diagonal matrix with eigenvalues of A in its
diagonal. Let us define

(20) P =

⎡
⎢⎢⎢⎣
In · · · 0 0
...

. . .
...

...
0 · · · In 0
0 · · · 0 Q

⎤
⎥⎥⎥⎦ ,

where P is an mn×mn matrix. We have

(21) P−1 =

⎡
⎢⎢⎢⎣
In · · · 0 0
...

. . .
...

...
0 · · · In 0
0 · · · 0 Q−1

⎤
⎥⎥⎥⎦ .

Therefore,

(22)

P−1MP =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

b0(Q−1AQ)− a0In b1(Q−1AQ)− a1In · · · bm−1(Q−1AQ)− am−1In

⎤
⎥⎥⎥⎦ .

Since Q−1AQ depends only on the eigenvalues of A, eigenvalues of P−1MP depend
only on the coefficients a0, . . . , am−1, b0, . . . , bm−1 and eigenvalues of A. Also, M and
P−1MP are similar matrices, and we know that similar matrices have the same set
of eigenvalues. This completes the proof.

In the following theorem, we provide a more general property of eigenvalues of
M . By this theorem, eigenvalues of M can be determined by solving an m-degree
equation.

Theorem 4. μ is an eigenvalue of M if and only if there exists an eigenvalue of
A, like λ, such that

(23) μm − (bm−1λ− am−1)μm−1 − · · · − (b1λ− a1)μ− (b0λ− a0) = 0.

Proof. First, we prove the sufficiency of the condition. Let λ be an eigenvalue of
A with corresponding eigenvector v, i.e.,

(24) Av = λv.

Suppose that μ = μ0 is a solution of (23), i.e.,

(25) μm0 − (bm−1λ− am−1)μm−1
0 − · · · − (b1λ− a1)μ0 − (b0λ− a0) = 0.

Define

(26) w =

⎡
⎢⎢⎢⎣

v
μ0v
...

μm−1
0 v

⎤
⎥⎥⎥⎦ .
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We claim that Mw = μ0w. First, note that

[ b0A− a0In b1A− a1In · · · bm−1A− am−1In ]w

= (b0A− a0In)v + (b1A− a1In)μ0v + · · ·+ (bm−1A− am−1In)μm−1
0 v(27)

=
(
b0 + b1μ0 + · · ·+ bm−1μ

m−1
0

)
Av − (a0 + a1μ0 + · · ·+ am−1μ

m−1
0

)
v.

Using (24) and (25), results in the above expression equal to(
b0 + b1μ0 + · · ·+ bm−1μ

m−1
0

)
λv − (a0 + a1μ0 + · · ·+ am−1μ

m−1
0

)
v

=
[
(b0λ− a0) + (b1λ− a1)μ0 + · · ·+ (bm−1λ− am−1)μm−1

0

]
v(28)

= μm0 v.

Now, it is straightforward to verify that

(29)

Mw =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

b0A− a0In b1A− a1In · · · bm−1A− am−1In

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ν
μ0ν
...

μm−1
0 ν

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

μ0ν
μ2

0ν
...

μm0 ν

⎤
⎥⎥⎥⎦ = μ0w.

Thus, the claim is proved. Therefore, μ0 is an eigenvalue of M . Now, we prove the
necessity of the condition given in Theorem 4. Let μ be an eigenvalue of M and w be
the eigenvector of M corresponding to μ, i.e.,

(30) Mw = μw.

We assume that

(31) w =

⎡
⎢⎢⎢⎣

v1
v2
...
vm

⎤
⎥⎥⎥⎦ ,

where vi’s (i = 1, 2, . . . ,m) are n× 1 vectors. Hence,

(32)

Mw =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

b0A− a0In b1A− a1In · · · bm−1A− am−1In

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
...

vm−1
vm

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

v2
v3
...
vm
ν

⎤
⎥⎥⎥⎥⎥⎦ ,

where ν is an n × 1 vector. According to (30) and (32), one finds vi+1 = μvi for
i = 1, 2, . . . ,m− 1. Thus, vi = μi−1v1 for i = 1, 2, . . . ,m. Therefore,

(33) w =

⎡
⎢⎢⎢⎣

v1
μv1
...

μm−1v1

⎤
⎥⎥⎥⎦ .
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From (32), we know that ν = μmv1. On the other hand,

ν = [ b0A− a0In b1A− a1In · · · bm−1A− am−1In ]w

=
(
b0 + b1μ+ · · ·+ bm−1μ

m−1)Av1 − (a0 + a1μ+ · · ·+ am−1μ
m−1) v1.(34)

Therefore,

(35) (b0 + b1μ+ · · ·+ bm−1μ
m−1)Av1 − (a0 + a1μ+ · · ·+ am−1μ

m−1)v1 = μmv1.

So,

(36) Av1 =
μm + am−1μ

m−1 + · · ·+ a1μ+ a0

bm−1μm−1 + · · ·+ b1μ+ b0
v1.

Thus, the expression (μm + am−1μ
m−1 + · · ·+ a1μ+ a0)/(bm−1μ

m−1 + · · ·+ b1μ+ b0)
is an eigenvalue of A. In other words, the following relation holds for any eigenvalue
λ0 of A:

(37) λ0 =
μm + am−1μ

m−1 + · · ·+ a1μ+ a0

bm−1μm−1 + · · ·+ b1μ+ b0
.

Therefore,

(38) μm − (bm−1λ0 − am−1)μm−1 − · · · − (b1λ0 − a1)μ− (b0λ0 − a0) = 0,

and this closes the proof of Theorem 4.
According to (23), each eigenvalue of the matrix A converts to m eigenvalues in

the approximated model, where m is the order of the approximating filter. Now, we
want to find stable and unstable regions for the approximated model concerning the
eigenvalues of A. The stable region for the approximated model is the region in which
all m converted eigenvalues corresponding to each eigenvalue of A are stable. The
rest of the complex plane forms an unstable region for the approximated model. Let
Cq−G(s) and Cq+G(s), respectively, denote stable and unstable regions for the approximated
model constructed by the approximating filter G(s) as an approximation for operator
1/sq. Also, the phrase “stability boundary” indicates the boundary between Cq−G(s)
and Cq+G(s). The ideal stability boundary is defined by |arg(z)| = qπ/2 as shown in
Figure 1.

By Theorem 4, we know that if μ is an eigenvalue of M , then (μm+am−1μ
m−1 +

· · ·+ a1μ+ a0)/(bm−1μ
m−1 + · · ·+ b1μ+ b0) is an eigenvalue of A. Suppose that

(39) H(s) = (G(s))−1 =
sm + am−1s

m−1 + · · ·+ a1s+ a0

bm−1sm−1 + · · ·+ b1s+ b0
.

Now, we define the region D as follows:

(40) D = {H(s)|Re(s) ≥ 0}.

Thus, the approximated system is stable if and only if A has no eigenvalue in D.
Hence, the stability boundary of the approximated system is the following curve in
the complex plane:

(41) γ = {H(jω)| −∞ < ω <∞}.
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Since γ is the stability boundary of the approximated system, it can precisely deter-
mine the stable region for the approximated system. In fact, the stability boundary is
mapping of the vertical imaginary axis by relation H(s) = 1/G(s). It is clear that the
curve γ is symmetrical with respect to the horizontal real axis of the complex plane.
Theorem 5 investigates the behavior of the curve γ when ω → 0.

Theorem 5. When ω is close enough to zero, the curve γ in the complex plane
can be approximately determined by a horizontal parabola with the following equation:

(42) Re(z) = A+B(Im(z))2,

where

(43) A = a0/b0

and

(44) B =

(
a1b1 + a0b2 − a2b0 − a0b

2
1/b0

)
(a1 − a0b1/b0)2

.

Proof. We have

(45) H(jω) =

[
a0 − a2ω

2 + a4ω
4 − · · · ]+ j

[
a1ω − a3ω

3 + a5ω
5 − · · · ]

[b0 − b2ω2 + b4ω4 − · · · ] + j [b1ω − b3ω3 + b5ω5 − · · · ] .

Therefore,

(46)
Re(H(jω))

=

[
a0 − a2ω

2 + · · · ] [b0 − b2ω2 + · · · ]+
[
a1ω − a3ω

3 + · · · ] [b1ω − b3ω3 + · · · ]
[b0 − b2ω2 + · · · ]2 + [b1ω − b3ω3 + · · · ]2

and

(47)
Im(H(jω))

=

[
a1ω − a3ω

3 + · · · ] [b0 − b2ω2 + · · · ]− [a0 − a2ω
2 + · · · ] [b1ω − b3ω3 + · · · ]

[b0 − b2ω2 + · · · ]2 + [b1ω − b3ω3 + · · · ]2 .

If ω → 0,

Re(H(jω)) ≈ a0b0 + (a1b1 − a0b2 − a2b0)ω2

b20 + (b21 − 2b0b2)ω2(48)

≈ a0

b0
+

(a1b1 + a0b2 − a2b0 − a0b
2
1/b0)ω

2

b20 + (b21 − 2b0b2)ω2

≈ a0

b0
+

(a1b1 + a0b2 − a2b0 − a0b
2
1/b0)ω

2

b20

and

(49) Im(H(jω)) ≈ (a1b0 − a0b1)ω
b20

.

Use of (48) and (49) results in (42).
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Fig. 2. The stability boundary for low frequencies. The dashed lines indicate the actual stability
boundary.

Figure 2 schematically shows the behavior of curve γ for low frequencies. Accord-
ing to this figure, it is clear that there is an area between sector |arg(z)| < qπ/2 and
the parabola-like shape of boundary, which can be problematic in the sense of stabil-
ity. In other words, if A has an unstable eigenvalue settled in this area, it converts
to m stable eigenvalues in the approximated model. Thus, the original system may
be unstable, whereas its approximation is stable. Now, we state another theorem to
clear the behavior of curve γ when ω →∞.

Theorem 6. If bm−1 �= 0, when ω →∞, the curve γ in the complex plane tends
to the vertical line

(50) Re(z) =
∑m−1
i=1 zi −

∑m
i=1 pi

bm−1
,

where zi (i = 1, 2, . . . ,m − 1) and pi (i = 1, 2, . . . ,m), respectively, denote zeros and
poles of the approximating filter (15).

Proof. Since G(s) = 1/H(s) is proper, limω→∞ |H(jω)| = ∞. Hence, it suffices
to show that

(51) lim
ω→∞Re(H(jω)) =

∑m−1
i=1 zi −

∑m
i=1 pi

bm−1
.

If m is even (m = 2k, k ∈ N),

(52)
H(jω) =[

a0 − a2ω
2 + · · ·+ (−1)kωm

]
+ j

[
a1ω − a3ω

3 + · · ·+ (−1)k−1am−1ω
m−1

]
[b0 − b2ω2 + · · ·+ (−1)k−1bm−2ωm−2] + j [b1ω − b3ω3 + · · ·+ (−1)k−1bm−1ωm−1]

,

and if m is odd (m = 2k + 1, k ∈ N),

(53)
H(jω) =[

a0 − a2ω
2 + · · ·+ (−1)kam−1ω

m−1
]
+ j

[
a1ω − a3ω

3 + · · ·+ (−1)kωm
]

[b0 − b2ω2 + · · ·+ (−1)kbm−1ωm−1] + j [b1ω − b3ω3 + · · ·+ (−1)k−1bm−2ωm−2]
.
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From (52) and (53),

(54) Re(H(jω)) =
(am−1bm−1 − bm−2)ω2m−2 + P1(ω)

b2m−1ω
2m−2 + P2(ω)

,

where P1(ω) and p2(ω) are polynomials with degrees less than 2m− 2. So,

(55) lim
ω→∞Re(H(jω)) =

am−1bm−1 − bm−2

b2m−1
=
am−1 − bm−2/bm−1

bm−1
.

We know that am−1 = −∑m
i=1 pi and bm−2/bm−1 = −∑m−1

i=1 zi. This completes the
proof.

The behavior of curve γ in low and high frequencies has been discussed in Theo-
rems 5 and 6. Now, we want to analyze the behavior of curve γ in the intermediate
frequencies. Suppose

(56) H̃(s) = sq,

where s belongs to the principal Riemann surface [45] and define curve γ̃ in the
complex plane as follows:

(57) γ̃ = {H̃(jω)| −∞ < ω <∞}.

It is clear that the curve γ̃ is the boundary between Cq− and Cq+ regions (ideal
stability boundary). This means if we could use 1/sq instead of G(s) in numerical
simulations, there is no problem in the sense of stability. We know G(s) is an approx-
imation for the fractional operator 1/sq in the frequency range [ωL, ωH ]. Suppose

∃ε0 > 0 : |G(jω)| = ω−q + ε, |ε| < ε0,

∃δ0 > 0 : arg(G(jω)) = −q π
2

+ δ, |δ| < δ0(58)

for ωL < ω < ωH . From (58),

(59)
Im(H(jω))
Re(H(jω))

= tan(q
π

2
− δ), ωL < ω < ωH .

If δ0 < qπ/2, (59) results in

(60) tan
(
q
π

2
− δ0

)
<

Im(H(jω))
Re(H(jω))

< tan
(
q
π

2
+ δ0

)
, ωL < ω < ωH .

The inequality (60) guarantees that the curve γ settle in the sector |arg(z)−qπ/2| < δ0.
Therefore, the allowable phase error of approximating filter has a very effective role
in the accuracy of the stability boundary, whereas in most approximation methods,
the allowable magnitude error is considered as one of the determinable parameters
[38, 39, 40]. Figure 3 schematically shows the behavior of curve γ for intermediate
and high frequencies. According to this figure, it is obvious that if the matrix A has
stable eigenvalues settled in the right side of vertical asymptote, the approximated
system has at least one unstable eigenvalue. Thus, the original system may be stable,
whereas its approximation is unstable.
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Fig. 3. The stability boundary for intermediate and high frequencies. The dashed line indicates
the actual stability boundary.

3.2. Nonlinear case. Suppose that the original system is a fractional order
nonlinear time invariant system described by (9). According to Theorem 2, the fixed
point of this system xe (a solution of (10)) is asymptotically stable if

(61) |arg(eig(J))| > qπ/2,

where

(62) J =
∂f

∂x
|x=xe.

Using the approximating filter (15), the approximated system is described by the
following relation:

(63)
dm

dtm
x+ · · ·+ a1

d

dt
x+ a0x = bm−1

dm−1

dtm−1 f(x) + · · ·+ b1
d

dt
f(x) + b0f(x).

In [34], by using a generalization of Faa di Bruno’s formula [46], it has been shown
that the fixed point of system (63) x∗e (a solution of (13)) is asymptotically stable if

(64) Re(eig(M∗)) < 0,

where

(65) M∗ =

⎡
⎢⎢⎢⎣

0 In · · · 0
...

...
. . .

...
0 0 · · · In

b0J
∗ − a0In b1J

∗ − a1In · · · bm−1J
∗ − am−1In

⎤
⎥⎥⎥⎦

and

(66) J∗ =
∂f

∂x
|x=x∗

e
.

Results obtained in the previous part can be applied here for stability analysis of the
equilibrium x∗e. As in the previous case, eigenvalues of matrix M∗ depend on eigen-
values of matrix J∗ as well as the coefficients a0, . . . , am−1, b0, . . . , bm−1 (Theorem 3).
It should be noted that since the fixed point of original system xe and the fixed point
of the approximated system x∗e are not equal, J∗ is not necessarily equal to the orig-
inal matrix J . However, if the steady state gain of the approximating filter (15) is
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Fig. 4. Bode diagrams for transfer functions G1(s) (left) and G2(s) (right).

large enough, the fixed points of approximated system (63) are very close to the fixed
points of the original system (9) [34].

4. Some numerical illustrations. In this section, results of the previous sec-
tion are examined via numerical examples. Also, we analyze some wrong results
reported in the literature and show that the negligence of authors in the limitations
of the frequency domain methods has caused these mistakes. Table I of [26] has given
approximations for 1/sq, with q = 0.1 − 0.9 in steps of 0.1. These approximations,
obtained by trial and error, have maximum discrepancy of 2 dB from ω = 10−2 to 102

rad./sec. In this table, the integer order approximation of operator 1/s0.5 is given as

(67) G1(s) =
15.97s4 + 593.2s3 + 1080s2 + 135.4s+ 1

s5 + 134.3s4 + 1072s3 + 543.4s2 + 20.10s+ 0.1259
.

Another integer order approximation for operator 1/s0.5 with maximum discrepancy
of 2 dB from ω = 10−2 to 102 rad./sec. is given in Table 1 of [28]. This approximation,
found by Charef’s method [39], is given as follows:

(68) G2(s) =
15.8489(s+ 0.03981)(s+ 0.2512)(s+ 1.585)(s+ 10)(s+ 63.1)

(s+ 0.01585)(s+ 0.1)(s+ 0.631)(s+ 3.981)(s+ 25.12)(s+ 158.5)
.

Figure 4 shows the Bode diagrams for transfer functions G1(s) and G2(s). According
to (41), curves γ1 = {1/G1(jω)|−∞ < ω <∞} and γ2 = {1/G2(jω)|−∞ < ω <∞}
determine stability boundaries for the approximated systems constructed based on
filters G1(s) and G2(s), respectively. The boundaries of low frequency range are
illustrated in Figure 5(a). It is seen that the left side of the boundaries have a
horizontal parabola-like shape which verifies Theorem 5. If the original system has an
unstable eigenvalue settled between sector |arg(z)| < π/4 and a parabola-like shape
of boundaries, this eigenvalue is interpreted to stable eigenvalues in the approximated
system. Consequently, results of the numerical simulation would not be reliable in this
case. Figure 5(b) shows stability boundaries for intermediate frequencies. In these
frequencies, the stability boundary of the approximating filter G2(s) is more consistent
with the ideal boundary than the stability boundary of the approximating filter G1(s).
The reason arises from accuracy of the approximation in the sense of phase. The phase
of the approximating filter G2(s) is more accurate than the phase of the approximating
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Fig. 5. Stability boundaries resulted from using approximating filters G1(s) (left) and G2(s)
(right). (a): low frequencies, (b): intermediate frequencies. The dashed lines indicate the actual
stability boundary.

Fig. 6. Stability boundaries resulted from using approximating filters G1(s) (left) and G2(s)
(right). The dashed lines indicate the actual stability boundary.

filter G1(s) (Figure 4). Therefore, according to (60), this approximation preserves the
stability boundary more accurately. Figure 6 shows the stability boundaries for a wide
range of frequencies. The stability boundaries tend to vertical asymptotes obtained
by (50). It is clear that if the original fractional order system has a stable eigenvalue
in the right side of asymptotes, the approximated system has at least one unstable
eigenvalue. Therefore, results of the numerical simulation in this case are not reliable.
This fallacy has occurred in some papers. In the following, we debate about one of
these mistakes. Existence of chaotic behavior has been reported for a fractional order
Lu system based on numerical simulations in [29]. The fractional order Lu system is
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described by

(69)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dqx

dtq
= a(y − x),

dqy

dtq
= −xz + cy,

dqz

dtq
= xy − bz.

For bc > 0, the Lu system has three equilibriums at

(70) O = (0, 0, 0), C± =
(
±
√
bc,±

√
bc, c

)
.

The Jacobian matrix of the system (69), evaluated at (x∗, y∗, z∗), is

(71)

⎡
⎣ −a a 0
−z∗ c −x∗
y∗ x∗ −b

⎤
⎦ .

For instance, a chaotic attractor of the fractional order Lu system has been shown for
parameter set (a, b, c) = (26, 3, 28) and order q = 0.5 in [29]. For this parameter set,
the fixed points and their corresponding eigenvalues are

O = (0, 0, 0) : λ1 = −26, λ2 = 28, λ3 = −3,
O2,3 = (±9.1652,±9.1652, 28) : λ1 = −15.0661, λ2,3 = 7.0331± j15.5067.

The maximum fractional order q, for which the fixed points C± remain unstable and
consequently, the fractional order Lu system is susceptible to be chaotic, is about 0.73
[33]. Therefore, for q = 0.5 and parameter set (a, b, c) = (26, 3, 28), the fixed points
C± are locally stable. This means the fractional order Lu system cannot be chaotic
for parameter set (a, b, c) = (26, 3, 28) and order q = 0.5. But why has the chaotic
behavior been demonstrated in the numerical simulations of [29]? Numerical simu-
lations in [29] have been performed based on the frequency domain approximations.
The reference of this paper for frequency domain approximations is Table I of [26].
Similar to [29], we also used the approximating filter (67) to simulate the system (69)
with the parameter set (a, b, c) = (26, 3, 28) and order q = 0.5. The chaotic behavior
was demonstrated in this case as well (Figure 7). By using approximating filter (67),
the approximated system has three fixed points. From (13) and (71), these fixed
points and their corresponding eigenvalues are

O = (0, 0, 0) : λ1 = −26, λ2 = 28, λ3 = −3,

Õ2,3 = (±9.3344,±9.3796, 28.0091) : λ1 = −15.2335, λ2,3 = 7.1167± j15.7336.

All eigenvalues of fixed points O2,3 are settled in region C0.5−, but eigenvalues λ2,3 of
fixed points Õ2,3 are not settled in C−G1(s) (Figure 8). Therefore, the fixed points Õ2,3

of the approximated system are not stable and consequently, this system is capable to
generate chaos. This inconsistency can be solved if one uses another approximating
filter whose stability boundary is more coincident with the original stability boundary.
Figure 8 shows a stability boundary of another approximating filterG3(s) for operator
1/s0.5 constructed by Charef’s method [39] and has maximum discrepancy of 2 dB
from ω = 10−3 to 103 rad./sec.
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Fig. 7. Simulation results for Lu system with parameter set (a, b, c) = (26, 3, 28) and order
q = 0.5 (Simulation has been done by using approximating filter G1(s)).

Fig. 8. Stability boundaries for G1(s) (left) and G3(s) (right). Locations of critical eigenvalues
are highlighted by *. The dashed lines indicate the actual stability boundary.

(72)
G3(s)

=

80.18s8 + 1.51× 105s7 + 3.891× 107s6 + 1.555× 109s5 + 9.818× 109s4

+ 9.813× 109s3 + 1.549× 109s2 + 3.793× 107s+ 1.271× 105

s9 + 4731s8 + 3.062× 106s7 + 3.074× 108s6 + 4.875× 109s5 + 1.225× 1010s4

+ 4.872× 109s3 + 3.062× 108s2 + 2.985× 106s+ 3981

.

The above approximation does not change the stability of the fixed points of the
original system. Thus, using it in the simulation of system (69) with the parameter
set (a, b, c) = (26, 3, 28) and order q = 0.5 does not lead to wrong consequences. The
similar wrong results can be noticed in the numerical simulations of [30] and [31].

5. Conclusions. Before any conclusion can be made about the results of a per-
formed numerical simulation, the reliability of the numerical method used in that
simulation must be considered and checked. Hence, the reliability verification of nu-
merical methods is of great importance. One of the basic points which should be
considered in reliability verification of a numerical simulation is stability preserva-
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tion. In fact, the original system and its simulated model must be similar in the
sense of stability. In this paper, the stability preservation problem was investigated
in one of the popular methods used in the simulation of fractional order systems. The
method discussed in this paper is based on using integer order approximation of frac-
tional operators. We found the “stability boundary” for this method and showed that
the found boundary is not the same as the original boundary, and there are critical
regions in which the stability can not preserve. Two types of inaccuracies can occur:

• The approximated model, obtained by frequency domain methods, is stable,
whereas the original system is not actually stable.
• The original system is stable, but its frequency domain-based approximation

is not stable.
Also, we showed that the second type of inaccuracies can lead to wrong results in
detecting chaotic behaviors which are reported in some recent papers. Moreover, we
found that the accuracy in the phase of integer order approximations has an un-
deniable role in the stability preservation of the frequency domain-based numerical
methods. It should be noted that the methods available for finding integer order
approximation of fractional order operators do not directly try to rectify the phase of
the approximation.
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Abstract. We describe a nonlinear finite element technique to approximate the solutions of
stationary Hamilton–Jacobi equations in two space dimensions using continuous finite elements of
arbitrary degree. The method consists of minimizing a functional containing the L1-norm of the
Hamiltonian plus a discrete entropy. It is shown that the approximate sequence converges to the
unique viscosity solution under appropriate hypotheses on the Hamiltonian and the mesh family.
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1. Introduction.

1.1. Formulation of the problem. Let Ω be an open, bounded, Lipschitz, and
connected domain in R

2. We consider the stationary Hamilton–Jacobi equation

(1.1) H(x, u,Du) = 0, a.e. x in Ω, u|Γ = 0,

where Du denotes the gradient of u. We restrict ourselves to homogeneous boundary
conditions to simplify the analysis. Nonhomogeneous boundary conditions can be
accounted for by introducing appropriate continuous liftings provided the boundary
data are compatible with our solution class; see (1.4)–(1.6).

The problem (1.1) has been extensively studied and is known to be particularly
challenging in regard to the question of uniqueness. It turns out that adding a vanish-
ing viscosity to the equation and passing to the limit usually leads to unique solutions
under appropriate assumptions on the structure of the Hamiltonian H . We refer to
Evans [10] for an introduction to this topic. Crandall and Lions [8] thoroughly char-
acterized limit solutions by using the maximum principle and introducing the notions
of subsolution and supersolution. They showed that the solution obtained by the van-
ishing viscosity limit is a subsolution and a supersolution. We refer to Barles [4] for
additional details on this technique. When H is convex with respect to the gradient,
Kružkov [16] characterized the limit solution by proving that second finite differences
satisfy a one-sided bound. This criteria has been significantly weakened by Lions and
Souganidis [18]. It is the one-sided bound characterization of Lions and Souganidis
that will be used in the present paper; see hypothesis (5.5).

The literature on the approximation of Hamilton–Jacobi equations is abundant;
we refer to Sethian [19] for a thorough review. Most successful algorithms are based
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on monotonicity and Lax–Friedrichs approximate Hamiltonians; see, e.g., Kao, Osher,
and Tsai [15]. Monotonicity is at the core of most convergence proofs for low-order ap-
proximations; see, e.g., Crandall and Lions [9], Barles and Souganidis [5], and Abgrall
[1, 2]. For higher-order approximations, limiters are typically used and monotonicity
cannot be preserved. Convergence results are difficult to obtain. For instance, it is
shown in [18] that MUSCL-like finite difference approximations converge to viscosity
solutions. In the present paper we take a radically different point of view by formu-
lating the discrete problem as a minimization in L1(Ω). The motivation behind this
approach is based on observations made in [11] that L1-minimization is capable of
selecting viscosity solutions of transport equations equipped with ill-posed boundary
conditions. This fact has indeed been proved in [13] in one space dimension. Numerical
computations in [12] confirm that this is also the case for stationary one-dimensional
Hamilton–Jacobi equations. Moreover, results from Lin and Tadmor [17] show that the
L1-metric is appropriate for deriving error estimates for time-dependent Hamilton–
Jacobi equations. This encouraged us to develop a research program in this direction,
and the purpose of this paper is to report that indeed L1-minimization is a viable
technique.

In the present paper we describe a nonlinear finite element technique for approx-
imating viscosity solutions to (1.1) in two space dimensions using continuous finite
elements of arbitrary degree. The method is based on the minimization over the finite
element space of a functional containing the L1-norm of the Hamiltonian plus a dis-
crete entropy. Under appropriate hypotheses on the Hamiltonian, it is shown that the
algorithm converges to the unique viscosity solution. The main results of this paper
are Theorems 4.5, 5.3, and 6.3.

The paper is organized as follows. In the rest of this section we introduce notation
and structural hypotheses for (1.1). The discrete finite element setting, along with the
minimization problem, is introduced in section 2. The existence of minimizers for the
discrete problem is proved in section 3. The passage to the limit is done in section 4;
i.e., it is shown in this section that the limit solution solves (1.1). The proof that the
limit solution is indeed a viscosity solution is reported in section 5. Since the proof
reported in section 5 is based on a hypothesis which we do not know how to verify
on arbitrary grids (see (3.2)), we give an alternative proof in section 6 using a vertex-
based entropy on Cartesian grids. The main argument in sections 5 and 6 consists of
proving a one-sided bound.

1.2. Structure hypotheses. We make the following assumptions on the Hamil-
tonian:

‖p‖ ≤ cs (|H(x, v, p)| + |v|+ 1) ∀(x, v, p) ∈ Ω×R×R
2,(1.2)

H(x, ·, ·)∈C0,1(BR(0, R)×BR2(0, R); R) ∀R > 0 uniformly in x∈Ω,(1.3)

where ‖·‖ denotes the Euclidean norm in R
2. A typical example is the eikonal equation,

H(x, v, p) = |p|−1, or modified versions of this equation, say, H(x, v, p) = v+F (|p|)−
f(x), where F is a convex and f a bounded positive function.

Definition 1.1. A function u in W 1,∞(Ω) is said to be q-semiconcave if there is
a concave function vc ∈W 1,∞(Ω) and a function w ∈ W 2,q(Ω) so that u = vc + w.
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We assume that (1.1) has a unique viscosity solution u such that

u ∈ W 1,∞(Ω),(1.4)

u is q-semiconcave for some q > 2,(1.5)

Du ∈ BV(Ω),(1.6)

where we have set W 1,∞(Ω) := W 1,∞(Ω) ∩ C0(Ω) and D is the gradient operator.
Remark 1.1. The class of problems we are working on is not empty. In particular,

it is known that the unique viscosity solution to (1.1) satisfies the above hypotheses
when the Hamiltonian is convex; see [16, 18].

Remark 1.2. Hypothesis (1.2) seems nonstandard. Typical hypotheses in the lit-
erature (see [4, p. 189]) consist of assuming H to be convex with respect to p and
H(x, v, p) → +∞ when |p| → +∞. It can be shown that these two conditions (con-
vexity plus growth at infinity) imply (1.2).

Remark 1.3. Recall that a function v in W 1,∞(Ω) is usually called uniformly
semiconcave in textbooks if and only if it can be decomposed into v(x) = vc(x)+cvx2,
where cv is a nonnegative constant and vc is concave and in W 1,∞(Ω); see [10, p. 130].
Definition 1.1 is a slight generalization of semiconcavity.

Remark 1.4. When Ω can be finitely covered by open convex subsets, it can be
shown that (1.4) and (1.5) imply (1.6). Actually, Definition 1.1 implies u = vc + w,
where vc ∈ W 1,∞(Ω), w ∈ W 2,q(Ω) ⊂ W 2,1(Ω). Clearly Dw ∈ W 1,1(Ω) ⊂ BV(Ω).
It is also known that convex functions in W 1,∞(Ω) have gradients in BV(Ω); see [3,
Prop. 5.1, 7.11].

To be able to collectively refer to (1.4)–(1.6), we define

(1.7) X = {v ∈ W 1,∞(Ω); Dv ∈ BV(Ω); v is q-semiconcave}
with the norm

(1.8) ‖v‖X := ‖v‖W 1,∞(Ω) + ‖Dv‖BV(Ω) + inf
v=vc+w

‖w‖W 2,q(Ω).

In the remainder of the paper c is a generic constant that does not depend on the
mesh size and whose value may change at each occurrence. For any real number r ≥ 1,
we denote by r′ the conjugate of r, i.e., 1

r + 1
r′ = 1.

2. The discrete problem.

2.1. The meshes. Let {Th}h>0 be a family of shape regular finite element
meshes. For the sake of simplicity we assume that the mesh elements are triangles
and the mesh family is quasi uniform. For each mesh Th, the subscript h refers to the
maximum mesh size in the mesh. We denote by F i

h the set of mesh interfaces: F is
a member of F i

h if and only if there are two elements K1(F ), K2(F ) in Th such that
F = K1(F ) ∩ K2(F ). The intersection of two cells is either empty, a vertex, or an
entire edge. For every function v ∈ C0(K1(F )) ∪ C0(K2(F )), we denote

(2.1) ∀x ∈ F, {v}(x) =
1
2
(v|K1(F )(x) + v|K2(F )(x)).

Definition 2.1 (see Figure 1). (1) We call a chain a numbered collection of
triangles Λ = {Kj}1≤J such that K1 has one edge on Γ, Kj shares one edge with
Kj−1 and one edge with Kj+1 for 1 < j < J , and Ki �= Kj if i �= j.
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Γ

K1

K2

KJx1

x2
x3

xJ+1

Fig. 1. Illustration of the notation for the chain and path in Definition 2.1.

(2) The path associated with a chain Λ = {Kj}1≤J is the broken line traversing the
chain in such a way that (i) it crosses Kj, 1 < j < J , by connecting the two midpoints
of the two interfaces that connect Kj to the chain; (ii) it connects the midpoint of the
interface connecting K1 to the chain and the midpoint of the face of K1 that lies on
Γ; and (iii) it connects the midpoint of the interface connecting KJ to the chain and
the midpoint of another arbitrary face of KJ .

Since the mesh family {Th}h>0 is quasi uniform, the following property holds: For
each mesh Th, there exists a collection of chains {Λl}1≤l<Lh

such that every triangle
in Th belongs to at least one chain (there are Lh ∈ N of those chains). Moreover, there
is c independent of h such that

cardΛl ≤ ch−1, 1 ≤ l ≤ Lh,(2.2)

Lh ≤ ch−1.(2.3)

Let k ≥ 1 be an integer and denote by Pk the set of real-valued polynomials in
R

2 of total degree at most k. We introduce

Xh = {vh ∈ C0(Ω); vh|K ∈ Pk ∀K ∈ Th; vh|Γ = 0},(2.4)

X(h) = X +Xh.(2.5)

For every function v in X(h) we denote by λ+(v) : Th −→ R
+ the mapping such

that for every x ∈ K ∈ Th, λ+(v)(x) is the largest positive eigenvalue of the Hessian
of v at x. Observe that Remark 1.3 implies that λ+ is well defined on X ; that is, λ+

is well defined on the space X(h).
Similarly, for every function v in X(h) we denote by {−∂nv}+ : F i

h −→ R
+ the

mapping such that for all x ∈ F = K1 ∩K2 ∈ F i
h,

{−∂nv}+(x) =
(
−1

2
(Dv|K1(x)·n1 +Dv|K2(x)·n2)

)
+

,

where n1 and n2 are the unit outward normals to K1 and K2 at x, respectively, and
(t)+ := 1

2 (t+ |t|) denotes the positive part of t for all t ∈ R.

2.2. The discrete minimization problem. Let p1 and p2 be two fixed real
numbers such that

(2.6) 1 ≤ p1 ≤ q and 1 ≤ p2 ≤ q.
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We now define the following functional Jh : X(h)  v �−→ Jh(v) ∈ R
+ by

(2.7) Jh(v) =
∫

Ω

|H(x, v,Dv)|dx

+ h
∑
K∈Th

∫
K

[λ+(v)]p1dx + h2−p2
∑
F∈F i

h

∫
F

{−∂nv}p2+ dσ.

For every function v in X(h) we refer to H(x, v,Dv) as the residual. The two extra
terms in the right-hand side above are referred to as the volume entropy and the
interface entropy, respectively.

Remark 2.1. Whenever v ∈ W 1,∞(Ω) is concave, the two entropy terms are zero;
i.e., these two terms do not add extra viscosity. They act to prevent the occurrence
of large positive second derivatives.

The discrete problem on which we shall henceforth focus our attention consists
of the following minimization problem: Seek uh in Xh such that

(2.8) Jh(uh) = inf
vh∈Xh

Jh(vh).

The goal of the rest of the paper is to show that minimizers exist for each mesh and
every sequence of minimizers converges to the unique viscosity solution to (1.1).

3. Existence of minimizers. The goal of this section is to show the existence
of (at least) one minimizer to problem (2.8). This is done by deriving a priori bounds
and using a simple compactness argument.

3.1. Consistency. We start by deriving a consistency property. Since the mesh
is quasi uniform, one can always construct a family of linear approximation operators
on piecewise linear polynomials Ih : X −→ Xh that are stable on W 1,∞(Ω) and such
that the following property holds:

(3.1) ‖v − Ihv‖W 1,1(Ω) ≤ ch‖Dv‖BV(Ω) ∀v ∈ X.
This is a standard approximation property; for instance, the linear Clément operator
[7, 6] satisfies this property (see also section 6.2 for a precise definition of the Clément
approximation). It is also clear that for p2 = 1 the Clément approximation (or any
other reasonable approximation operator) satisfies

(3.2) h2−p2
∑
F∈F i

h

∫
F

{−∂nIh(u)}p2+ dσ ≤ c(‖u‖X)h.

When p2 > 1, (3.2) becomes a nontrivial property. In our previous paper [14],
which deals with the one-dimensional case, we showed that the piecewise linear La-
grange interpolant of the exact solution satisfies (3.2) with p2 > 1. Unfortunately,
this argument does not hold in two space dimensions. To see this, assume that the
gradient of u is discontinuous across a line L and the mesh family is such that O(h−1)
cell interfaces cross L. Then the left-hand side of (3.2) is bounded from below and
above by c h2−p2 which is larger than c h unless p2 = 1. In other words, (3.2) is hard
to verify when p2 > 1. Of course (3.2) can be shown to hold with p2 > 1 if we are
allowed to optimize or control the mesh. For instance, the Lagrange interpolant of u
satisfies (3.2) with p2 > 1 if the mesh family is such that no cell interface crosses the
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lines across which the normal derivative of u is discontinuous; i.e., the mesh is aligned
with the discontinuity lines of the gradient of u.

Henceforth we make the following assumption:

(3.3)
{

If p2 > 1, there exists an approximation operator Ih such
that (3.1) and (3.2) hold simultaneously.

The existence of such an operator (for p2 > 1) is an open question when the mesh is
not aligned with the discontinuities of the gradient of u. Note that the assumption is
empty when p2 = 1.

The following lemma is the first key step of the theory.
Lemma 3.1. Let u solve (1.1) and assume (3.3); then there is c(u) independent

of h such that

(3.4) Jh(Ihu) ≤ c(u)h.

Proof. (1) Since Ihu is piecewise linear, the restriction of the Hessian of Ihu to
every mesh element is zero, i.e., λ+(Ihu)|K = 0 for all K ∈ Th.

(2) Since Ih is uniformly stable in W 1,∞(Ω), there is c ≥ 0, independent of h,
such that ‖Ihu‖W 1,∞ ≤ c ‖u‖W 1,∞ . Let us set R = c ‖u‖W 1,∞ ; then owing to (1.3),
there is cR ≥ 0 such that for all x ∈ Ω,

|H(x, Ihu,D(Ihu))| = |H(x, Ihu,D(Ihu))−H(x, u,Du)|
≤ cR(|Ihu− u|+ ‖D(Ihu− u)‖).

Then together with (3.1), this implies∫
Ω

|H(x, Ihu,D(Ihu))| ≤ cR‖Ihu− u‖W 1,1 ≤ c cRh‖Du‖BV(Ω).

(3) We now conclude by using (3.2) and collecting the above results:

Jh(Ihu) ≤ c(‖u‖X)h ≤ c′h.
This concludes the proof.

Remark 3.1. Note that it was critical to use the L1-norm of the residual to
obtain (3.4). This is compatible with the fact that Du is in BV(Ω) only. Using any
other Lp-norm would yield a suboptimal exponent on h.

3.2. The W 1,1(Ω) ∩ L∞(Ω) bound. Let α > 0 be a positive real number.
Define the set Sh,α = {vh ∈ Xh;

∫
Ω |H(x, vh, Dvh)|dx ≤ αh}. Using (3.4), we infer

that Sh,c(u) is not empty, i.e., Ih(u) ∈ Sh,c(u).
Lemma 3.2. Let α > 0 and assume that Sh,α is not empty; then there is c0(α) > 0,

independent of h, and h0 > 0 such that

(3.5) ∀h < h0, ∀vh ∈ Sh,α, ‖vh‖W 1,1 + ‖vh‖L∞ ≤ c0(α).

Proof. Let Λl be a chain in the collection {Λl}1≤l≤Lh
(see Figure 1). Set Nl =

card(Λl), let vh be a member of the nonempty set Sh,α, and define

F lj =
j∑
i=1

∫
Ki

‖Dvh‖dx, 1 ≤ j ≤ Nl.
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Owing to (1.2), we infer

F lj ≤
j∑
i=1

∫
Ki

cs (|H(x, vh, Dvh)|dx+ |vh|+ 1) dx.

Then using the fact that vh is a member of Sh,α implies

F lj ≤ αcsh+ csNl max
K∈Th

meas(K) +
j∑
i=1

cs

∫
Ki

|vh|dx.

In other words, using (2.2) together with maxK∈Th
meas(K) ≤ ch2, we infer

(3.6) F lj ≤ ch+ cs

j∑
i=1

∫
Ki

|vh|dx.

Let x1, . . . , xi be the points of the path traversing Λl such that (xm, xm+1) =
Λl ∩Km, 1 ≤ m < Nl (see Figure 1). Denote τm = (xm+1 − xm)/‖xm+1 − xm‖. Let
us now consider a cell Ki, 1 ≤ i ≤ j, and let y be an arbitrary point in Ki; then the
fundamental theorem of calculus implies

vh(y) = vh(x1) +
i−1∑
m=1

∫ xm+1

xm

τm·Dvh(x)dσ +
∫ y

xi

y − xi
‖y − xi‖ ·Dvh(x)dσ,

with the obvious convention if i = 1 or y = xi. This in turn implies

|vh(y)| ≤ c h
i∑

m=1

‖Dvh‖L∞(Ki) ∀y ∈ Ki.

Since vh|Km
is a polynomial, the equivalence of norms on finite-dimensional normed

spaces gives in two space dimensions

(3.7) |vh(y)| ≤ c h−1
i∑

m=1

‖Dvh‖L1(Ki) = c h−1F li ∀y ∈ Ki.

By integrating over Ki, we obtain

(3.8)
∫
Ki

|vh|dx ≤ chF li .

By combining (3.6) and (3.8), we infer F lj ≤ ch + c′h
∑j

i=1 F
l
i , which (provided h is

small enough) immediately implies

F lj ≤
ch

1− c′h
(

1 +
c′h

1− c′h
)j

.

Then, owing to (2.2) we have j ≤ Nl ≤ ch−1, which in turn yields

F lj ≤ c h,
which owing to (3.7) implies the desired L∞-bound on vh.



346 JEAN-LUC GUERMOND AND BOJAN POPOV

We obtain the W 1,1-bound by using the property saying that Ω can be covered
with chains, i.e.,

‖Dvh‖L1(Ω) ≤
Lh∑
l=1

∑
K∈Λl

‖Dvh‖L1(K) ≤ c
Lh∑
l=1

FNl

l ≤ chLh ≤ c,

which concludes the proof.
We are now in a position to prove the existence of a minimizer solving prob-

lem (2.8).
Corollary 3.3. The discrete problem (2.8) has at least one minimizer uh, and

there is c > 0 independent of h such that

Jh(uh) ≤ ch,(3.9)

‖uh‖W 1,1 + ‖uh‖L∞ ≤ c.(3.10)

Proof. Observe first that Lemma 3.1 implies that Sh,c(u) is not empty, since
Ih(u) ∈ Sh,c(u). Second, define Kh = {vh ∈ Xh; Jh(vh) ≤ Jh(Ihu)}. Clearly Ihu
is a member of Kh. Moreover, owing to Lemma 3.1, for every vh in Kh,∫

Ω

|H(x, vh, Dvh)|dx ≤ Jh(vh) ≤ Jh(Ihu) ≤ c(u)h.

That is, Kh ⊂ Sh,c(u). Lemma 3.2 implies that there is c′(u) independent of h such
that for all vh ∈ Kh, ‖vh‖L∞ + ‖vh‖W 1,1 ≤ c′(u). In other words, Kh is uniformly
bounded in W 1,1(Ω)∩L∞(Ω). Finite-dimensionality then implies that Kh is compact.
It is also clear that Jh : Kh −→ R is continuous in every norm (possibly not uniformly
with respect to h). Then, there exists uh ∈ Kh that minimizes Jh on Kh. Since for
every function vh in Xh\Kh, Jh(vh) is larger than Jh(Ihu), we conclude that

inf
vh∈Xh

Jh(vh) = inf
vh∈Kh

Jh(vh) = min
vh∈Kh

Jh(vh) = Jh(uh),

which concludes the proof.
Since in practice uh might not be computed exactly or might be approximated

to some extent by using some iterative process (the details of the process in question
are irrelevant for our discussion), we now define the notion of an almost minimizer.

Definition 3.1. We say that a family of functions {vh ∈ Xh}h>0 is a sequence
of almost minimizers for (1.1) if there is c > 0 such that for all h > 0,

(3.11) Jh(vh) ≤ c h.
It is clear that minimizers are almost minimizers, thus showing that the class of

almost minimizers is not empty. Almost minimizers also satisfy the following uniform
bound owing to Lemma 3.2:

(3.12) ‖vh‖W 1,1 + ‖vh‖L∞ ≤ c.
The rest of the paper consists of proving that sequences of almost minimizers for (1.1)
converge to the viscosity solution of (1.1).

4. Passage to the limit. Henceforth {uh ∈ Xh}h>0 denotes a sequence of
almost minimizers for (1.1) as defined above. We show in this section that sequences
of almost minimizers for (1.1) converge to weak solutions of (1.1). The main result of
this section is Theorem 4.5. That the limit solution is indeed the viscosity limit will
be shown in sections 5 and 6 by proving a one-sided bound.
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4.1. The W 1,∞(Ω)-bound. We prove a W 1,∞(Ω)-bound by using a regulariza-
tion technique. Let ρ : R

2 −→ R
+ be a positive kernel, i.e., ρ is compactly supported

in BR2(0, 1) and
∫

R2 ρdx = 1. We then define the sequence of mollifiers ρε(x) = ρ(x/ε)
with

(4.1) ε = h1/2.

This scaling is justified by the fact that h‖ρε‖L∞ ≤ c, and this property is used in the
proof of Lemma 4.1; see also Remark 4.1. Let us denote by ũh the extension of uh to
R

2 by setting uh|R\Ω = 0. Since uh|Γ = 0, uh is continuous and piecewise polynomial
in Ω, this extension is W 1,∞-stable, i.e., ‖ũh‖W 1,∞(R2) ≤ ‖uh‖W 1,∞(Ω). We now define

(4.2) uε,h = ρε∗ũh.

The main result of this section is the following lemma.
Lemma 4.1. There is a constant c, independent of h, such that

‖uε,h‖W 1,∞(Ω) ≤ c.

Proof. Let x be any point in R
2. We have

‖Duε,h(x)‖ =
∣∣∣∣
∫

R2
ρε(x− y)Dũh(y)dy

∣∣∣∣
≤
∫

Ω

ρε(x− y)‖Dũh(y)‖dy =
∫

Ω

ρε(x− y)‖Duh(y)‖dy

≤ cs
∫

Ω

ρε(x − y)(|H(y, uh(y), Duh(y))|+ |uh(y)|+ 1)dy

≤ cs‖ρε‖L∞(Ω)

∫
Ω

|H(y, uh(y), Duh(y))|dy + (‖uh‖L∞(Ω) + 1)‖ρε‖L1(Ω).

The estimates (3.11) and (3.12) imply

‖Duε,h(x)‖ ≤ c (h‖ρε‖L∞(Ω) + ‖ρε‖L1(Ω)).

Then the estimates ‖ρε‖L∞(Ω) ≤ cε−2 and ‖ρε‖L1(Ω) = 1 along with the definition of
ε (4.1) imply the desired result.

Remark 4.1. The above result generalizes to any space dimension d if estimates (3.11)
and (3.12) hold and provided we take the scaling ε = h1/d.

4.2. The BV-bound on Duh. We prove in this section an a priori bound on
the BV-norm of Duh. We start with a technical result concerning interface averages
of the gradient of functions in Xh. Let (e1, e2) be the canonical basis of R

2.
Lemma 4.2. For all vh ∈ Xh and all F ∈ F i

h, the following holds:

(4.3) {(n·ej)∂ivh}|F = {∂nvh}|F (n1·ei)(n1·ej) = {∂nvh}|F (n2·ei)(n2·ej),

where n1 (resp., n2) is the unit outer normal of K1(F ) on F (resp., K2(F ) on F ).
Proof. Let τ1 := −τ2 be one of the two unit vectors that are parallel to F (see

Figure 2). Upon observing that ei = (n1·ei)n1 + (τ1·ei)τ1 = (n2·ei)n2 + (τ2·ei)τ2,
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K1

K2

n1

n2

τ1

τ2
e1

e2

Fig. 2. Illustration of the notation for Lemma 4.2.

(n1·ei)(n1·ej) = (n2·ei)(n2·ej), and (n1·ei)(τ1·ej) = (n2·ei)(τ2·ej), we infer

{(n·ej)∂ivh} =
1
2
((n1·ej)∂ivh|K1 + (n2·ei)∂ivh|K2)

=
1
2
((n1·ej)(Dvh|K1)·((n1·ei)n1 + (τ1·ei)τ1)

+ (n2·ej)(Dvh|K2)·((n2·ei)n2 + (τ2·ei)τ2))

= {∂nvh}(n1·ei)(n1·ej) + {∂τvh}(n1·ei)(τ1·ej).

Then, we conclude by observing that functions in Xh are continuous across interfaces,
which implies {∂τvh} = 0.

Another preliminary result consists of bounding the normal derivative of uh at
the boundary of the domain. This is achieved by means of the following lemma.

Lemma 4.3. There is c, independent of h, such that

(4.4)
∫

Γ

|∂nuh|dx ≤ c.

Proof. Let us denote by Lh the layer of triangles that have at least one edge on
Γ. Using an inverse inequality and (1.2), we deduce

∫
Γ

|∂nuh|dx ≤ c h−1
∑
K∈Lh

∫
K

‖Duh‖dx ≤ c h−1
∑
K∈Lh

∫
K

(|H(x, uh, Duh)|+ |uh|+ 1) dx

≤ c h−1

∫
Ω

|H(x, uh, Duh)|dx + c h−1
∑
K∈Lh

∫
K

(|uh|+ 1)dx.

Then we conclude using the estimates (3.11)–(3.12) together with the fact that
∑

K∈Lh

meas(K) ≤ ch.
Lemma 4.4. There is c, independent of h, such that

(4.5) ‖Duh‖BV(Ω) ≤ c.
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Proof. Using (4.3) and the definition of the BV-seminorm implies

|Duh|BV(Ω) =
2∑

i,j=1

sup
φ∈C∞

0 (Ω)
‖φ‖L∞≤1

∫
Ω

∂iuh∂jφdx

=
2∑

i,j=1

(
sup

φ∈C∞
0 (Ω)

‖φ‖L∞≤1

∑
K∈Th

∫
K

−∂ijuhφdx +
∑
F∈F i

h

∫
F

2{∂iuh(n·ej)}φds
)

≤
2∑

i,j=1

( ∑
K∈Th

∫
K

|∂ijuh|dx +
∑
F∈F i

h

∫
F

2|{−∂nuh}|ds
)

≤
∑
K∈Th

∫
K

(|∂11uh|+ |∂22uh|+ 2|∂12uh|) dx+
∑
F∈F i

h

∫
F

8|{−∂nuh}|ds.

Now we use the relation |x| = 2x+ − x as follows:

|Duh|BV(Ω) ≤
∑
K∈Th

∫
K

(2((∂11uh)+ + (∂22uh)+)−Δuh + 2|∂12uh|) dx

+
∑
F∈F i

h

∫
F

(16{−∂nuh}+ − 8{−∂nuh})ds.

Moreover, the definition of λ+ implies that for all x ∈ K and all K ∈ Th,
max((∂11uh)+(x), (∂22uh)+(x)) ≤ λ+(x),

|∂12uh(x)| ≤ λ+(x) − 1
2
Δuh(x).

Then,

|Duh|BV(Ω) ≤
∑
K∈Th

∫
K

(6λ+ − 2Δuh) dx+
∑
K∈Th

∫
K

4Δuhdx

+
∑
F∈F i

h

∫
F

(16{−∂nuh}+) ds−
∑
F∈F∂

h

∫
F

4∂nuhds.

Now we use Δuh ≤ 2λ+ to derive

|Duh|BV(Ω) ≤
∑
K∈Th

∫
K

10λ+dx+
∑
F∈F i

h

∫
F

(16{−∂nuh}+) ds+
∫

Γ

4|∂nuh|ds.

Let R1, R2, and R3 be the three terms in the right-hand side of the above inequality.
We bound R1 +R2 as follows:

R1 +R2 ≤ c1
( ∑
K∈Th

meas(K)

)1/p′1 ( ∑
K∈Th

∫
K

λp1+

)1/p1

+ c2

⎛
⎝h p2−1

p2
p′2
∑
F∈F i

h

meas(F )

⎞
⎠

1/p′2 ⎛⎝h1−p2
∑
F∈F i

h

∫
F

{−∂nuh}p2+ ds

⎞
⎠

1/p2

.
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Then using the estimate on Jh(uh) in (3.11), we derive

R1 +R2 ≤ c.
To conclude that R3 is also bounded, we use the estimate (4.4). We conclude that
‖Duh‖BV(Ω) is uniformly bounded by using the fact that Duh is also uniformly
bounded in L1(Ω).

4.3. Convergence to a weak solution. We say that v ∈ W 1,∞(Ω) is a weak
solution to (1.1) if v solves (1.1) almost everywhere.

Theorem 4.5. Assume that (1.1) has a solution u in X and that the mesh family
satisfies (3.3). Then the sequence of almost minimizers {uh}h>0 converges, up to
subsequences, to a weak solution to (1.1).

Proof. Owing to Corollary 3.3 and Lemma 4.4, the sequence {uh}h>0 is precom-
pact in W 1,1(Ω). Let u be the limit, up to subsequences, of {uh}h>0 in W 1,1(Ω).
We need to show that u is also in W 1,∞(Ω). To see this, we observe that, up to
subsequences again, {uh}h>0 and {uε,h}h>0 have the same limit in W 1,1(Ω) since

‖uh − uε,h‖W 1,1(Ω) ≤ ‖uh − u‖W 1,1(Ω) + ‖u− ρε∗u‖W 1,1(Ω) + ‖ρε∗(u− uh)‖W 1,1(Ω),

and the right-hand side goes to zero as h → 0, owing to well-known properties of
mollifiers, recalling that ε = h

1
2 . Moreover, the sequence {uε,h}h>0, being uniformly

bounded in W 1,∞(Ω) ⊂W 1,∞(Ω), converges in W 1,∞(Ω) in the weak-∗ topology, up
to subsequences. The uniqueness of limits implies that u is in W 1,∞(Ω). The sequence
{uε,h}h>0 being uniformly bounded in W 1,∞(Ω) means that it is equicontinuous on Ω;
as a result, the limit is continuous, i.e., u ∈ C0(Ω). Combining the two above results
implies u ∈ W 1,∞(Ω) = C0(Ω) ∩W 1,∞(Ω).

We now prove that u is a weak solution to (1.1) by showing that ‖H(·, u,Du)‖L1(Ω)

= 0. Using that uh → u in W 1,1(Ω), we conclude that, up to subsequences, uh → u
and Duh → Du a.e. in Ω. Then, we can apply Egorov’s theorem. Given ε′ > 0, there
exists a set E with meas(E) < ε′, such that the convergence of uh → u on Ω\E is
uniform. Therefore, for every ε′′, 1 ≥ ε′′ > 0, we can find h(ε′′) > 0 such that for every
h < h(ε′′),

|uh(x)− u(x)| < ε′′ and ‖Duh(x)−Du(x)‖ < ε′′ ∀x ∈ Ω\E.
Note also that for every x ∈ Ω\E and every h < h(1), we have

max(|uh(x)|, |u(x)|, ‖Duh(x)‖, ‖Du(x)‖) ≤ R,
where R := ‖u‖W 1,∞(Ω) +1. Hence, we can use the Lipschitz continuity of H to derive
that there exists a value of ε′′ > 0 such that

(4.6) |H(x, u,Du)−H(x, uh, Duh)| < ε′

for every x ∈ Ω\E and every h < h(ε′′). Note that at this point the value of ε′′ solely
depends on ε′. We now split ‖H(·, u,Du)‖L1(Ω) in the following way:

(4.7) ‖H(·, u,Du)‖L1(Ω) = ‖H(·, u,Du)‖L1(Ω\E) + ‖H(·, u,Du)‖L1(E).

We use that for every R > 0, H(x, ·, ·) is Lipschitz continuous on BR(0, R)×BR2(0, R)
uniformly with respect to x to estimate

‖H(·, u,Du)‖L1(E) ≤ cmeas(E) = cε′.
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The other term in the right-hand side of (4.7) is estimated as follows:

‖H(·, u,Du)‖L1(Ω\E)

≤ ‖H(·, u,Du)−H(·, uh, Duh)‖L1(Ω\E) + ‖H(·, uh, Duh)‖L1(Ω\E)

≤ ε′meas(Ω\E) + ‖H(·, uh, Duh)‖L1(Ω)

≤ cε′ + ch,

where we used (4.6) and (3.11) to derive the above inequality. As a result, for every
ε′ > 0 and every h < h(ε′),

‖H(·, u,Du)‖L1(Ω) ≤ c(ε′ + h),

which means ‖H(·, u,Du)‖L1(Ω) = 0.
Remark 4.2. Recall that when p2 = 1, hypothesis (3.3) is empty, i.e., Theorem 4.5

holds without any assumption on the mesh family other than that it is quasi uniform.
Now we have to address the question of whether this weak solution is indeed the

viscosity solution.

5. One-sided bound. The goal of this section is to show that the algorithm
described in this paper using the functional defined in (2.7) converges to the viscosity
solution to (1.1) under the assumptions

(5.1) p1 > 2 and p2 > 2.

Throughout section 5 we conjecture (3.3). That is, there exists an approximation
operator Ih satisfying (3.1) and (3.2) simultaneously for every mesh family. We have
not been able to prove this statement for arbitrary meshes (unless the discontinuity
lines of the gradient of u are aligned with the mesh). An alternative proof of conver-
gence is reported in section 6 using a vertex-based entropy assuming that the mesh
family is Cartesian and p1 = p2 = 1 so that the Clément interpolant always satisfies
(3.1)–(3.2); i.e., the assumption (3.3) is empty.

Observe that if a function v is q-semiconcave, then there is c > 0 such that for all
δ > 0, all ω ⊂ Ω so that ω + δe ⊂ Ω, and for every unit vector e ∈ R

2, the following
hold:

u(x+ δe)− 2u(x) + u(x− δe) ≤ c δ2− 2
q ∀x ∈ ω,(5.2)

‖(u(·+ δe)− 2u(·) + u(· − δe))+‖Lq(ω) ≤ c δ2.(5.3)

Note that (5.2) implies that for every orthonormal basis of R
2, say (f1, f2), every

δ > 0, every γ ≤ 1− 2
q , and every x ∈ ω, the following holds:

(5.4) Δδu(x) :=
2∑
i=1

u(x+ δfi)− 2u(x) + u(x− δfi) ≤ cδ1+γ .

To stay general in the remainder of the paper we make the following assumption:⎧⎨
⎩

A weak solution u to (1.1) is the unique viscosity solution if u ∈
W 1,∞(Ω) and there exist an orthonormal basis (f1, f2) of R

2 and
γ > 0 such that (5.4) is satisfied.

(5.5)
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Γ1

Γ2

Γ3

Γ4

E1
E2

E3E4

e1
e2

τ1

τ2

τ3

τ4

Fig. 3. Illustration of the notation for Lemma 5.1.

This property is known to characterize viscosity solutions to stationary Hamilton–
Jacobi equations with H(x, u,Du) = u + F (Du), where F : R

2 −→ R is convex as
shown by Lions and Souganidis [18, Thm. 2.6].

Throughout section 5 the orthonormal basis that we use is the canonical one
(e1, e2) and the discrete Laplacian Δδu(x) is defined using this basis.

Let x ∈ Ω and δ > 0 such that BR2(x, δ) ⊂ Ω and let us consider the square
whose four vertices are x− δe1, x+ δe2, x+ δe1, and x− δe2. This square is the union
of the following four triangles:

(5.6)

E1 = x+ {(x1, x2) ∈ R
2; x1 ≤ 0; x2 ≥ 0; x1 − x2 + δ ≥ 0},

E2 = x+ {(x1, x2) ∈ R
2; x1 ≥ 0; x2 ≥ 0; x1 + x2 − δ ≤ 0},

E3 = x+ {(x1, x2) ∈ R
2; x1 ≥ 0; x2 ≤ 0; x1 − x2 − δ ≤ 0},

E4 = x+ {(x1, x2) ∈ R
2; x1 ≤ 0; x2 ≤ 0; x1 + x2 + δ ≥ 0}.

The interior of Ei is henceforth denoted by Ėi, i ∈ {1, 2, 3, 4}. We also set

(5.7)

Γ1 = x+ {(x1, 0) ∈ R
2; − δ ≤ x1 ≤ 0},

Γ2 = x+ {(0, x2) ∈ R
2; 0 ≤ x2 ≤ δ},

Γ3 = x+ {(x1, 0) ∈ R
2; 0 ≤ x1 ≤ δ},

Γ4 = x+ {(0, x2) ∈ R
2; − δ ≤ x2 ≤ 0}.

We now define the unit vectors τ1 = 2−
1
2 (e1 + e2), τ2 = 2−

1
2 (e1 − e2), τ3 = τ1, and

τ4 = τ2. See Figure 3.
We are now in a position to derive an integral representation of Δδuh(x) over the

square E1 ∪ E2 ∪ E3 ∪ E4.
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Lemma 5.1. The following holds for all vh ∈ Xh and all x ∈ Ω and δ > 0 such
that BR2(x, δ) ⊂ Ω:

(5.8) Δδvh(x) =
4∑
l=1

∑
K∈Th

K∩El �=∅

∫
K∩El

∂τlτl
vh + 2

4∑
l=1

∑
F∈Fi

h
F∩El �=∅

∫
F∩El

{−∂nvh}(τl·n)2.

Proof. Consider first triangle E1. Upon integrating by parts two times and using
Lemma 4.2 and the fact that vh ∈ C0(Ω), we infer the following:

0 =
∫
E1

vh∂τ1τ1(1)dx =
∑

K∈Th
K∩E1 �=∅

∫
K∩E1

vh∂τ1τ1(1)dx =
∑

K∈Th
K∩E1 �=∅

−
∫
K∩E1

∂τ1vh∂τ1(1)dx

=
∑

K∈Th
K∩E1 �=∅

∫
K∩E1

∂τ1τ1vhdx−
∫
∂(K∩E1)

(τ1·n)∂τ1vhds

=
∑

K∈Th
K∩E1 �=∅

∫
K∩E1

∂τ1τ1vhdx−
∑

F∈Fi
h

F∩Ė1 �=∅

∫
F∩Ė1

2{∂nvh}(τ1·n)2ds

+
1
2

∫
Γ1

∂1vhds− 1
2

∫
Γ2

∂2vhds−
∫

Γ1

∂nvh(τ1·n)2ds−
∫

Γ2

∂nvh(τ1·n)2ds.

By proceeding similarly with the other triangles E2, E3, and E4, and adding the four
results, we obtain

−
∫

Γ1

∂1vhds+
∫

Γ2

∂2vhds+
∫

Γ3

∂1vhds−
∫

Γ4

∂2vhds

=
4∑
l=1

∑
K∈Th

K∩El �=∅

∫
K∩El

∂τlτl
vhdx+ 2

4∑
l=1

∑
F∈Fi

h
F∩El �=∅

∫
F∩El

{−∂nvh}(τl·n)2.

We conclude by observing that

Δδvh(x) = −
∫

Γ1

∂1vhds+
∫

Γ2

∂2vhds+
∫

Γ3

∂1vhds−
∫

Γ4

∂2vhds.

This concludes the proof.
We are now in a position to prove a one-sided bound similar to that in (5.5).
Lemma 5.2. For all sequences of almost minimizers for (2.8), say {uh}h>0, there

exist c > 0 and γ := min(p1−2
p1

, p2−2
p2

) such that for all x ∈ Ω and δ > h such that
BR2(x, δ) ⊂ Ω, the following one-sided bound holds:

(5.9) Δδuh(x) ≤ cδ1+γ .
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Proof. Let us set E := E1 ∪ E2 ∪ E3 ∪ E4. Using Lemma 5.1 together with the
estimate (3.11), we infer

Δδuh(x) ≤
∑

K∈Th∩E

∫
K

λ+(uh)dx + 2
∑

F∈F i
h∩E

∫
F

{−∂nuh}+ds

≤
( ∑
K∈Th∩E

measK

) 1
p′
1

( ∑
K∈Th

∫
K

λ+(uh)p1dx

) 1
p1

+ 2

⎛
⎝h p2−1

p2
p′2

∑
F∈F i

h∩E
measF

⎞
⎠

1
p′
2

⎛
⎝h1−p2

∑
F∈F i

h

∫
F

{−∂nuh}p2+ ds

⎞
⎠

1
p2

≤ c
(
δ

2
p′
1 + δ

2
p′
2

)
,

where we used h ≤ δ in the last inequality. (We have bounded from above the number
of cells in Th ∩ E and the number of interfaces in F i

h ∩ E by δ/h and this number
cannot be less than 1.) We conclude by observing that 2

p′i
= 1 + pi−2

pi
and pi > 2 for

i = 1, 2.
Theorem 5.3. Let u ∈ X be the unique solution to (1.1). Under the mesh assump-

tion (3.3), the uniqueness assumption (5.5), and the restriction p1 > 2, p2 > 2, every
sequence of almost minimizers converges to the unique viscosity solution to (1.1).

Proof. Let {uh}h>0 be a sequence of almost minimizers. Let δ > 0 and let Ωδ =
{x ∈ Ω; BR2(x, δ) ⊂ Ω}. Then owing to Lemma 5.9 the following holds for every
x ∈ Ωδ:

Δδuh(x) ≤ cδ1+γ .

Since uh converges strongly to u in L1, we infer that uh → u a.e. in Ωδ, that is,

Δδu(x) ≤ cδ1+γ , a.e. x in Ωδ.

We then conclude that the above inequality holds for every x ∈ Ωδ since u is contin-
uous.

Remark 5.1. Recall that whether hypothesis (3.3) holds for every quasi-uniform
mesh family is an open question. It definitely holds on aligned meshes. We remove
this assumption in the next section for uniform meshes by taking p2 = 1 and adding
an extra term in the entropy.

6. One-sided bound on uniform meshes. The goal of this section is to prove
an analogue of Theorem 5.3 in the case p2 = 1, i.e., the mesh assumption (3.3)
is empty. For this purpose we assume that the mesh is uniform and add a vertex-
centered entropy to the functional Jh. We prove the one-sided bound (5.5) using the
orthonormal basis 1√

2
(e1 + e2, e1 − e2).

6.1. The vertex-centered entropy. We henceforth assume that the mesh is
uniform in the sense that the set of vertices is

(6.1) Ωh := {(sh, kh) ∈ R
2; (s, k) ∈ Ih} ⊂ Ω,
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where {Ih}h>0 is a family of subsets of N
2. The set of interior vertices is denoted by

Ω̇h. The mesh cells are triangles whose edges are parallel to e1, e2, or e1 + e2.
In order to understand how a vertex-centered entropy can be constructed, let us

consider a point x := (ih, jh) ∈ Ωh and δ > 0 such that x +Bh(0,
√

2δ) ⊂ Ωh, where
Bh(0, μ) := {(sh, kh) = z; (k, l) ∈ N

2; ‖z‖ < μ}. Assume for the time being that
δ = nh with n ≥ 1. We now define the following index sets

(6.2)

Λ0 = {(s, k); |k − j| ≤ n and |s− i| ≤ n},
Λ1 = {(s, k); 1 ≤ k − j ≤ n and |s− i| ≤ k − j − 1},
Λ2 = {(s, k); 1 ≤ s− i ≤ n and |k − j| ≤ s− i− 1},
Λ3 = {(s, k); 1 ≤ j − k ≤ n and |s− i| ≤ j − k − 1},
Λ4 = {(s, k); 1 ≤ i− s ≤ n and |k − j| ≤ i− s− 1},
Λ5 = {(s, k); 0 < |s− i| = |k − j| < n}.

Up to a π/4 rotation and an appropriate rescaling, the sets Λm, m ∈ {1, 2, 3, 4}
correspond to the triangles Em defined in (5.6). The set Λ0 corresponds to the square
E1 ∪E2 ∪E3 ∪E4. The set Λ5 corresponds to Γ1 ∪ Γ2 ∪Γ3 ∪Γ4 minus the center and
the four corners of the square (the Γm’s have been defined in (5.7)); see also Figure 3.

Let v be a member of Xh. To simplify notation we set vs,k := v(sh, kh). Now our
goal is to find a discrete analogue of the integral representation (5.8) of the discrete
Laplacian

(6.3) Δ√2δu(x) = ui−n,j−n + ui−n,j+n + ui+n,j−n + ui+n,j+n − 4ui,j .

Let z = (sh, kh) ∈ Ω̇h be an interior vertex. We introduce the following additional
notation for the second-order directional finite differences at z:

(6.4) D2
1vs,k = us−1,k − 2us,k + us+1,k, D2

2vs,k = us,k−1 − 2us,k + us,k+1.

Then the following discrete representation of Δ√2δv(x) holds:

Δ√2δv(x) = R1(v, x, δ) +D2
1vi,j +D2

2vi,j +
∑

(s,k)∈Λ1∪Λ3

D2
1vs,k +

∑
(s,k)∈Λ2∪Λ4

D2
2vs,k

+
∑

(s,k)∈Λ5

1
2
D2

1vs,k +
1
2
D2

2vs,k,(6.5)

where the remainder R1(v, x, δ) is defined by

(6.6)

2R1(v, x, δ) = (vi−n+1,j+n − vi−n,j+n) + (vi−n,j+n−1 − vi−n,j+n)

+ (vi+n−1,j+n − vi+n,j+n) + (vi+n,j+n−1 − vi+n,j+n)

+ (vi+n−1,j−n − vi+n,j−n) + (vi+n,j−n+1 − vi+n,j−n)

+ (vi−n+1,j−n − vi−n,j−n) + (vi−n,j−n+1 − vi−n,j−n).

We now define a vertex-centered entropy as follows:

(6.7) Eh(v) :=
∑

(ih,jh)∈Ω̇h

(D2
1vi,j)

p3
+ + (D2

2vi,j)
p3
+ ,
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where

(6.8) p3 > 2.

We modify the functional Jh by setting p1 = p2 = 1 and by adding the vertex-centered
entropy

(6.9) Jh(v) =
∫

Ω

|H(x, v,Dv)|dx

+ h
∑
K∈Th

∫
K

λ+(v)dx + h
∑
F∈F i

h

∫
F

{−∂nv}+dσ + h3−2p3Eh(v),

and we henceforth denote by {uh}h>0 a sequence of almost minimizers for (2.8) using
the above modified functional.

6.2. Consistency. The goal of this section is to show that, with the above choice
of entropy, it is possible to construct an approximation of u, say Ihu, that satisfies
the estimate

(6.10) Jh(Ihu) ≤ ch.
We make use of the Clément interpolation operator [7, 6] to this purpose. Let v

be an arbitrary function in L1(Ω). We define Ih(v) to be a piecewise linear function
on the mesh Th as follows. Let a be any vertex of Th. If a is on Γ, we set Ih(v)(a) = 0.
If a is an interior vertex, we define Δa to be the set of all those triangles that have a
as a vertex. We define r(v) ∈ P1 to the linear polynomial such that

(6.11)
∫

Δa

(r(v)(x) − v(x))q(x)dx = 0 ∀q ∈ P1.

Then we set Ih(v)(a) = r(v)(a). The interpolant Ih thus defined is W 1,∞-stable and
there is c > 0 such that for all m ∈ {0, 1}, k ∈ {0, 1}, any number p ≥ 1, and all
v ∈ W k+1,p(Ω) ∩W 1,p

0 (Ω) the following holds (see [6, 7]):

‖Ih(v)− v‖Wm,p(Ω) ≤ c hk+1−m‖v‖Wk+1,p(Ω),(6.12)

⎛
⎝ ∑
F∈F i

h

‖Ihv − v‖pWm,p(F )

⎞
⎠

1/p

≤ c hk+1−m− 1
p ‖v‖Wk+1,p(Ω).(6.13)

Lemma 6.1. Under the above hypotheses and with the definition (6.9) of the func-
tional Jh, there is c, uniform in h, such that the linear Clément interpolant of u, say
Ih(u), satisfies

(6.14) Jh(Ih(u)) ≤ c h.
Proof. The W 1,∞-stability and the approximation property (6.12) with m =

p = k = 1 of the Clément interpolant together with the assumption (1.3) yields
‖H(·, Ih(u), DIh(u))‖L1(Ω) ≤ c h. Since Ih(u) is piecewise linear, the volume entropy
in Jh involving λ+(Ih(u)) is zero. The q-semiconcavity of u implies {−∂nIhu}+ =
{−∂n(Ihu− u)}+ across every F ∈ F i

h, since the W 2,q-component of u has a continu-
ous gradient by embedding (recall that q > 2). This together with (6.13) (using k = 1,
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m = 0, p = 1) yields that the interface entropy involving {−∂nIhu}+ is bounded from
above by c h.

Now we have to make sure that the vertex-centered entropy is appropriately
controlled. Let a ∈ Ω̇h be an interior mesh vertex. Let us evaluate r(u) at a as defined
in (6.11). To do so, we expand r(u) in the following manner:

r(u)(x) = α+ β·(x− a),

where α ∈ R and β ∈ R
2 are yet to be determined. Since the mesh is structured, the

following holds: ∫
Δa

(x − a)dx = 0.

This immediately implies

0 =
∫

Δa

(r(u) − u)dx = |Δa|
(
α−Δ−1

a

∫
Δa

udx

)
,

i.e., r(u)(a) = α = 1
Δa

∫
Δa

udx.
Let i be an index in {1, 2}. Let us set Δ+

a = Δa + hei and Δ−a = Δa − hei Then,
with obvious notation,

|Δa|D2
i r(u)(a) =

∫
Δ+

a

u(x)dx − 2
∫

Δa

u(x)dx+
∫

Δ−
a

u(x)dx

=
∫

Δa

(u(x+ hei)dx − 2u(x) + u(x− hei)) dx

=
∫

Δa

D2
i u(x)dx.

Now, using the q-semiconcavity hypothesis (1.5), we have u = vc + w, where vc ∈
W 1,∞(Ω) is concave and w ∈ W 2,q(Ω). Then, using the concavity of vc and the W 2,q-
regularity of w, infer

E(Ih(u)) = E(Ih(w)) ≤ ch2p3−2.

This implies h3−2p3E(Ih(u)) ≤ c h. This completes the proof.
Lemma 6.1 means that the set of almost minimizers is not empty when using

definition (6.9). No extra assumptions need to be made.
Remark 6.1. Note that the fact that the mesh is structured is a key argument in

the proof of Lemma 6.1.

6.3. Convergence to the viscosity solution. Let δ ≥ h be a real number
that we assume for the time being to be a multiple of h, i.e., δ = nh with n ≥ 1.
Consider a point x := (ih, jh) ∈ Ωh such that x+Bh(0,

√
2δ) ⊂ Ωh.

Lemma 6.2. Under the above hypotheses, for all sequences of almost minimizers
of (2.8), say {uh}h>0, there is c, independent of x, h, and δ, and there is γ := 1− 2

p3 >
0 so that

(6.15) Δ√2δuh(x) ≤ cδ1+γ +R1(uh, x, δ).
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Proof. From (6.5) we infer

Δ√2δuh(x) ≤ R1(uh, x, δ) +
5
2

∑
(s,k)∈Λ0

(D2
1(uh)s,k)+ +

5
2

∑
(s,k)∈Λ0

(D2
2(uh)s,k)+.

Using Hölder’s inequality, this implies

Δ√2δuh(x) ≤ R1(uh, x, δ) + card(Λ0)
1

p′
3 (Eh(uh))

1
p3 ,

where card(Λ0) is the cardinal number of Λ0. Clearly card(Λ0) ≤ c (δ/h)2. Moreover,
since {uh}h>0 is a sequence of almost minimizers, it comes that Eh(uh) ≤ c h2(p3−1).
That is to say,

Δ√2δuh(x) ≤ R1(uh, x, δ) + c δ2/p
′
3h−2/p′3h2(p3−1)/p3 ≤ R1(uh, x, δ) + c δ1+γ ,

where γ = 1− 2/p3 > 0 since p3 > 2.
We now conclude the following theorem.
Theorem 6.3. Let u ∈ X be the unique solution to (1.1). Consider the uniform

mesh family defined by (6.1). Under the uniqueness assumption (5.5), and the restric-
tion p3 > 2, every sequence of almost minimizers for the functional (6.9) converges to
the unique viscosity solution to (1.1).

Proof. Let {uh}h>0 be a sequence of almost minimizers. Let x be a point in Ω.
There exists δ0 such that BR2(x, δ0) ⊂ Ω. Let δ be a fixed number in (0, δ0/2

√
2] and

let h be an arbitrary mesh size such that h ≤ δ.
Since the ratio δ/h may not be an integer and/or x is almost surely not a member

of Ωh, we define n := �δ/h�, i := �(x·e1)/h�, and j := �(x·e2)/h�, where �·� is the
floor function. Then we set δ = nh and x = (ih, jh). Note that with our choice of
parameters, z is in Ωh, where z is either x or x± δe1 ± δe2. These definitions imply

(6.16) Δ√2δuh(x) = Δ√2 δuh(x) +R2(uh, x, δ),

where the remainder is defined by R2(uh, x, δ) := Δ√2δuh(x)−Δ√2 δuh(x).
Now we use the one-sided bound (6.15) from Lemma 6.2 to obtain

Δ√2δuh(x) ≤ cδ
1+γ

+R1(uh, x, δ) +R2(uh, x, δ).

We conclude by passing to the limit on h. Clearly δ → δ. Since uh → u a.e. in Ω,
we infer Δ√2δuh(x) → Δ√2δu(x) for a.e. x in Ω. Moreover, owing to Lemma 6.4,
R1(uh, x, δ)→ 0 and R2(uh, x, δ)→ 0 for a.e. x in Ω. As a result,

Δ√2δu(x) ≤ cδ1+γ for a.e. x ∈ Ω,

and the constant c does not depend on x. Since u is continuous, this implies that the
inequality holds for every x in Ω and every δ such that BR2(x, δ0) ⊂ Ω.

Remark 6.2. Recall that the class of stationary Hamilton–Jacobi equations defined
by H(x, u,Du) = u + F (Du), where F : R

2 −→ R is convex, has a unique viscosity
solution characterized by (5.5); see [18, Thm. 2.6]. Moreover, it is known that the
solution is ∞-semiconcave under appropriate restrictions on the domain. In other
words, Theorem 6.3 holds at least for the above class of Hamilton–Jacobi equations.

Lemma 6.4. Under the above hypotheses, R1(uh, x(x), δ)→ 0 for a.e. x ∈ Ω and
R2(uh, x, δ)→ 0 for a.e. x ∈ Ω.
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Proof. R1 is composed of eight terms which have the generic form

rh(x, δ, h) := uh(x+ s1δe± + s2hei)− uh(x+ s1δe±),

where e± = e1 ± e2, i ∈ {1, 2} and s1, s2 ∈ {−1,+1}. To avoid boundary issues, we
extend rh to R

2 by replacing uh by ũh; the extension in question is denoted by r̃h.
We now evaluate the L1-norm of r̃h(x(x), δ, h) as follows:

‖r̃h(x(·), δ, h)‖L1(R2) =
∫

R2
|ũh(x(x) + s1δe± + s2hei)− ũh(x(x) + s1δe±)|dx

=
∫

R2
|ũh(x(x) + s2hei)− ũh(x(x))|dx

= h2
+∞∑

k,l=−∞
|ũh(xk,l + s2hei)− ũh(xk,l)|

= h2
+∞∑

k,l=−∞

∣∣∣∣∣
∫
Fk,l

∂ei ũh(y)dy

∣∣∣∣∣ ,
where we have denoted xk,l = (kh, lh) and Fk,l is the segment (xk,l, xk,l + s2hei).
Note that Fkl is equal to (xk,l, x(k+s2),l) if i = 1 and (xk,l, xk,(l+s2)) if i = 2. Let us
denote by Δxk,l

the set of all those triangles that have xk,l as a vertex (there are six
of those). Then a trace and an inverse inequality yield

∣∣∣∣∣
∫
Fk,l

∂ei ũh(y)dy

∣∣∣∣∣ ≤ ch−1
∑

K∈Δxk,l

∫
K

‖Dũh‖L1(K).

This then yields

‖r̃h(x(·), δ, h)‖L1(R2) ≤ c h
+∞∑

k,l=−∞

∑
K∈Δxk,l

∫
K

‖Dũh‖L1(K)

≤ c h ‖ũh‖W 1,1(R2) ≤ c′ h ‖uh‖W 1,1(Ω).

This means r̃h(x(·), δ, h)→ 0 in L1(R2), which immediately implies rh(x(x), , δ, h)→
0 for a.e. x in Ω.

For R2, we observe that R2 is composed of five terms which have the generic form

rh(x, δ, h) := uh(x+ sδe±)− uh(x(x) + sδe±),

where s ∈ {−1, 0,+1}. To avoid boundary issues, we again extend rh to R
2 by re-

placing uh by ũh; the extension in question is denoted by r̃h. We now evaluate the
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L1-norm of r̃h(x, δ, h) as follows:

‖r̃h(·, δ, h)‖L1(R2) =
∫

R2
|ũh(x+ sδe±)− ũh(x(x) + sδe±)|dx

≤
∫

R2
|ũh(x+ sδe±)− ũh(x+ sδe±)|dx

+
∫

R2
|ũh(x + sδe±)− ũh(x(x) + sδe±)|dx

≤
∫

R2
|ũh(x)− ũh(x+ s(δ − δ)e±)|dx

+
∫

R2
|ũh(x) − ũh(x(x))|dx.

Let r1, r2 be the two integrals in the right-hand side, respectively. For r1 we have

r1 =
∫

R2

∣∣∣∣
∫ 1

0

Dũh(x+ θs(δ − δ)e±)·(δ − δ)e±dθ
∣∣∣∣ dx

≤ |δ − δ|
∫ 1

0

∫
R2
‖Dũh(x + θs(δ − δ)e±)‖dxdθ ≤ h‖Dũh‖L1(R2)

≤ c h ‖uh‖W 1,1(Ω).

For the second residual we have

r2 =
+∞∑

k,l=−∞

∫
Sk,l

|ũh(x)− ũh(xk,l)|dx,

where xk,l = (kh, lh) and Sk,l is the square (xk,l, xk+1,l)× (xk,l, xk,l+1). Then a trace
inequality and an inverse inequality yields

r2 =
+∞∑

k,l=−∞

∫
Sk,l

∣∣∣∣
∫ 1

0

Dũh(x+ θ(xk,l − x))·(xk,l − x)dθ
∣∣∣∣ dx

≤ c h−1
+∞∑

k,l=−∞

∫
Sk,l

‖Dũh‖L1(Sk,l) ≤ c h
+∞∑

k,l=−∞
‖Dũh‖L1(Sk,l)

≤ c h‖uh‖W 1,1(Ω).

We then conclude as above.

7. Numerical experiments. A one-dimensional theory for the L1-approxi-
mation of stationary Hamilton–Jacobi equations is developed in [14], and efficient
numerical algorithms are proposed and analyzed in [12].

The purpose of this section is to support our theory by reporting two-dimensional
numerical experiments. Our goal is not to analyze or discuss the optimality of any
given numerical strategy to solve (2.8) but to show that L1-minimizers are computable
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Fig. 4. Pentagon: Aligned unstructured mesh (left); nonaligned unstructured mesh (right).
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Fig. 5. L-shaped domain: Unstructured mesh (left); iso-lines of approximate minimizer (right).

and are very accurate nonoscillatory approximations to viscosity solutions of station-
ary two-dimensional Hamilton–Jacobi equations. We henceforth focus our attention
on the eikonal equation, ‖Du‖ = 1, equipped with homogeneous Dirichlet bound-
ary conditions. The computations are done using piecewise linear continuous finite
elements. The entropy is defined using p = 2. The discrete problem (2.8) is solved
by using an iterative regularization method described in [11]. In a few words, the
algorithm consists of computing limh→0 limε→0 argminvh∈Xh

Jh,ε(vh). The functional
Jh,ε(vh) is a regularized version of Jh(vh), where the absolute value defining the L1-
norm and the (·)+ function are replaced by x �−→ x2/(|x| + ε). The minimization
problem is solved by using a Newton method. The number ε is used as a continuation
parameter. The computation stops when ε = 1.10−5. The mesh size h is also used as
a continuation parameter in the sense that the computation is done on three grids
successively refined. The result on a coarse grid is used to initialize the solution on
the next grid.

In the first example the domain Ω is a pentagon. The computation is done on
two types of meshes. The first type is composed of meshes that are aligned with the
discontinuities of the gradient and the second type consists of unstructured meshes.
Typical results are reported in Figure 4. For both mesh types, we observe that the
approximate L1-minimizer is similar to the Lagrange interpolant of the exact solution
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on the same mesh. This is what we should expect intuitively. The L1-minimization
process solves the equation in the region where the solution is smooth and simply ig-
nores the PDE in the regions where the gradient of the exact solution is discontinuous.
For more details we refer to [13, 14].

The second example is the eikonal equation on an L-shaped domain. The vis-
cosity solution to this problem is in W 1,∞(Ω) and is q semiconcave for every q < 2.
This is a borderline case not covered by our theory (we a priori need q > 2). We
nevertheless do the computations using p = 2 for the entropy. We show a mesh and
the corresponding approximate minimizer in Figure 5. Once again, we observe that
the solution is accurate. The iso-lines are not oscillating and are very sharp.

REFERENCES

[1] R. Abgrall, Numerical discretization of the first-order Hamilton–Jacobi equation on triangu-
lar meshes, Comm. Pure Appl. Math., 49 (1996), pp. 1339–1373.

[2] R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton–Jacobi
equations, SIAM J. Numer. Anal., 41 (2003), pp. 2233–2261.

[3] G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in Rn, Math.
Z., 230 (1999), pp. 259–316.
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[16] S. N. Kružkov, Generalized solutions of Hamilton-Jacobi equations of eikonal type. I. State-

ment of the problems; existence, uniqueness and stability theorems; certain properties of
the solutions, Mat. Sb., 98 (1975), pp. 450–493, 496.

[17] C.-T. Lin and E. Tadmor, L1-stability and error estimates for approximate Hamilton-Jacobi
solutions, Numer. Math., 87 (2001), pp. 701–735.

[18] P.-L. Lions and P. E. Souganidis, Convergence of MUSCL and filtered schemes for scalar
conservation laws and Hamilton-Jacobi equations, Numer. Math., 69 (1995), pp. 441–470.

[19] J. A. Sethian, Fast marching methods, SIAM Rev., 41 (1999), pp. 199–235.



SIAM J. NUMER. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 47, No. 1, pp. 363–385

FAST MARCHING METHODS FOR STATIONARY
HAMILTON–JACOBI EQUATIONS WITH AXIS-ALIGNED

ANISOTROPY∗

KEN ALTON† AND IAN M. MITCHELL†

Abstract. The fast marching method (FMM) has proved to be a very efficient algorithm for
solving the isotropic Eikonal equation. Because it is a minor modification of Dijkstra’s algorithm
for finding the shortest path through a discrete graph, FMM is also easy to implement. In this
paper we describe a new class of Hamilton–Jacobi (HJ) PDEs with axis-aligned anisotropy which
satisfy a causality condition for standard finite-difference schemes on orthogonal grids and can hence
be solved using the FMM; the only modification required to the algorithm is in the local update
equation for a node. This class of HJ PDEs has applications in anelliptic wave propagation and
robotic path planning, and brief examples are included. Since our class of HJ PDEs and grids permit
asymmetries, we also examine some methods of improving the efficiency of the local update that do
not require symmetric grids and PDEs. Finally, we include explicit update formulas for variations
of the Eikonal equation that use the Manhattan, Euclidean, and infinity norms on orthogonal grids
of arbitrary dimension and with variable node spacing.
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viscosity solution
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1. Introduction. The fast marching method (FMM) [29, 23] has become a
popular algorithm to use when solving the Dirichlet problem for an isotropic static
Hamilton–Jacobi partial differential equation (HJ PDE), also known as the Eikonal
equation ‖Du(x)‖2 = c(x). FMM has proven to be particularly efficient in practice
because it can approximately solve this problem in a single pass through the nodes
of a grid. It is also straightforward to implement, requiring only a small modification
of Dijkstra’s algorithm [9], which is a popular method for finding the shortest path
through a graph.

While the isotropic case is the most common, there are applications which re-
quire the solution of anisotropic HJ PDEs. Unfortunately, FMM produces a correct
approximation only under certain causality conditions on the values of nodes and
their neighbors. This limitation has motivated the development of a more generally
applicable version of FMM called ordered upwind methods (OUMs) [21] and also
several recent works such as [31, 13, 19] on sweeping methods. However, OUMs are
much more complex to implement than FMM, and sweeping methods can be much
less efficient for problems with curved characteristics and practical grid sizes [12, 11].

Consequently, we have motivation to seek classes of anisotropic problems to which
FMM might still be applied. One such class of problems was identified in [20] and
includes the Eikonal equation where an energy norm replaces the standard Euclidean
norm. In [3] we identified another such class of problems. Because its characteris-
tics are minimum time paths to the boundary, the Eikonal equation has often been
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proposed for robotic path planning; for example, see [15]. However, for some robots,
using the Euclidean norm in this equation is inappropriate. Consider a robot arm,
where each joint has its own motor. If each motor can rotate at some maximum speed
independent of the action of the other motors, then the action of the whole arm is
best bounded in an approprately-scaled infinity norm. The corresponding Eikonal
equation should use the dual Manhattan norm and is thus anisotropic. Other scenar-
ios where such problems arise were considered in [3]—such as planning collision-free
optimal paths for multiple robots—and experimental evidence suggested that FMM
would be successful on these problems.

As a group, the anisotropy in these problems is axis-aligned. In this paper we
describe a broader class of such axis-aligned problems (section 2) and demonstrate that
FMM can be applied to approximate their solution on axis-aligned orthogonal grids
without modification of the algorithm beyond the local update function for a single
node (section 3). The examples (section 4) include an anelliptic wave propagation
problem and a new multirobot scenario. In Appendix A, we propose some methods
by which the local update’s efficiency might be improved even if the grid and/or PDE
lack symmetry. Lastly, in Appendix B, we provide analytic update formulas for the
Eikonal equation with the p = 1, 2, and∞ norms on variably spaced orthogonal grids
in any dimension.

Some proofs of theorems and experimental details have been omitted from this
paper and may be found in [2].

1.1. The problem. The Dirichlet problem of a static HJ PDE is to find a
function u such that

H(x,Du(x)) = 0, x ∈ Ω,(1.1a)
u(x) = g(x), x ∈ ∂Ω,(1.1b)

where Du(x) is the gradient of u at x, Ω ⊂ R
d is a bounded Lipschitz domain, and

∂Ω is the domain’s boundary. In general, it is not possible to find a classical solution
to the Dirichlet problem (1.1) where u is differentiable for all x, so we seek instead
the viscosity solution [7], a unique weak solution which is continuous and almost
everywhere differentiable.

To appreciate the difference between isotropic and anisotropic problems, it is
useful to consider a control-theoretic formulation of the Hamiltonian

(1.2) H(x, q) = max
a∈A(x)

(−q · a)− 1,

where a is an action and A(x) ⊂ R
d is a compact, convex action set containing the

origin in its interior. In an isotropic problem A(x) is a hypersphere centered on the
origin for all x, although its radius may depend on x. In such a problem (1.2) reduces
to

(1.3) H(x, q) = ‖q‖2 − c(x),
where c(x) = 1/r(x) and r(x) is the radius of the hyperspherical A(x). In this
case (1.1a) becomes the Eikonal equation. For an anisotropic problem, A(x) is not
always an origin-centered hypersphere. Since not all Hamiltonians H fit the control-
theoretic formulation, more generally, for an isotropic problem, the set of q solving
H(x, q) = 0 is the surface of an origin-centered hypersphere. Several examples of
anisotropic problems that do not fit this criterion are included in sections 2.2 and 4.
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Fig. 1.1. Orthogonal grids combining discretizations Ω and ∂Ω. (a) boundary conditions are
given around the outside of Ω. (b) boundary conditions are given on the inside of Ω.

1.2. The FMM. Since we typically cannot solve for the viscosity solution ex-
actly, we compute an approximate solution u on an axis-aligned orthogonal grid with
nodes forming both a discretization Ω of Ω, and a discretization ∂Ω of ∂Ω; for exam-
ple, see Figure 1.1. We take Ω and ∂Ω to be disjoint sets. We allow any axis-aligned
orthogonal grid, including those with node spacing that varies between dimensions
and within a single dimension; the latter capability makes it easier to more accurately
manage an irregular boundary [11]. It is important that the orthogonal grid and the
Hamiltonian H are aligned to the same axis. What it means for H to be aligned to
an axis is explained in section 2.

Let N (x) be the set of neighbors of node x ∈ Ω. Whenever we refer to a simplex
of a node x, we mean a simplex specified by the node x and d of its neighbors, each
in a distinct dimension. Since we are restricted to orthogonal grids, each simplex of
x corresponds to a particular orthant.

Informally, we refer to u(x) as the value of node x. In what follows, we may use
u to refer to either the values of the nodes in the operation or the output of FMM or
to the solution of the discretized PDE (3.3). This ambiguity becomes less bothersome
when we point out in Proposition 3.2 that the output of FMM is, in fact, the solution
to (3.3).

Algorithm 1 outlines a simple dynamic programming algorithm. The algorithm
can become either Dijkstra’s algorithm or FMM depending on the choice of the Update
function. Consider, for example, the Update function in the context of optimal control,
where we are computing the minimal cost over all possible paths. For Dijkstra’s
algorithm, Update computes u(x0) as a simple minimization over the neighboring
nodes of x0 of the path costs to x0 via each neighbor. For FMM, the Update function
computes u(x0) as a minimization over the neighboring simplices of x0 of the minimum
path costs to x0 via each simplex.

The Update function must satisfy a causality property in order for Algorithm 1 to
terminate with a correct solution: Update must compute a node value u(x) based only
on information from neighboring nodes with smaller values, so that u is computed in
increasing order of u(x) [28, 24]. In Dijkstra’s algorithm and FMM for a standard
Euclidean norm Eikonal equation on an orthogonal grid, this property is automatic.
A major contribution of this paper is to demonstrate that, for a class of static HJ
PDEs with axis-aligned anisotropy, an Update function that is consistent with the
PDE and satisfies the causality property can be defined, and thus FMM can be used.

While the Update function in Algorithm 1 is determined by the underlying equa-
tion which we seek to solve, it is assumed that its execution time is independent of
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foreach x ∈ Ω do u(x)←∞1

foreach x ∈ ∂Ω do u(x)← g(x)2

Q ← Ω ∪ ∂Ω3

while Q �= ∅ do4

y ← ExtractMin(Q)5

foreach x0 ∈ (N (y) ∩ Q) \ ∂Ω do u(x0)← Update(x0, u)6

end7

Algorithm 1: Dynamic Programming Algorithm.

grid resolution, and hence it does not affect the algorithm’s asymptotic complexity.
The Update functions in this paper maintain this property. FMM is usually described
as being O(n log n), where n = |Ω| is the number of grid points in the discretized
domain. This complexity is derived by noting that each node is removed from Q once
by ExtractMin and, in the usual binary heap implementation of Q, extraction of the
minimum value node costs O(log |Q|) ≤ O(log n). Note that the heap need only sort
nodes with finite values. Because we restrict our modifications of Algorithm 1 to the
Update function, all of the results here can be used with other versions of FMM; for
example, the O(n) algorithm described in [30], which uses an untidy priority queue
for Q to reduce the cost of ExtractMin and hence the whole algorithm. However, for
implementation simplicity, we have used the standard binary heap version of Q in our
experiments.

1.3. Related work. The first Dijkstra-like method for a first-order semi-Lagran-
gian discretization of the isotropic Eikonal PDE on an orthogonal grid was developed
in [28]. The Dijkstra-like FMM was later independently developed in [23] for the
first-order upwind Eulerian finite-difference discretization of the same Eikonal PDE.
FMM was then extended to handle higher-order upwind discretizations on grids and
unstructured meshes in R

n and on manifolds [14, 25, 20]. In [24] it was shown that Di-
jkstra’s method on a uniform orthogonal grid produces the solution for the anisotropic
maximum norm Eikonal equation. By solving an isotropic problem on a manifold
and then projecting the solution into a subspace, FMM can solve certain anisotropic
problems [20]; for example, (1.2) with a constant elliptic A(x) = A can be solved by
running isotropic FMM on an appropriately tilted planar manifold and then project-
ing away one dimension. Some anisotropic etching problems have also been solved
using FMM [17].

The fact that correct operation of Dijkstra-like algorithms for approximating the
Eikonal PDE requires the causality property that u(x) can be written only in terms of
smaller values u at neighboring nodes was stated in [28], but a reader might incorrectly
infer from further comments in that paper that such algorithms would not work
for any unstructured grid or anisotropic problem. That FMM is applicable for any
consistent, orthogonal, causality satisfying, finite-difference discretization of a general
static convex HJ PDE is stated in [24]; however, it is now understood that this criterion
applies even more generally, since a Dijkstra-like method can be used to efficiently
solve on a graph any nonlinear system of equations for which u(x) is dependent only
on smaller values u at neighboring nodes. A sufficient criterion (see section 2.1) under
which FMM can be used for orthogonal, finite-difference discretizations of static HJ
PDEs—now commonly referred to as “Osher’s criterion”—is widely attributed to an
unpublished work by Osher and Helmsen, but the earliest published description seems
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to be [17]. While it is stronger than the causality conditions described earlier, it is
useful because it is stated as a condition on the analytic Hamiltonian instead of the
equations created by the discretization. In this paper we likewise seek conditions
under which FMM is applicable that are closer to the problem’s definition than the
algorithm’s implementation.

OUMs [21, 22] can solve general convex anisotropic problems on unstructured
grids with an asymptotic complexity only a constant factor (related to the degree
of anisotropy) worse than FMM. FMM fails for these general problems because the
neighboring simplex from which the characteristic approaches a node x0 may contain
another node x such that causality does not hold: u(x0) < u(x). OUM avoids this
difficulty by searching along the active front to find a set of neighboring nodes (which
may not be direct neighbors of x0) whose values have been accepted, and then con-
structing a virtual simplex with these nodes from which to update u(x0). Although
this search along the active front does not degrade the asymptotic complexity, it does
significantly increase the computational cost in practice. This effect can be partially
mitigated by using nontrivial data structures such as 2d-trees to speed up the search.

An alternative to these single-pass (or label-setting) algorithms are the sweep-
ing (or label-correcting) algorithms, which are often even simpler to implement than
FMM. Sweeping algorithms are also capable of handling anisotropic and even non-
convex problems. The simplest sweeping algorithm is to just iterate through the grid
updating each node in a Gauss–Seidel (GS) fashion (so a new value for a node is used
immediately in subsequent updates) until u converges. GS converges quickly if the
node update order is aligned with the characteristics of the solution, so better sweep-
ing algorithms [8, 6, 31, 13, 19] alternate among a collection of static node orderings
so that all possible characteristic directions will align with at least one ordering. It
is argued in [31] that these methods achieve O(n) asymptotic complexity (assuming
that the node orderings are already determined); however, unlike FMM and OUM,
the constant depends on the problem. For practical grid resolutions on problems
with curved characteristics, FMM does better despite the difference in asymptotic
complexity [12, 11].

There are also a number of sweeping algorithms which use dynamic node or-
derings; for example [18, 5]. These algorithms attempt to approximate the optimal
ordering generated by single-pass methods such as FMM without the overhead asso-
ciated with managing an accurate queue. These methods have been demonstrated to
be comparable to or better than single-pass methods for certain problems and grid
resolutions [18, 5]. However, in general, these methods may need to revisit nodes
multiple times.

Accurate robotic path planning is only required in cluttered environments where
optimal paths—and hence the characteristics of the HJ PDE—are not straight. No
alternative algorithm proposed approaches the simple implementation and guaranteed
speed of FMM for these types of problems. Consequently, we set out in this paper
to characterize another class of anisotropic HJ PDEs for which FMM will work and
also to explore their efficient implementation. It should be noted that the update
procedures discussed in this paper can be applied to any of the sweeping algorithms
without modification.

2. Class of Hamiltonians. FMM can be extended to handle a class of axis-
aligned anisotropic problems, defined by a restriction of the Hamiltonian H to that
satisfying Properties 1 to 4. We let q, q̃ ∈ R

d and make the following definitions.
Definition 2.1. Write q � q̃ if qj q̃j ≥ 0 and |qj | ≥ |q̃j |, for 1 ≤ j ≤ d.
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Definition 2.2. Write q � q̃ if (i) q �= 0 and (ii) qj q̃j ≥ 0 and |qj | > |q̃j | or
qj = q̃j = 0, for 1 ≤ j ≤ d.

The following properties are satisfied by H .
Property 1. H is continuous: H ∈ C(Ω× R

d).
Property 2. H is coercive: H(x, q)→∞ as ‖q‖ → ∞ for all x ∈ Ω.
Property 3. H is strictly compatible: H(x, 0) < 0 for all x ∈ Ω.
Property 4. H is strictly one-sided monotone: If q�q̃, then H(x, q) > H(x, q̃).
We note that Properties 1, 2, and 3 are similar to some properties on the Hamil-

tonian in [5]. In this paper, we typically deal only with the Update function. For this
reason, we usually consider a fixed x ∈ Ω and may write H(q) = H(x, q) wherever
no ambiguity results. When discussing properties of H , these are in reference to the
q parameter. The source of the axis-aligned description of the problem class is the
strict one-sided monotonicity property of H .

2.1. Connection to Osher’s criterion. Although there are earlier statements
of the conditions on node values under which a Dijkstra-like algorithm can or can-
not be used to solve the problem [28, 23], in this section we outline the connection
between the properties described above and Osher’s criterion [17] because the latter
directly provides a condition on the Hamiltonian rather than on the solution values.
In section 3.3, we make the connection between Properties 1 to 4 and the earlier
conditions.

Osher’s fast marching criterion is defined in [17, 27] as

qj
∂H(x, q)
∂qj

≥ 0

for 1 ≤ j ≤ d. The authors state there that as long as this criterion is satisfied,
a simple fast marching algorithm based on a one-sided upwind finite-difference dis-
cretization can be applied to solve the problem. However, we use Properties 1 to 4
instead of Osher’s criterion because Osher’s criterion requiresH to be differentiable so
that DqH(x, q) exists, but we are interested in potentially nondifferentiable H (e.g.,
see section 2.2). Note that strict one-sided monotonicity is applicable even when
DqH(x, q) does not exist for all x.

Propositions 2.3, 2.4, and 2.5 explain the relationship between strict one-sided
monotonicity of H (Property 4) and Osher’s criterion. Proposition 2.3 shows that
Property 4 implies one-sided monotonicity (Property 5). Then, Proposition 2.4 shows
that Property 5 is the same as Osher’s criterion as long as H is differentiable. Fi-
nally, Proposition 2.5 demonstrates that Property 5 with the addition of one-sided
homogeneity (Property 6) implies Property 4.

Property 5. H is one-sided monotone: If q � q̃, then H(x, q) ≥ H(x, q̃).
Proposition 2.3. Let H be continuous (Property 1). Then strict one-sided

monotonicity of H (Property 4) implies one-sided monotonicity of H (Property 5).
Proof. Let H be strictly one-sided monotone. Let q, q̃ ∈ R

d be such that q � q̃.
Let r ∈ {−1, 1}d be such that

rj =

{
+1, if qj ≥ 0,
−1, otherwise,

and let ε > 0. Note that q + εr � q̃ and thus we have H(q + εr) > H(q̃). By the
continuity of H , we have

lim
ε→0+

H(q + εr) ≥ H(q̃)
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and also

lim
ε→0+

H(q + εr) = H(q).

Therefore, H(q) ≥ H(q̃).
Proposition 2.4. Let H be continuous (Property 1), and let DqH(q) exist for

all q ∈ R
d. Then the following conditions on H are equivalent:

(a) qj
∂H(q)
∂qj

≥ 0 for all j and q ∈ R
d.

(b) H is one-sided monotone (Property 5).
Proof. We begin by proving that (a) implies (b). Let q, q̃ ∈ R

d be such that q� q̃.
If q = q̃, then H(q) = H(q̃). Otherwise, define the function q̄ : [0, 1]→ R

d such that
q̄(t) = q̃ + t(q − q̃) to represent the line segment between q̃ and q parameterized by
t ∈ [0, 1]. Because q � q̃ we have

(q − q̃)j q̄j(t) ≥ 0

for 1 ≤ j ≤ d and for t ∈ [0, 1]. Thus, by condition (a), we have

(2.1) (q − q̃)j ∂H(q̄j(t))
∂q̄j(t)

≥ 0

for 1 ≤ j ≤ d and for t ∈ [0, 1]. We know that

H(q) = H(q̃) +
∫ 1

0

dq̄(t)
dt
·DqH(q̄(t))dt

= H(q̃) +
∫ 1

0
(q − q̃) ·DqH(q̄(t))dt

= H(q̃) +
∫ 1

0

n∑
i=1

(q − q̃)j ∂H(q̄j(t))
∂q̄j(t)

dt

≥ H(q̃).

The first equality follows from integrating the change in H along the line segment
connecting q̃ and q. The second equality is because the derivative dq̄(t)

dt is simply
the vector q − q̃. The third equality breaks up the vector dot product into a sum
of scalar products. The inequality results from (2.1) and the fact that an integral of
a nonnegative function is nonnegative. Thus, for all q, q̃ such that q � q̃, including
q = q̃, we have H(q) ≥ H(q̃).

We now prove that (b) implies (a). Let q ∈ R
d and 1 ≤ j ≤ d. Define the function

s : R→ {−1,+1} such that

s(y) =

{
+1, if y ≥ 0,
−1, otherwise,

let ε > 0, and let ej be the jth vector in the standard basis. Note that q+ εs(qj)ej� q
and thus by (b) we have H(q + εs(qj)ej)−H(q) ≥ 0. Consequently, by the existence
of DqH(q) for all q ∈ R

d, we have

qj
∂H(q)
∂qj

= lim
ε→0+

qj
H(q + εs(qj)ej)−H(q)

εs(qj)
≥ 0.
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The following property is used to state Proposition 2.5.
Property 6. H is one-sided homogeneous: H(tq)−H(0) = t(H(q)−H(0)) for

all t ≥ 0 and q ∈ R
d.

Proposition 2.5. Let H satisfy Properties 1, 2, and 3, and let H be one-sided
monotone (Property 5) and one-sided homogeneous (Property 6). Then H is strictly
one-sided monotone (Property 4).

Proof. Let q � q̃. Then q � q̃ and H(q) ≥ H(q̃) by one-sided monotonicity.
First consider the case q̃ = 0. Assume H(q) = H(q̃) = H(0). By the one-sided

homogeneity of H ,

lim
t→∞[H(tq)−H(0)] = lim

t→∞[t(H(q) −H(0))] = 0.

But by the coercivity of H ,

lim
t→∞[H(tq)−H(0)] =∞,

since limt→∞ ‖tq‖ = ∞ and by compatability H(0) < 0. Thus, we have a contradic-
tion, and it must be that H(q) > H(q̃).

Second, consider the case where q̃ �= 0. Let J = {j | |qj | > |q̃j |}. Note that by
Definition 2.2 since q̃ �= 0, we have J �= ∅ and there exist j ∈ J such that q̃j �= 0.
Define a scalar multiple of q:

q̌ = tq =
(

max
j∈J

|q̃j |
|qj |
)
q.

Since |qj | > |q̃j |, for all j ∈ J , we have 0 < t < 1. Furthermore, for j ∈ J ,

|q̌j | =
(

max
j∈J

|q̃j |
|qj |
)
|qj | ≥ |q̃j |,

while for j /∈ J ,

q̌j = tqj = 0 = q̃j .

Consequently, |q̌j | ≥ |q̃j | for 1 ≤ j ≤ d. Also, since t > 0, we have q̌j q̃j = tqj q̃j ≥ 0
for 1 ≤ j ≤ d. This implies, by one-sided monotonicity of H , that H(q̌) ≥ H(q̃).
Moreover, by one-sided homogeneity of H , H(q̌)−H(0) = H(tq)−H(0) = t(H(q)−
H(0)). It follows that H(q)−H(0) = (H(q̌)−H(0))/t > H(q̌)−H(0), since 0 < t < 1
and H(q̌) ≥ H(0) by one-sided monotonicity. Therefore, H(q) > H(q̌) ≥ H(q̃).

We impose strict one-sided monotonicity on H because it guarantees a unique
solution to a first-order upwind finite-difference discretization of (1.1a), as shown in
section 3.1. Simply imposing one-sided monotonicity on H or Osher’s condition on
differentiable H is not sufficient for a unique solution. However, Proposition 2.5 states
that when H satisfies one-sided homogeneity in addition to one-sided monotonicity,
then it also satisfies strict one-sided monotonicity, and there is a unique solution to the
discretization. Moreover, by Propositions 2.4 and 2.5, when differentiable H satisfies
one-sided homogeneity in addition to Osher’s criterion, thenH also satisfies strict one-
sided monotonicity, and there is a unique solution to the discretization. Note that
there exist conditions other than one-sided homogeneity, such as strict convexity, that
in combination with Osher’s criterion, result in strict one-sided monotonicity of H .
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(a) p = 1. (b) p = 2. (c) p = ∞.

Fig. 2.1. Contour plots of ‖q‖p.

2.2. Example H functions. A Hamiltonian H that satisfies Properties 1 to 4
encompasses a fairly broad range of anisotropic problems. We consider examples of
H that satisfy Properties 1 to 4. In particular, we look at the case

(2.2) H(x, q) = G(x, q) − c(x),

where G is a p-norm or some variant and c is a positive cost. We must ensure that G
is strictly one-sided monotone, which is not true of all norms.

The p-norm is a useful category of strictly one-sided monotone norms. Let a
p-norm, ‖ · ‖p, be defined by

‖q‖p =

⎛
⎝ d∑
j=1

|qj |p
⎞
⎠

1/p

,

where p ≥ 1. Commonly used p-norms, illustrated in Figure 2.1, are the Manhattan
norm (p = 1), the Euclidean norm (p = 2), and the maximum norm (p = ∞). The
following proposition is proved in [2].

Proposition 2.6. ‖ · ‖p is strictly one-sided monotone.
Define a linearly-transformed p-norm ‖ · ‖B,p to be

‖q‖B,p = ‖Bq‖p,

where p ≥ 1 and B is a nonsingular d×d matrix. Note that B must be nonsingular so
that ‖ · ‖B,p satisfies the properties of a norm such as definiteness and homogeneity.
Such a norm is not strictly one-sided monotone in general. Figure 2.2(a) shows a
simple example where a vector is rotated by −π/4 and scaled by 3 in the q2-axis
before the Euclidean norm is taken; i.e.,

(2.3) B =
[
1 0
0 3

] [
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

]
=
[

1/
√

2 1/
√

2
−3/
√

2 3/
√

2

]
.

Let q = (2, 2)T and q̃ = (
√

2, 0)T . We have q � q̃, but

‖Bq‖2 =
∥∥∥∥(2√2, 0

)T∥∥∥∥
2

=
√

8 <
√

10 = ‖(1,−3)T‖2 = ‖Bq̃‖2.
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(a) (b)

Fig. 2.2. Contour plots of ‖Bq‖p. (a) is not strictly one-sided monotone: p = 2 and B is
defined by (2.3). (b) is strictly one-sided monotone: p = 1 and B scales by 2 in the q1-axis.

Consequently, this particular linearly transformed p-norm is not strictly one-sided
monotone. However, in this case an inverse transformation B−1 of the grid coordi-
nates will result in a strictly one-sided monotone p-norm, while maintaining the grid’s
orthogonality. More generally, we conjecture that if the Hamiltonian is of the form
H(q) = H̃(Bq), where B is a rotation (which may be followed by scaling) and H̃
satifies Properties 1 to 4, a transformation of the grid coordinates by B−1 will result
in a transformed H that also satifies Properties 1 to 4, while maintaining the grid’s
orthogonality. More complex coordinate modifications might be possible, but we have
not yet adequately investigated conditions or procedures.

A scaled p-norm (Figure 2.2(b)) is a special case of a linearly transformed p-
norm. Such a norm scales the components of its argument before applying a p-norm
by restricting B to be a nonsingular diagonal matrix. It is simple to show that a
scaled p-norm is strictly one-sided monotone, considering Proposition 2.6.

A mixed p-norm is a recursive composition of p-norms, and it is strictly one-sided
monotone. The following is an example (Figure 2.3(a)) of a mixed p-norm that takes
the Euclidean norm of the first two components and then takes the Manhattan norm
of the result and the last component:

‖q‖ = ‖ (‖ (q1, q2) ‖2, q3) ‖1
=
√

(q1)2 + (q2)2 + |q3|,
(2.4)

where q = (q1, q2, q3). This particular norm was used as a G function in [3] for a
simple two-robot coordinated optimal control problem.

Finally, the one-sidedness of Property 4 allows G to be asymmetric, which is not
permitted for a norm. An example of such an asymmetric norm-like function is shown
in Figure 2.3(b) and is given by

(2.5) G(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖Baq‖∞, if q1 ≤ 0 and q2 ≤ 0,
‖Bbq‖1, if q1 ≤ 0 and q2 > 0,
‖Bcq‖2, if q1 > 0 and q2 ≤ 0,
‖Bdq‖2, if q1 > 0 and q2 > 0,
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(a) (b)

Fig. 2.3. Contour plots of G(q). (a) mixed p-norm: G is defined by (2.4). (b) asymmetric
norm-like function: G is defined by (2.5).

where

Ba =
[
1/2 0
0 1

]
Bb =

[
1/2 0
0 1/2

]
Bc =

[
1 0
0 1

]
Bd =

[
1 0
0 1/2

]
.

We solve the anisotropic problem characterized by (2.5) as well as an anelliptic
wave propagation problem and a multirobot optimal path planning problem in sec-
tion 4. Other examples of G functions which satisfy strict one-sided monotonicity are
some polygonal norms such as axis aligned hexagonal or octagonal norms; however,
we do not further investigate these options here.

3. FMM and the discretized problem. We define a discretized analogue of
the Dirichlet problem (1.1). By describing the Update function in Algorithm 1, we
also formalize the FMM algorithm. Finally, we examine important properties of the
Update function.

We recall that the nodes in Ω lie on an axis-aligned orthogonal grid. Let x0 ∈ Ω.
The neighborhood of x0 is shown in Figure 3.1. Let x±j be the neighbors of x0 in the
±ej directions, ej being the jth vector in the standard basis. The set of neighbors is

N (x0) =
{
x±1 , x

±
2 , . . . , x

±
d

}
,

and the neighborhood vector is

N(x0) =
(
x0, x

±
1 , x

±
2 , . . . , x

±
d

)
.

Let h±j = ±‖x0− x±j ‖ be signed distances to the neighbors in the ±ej directions. Let

S = {(s1, s2, . . . , sd) | sj ∈ {−1,+1}, 1 ≤ j ≤ d}

such that s ∈ S represents one of the 2d neighboring simplices of x0. Note that we
abuse notation by using sj ∈ {−1,+1} as a superscript indexing x±j or h±j .

Let B(Ω) be the set of bounded functions on domain Ω. We define the numerical
Hamiltonian H : Ω1+2d ×B(Ω)× R→ R as follows:

(3.1) H(N,φ, μ) = max
s∈S

[H(x0, D
s(N,φ, μ))],
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Fig. 3.1. Neighborhood of x0 with d = 2.

where H is as defined in section 2 and

Ds(N,φ, μ) = (Ds
1(N,φ, μ), Ds

2(N,φ, μ), . . . , Ds
d(N,φ, μ))

is a first-order, upwind, finite-difference gradient approximation from the simplex
represented by s; that is,

(3.2) Ds
j(N,φ, μ) =

max(0, μ− φ(xsj

j ))

−hsj

j

for 1 ≤ j ≤ d. Although H is defined on domain Ω1+2d × B(Ω) × R, for FMM it
will only be used on domain Ω1+2d ×B(Ω)× R. The broader definition of domain is
important for consistency [4]. The restriction of Ω1+2d to Ω1+2d poses no problems to
the definition of H . Furthermore, to evaluate H, φ need only be defined on N , which
is true of any function in B(Ω).

The discretized Dirichlet problem is to find a function u : (Ω ∪ ∂Ω) → R such
that

H(N(x), u, u(x)) = 0, x ∈ Ω,(3.3a)
u(x) = g(x), x ∈ ∂Ω.(3.3b)

Definition 3.1. Let FMM be Algorithm 1 with the Update function defined as
follows. A call to Update(x0, u) returns the solution μ = μ̃ to

(3.4) H(N(x0), u, μ) = 0.

In this way it determines a node’s value u(x0)← μ̃ given the values of its neigh-
bors, u±j = u(x±j ). When we are varying only μ, it will be convenient to write
H(μ) = H(N,φ, μ) and Ds(μ) = Ds(N,φ, μ). For the lemmas and theorems stated
below, we assume H satisfies Properties 1 to 4.

Proposition 3.2. Let u : (Ω ∪ ∂Ω)→ R be the grid function after FMM termi-
nates. Then u is the unique solution of (3.3).

This proposition states that the grid function u that results from running FMM
solves the discretized problem (3.3). We use a method similar to those for isotropic
FMM in [29, 23] to prove Proposition 3.2 in [2]. The causality of the Update function
is essential so that FMM can be used to solve (3.3).
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A method for proving the convergence of u to the solution of (1.1) as the grid spac-
ing goes to zero is presented in [4]. It is shown there that the consistency, monotonic-
ity, and stability of the numerical scheme are sufficient for convergence. We closely
follow the technique described in [4] to prove convergence in [2]. Also, uniqueness
and monotonicity of the solution to (3.4) are useful for using numerical root finders
to implement Update. We include proofs of uniqueness, monotonicity, and causality
of the Update function below. For more details regarding convergence, including the
proofs of consistency and stability, see [2].

3.1. Unique update. Let the minimum value of all neighbors of x0 be

(3.5) ǔ = min
x∈N (x0)

(u(x)) .

We show there is a unique solution μ = μ̃ to (3.4) such that μ̃ > ǔ. First, we prove
two useful lemmas.

Lemma 3.3. H(μ) is strictly increasing on μ ≥ ǔ.
Proof. Let μa > μb ≥ ǔ. Let s ∈ S and 1 ≤ j ≤ d. If μa > u

sj

j , then
Ds
j(μa)D

s
j(μb) ≥ 0 and |Ds

j(μa)| > |Ds
j(μb)|. On the other hand, if μa ≤ u

sj

j , then
Ds
j(μa) = Ds

j(μb) = 0. Also, there exists at least one s ∈ S and 1 ≤ j ≤ d such
that Ds

j(μa) �= 0, since μa > ǔ. For such s, H(Ds(μa)) > H(Ds(μb)), by strict one-
sided monotonicity (Property 4). For all other s, H(Ds(μa)) = H(Ds(μb)) = H(0).
Therefore, by (3.1) H(μa) > H(μb), so H(μ) is strictly increasing on μ ≥ ǔ.

Lemma 3.4. The numerical Hamiltonian H(μ) satisfies the following:
(a) H(μ) = H(0) < 0 for μ ≤ ǔ.
(b) H(μ)→∞ as μ→∞.
(c) H(μ) is nondecreasing on all μ.
Proof. If μ ≤ ǔ, then by (3.2) and (3.5), we have Ds

j(μ) = 0 for all s ∈ S,
1 ≤ j ≤ d. By the strict compatibility of H , H(Ds(vj)) = H(0) < 0 for all s. By
(3.1), we have H(μ) = H(0) < 0, for μ ≤ ǔ, proving (a).

Let s ∈ S and 1 ≤ j ≤ d. As μ → ∞, we have Ds
j(μ) → ∞ and ‖Ds(μ)‖ → ∞

for all s ∈ S, 1 ≤ j ≤ d. By the coercivity of H , as μ→∞, we have H(Ds(μ))→∞
for all s ∈ S. By (3.1), we have H(μ)→∞ as μ→∞, proving (b).

Because H(μ) is constant on μ ≤ ǔ and by Lemma 3.3 increasing on μ ≥ ǔ, H(μ)
is nondecreasing on all μ, proving (c).

Theorem 3.5. There exists a unique solution μ = μ̃ to H(μ) = 0 such that
μ̃ > ǔ.

Proof. Each Ds
j(μ) is continuous on μ. Furthermore, by the continuity of H ,

H(Ds(μ)) in continuous on μ for all s. Since max is continuous, H(μ) is continuous.
By Lemma 3.4(a/b), H(μ) < 0 for μ ≤ ǔ and H(μ) → ∞ as μ → ∞. Therefore, by
the intermediate value theorem, there exists a solution μ = μ̃ to H(μ) = 0 such that
ǔ < μ̃ < ∞. Moreover, since H is strictly increasing on μ ≥ ǔ by Lemma 3.3, the
solution is unique.

Remark 1. We note that strict one-sided monotonicity (Property 4) of H is
used to prove Lemma 3.3, and Lemma 3.3 is then used to show that the solution
to H(μ) = 0 is unique. We might consider whether or not one-sided monotonicity
(Property 5) of H is sufficient for a unique solution. However, Property 5 would not
be sufficient to prove Lemma 3.3, and we would find that H(μ) is only nondecreasing
on μ ≥ ǔ. A solution to H(μ) = 0 would still be guaranteed but not unique in this
case. Analogously, for differentiable H , Osher’s criterion on H implies a solution that
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may not be unique unless H satisfies some additional property, such as one-sided
homogeneity (Property 6) or convexity.

3.2. Monotonicity. We show that H and the Update function are monotone
in the neighbor’s values. Monotonicity of H requires that if none of the neighbor’s
values decreases, the numerical Hamiltonian H should not increase. Additionally,
monotonicity of the Update function requires that if none of the neighbor’s values
decreases, the solution to (3.4) should not decrease. Monotonicity is useful both for
showing that FMM finds a unique solution and for proving convergence. We note
that monotonicity does not require strict one-sided monotonicity of H , but rather
one-sided monotonicity of H is sufficient.

Theorem 3.6. Let v and u be grid functions. Let v±j ≥ u±j for 1 ≤ j ≤ d. Then
for μ ∈ R, we have H(N, v, μ) ≤ H(N, u, μ). Furthermore, if μ = μv is the unique
solution to H(N, v, μ) = 0 and μ = μu is the unique solution to H(N, u, μ) = 0, then
μv ≥ μu.

Proof. Let μ ∈ R. We have Ds(N, u, μ) � Ds(N, v, μ) for all s ∈ S. Also, by
Proposition 2.3, H satisfies one-sided monotonicity (Property 5). Thus,

H(Ds(N, u, μ)) ≥ H(Ds(N, v, μ)) = 0

for all s ∈ S. Consequently, H(N, u, μ) ≥ H(N, v, μ), proving the first claim.
To prove the second claim, we let μv and μu be as defined above. We note that

H(N, u, μu) = 0 ≥ H(N, v, μu). By Lemma 3.4(c), H(N, v, μ) is nondecreasing on all
μ, so in order that H(N, v, μv) = 0, it must be that μv ≥ μu.

3.3. Causality. We note that (3.3) defines a very large system of nonlinear
equations, one equation for each node x ∈ Ω. FMM can be used to solve this system
very efficiently, if the solution μ = μ̃ to (3.4) is dependent only on neighbors with
smaller values. This property represents a causal relationship between node values.
There is an information flow from nodes with smaller values to those with larger values.
The causal relationship is meant to mimic that of the PDE (1.1). The solution u of
(1.1) is completely defined at x using only values of u from states that are backwards
along the characteristic line that passes through x.

FMM exploits the causal property of H by computing u(x) in increasing order
in a single pass through the nodes. This causal property has been discussed as a
requirement for Dijkstra-like single-pass methods in several works [28, 24, 26, 17, 22].
The following theorem states that H and the Update function are causal. The Update
function is considered causal if any change to the value of a neighboring node, such that
both the new and old values are no smaller than the solution μ = μ̃ to H(N, u, μ) = 0,
has no effect on the solution.

Theorem 3.7. Let v and u be grid functions. Let

Ñ (x0) = {x ∈ N (x0) | v(x) �= u(x)}.
Let

w̌ =

{
minx∈Ñ (x0)

min(v(x), u(x)), if Ñ (x0) �= ∅,
+∞, otherwise.

Then H(N, v, μ) = H(N, u, μ) for μ ≤ w̌.
Furthermore, let μ = μ̃u be the unique solution to H(N, u, μ) = 0, and let μ = μ̃v

be the unique solution to H(N, v, μ) = 0. If μ̃u ≤ w̌ or μ̃v ≤ w̌, then μ̃u = μ̃v.
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Table 4.1

Errors of approximate solution computed by FMM compared to exact solution of (1.1), where
H is as in (2.2) and G(Du(x)) = ‖Du(x)‖p. The variables d, m, and n are the dimension, the
number of nodes in each dimension, and the total number of nodes, respectively. Other variables
are the spacing h between grid nodes, the L∞-error e∞, the L∞ convergence rate r∞, the L1-error
e1, and the L1 convergence rate r1.

p = 1 p = 2
d m n h e∞ r∞ e1 r1 e∞ r∞ e1 r1
2 11 1.2e2 2.0e-1 2.2e-1 6.3e-2 1.2e-1 6.2e-2

21 4.4e2 1.0e-1 1.7e-1 .41 3.7e-2 .77 7.8e-2 .56 4.3e-2 .53
41 1.7e3 5.0e-2 1.2e-1 .46 2.0e-2 .85 5.0e-2 .65 2.8e-2 .63
81 6.6e3 2.5e-2 8.8e-2 .48 1.1e-2 .90 3.1e-2 .70 1.7e-2 .69
161 2.6e4 1.3e-2 6.3e-2 .49 5.7e-3 .94 1.8e-2 .75 1.0e-2 .73
321 1.0e5 6.3e-3 4.4e-2 .49 2.9e-3 .96 1.1e-2 .78 6.1e-3 .77
641 4.1e5 3.1e-3 3.1e-2 .50 1.5e-3 .97 6.1e-3 .81 3.5e-3 .79
1281 1.6e6 1.6e-3 2.2e-2 .50 7.6e-4 .98 3.4e-3 .83 2.0e-3 .82

3 11 1.3e3 2.0e-1 3.5e-1 1.2e-1 2.1e-1 1.2e-1
21 9.3e3 1.0e-1 2.6e-1 .43 6.9e-2 .78 1.4e-1 .58 8.4e-2 .57
41 6.9e4 5.0e-2 1.9e-1 .47 3.9e-2 .85 8.7e-2 .66 5.4e-2 .65
81 5.3e5 2.5e-2 1.3e-1 .49 2.1e-2 .89 5.3e-2 .72 3.3e-2 .70
161 4.2e6 1.3e-2 9.5e-2 .50 1.1e-2 .92 3.1e-2 .76 2.0e-2 .74

4 11 1.5e4 2.0e-1 4.4e-1 1.7e-1 2.9e-1 1.8e-1
21 1.9e5 1.0e-1 3.2e-1 .45 9.8e-2 .78 1.9e-1 .60 1.2e-1 .58
41 2.8e6 5.0e-2 2.3e-1 .48 5.5e-2 .83 1.2e-1 .67 7.7e-2 .66

Proof. Let μ ≤ w̌. By (3.2) and the definition of w̌, we have Ds
j(N, v, μ) =

Ds
j (N, u, μ) for all s ∈ S, 1 ≤ j ≤ d. This implies that H(N, v, μ) = H(N, u, μ),

proving the first claim.
For the second claim, let μ̃u and μ̃v be as defined above. Let μ̃u ≤ w̌. Then

H(N, v, μ̃u) = H(N, u, μ̃u) = 0, so μ = μ̃u is a solution to H(N, v, μ) = 0. By
Theorem 3.5, this solution is unique. By a symmetric argument, if μ̃v ≤ w̌, then
μ = μ̃v is the unique solution to H(N, u, μ) = 0.

4. Experiments. We conduct experiments to show numerical evidence that the
result of FMM converges to the viscosity solution of (1.1), to demonstrate types of
anisotropic problems that can be solved, and to determine the effectivenesss of the
node and simplex elimination techniques described in Appendix A. Throughout this
section, the boundary conditions are g(x) = 0 for x ∈ ∂Ω. For all experiments below,
excluding that in section 4.4, we discretize [−1, 1]d such that there are m uniformly
spaced nodes in each dimension, and we ensure that there is a node at the origin O.

4.1. Convergence study. We examine the difference between the solution to
(3.3) and the solution to (1.1) for two simple Dirichlet problems. In particular, we
look at how the absolute error changes as the grid spacing decreases toward zero. For
the problems considered, Ω = [−1, 1]d \ {O}. We take H to have the form in (2.2),
where G(Du(x)) = ‖Du(x)‖p and p = 1 or p = 2. The boundary conditions are
g(O) = 0. We use the analytic node value update equations provided in Appendix B.

Since there is a node at O, any error introduced is from the discretization of H
and not from the discretization of the boundary condition. The approximation errors
are summarized in Table 4.1.

4.2. Asymmetric anisotropic problem. For this anisotropic problem, H is
as in (2.2), where G is defined by (2.5) (see Figure 2.3(b)). The domain is given by
Ω = [−1, 1]2 \ {O} and ∂Ω = {O}. The cost is c(x) = 1, except in four rectangular
regions shown in black in Figure 4.1, where c(x) � 1. In the Update function, we
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Fig. 4.1. Contours of u computed for the anisotropic problem where Hamiltonian H is as in
(2.2) and G is as in (2.5). The black circle at O = (0, 0) indicates ∂Ω, and in the black rectangles
c(x) � 1. In these regions, u has purposefully not been computed.

analytically computed the solution to (3.4) using the equations for updating from
a single simplex given in Appendix B. The number of nodes in each dimension is
m = 1281. We plot the contours of u computed by FMM in Figure 4.1. Note the
asymmetric contours where the characteristics bend through gaps. The relationship
between the shape of the contours of G in Figure 2.3(b) and those of u is explained
by the duality articulated in Proposition 2.7 of [1].

4.3. Anelliptic elastic wave propagation. As is done in [10], we consider
elastic wave propagation in VTI media, which are transversely isotropic media with
a vertical axis of symmetry. In particular, we wish to find the arrival times of quasi-
longitudinal (quasi-P or qP) waves propagating in two dimensions from a point source
at the origin O. We solve the anisotropic HJ PDE given by defining the Hamiltonian

H(q)

=
1
2
(
q21 + q22

){
(a+ l)q21 + (c+ l)q22 +

√
[(a− l)q21 − (c− l)q22 ]2 + 4(f + l)2q21q

2
2

}
− 1.

(4.1)

This Hamiltonian is derived from the anisotropic Eikonal equation and the exact qP-
wave phase velocity equation in [10]. The parameters a = 14.47, l = 2.28, c = 9.57,
and f = 4.51 are taken from [10].

The Hamiltonian H and the approximate solution u resulting from FMM are
shown in Figure 4.2. We have not shown analytically that (4.1) satisfies strict one-
sided monotonicity for some range of parameters. However, the level sets of H as
shown in Figure 4.2(a) indicate that H is strictly one-sided monotone for the given
parameters. Furthermore, the level sets of H indicate that H is convex and a compu-
tation of the derivative of H using the symbolic mathematics program Maple shows
that H satisfies Osher’s criterion for the given parameters. As a result, the analysis
in this paper can be applied to the problem, and FMM can be used to compute the
solution.

We used a grid of size 201 × 201. In the Update function, we used the interval
method to solve (3.4) numerically. We computed the maximum relative error of u
to be 0.0076 when compared to the travel-time computed with the group-velocity
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(a) (b)

Fig. 4.2. Using FMM for computation of travel times of qP-waves in two-dimensional VTI
media. (a) Contours of Hamiltonian H as given in (4.1). (b) Contours of approximate solution u
computed by FMM.

approximation for qP-waves presented in [10]. In turn, the group-velocity approxima-
tion is claimed to have a maximum error of about 0.003 when compared to the true
solution.

4.4. Two robots. We consider the two-robot coordinated navigation problem
illustrated in Figure 4.3. The circular robots are free to move independently in a
two-dimensional plane but may not collide with each other or the obstacles (black
region). Each may travel at a maximum speed of 1/c(x) in any direction. The robots
attempt to achieve a joint goal state. This goal should be achieved in minimal time
from any initial state in the domain without incurring collisions.

Let the state of the dark-colored robot be (x1, x2) ∈ R
2 and the state of the

light-colored robot be (x3, x4) ∈ R
2 so that the combined state of the two robots is

(x1, x2, x3, x4) ∈ R
4. We define the control-theoretic action set

A(x) = {a | F (a) = ‖(‖(a1, a2)‖2, ‖(a3, a4)‖2)‖∞ ≤ 1/c(x)}.
Proposition 2.7 of [1] states that we can use the dual of F to obtain

(4.2) G(x,Du(x)) = ‖(‖(∂1u(x), ∂2u(x))‖2 , ‖(∂3u(x), ∂4u(x))‖2)‖1 ,
where Du(x) = (∂1u(x), ∂2u(x), ∂3u(x), ∂4u(x)). Where x is a collision state, we set
c(x)� 1. For all other states x, c(x) = 1.

We can compute u using FMM since G is a mixed p-norm, and thus H satisfies
Properties 1 to 4 (see section 2.2). The domain Ω is discretized using a uniform
orthogonal grid of (81× 21)2 nodes. The discretization of (4.2) is quartic in u0, so it
is difficult to solve analytically. However, Theorem 3.5 tells us that we can determine
the solution to (3.4) uniquely. As a result, numerical root-finders can easily be used
to compute this solution in the Update function. Once an approximation of u is
generated by FMM, a gradient descent algorithm is used to find optimal paths [3, 2].
The optimal trajectories from a single starting condition are shown in Figure 4.3.

4.5. Efficient implementation. Appendix A describes three different methods
for improving the efficiency of the Update function: symmetry, causality, and solution
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(a) (b) (c) (d) (e) (f)

Fig. 4.3. Two-robot coordinated optimal navigation problem. The joint goal is for the dark-
colored robot to reach the center of the upper bulb and the light-colored robot to reach the center of
the lower bulb. Black indicates an obstacle region. The sequence shows the robots achieving their
joint goal without collision from a particular initial state. The solution of (1.1), where H is given
by (2.2) and G is given by (4.2) allows quick determination of the optimal collision-free trajectories
for both robots from any initial condition [3].

elimination. Some of these methods are related to those found in [15, 31]. However,
experimental results indicate that the efficiency gains from using these methods are
not substantial for an already efficient implementation of FMM. In such an imple-
mentation the Update function computes only updates from those nodes that have
already been extracted from Q using the ExtractMin function. Also, only simplices
that include the most-recently extracted node y are considered in Update. Our ex-
periments show that in many calls to Update, only a single simplex fits these criteria,
and the fraction of updates for which only a single simplex fits the criteria grows
as the grid is refined. For this reason, further techniques for eliminating nodes and
simplices, such as those described in Appendix A, are largely ineffective.

However, for coarse grid resolutions and problems where characteristics intersect
often, multiple simplices are considered by Update frequently enough that symmetry
elimination, which is very cheap, significantly improves efficiency. In some cases, a
node value update can be ignored altogether if the most-recently extracted node is
eliminated by symmetry.

Despite the fact that the node and simplex elimination techniques described in
Appendix A are useful only in limited circumstances, we include them for theoreti-
cal interest and because they may be applied in other algorithms, such as sweeping
methods, that also require the Update function.

5. Conclusion. We have described a new class of static HJ PDEs with axis-
aligned but potentially asymmetric anisotropy. Assuming Properties 1 to 4 of the
Hamiltonian, we showed that uniqueness, monotonicity, and causality hold for a stan-
dard finite-difference discretization of these PDEs on an orthogonal grid, and so the
FMM can be used to approximate their solution. In the appendix, we also demon-
strate several methods for reducing the number of neighboring simplices which must
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be considered when computing node updates, including novel methods which work
when the PDE and/or grid are asymmetric. In future work, these results might be
generalized to unstructured grids.

Appendix A. Efficient Implementation of UpdateUpdateUpdate. We discuss ways to
improve the efficiency of the Update function, which calculates the unique solution
μ = μ̃ to (3.4). We note that these improvements may be used for any type of solution
method, including FMM and sweeping methods, as long as (3.4) is being solved. Some
efficiency improvements are related to similar ideas specific to the isotropic Eikonal
equation found in [15, 31].

Efficiency can be gained by determining which neighbors x ∈ N (x0) have no
influence on the solution and eliminating them from consideration. Let

σ = (σ1, σ2, . . . , σd),

where σj ⊆ {±1}, indicate which x ∈ N are considered in determining the solution
μ = μ̃. Let Nσ be the reduced set of neighbor nodes defined by σ. Let Sσ be the set
of neighboring simplices that can be formed by the neighbors in Nσ. For example, in
d = 4 dimensions, take

σ = (∅, {±1}, {−1}, {±1}).
We have

Nσ =
{
x±2 , x

−
3 , x

±
4

}
and

Sσ = {(0,−1,−1,−1), (0,+1,−1,−1), (0,−1,−1,+1), (0,+1,−1,+1)}.
Let Hσ(N,φ, μ) = maxs∈Sσ [H(x0, D

s(N,φ, μ))] be the reduced-neighbor numer-
ical Hamiltonian, a modification of (3.1) that considers only the neighbors and sim-
plices indicated by σ. For s ∈ Sσ and 1 ≤ j ≤ d, sj = 0 indicates that xsj

j is not
considered in computing the gradient approximation Dsu(μ); that is, Ds

j(N,φ, μ) = 0
if sj = 0, and Ds

j satisfies (3.2) otherwise.
To implement Update, we first reduce the set of considered neighbors and then

solve

(A.1) Hσ(N(x0), u, μ) = 0

for μ = μ̃ to determine a node’s value u(x0). As in section 3, we may write Hσ(μ) =
Hσ(N,φ, μ) and Ds(μ) = Ds(N,φ, μ), where no ambiguity results. Note that some
properties of (A.1) are retained from (3.4) as long as at least one considered neighbor
remains in σ. Let

ǔσ = min
x∈Nσ

(u(x)) .

Proposition A.1 (analogue of Lemma 3.3). Hσ(μ) is strictly increasing on
μ ≥ ǔσ.

Proposition A.2 (analogue of Lemma 3.4). The numerical Hamiltonian Hσ(μ)
satisfies the following:

(a) Hσ(μ) = H(0) < 0 for μ ≤ ǔσ.
(b) Hσ(μ)→∞ as μ→∞.
(c) Hσ(μ) is nondecreasing on all μ.
Proposition A.3 (analogue of Theorem 3.5). There exists a unique solution

μ = μ̃ to Hσ(μ) = 0 such that μ̃ > ǔσ.
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A.1. Symmetry. We show how the considered neighbors σ can be reduced by
keeping only the neighbor with the smaller value of a pair of opposite neighbors in
the jth dimension when (3.1) is symmetric in that dimension. This procedure is a
generalization of those in [15, 31] to all axis-aligned anisotropic problems on unequally
spaced grids. First, we introduce useful notation.

Let q ∈ R
d. Let T i(q) be a reflection of q in the hyperplane orthogonal to the ith

axis, such that

T ij (q) =

{
−qj, if j = i,
qj , otherwise,

for 1 ≤ j ≤ d. Let Ψj indicate symmetry of (3.1) in the jth dimension, as follows:

Ψj =

{
1, if |h−j | = |h+

j | and for all q ∈ R
d, H(q) = H(T j(q)),

0, otherwise.

In other words, Ψj = 1 if and only if the grid spacing and H are symmetric in the
jth dimension. The following theorem is proved in [2].

Theorem A.4. Let σ be such that σj ⊆ {±1} for 1 ≤ j ≤ d. Let σ̃ be defined by

σ̃j =

⎧⎪⎨
⎪⎩
{−1}, if σj = {±1}, Ψj = 1, and u−j ≤ u+

j ,
{+1}, if σj = {±1}, Ψj = 1, and u−j > u+

j ,
σj , otherwise,

for 1 ≤ j ≤ d. Let μ = μσ be the unique solution to Hσ(μ) = 0. Let μ = μσ̃ be the
unique solution to H σ̃(μ) = 0. Then μσ̃ = μσ.

An implementation of the Update function can use the result obtained in Theo-
rem A.4 to eliminate x ∈ N from consideration in solving (A.1) by exploiting sym-
metries in (3.1). We call this symmetry elimination.

Remark 2. Theorem A.4 can be generalized to an asymmetric version. We let
1 ≤ j ≤ d, and let sj, s̃j ∈ {±1} such that sj �= s̃j . Node xsj

j ∈ N may be eliminated
from consideration if

• |hs̃j

j | ≤ |hsj

j |;
• for all q ∈ R

d such that sjqj ≥ 0, H(q) ≤ H(T j(q));
• and us̃j

j ≤ usj

j .

A.2. Causality. The causality of (3.1) can also be exploited to eliminate x ∈ Nσ
from consideration. This observation was used in two distinct but equivalent methods
for analytically computing the Update from a single simplex to solve an isotropic
Eikonal equation [15, 31]. We show with the following theorem that the condition
Hσ(u(x)) ≥ 0 can be checked to determine that a node x is noncausal, i.e., that the
solution μ = μσ to (A.1) is not dependent on the node x and its value u(x).

Theorem A.5. Let σ be such that σj ⊆ {±1} for 1 ≤ j ≤ d. Pick any s ∈ Sσ
and i ∈ {1, 2, . . . , d} such that si �= 0 and Hσ(u

si

i ) ≥ 0. Let σ̃ be defined by

σ̃j =

{
σj \ {sj}, if j = i,
σj , otherwise.

Let μ = μσ be the unique solution to Hσ(μ) = 0. Let μ = μσ̃ be the unique solution
to H σ̃(μ) = 0. Then μσ̃ = μσ.
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Proof. Let σ, s, i, σ̃, μσ, and μσ̃ be as defined above. By Proposition A.2(c),
Hσ(μ) is nondecreasing. SinceHσ(u

si

i ) ≥ 0 = Hσ(μσ), it must be that μσ ≤ usi

i . Note
that H σ̃(μ) is identical to Hσ(μ) except for Ds

i u(μ), which is set to zero in H σ̃(μ).
But for μ ≤ usi

i , we also have Ds
iu(μ) = 0 in Hσ(μ). Consequently, H σ̃(μ) = Hσ(μ)

for μ ≤ usi

i . In particular, H σ̃(μσ) = Hσ(μσ) = 0. Therefore, μσ̃ = μσ.
Theorem A.5 states that the unique solution μ to (A.1) does not change when

a noncausal node is removed from σ. This node removal can be repeated until all
noncausal nodes have been removed, and the solution μ = μσ will remain unchanged.
We call this causality elimination. A binary or linear search through sorted neighbors’
values can be used to determine the largest node value that might be causal. Note
that causality elimination does not require symmetry in (3.1). However, the test
for noncausality requires an evaluation of Hσ, which is more expensive than the
comparison of two neighbors’ values used for symmetry elimination.

A.3. Solution. After eliminating from consideration nodes in σ using symmetry
and causality elimination, we can determine the solution μ = μ̃ to (A.1). Let

(A.2) μ̌ = min
s∈Sσ

(μs),

where μ = μs is the unique solution to

(A.3) H(Dsu(μ)) = 0.

We show with the following proposition that, instead of solving (A.1) directly, we can
solve (A.3) for each s ∈ Sσ and take the minimum such solution μ̌. It can be shown
that H(Dsu(μ)) is continuous and nondecreasing on μ and that (A.3) has a unique
solution in an analogous but simpler manner as the proof of Theorem 3.5.

Proposition A.6. Let μ̂ be the unique solution to (A.1). Then μ̂ = μ̌.
Proof. Let μs, μ̌, and μ̂ be as defined above. For any s ∈ Sσ, we know μs ≥ μ̌.

Since H(Dsu(μ)) is nondecreasing on μ, it must be that H(Dsu(μ)) ≤ H(Dsu(μs)) =
0 for all μ ≤ μs. In particular, H(Dsu(μ̌)) ≤ 0. Furthermore, by the definition of μ̌,
there exists an š ∈ Sσ such that H(Dšu(μ̌)) = 0. Consequently,

(A.4) Hσ(μ̌) = max
s∈Sσ

H(Dsu(μ̌)) = 0.

Therefore, μ̂ = μ̌ solves (A.1), and it is a unique solution by Proposition A.3.
We further show that we may be able to determine μ̌ without solving (A.3) for

each s ∈ Sσ. We demonstrate using the following proposition that if we have computed
a solution μ = μs of (A.3) for some s ∈ Sσ, we can easily determine if μs̃ ≥ μs, where
μ = μs̃ is the solution to H(Ds̃u(μ)) = 0 for some other s̃ ∈ Sσ. Note we do not
necessarily need to compute μs̃ to rule it out as a minimal solution.

Proposition A.7. Let s ∈ Sσ and s̃ ∈ Sσ. Let μ = μs be the unique solution to
H(Dsu(μ)) = 0 and μ = μs̃ be the unique solution to H(Ds̃u(μ)) = 0. Then μs̃ < μs
if and only if H(Ds̃u(μs)) > H(Dsu(μs)).

Proof. Let μs and μs̃ be as defined above. If H(Ds̃u(μs)) > H(Dsu(μs)) = 0,
then the unique solution μ = μs̃ to H(Ds̃u(μ)) = 0 must be such that μs̃ < μs, since
H(Ds̃u(μ)) is nondecreasing on μ. Similarily, if H(Ds̃u(μs)) ≤ H(Dsu(μs)), then the
unique solution μ = μs̃ to H(Ds̃u(μ)) = 0 must be such that μs̃ ≥ μs.

The result of Proposition A.7 can be used to eliminate simplices s ∈ Sσ for which
solutions to (A.3) are irrelevant to the computation. We call this process solution
elimination.
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Appendix B. Analytic solutions. We provide analytic node value update
equations for the cases where H is given by (2.2), where G(Du(x)) = ‖Du(x)‖p and
p = 1, p = 2, or p = ∞. In these cases, there is an exact solution to (3.4). For
derivations of these equations, see [2]. The equation for p = 2 fixes some errors in
the appendix of [16]. In [3] we demonstrated that these cases could be treated by
FMM and are useful for robotic applications. However, here we generalize the update
equations to any dimension and grid spacing.

Let (v1, v2, . . . , vm) be the values of the neighboring nodes in the simplex s ∈ Sσ
and (h1, h2, . . . , hm) be the corresponding grid spacings. We are solving for μ. In
order to use the analytic updates below, noncausal node values must already have
been eliminated using causality elimination, so μ > max1≤j≤m vj . However, in the
case of the efficient implementation of FMM discussed in section 4.5, any nodes that
would be removed from consideration by causality elimination could not already have
been extracted from Q, and so the anaytic updates below can be applied directly.

The update formula for p = 1 is

μ =

∑
j

(∏
l �=j hl

)
vj +

∏
l hlc∑

j

∏
l �=j hl

.

The update formula for p = 2 is

μ =

∑
j

(∏
l �=j h

2
l

)
vj +

∏
l hl

√√√√√
(∑

j

∏
l �=j h

2
l

)
c2

−∑j1

∑
j2>j1

(∏
l �=j1,j2 h

2
l

)
(vj1 − vj2 )2∑

j

∏
l �=j h

2
l

.

The update formula for p =∞ is

μ = min
j

(vj + hjc) .

The p =∞ case is identical to the update formula for Dijkstra’s algorithm for shortest
path on a discrete graph.
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NEW INTERIOR PENALTY DISCONTINUOUS GALERKIN
METHODS FOR THE KELLER–SEGEL CHEMOTAXIS MODEL∗

YEKATERINA EPSHTEYN† AND ALEXANDER KURGANOV‡

Abstract. We develop a family of new interior penalty discontinuous Galerkin methods for
the Keller–Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a
convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the
chemoattractant concentration. It has been recently shown that the convective part of this system is
of a mixed hyperbolic–elliptic-type, which may cause severe instabilities when the studied system is
solved by straightforward numerical methods. Therefore, the first step in the derivation of our new
methods is made by introducing the new variable for the gradient of the chemoattractant concen-
tration and by reformulating the original Keller–Segel model in the form of a convection-diffusion-
reaction system with a hyperbolic convective part. We then design interior penalty discontinuous
Galerkin methods for the rewritten Keller–Segel system. Our methods employ the central-upwind
numerical fluxes, originally developed in the context of finite-volume methods for hyperbolic systems
of conservation laws. In this paper, we consider Cartesian grids and prove error estimates for the
proposed high-order discontinuous Galerkin methods. Our proof is valid for pre-blow-up times since
we assume boundedness of the exact solution. We also show that the blow-up time of the exact
solution is bounded from above by the blow-up time of our numerical solution. In the numerical
tests presented below, we demonstrate that the obtained numerical solutions have no negative values
and are oscillation-free, even though no slope-limiting technique has been implemented.

Key words. Keller–Segel chemotaxis model, convection-diffusion-reaction systems, discontinu-
ous Galerkin methods, nonsymmetric interior penalty Galerkin, incomplete interior penalty Galerkin,
and symmetric interior penalty Galerkin methods, Cartesian meshes
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1. Introduction. The goal of this work is to design new discontinuous Galerkin
(DG) methods for the two-dimensional Keller–Segel chemotaxis model [13, 29, 30,
31, 36, 38]. The DG methods have recently become increasingly popular thanks to
their attractive features such as local, elementwise mass conservation; flexibility to use
high-order polynomial and nonpolynomial basis functions; ability to easily increase the
order of approximation on each mesh element independently; ability to achieve almost
an exponential convergence rate when smooth solutions are captured on appropriate
meshes; block diagonal mass matrices, which are of great computational advantage
if an explicit time integration is used; suitability for parallel computations due to
(relatively) local data communications; applicability to problems with discontinuous
coefficients and/or solutions. The DG methods have been successfully applied to a
wide variety of problems ranging from solid mechanics to fluid mechanics (see, e.g.,
[3, 7, 14, 15, 17, 21, 23, 41] and references therein).
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In this paper, we consider the most common formulation of the Keller–Segel
system [13], which can be written in the dimensionless form as{

ρt +∇ · (χρ∇c) = Δρ,
ct = Δc− c+ ρ,

(x, y) ∈ Ω, t > 0,(1.1)

subject to the Neumann boundary conditions:

∇ρ · n = ∇c · n = 0, (x, y) ∈ ∂Ω.

Here, ρ(x, y, t) is the cell density, c(x, y, t) is the chemoattractant concentration, χ is
a chemotactic sensitivity constant, Ω is a bounded domain in R

2, ∂Ω is its boundary,
and n is a unit normal vector.

It is well-known that solutions of this system may blow up in finite time; see, e.g.,
[27, 28] and references therein. This blow up represents a mathematical description
of a cell concentration phenomenon that occurs in real biological systems; see, e.g.,
[1, 8, 10, 11, 16, 39].

Capturing blowing up solutions numerically is a challenging problem. Finite-
volume [22] and finite element [35] methods have been proposed for a simpler version
of the Keller–Segel model, {

ρt +∇ · (χρ∇c) = Δρ,
Δc− c+ ρ = 0,

in which the equation for concentration c has been replaced by an elliptic equation
using an assumption that the chemoattractant concentration c changes over much
smaller time scales than the density ρ. A fractional step numerical method for a fully
time-dependent chemotaxis system from [42] has been proposed in [43]. However,
the operator-splitting approach may not be applicable when a convective part of the
chemotaxis system is not hyperbolic, which is a generic situation for the original
Keller–Segel model as it was shown in [12], where the finite-volume Godunov-type
central-upwind scheme was derived for (1.1) and extended to some other chemotaxis
and haptotaxis models.

The starting point in the derivation of the central-upwind scheme in [12] was
rewriting the original system (1.1) in an equivalent form, in which the concentration
equation is replaced with the corresponding equation for the gradient of c:{

ρt +∇·(χρw) = Δρ,
wt −∇ρ = Δw −w,

w ≡ (u, v) := ∇c.

This form can be considered as a convection-diffusion-reaction system

Ut + f(U)x + g(U)y = ΔU + r(U),(1.2)

where U := (ρ, u, v)T , f(U) := (χρu,−ρ, 0)T , g(U) := (χρv, 0,−ρ)T , and r(U) :=
(0,−u,−v)T . The system (1.2) is an appropriate form of the chemotaxis system if one
wants to solve it numerically by a finite-volume method. Even though the convective
part of the system (1.2) is not hyperbolic, some stability of the resulting central-
upwind scheme was ensured by proving its positivity-preserving property; see [12].

A major disadvantage of the system (1.2) is a mixed type of its convective part.
When a high-order numerical method is applied to (1.2), a switch from a hyperbolic
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region to an elliptic one may cause severe instabilities in the numerical solution since
the propagation speeds in the elliptic region are infinite. Therefore, in order to develop
high-order DG methods for (1.1), we rewrite it in a different form, which is suitable
for DG settings:

ρt + (χρu)x + (χρv)y = Δρ,(1.3)
ct = Δc− c+ ρ,(1.4)
u = cx,(1.5)
v = cy,(1.6)

where the new unknowns ρ, c, u, and v satisfy the following boundary conditions:

∇ρ · n = ∇c · n = (u, v)T · n = 0, (x, y) ∈ ∂Ω.(1.7)

The new system (1.3)–(1.6) may also be considered as a system of convection-diffusion-
reaction equations

kQt + F(Q)x + G(Q)y = kΔQ + R(Q),(1.8)

where Q := (ρ, c, u, v)T , the fluxes are F(Q) := (χρu, 0,−c, 0)T and G(Q) :=
(χρv, 0, 0,−c)T , the reaction term is R(Q) := (0, ρ − c,−u,−v), the constant k = 1
in the first two equations in (1.8), and k = 0 in the third and the fourth equations
there. As we show in section 3, the convective part of the system (1.8) is hyperbolic.

In this paper, we develop a family of high-order DG methods for the system
(1.8). The proposed methods are based on three primal DG methods: the nonsym-
metric interior penalty Galerkin (NIPG), the symmetric interior penalty Galerkin
(SIPG), and the incomplete interior penalty Galerkin (IIPG) methods [4, 18, 19, 40].
The numerical fluxes in the proposed DG methods are the fluxes developed for the
semidiscrete finite-volume central-upwind schemes in [33] (see also [32, 34] and refer-
ences therein). These schemes belong to the family of nonoscillatory central schemes,
which are highly accurate and efficient methods applicable to general multidimen-
sional systems of conservation laws and related problems. Like other central fluxes,
the central-upwind ones are obtained without using the (approximate) Riemann prob-
lem solver, which is unavailable for the system under consideration. At the same time,
certain upwinding information—one-sided speeds of propagation—is incorporated into
the central-upwind fluxes.

We consider Cartesian grids and prove the error estimates for the proposed high-
order DG methods under the assumption of boundedness of the exact solution. We
also show that the blow-up time of the exact solution is bounded from above by the
blow-up time of the solution of our DG methods. In numerical tests presented in
section 6, we demonstrate that the obtained numerical solutions have no negative
values and are oscillation-free, even though no slope-limiting technique has been im-
plemented. We also demonstrate a high order of numerical convergence, achieved
even when the final computational time gets close to the blow-up time and the spiky
structure of the solution is well-developed.

The paper is organized as follows. In section 2, we introduce our notations and
assumptions and state some standard results. The new DG methods are presented in
section 3. The consistency and error analysis of the proposed methods are established
in sections 4 and 5; some technical details which are omitted from the proof can be
found in [20]. Finally, in section 6, we perform several numerical experiments.
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2. Assumptions, notations, and standard results. We denote by Eh a
nondegenerate quasi-uniform rectangular subdivision of the domain Ω (the quasi-
uniformity requirement will be used only in section 5 for establishing the rate of
convergence with respect to the polynomial degree). The maximum diameter over all
mesh elements is denoted by h, and the set of the interior edges is denoted by Γh. To
each edge e in Γh, we associate a unit normal vector ne = (nx, ny). We assume that
ne is directed from the element E1 to E2, where E1 denotes a certain element and E2

denotes an element that has a common edge with the element E1 and a larger index
(this simplified element notation will be used throughout the paper). For a boundary
edge, ne is chosen so that it coincides with the outward normal.

The discrete space of discontinuous piecewise polynomials of degree r is denoted
by

Wr,h(Eh) =
{
w ∈ L2(Ω) : ∀E ∈ Eh, w|E ∈ Pr(E)

}
,

where Pr(E) is a space of polynomials of degree r over the element E. For any
function w ∈ Wr,h, we denote the jump and average operators over a given edge e by
[w] and {w}, respectively:

for an interior edge e = ∂E1 ∩ ∂E2, [w] := wE
1

e − wE
2

e , {w} := 0.5wE
1

e + 0.5wE
2

e ,

for a boundary edge e = ∂E1 ∩ ∂Ω, [w] := wE
1

e , {w} := wE
1

e ,

where wE
1

e and wE
2

e are the corresponding polynomial approximations from the ele-
ments E1 and E2, respectively. We also recall that the following identity between the
jump and the average operators is satisfied:

[w1w2] = {w1}[w2] + {w2}[w1].(2.1)

For the finite-element subdivision Eh, we define the broken Sobolev space

Hs(Eh) =
{
w ∈ L2(Ω) : w|Ej ∈ Hs(Ej), j = 1, . . . , Nh

}
with the norms

|||w|||0,Ω =

( ∑
E∈Eh

‖w‖20,E
) 1

2

and |||w|||s,Ω =

( ∑
E∈Eh

‖w‖2s,E
) 1

2

, s > 0,

where ‖ · ‖s,E denotes the Sobolev s-norm over the element E.
We now recall some well-known facts that will be used in the error analysis in

section 5. First, let us state some approximation properties and inequalities for the
finite-element space.

Lemma 2.1 (hp approximation [5, 6]). Let E ∈ Eh and ψ ∈ Hs(E), s ≥ 0.
Then there exist a positive constant C, independent of ψ, r, and h, and a sequence
ψ̃hr ∈ Pr(E), r = 1, 2, . . . , such that for any q ∈ [0, s]∥∥∥ψ − ψ̃hr ∥∥∥

q,E
≤ Ch

μ−q

rs−q
‖ψ‖s,E , μ := min(r + 1, s).(2.2)

Lemma 2.2 (trace inequalities [2]). Let E ∈ Eh. Then for the trace operators γ0

and γ1, there exists a constant Ct, independent of h, such that

∀w ∈ Hs(E), s ≥ 1, ‖γ0w‖0,e ≤ Cth−
1
2

(
‖w‖0,E + h‖∇w‖0,E

)
,(2.3)

∀w ∈ Hs(E), s ≥ 2, ‖γ1w‖0,e ≤ Cth−
1
2

(
‖∇w‖0,E + h‖∇2w‖0,E

)
,(2.4)

where e is an edge of the element E.
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Lemma 2.3 (see [40]). Let E be a mesh element with an edge e. Then there is a
constant Ct, independent of h and r, such that

∀w ∈ Pr(E), ‖γ0w‖0,e ≤ Cth−
1
2 r‖w‖0,E.(2.5)

Lemma 2.4 (see [4, 9]). There exists a constant C, independent of h and r, such
that

∀w ∈ Wr,h(Eh), ‖w‖20,Ω ≤ C
( ∑
E∈Eh

‖∇w‖20,E +
∑
e∈Γh

1
|e|‖[w]‖20,e

) 1
2

,

where |e| denotes the measure of e.
Lemma 2.5 (inverse inequalities). Let E ∈ Eh and w ∈ Pr(E). Then there exists

a constant C, independent of h and r, such that

‖w‖L∞(E) ≤ Ch−1r‖w‖0,E ,(2.6)

‖w‖1,E ≤ Ch−1r‖w‖0,E .(2.7)

We also recall the following form of Gronwall’s lemma.
Lemma 2.6 (Gronwall). Let ϕ, ψ, and φ be continuous nonnegative functions

defined on the interval a ≤ t ≤ b, and the function φ is nondecreasing. If ϕ(t)+ψ(t) ≤
φ(t) +

∫ t
a
ϕ(s) ds for all t ∈ [a, b], then ϕ(t) + ψ(t) ≤ et−aφ(t).

In the analysis below we also make the following assumptions:
• Ω is a rectangular domain with the boundary ∂Ω = ∂Ωver∪∂Ωhor, where ∂Ωver

and ∂Ωhor denote the vertical and horizontal pieces of the boundary ∂Ω, respectively.
We also split the set of interior edges Γh into two sets of vertical Γver

h and horizontal
Γhor
h edges, respectively.
• The degree of basis polynomials is r ≥ 2, and the maximum diameter of the

elements is h < 1 (the latter assumption is needed only for simplification of the error
analysis).

3. Description of the numerical scheme. We consider the Keller–Segel sys-
tem (1.8). First, notice that the Jacobians of F and G are

∂F
∂Q

=

⎛
⎜⎜⎜⎜⎜⎝

χu 0 χρ 0

0 0 0 0

0 −1 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ and

∂G
∂Q

=

⎛
⎜⎜⎜⎜⎜⎝

χv 0 0 χρ

0 0 0 0

0 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠

and their eigenvalues are

λF
1 = χu, λF

2 = λF
3 = λF

4 = 0 and λG
1 = χv, λG

2 = λG
3 = λG

4 = 0,(3.1)

respectively. Hence, the convective part of (1.8) is hyperbolic. We now design semidis-
crete interior penalty Galerkin methods for this system.

We assume that at any time level t ∈ [0, T ] the solution (ρ, c, u, v)T is ap-
proximated by (discontinuous) piecewise polynomials of the corresponding degrees
rρ, rc, ru, and rv, which satisfy the following relation:

rmax

rmin
≤ a, rmax := max{rρ, rc, ru, rv}, rmin := min{rρ, rc, ru, rv},(3.2)

where a is a constant independent of rρ, rc, rp, and rq.
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Our new DG methods are formulated as follows: find a continuous-in-time solution

(ρDG(·, t), cDG(·, t), uDG(·, t), vDG(·, t)) ∈ Wρ
rρ,h
×Wc

rc,h ×Wu
ru,h ×Wv

rv,h

which satisfies the following weak formulation of the chemotaxis system (1.3)–(1.6):

∫
Ω

ρDG
t wρ +

∑
E∈Eh

∫
E

∇ρDG∇wρ −
∑
e∈Γh

∫
e

{∇ρDG · ne}[wρ]

+ ε
∑
e∈Γh

∫
e

{∇wρ · ne}
[
ρDG

]

+ σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[
ρDG

]
[wρ]−

∑
E∈Eh

∫
E

χρDGuDG(wρ)x

+
∑
e∈Γver

h

∫
e

(
χρDGuDG

)∗
nx[wρ]

−
∑
E∈Eh

∫
E

χρDGvDG(wρ)y +
∑
e∈Γhor

h

∫
e

(
χρDGvDG

)∗
ny[wρ] = 0,(3.3)

∫
Ω

cDG
t wc+

∑
E∈Eh

∫
E

∇cDG∇wc −
∑
e∈Γh

∫
e

{∇cDG · ne}[wc] + ε
∑
e∈Γh

∫
e

{∇wc · ne}
[
cDG

]

+ σc
∑
e∈Γh

r2c
|e|

∫
e

[
cDG

]
[wc] +

∫
Ω

cDGwc −
∫

Ω

ρDGwc = 0,(3.4)

∫
Ω

uDGwu +
∑
E∈Eh

∫
E

cDG(wu)x +
∑
e∈Γver

h

∫
e

(−cDG
)∗
u
nx[wu]

−
∑

e∈∂Ωver

∫
e

cDGnxw
u + σu

∑
e∈Γh∪∂Ωver

r2u
|e|

∫
e

[
uDG

]
[wu] = 0,(3.5)

∫
Ω

vDGwv +
∑
E∈Eh

∫
E

cDG(wv)y +
∑
e∈Γhor

h

∫
e

(−cDG
)∗
v
ny[wv]

−
∑

e∈∂Ωhor

∫
e

cDGnyw
v + σv

∑
e∈Γh∪∂Ωhor

r2v
|e|

∫
e

[
vDG

]
[wv ] = 0,(3.6)

with the initial conditions

∫
Ω

ρDG(·, 0)wρ =
∫

Ω

ρ(·, 0)wρ,
∫

Ω

cDG(·, 0)wc =
∫

Ω

c(·, 0)wc,

∫
Ω

uDG(·, 0)wu =
∫

Ω

u(·, 0)wu,
∫

Ω

vDG(·, 0)wv =
∫

Ω

v(·, 0)wv.
(3.7)

Here, (wρ, wc, wu, wv) ∈ Wρ
rρ,h
×Wc

rc,h
×Wu

ru,h
×Wv

rv ,h
are the test functions, and

σρ, σc, σu, and σv are real positive penalty parameters. The parameter ε is equal to
either −1, 0, or 1; these values of ε correspond to the SIPG, IIPG, or NIPG method,
respectively.
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To approximate the convective terms in (3.3) and (3.5)–(3.6), we use the central-
upwind fluxes from [33]:

(
χρDGuDG

)∗
=
aout

(
χρDGuDG

)E1

e
− ain

(
χρDGuDG

)E2

e

aout − ain
− aoutain

aout − ain

[
ρDG

]
,

(
χρDGvDG

)∗
=
bout

(
χρDGvDG

)E1

e
− bin (χρDGvDG

)E2

e

bout − bin − boutbin

bout − bin
[
ρDG

]
,

(−cDG
)∗
u

= −a
out

(
cDG

)E1

e
− ain

(
cDG

)E2

e

aout − ain
− aoutain

aout − ain

[
uDG

]
,

(−cDG
)∗
v

= −b
out

(
cDG

)E1

e
− bin (

cDG
)E2

e

bout − bin − boutbin

bout − bin
[
vDG

]
.

(3.8)

Here, aout, ain, bout, and bin are the one-sided local speeds in the x- and y-directions.
Since the convective part of the system (1.3)–(1.6) is hyperbolic, these speeds can be
estimated using the largest and the smallest eigenvalues of the Jacobian ∂F

∂Q and ∂G
∂Q

(see (3.1)):

aout = max
((
χuDG

)E1

e
,
(
χuDG

)E2

e
, 0

)
, ain = min

((
χuDG

)E1

e
,
(
χuDG

)E2

e
, 0

)
,

bout = max
((
χvDG

)E1

e
,
(
χvDG

)E2

e
, 0

)
, bin = min

((
χvDG

)E1

e
,
(
χvDG

)E2

e
, 0

)
.

(3.9)

Remark. If aout − ain = 0 at a certain element edge e, we set

(
χρDGuDG

)∗
=

(
χρDGuDG

)E1

e
+

(
χρDGuDG

)E2

e

2
,

(−cDG
)∗
u

= −
(
cDG

)E1

e
+

(
cDG

)E2

e

2
,

(
χρDGvDG

)∗
=

(
χρDGvDG

)E1

e
+

(
χρDGvDG

)E2

e

2
,

(−cDG
)∗
v

= −
(
cDG

)E1

e
+

(
cDG

)E2

e

2

there. Notice that in any case the following inequalities are satisfied:

aout

aout − ain
≤ 1,

−ain

aout − ain
≤ 1,

bout

bout − bin ≤ 1, and
−bin

bout − bin ≤ 1.(3.10)

From now on we will assume that aout − ain > 0 and bout − bin > 0 throughout
the computational domain.

4. Consistency of the numerical scheme. In this section, we show that the
proposed DG methods (3.3)–(3.6) are strongly consistent with the Keller–Segel system
(1.3)–(1.6).

Lemma 4.1. If the solution of (1.3)–(1.6) is sufficiently regular, namely, if (ρ, c) ∈
H1([0, T ])∩H2(Eh) and (u, v) ∈ L2([0, T ])∩H2(Eh), then it satisfies the formulation
(3.3)–(3.6).

Proof. We first multiply (1.3) by wρ ∈ Wρ
rρ,h

and integrate by parts on one
element E to obtain∫
E

ρtw
ρ +

∫
E

∇ρ∇wρ −
∫
∂E

∇ρ · newρ −
∫
E

χρu(wρ)x +
∫
∂E

χρunxw
ρ

−
∫
E

χρv(wρ)y +
∫
∂E

χρvnyw
ρ = 0.(4.1)
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Notice that the continuity of ρ and u implies that at the edge e, ρE
1

e = ρE
2

e and
(χρu)E

1

e = (χρu)E
2

e . Therefore, [ρ] = 0 and

{χρu} =
1
2
(χρu)E

1

e +
1
2
(χρu)E

2

e = (χρu)E
1

e =
aout − ain

aout − ain
(χρu)E

1

e

=
aout

aout − ain
(χρu)E

1

e −
ain

aout − ain
(χρu)E

2

e

=
aout(χρu)E

1

e − ain(χρu)E
2

e

aout − ain
= (χρu)∗.

Summing now (4.1) over all elements E ∈ Eh, using the jump-average iden-

tity (2.1), adding the penalty terms ε
∑
e∈Γh

∫
e{∇wρ · ne}[ρ] and σρ

∑
e∈Γh

r2ρ
|e|

∫
e[ρ]

[wρ], and using the Neumann boundary conditions (1.7), we obtain that the solu-
tion of the system (1.3)–(1.6) satisfies (3.3). A similar procedure can be applied to
show that the solution of (1.3)–(1.6) satisfies (3.4)–(3.6) as well. This concludes the
consistency proof.

5. Error analysis. In this section, we prove the existence and show the conver-
gence of the numerical solution using Schauder’s fixed point theorem [25].

In the analysis below, we will assume that the exact solution of the system (1.3)–
(1.6) is sufficiently regular for t ≤ T , where T is a pre-blow-up time. In particular we
will assume that

(ρ, c, u, v) ∈ Hs1([0, T ]) ∩Hs2(Ω), s1 > 3/2, s2 ≥ 3,(5.1)

which is needed for the h-analysis (convergence rate with respect to the mesh size),
or

(ρ, c, u, v) ∈ Hs1([0, T ]) ∩Hs2(Ω), s1 > 3/2, s2 ≥ 5,(5.2)

which is needed for the r-analysis (convergence rate with respect to the polynomial
degree). Notice that these assumptions are reasonable since classical solutions of the
Keller–Segel system (1.1) are regular (before the blow-up time), provided the initial
data are sufficiently smooth; see [27] and references therein.

We denote by ρ̃, c̃, ũ, and ṽ the piecewise polynomial interpolants of the exact
solution components ρ, c, u, and v of the Keller–Segel system (1.3)–(1.6) and assume
that these interpolants satisfy the approximation property (2.2). We then use the
idea similar to [37] and define the following subset of the broken Sobolev space:

S =

{
(φρ, φc, φu, φv) ∈ L2([0, T ]) ∩ L∞([0, T ]) ∩Wρ

rρ,h
×Wc

rc,h ×Wu
ru,h ×Wv

rv,h :

sup
t∈[0,T ]

‖φρ − ρ̃‖20,Ω +
∫ T

0

(
|||∇(φρ − ρ̃)|||20,Ω +

∑
e∈Γh

r2ρ
|e| ‖[(φ

ρ − ρ̃)]‖20,e
)
≤ CρE1,

sup
t∈[0,T ]

‖φc − c̃‖20,Ω +
∫ T

0

(
|||∇(φc − c̃)|||20,Ω +

∑
e∈Γh

r2c
|e|‖[(φ

c − c̃)]‖20,e
)
≤ CcE1,

sup
[0,T ]

‖φu − ũ‖0,Ω ≤ E2,
∫ T

0

(
‖φu − ũ‖20,Ω +

∑
e∈Γh

r2u
|e|‖[(φ

u − ũ)]‖20,e
)
≤ CuE1,

sup
[0,T ]

‖φv − ṽ‖0,Ω ≤ E2,
∫ T

0

(
‖φv − ṽ‖20,Ω +

∑
e∈Γh

r2v
|e| ‖[(φ

v − ṽ)]‖20,e
)
≤ CvE1

}
,
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where

E1 :=
∑

α∈{ρ,c,u,v}

h2min(rα+1,sα)−2

r2sα−4
α

, E2 := Ch

(
1
rρ

+
1
rc

+
1
ru

+
1
rv

)
,(5.3)

C,Cρ, Cc, Cu, and Cv are positive constants (which will be defined later) independent
of h and the polynomial degrees (rρ, rc, ru, rv), and the parameters sρ, sc, su, and sv
denote the regularity of the corresponding components of the exact solution. Clearly
the subset S is a closed convex subset of the broken Sobolev space, and it is not
empty since it contains the element (ρ̃, c̃, ũ, ṽ). We first show that the functions in S
are bounded.

Lemma 5.1. For any (φρ, φc, φu, φv) ∈ S, there exist positive constants Mρ,Mc,
Mu, and Mv, independent of h, rρ, rc, ru, and rv, such that

sup
t∈[0,T ]

‖φα‖∞,Ω ≤Mα, α ∈ {ρ, c, u, v}.(5.4)

Proof. From the definition of the subset S, we have supt∈[0,T ] ‖φρ − ρ̃‖20,Ω ≤ CρE1
and hence supt∈[0,T ] ‖φρ − ρ̃‖0,Ω ≤ M h

rmin
. Using the inverse inequality (2.6), we

obtain

sup
t∈[0,T ]

‖φρ − ρ̃‖∞,Ω ≤M1rρh
−1 sup

t∈[0,T ]

‖φρ − ρ̃‖0,Ω ≤
rmax

rmin
M∗ ≤M.

This estimate implies that supt∈[0,T ] ‖φρ‖∞,Ω ≤M +sup[0,T ] ‖ρ̃‖∞,Ω, which, together
with the hp approximation property (see Lemma 2.1), yields the bound (5.4) for
α = ρ. The estimates for α = c, u, and v are obtained in a similar manner.

We now define the solution operator A on S as follows:

∀(φρ, φc, φu, φv) ∈ S, A(φρ, φc, φu, φv) = (φρL, φ
c
L, φ

u
L, φ

v
L),

where the initial conditions are (φρ,0L , φc,0L , φu,0L , φv,0L ) = (ρ̃0, c̃0, ũ0, ṽ0) and the func-
tions

φρL ∈ Wρ
rρ,h,t

:= Hs([0, T ]) ∩Wρ
rρ,h

, φcL ∈ Wc
rc,h,t := Hs([0, T ]) ∩Wc

rc,h, s > 3/2,

φαL ∈ Wα
rα,h,t := L2([0, T ]) ∩ L∞([0, T ]) ∩Wα

rα,h, α ∈ {u, v},
are such that∫

Ω

(φρL)tw
ρ +

∑
E∈Eh

∫
E

∇(φρL)∇wρ −
∑
e∈Γh

∫
e

{∇φρL · ne}[wρ] + ε
∑
e∈Γh

∫
e

{∇wρ · ne}[φρL]

+ σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[φρL][wρ]−
∑
E∈Eh

∫
E

χφρLφ
u(wρ)x +

∑
e∈Γver

h

∫
e

(χφρLφ
u)∗nx[wρ]

−
∑
E∈Eh

∫
E

χφρLφ
v(wρ)y +

∑
e∈Γhor

h

∫
e

(χφρLφ
v)∗ny[wρ] = 0 ∀wρ ∈ Wρ

rρ,h
,(5.5)

∫
Ω

(φcL)tw
c +

∑
E∈Eh

∫
E

∇φcL∇wc −
∑
e∈Γh

∫
e

{∇φcL · ne}[wc] + ε
∑
e∈Γh

∫
e

{∇wc · ne}[φcL]

+ σc
∑
e∈Γh

r2c
|e|

∫
e

[φcL][wc] +
∫

Ω

φcLw
c −

∫
Ω

φρLw
c = 0 ∀wc ∈ Wc

rc,h,(5.6)
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Ω

φuLw
u +

∑
E∈Eh

∫
E

φcL(wu)x +
∑
e∈Γver

h

∫
e

(−φcL)∗unx[w
u]−

∑
e∈∂Ωver

∫
e

φcLnxw
u

+ σu
∑

e∈Γh∪∂Ωver

r2u
|e|

∫
e

[φuL][wu] = 0 ∀wu ∈ Wu
ru,h,(5.7)

∫
Ω

φvLw
v +

∑
E∈Eh

∫
E

φcL(wv)y +
∑
e∈Γhor

h

∫
e

(−φcL)∗vny[w
v ]−

∑
e∈∂Ωhor

∫
e

φcLnyw
v

+ σv
∑

e∈Γh∪∂Ωhor

r2v
|e|

∫
e

[φvL][wv] = 0 ∀wv ∈ Wv
rv ,h.(5.8)

As before, the central-upwind numerical fluxes are utilized in (5.5)–(5.8):

(χφρLφ
u)∗ =

aout
L (χφρLφ

u)E
1

e − ain
L (χφρLφ

u)E
2

e

aout
L − ain

L

− aout
L ain

L

aout
L − ain

L

[φρL],

(χφρLφ
v)∗ =

bout
L (χφρLφ

v)E
1

e − binL (χφρLφ
v)E

2

e

bout
L − binL

− bout
L binL

bout
L − binL

[φρL],

(−φcL)∗u = −a
out
L (φcL)E

1

e − ain
L (φcL)E

2

e

aout
L − ain

L

− aout
L ain

L

aout
L − ain

L

[φuL],

(−φcL)∗v = −b
out
L (φcL)E

1

e − binL (φcL)E
2

e

bout
L − binL

− bout
L binL

bout
L − binL

[φvL],

(5.9)

where the one-sided local speeds are

aout
L := max

(
(χφu)E

1

e , (χφu)E
2

e , 0
)
, ain

L := min
(
(χφu)E

1

e , (χφu)E
2

e , 0
)
,

bout
L := max

(
(χφv)E

1

e , (χφv)E
2

e , 0
)
, binL := min

(
(χφv)E

1

e , (χφv)E
2

e , 0
)
.

(5.10)

Notice that the inequalities similar to (3.10),

aout
L

aout
L − ain

L

≤ 1,
−ain

L

aout
L − ain

L

≤ 1,
bout
L

bout
L − binL

≤ 1, and
−binL

bout
L − binL

≤ 1,(5.11)

which are needed in our convergence proof, are satisfied for the local speeds defined
in (5.10) as well (for simplicity, we assume that aout − ain �= 0 and bout − bin �= 0
throughout the computational domain).

We now show that the operator A is well-defined by proving the existence and
uniqueness of (φρL, φ

c
L, φ

u
L, φ

v
L).

Lemma 5.2. There exists a unique solution (φρL, φ
c
L, φ

u
L, φ

v
L) ∈ Wρ

rρ,h,t
×Wc

rc,h,t
×

Wu
ru,h,t

×Wv
rv ,h,t

of (5.5)–(5.8).
Proof. First, notice that (5.5)–(5.6) can be rewritten as the explicit linear dif-

ferential equations for φρL and φcL. Hence, there exists a unique solution (φρL, φ
c
L) ∈

Wρ
rρ,h,t

×Wc
rc,h,t

.
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Equations (5.7)–(5.8) can be rewritten as

∫
Ω

φuLw
u + σu

∑
e∈Γh∪∂Ωver

r2u
|e|

∫
e

[φuL][wu] = −
∑
E∈Eh

∫
E

φcL(wu)x −
∑
e∈Γver

h

∫
e

(−φcL)∗unx[w
u]

+
∑

e∈∂Ωver

∫
e

φcLnxw
u ∀wu ∈ Wu

ru,h,(5.12)

∫
Ω

φvLw
v + σv

∑
e∈Γh∪∂Ωhor

r2v
|e|

∫
e

[φvL][wv ] = −
∑
E∈Eh

∫
E

φcL(wv)y −
∑
e∈Γhor

h

∫
e

(−φcL)∗vny[w
v]

+
∑

e∈∂Ωhor

∫
e

φcLnyw
v ∀wv ∈ Wv

rv,h.(5.13)

The bilinear form on the left-hand side (LHS) of (5.12) is coercive since for all ϕ ∈
Wu
ru,h

,
∫
Ω ϕϕ+σu

∑
e∈Γh∪∂Ωver

r2u
|e|

∫
e[ϕ][ϕ] ≥ ‖ϕ‖20,Ω . It is also continuous onWu

ru,h
×

Wu
ru,h

, while the linear form on the right-hand side (RHS) of (5.12) is continuous on
Wu
ru,h

. Hence, there exists a unique solution of (5.12). The same argument is true for
(5.13). This concludes the proof of the lemma.

Our next goal is to show that the operator A maps S into itself and that A is
compact. By the second Shauder fixed-point theorem [25], this will imply that the
nonlinear mapping (φρ, φc, φu, φv) ∈ S → A(φρ, φc, φu, φv) has a fixed point denoted
by (ρDG, cDG, uDG, vDG).

Theorem 5.3. Let the solution of (1.3)–(1.6) satisfy the assumption (5.1). Then
for any (φρ, φc, φu, φv) ∈ S, A(φρ, φc, φu, φv) ∈ S.

Proof. Let (φρ, φc, φu, φv) ∈ S and (φρL, φ
c
L, φ

u
L, φ

v
L) = A(φρ, φc, φu, φv). We intro-

duce the following notation:

τρ := φρL − ρ̃, ξρ := ρ− ρ̃, τc := φcL − c̃, ξc := c− c̃,
τu := φuL − ũ, ξu = u− ũ, τv := φvL − ṽ, ξv := v − ṽ.(5.14)

It follows from the consistency Lemma 4.1 that the exact solution of (1.3)–(1.6) sat-
isfies not only (3.3) but also the similar equation

∫
Ω

ρtw
ρ +

∑
E∈Eh

∫
E

∇ρ∇wρ −
∑
e∈Γh

∫
e

{∇ρ · ne}[wρ] + ε
∑
e∈Γh

∫
e

{∇wρ · ne}[ρ]

+ σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[ρ][wρ]−
∑
E∈Eh

∫
E

χρu(wρ)x +
∑
e∈Γver

h

∫
e

(χρu)∗∗nx[wρ]

−
∑
E∈Eh

∫
E

χρv(wρ)y +
∑
e∈Γhor

h

∫
e

(χρv)∗∗ny[wρ] = 0,(5.15)

where

(χρu)∗∗ :=
aout
L (χρu)E

1

e − ain
L (χρu)E

2

e

aout
L − ain

L

− aout
L ain

L

aout
L − ain

L

[ρ],

(χρv)∗∗ :=
bout
L (χρv)E

1

e − binL (χρv)E
2

e

bout
L − binL

− bout
L binL

bout
L − binL

[ρ]
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and the local speeds aout
L , ain

L , bout
L , and binL are given by (5.10). Using (5.14), (5.15)

can be rewritten as∫
Ω

ρ̃tw
ρ +

∑
E∈Eh

∫
E

∇ρ̃∇wρ −
∑
e∈Γh

∫
e

{∇ρ̃ · ne}[wρ] + ε
∑
e∈Γh

∫
e

{∇wρ · ne}[ρ̃]

+ σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[ρ̃][wρ]−
∑
E∈Eh

∫
E

χρ̃φu(wρ)x +
∑
e∈Γver

h

∫
e

(χρu)∗∗nx[wρ]

−
∑
E∈Eh

∫
E

χρ̃φv(wρ)y +
∑
e∈Γhor

h

∫
e

(χρv)∗∗ny[wρ]

= −
∫

Ω

ξρt w
ρ −

∑
E∈Eh

∫
E

∇ξρ∇wρ +
∑
e∈Γh

∫
e

{∇ξρ · ne}[wρ]

−ε
∑
e∈Γh

∫
e

{∇wρ · ne}[ξρ]

− σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[ξρ][wρ] +
∑
E∈Eh

∫
E

χξρu(wρ)x −
∑
E∈Eh

∫
E

χρ̃(φu − u)(wρ)x

+
∑
E∈Eh

∫
E

χξρv(wρ)y −
∑
E∈Eh

∫
E

χρ̃(φv − v)(wρ)y.(5.16)

Subtracting (5.16) from (5.5) and choosing wρ = τρ, we obtain

1
2
d

dt

(
‖τρ‖20,Ω

)
+ |||∇τρ|||20,Ω + σρ

∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,e

= (1− ε)
∑
e∈Γh

∫
e

{∇τρ · ne}[τρ] +
∑
E∈Eh

∫
E

χτρφu(τρ)x

−
∑
e∈Γver

h

∫
e

((χφρLφ
u)∗ − (χρu)∗∗)nx[τρ] +

∑
E∈Eh

∫
E

χτρφv(τρ)y

−
∑
e∈Γhor

h

∫
e

((χφρLφ
v)∗ − (χρv)∗∗)ny[τρ] +

∫
Ω

ξρt τ
ρ

+
∑
E∈Eh

∫
E

∇ξρ∇τρ −
∑
e∈Γh

∫
e

{∇ξρ · ne}[τρ] + ε
∑
e∈Γh

∫
e

{∇τρ · ne}[ξρ]

+ σρ
∑
e∈Γh

r2ρ
|e|

∫
e

[ξρ][τρ]−
∑
E∈Eh

∫
E

χξρu(τρ)x −
∑
E∈Eh

∫
E

χξρv(τρ)y

+
∑
E∈Eh

∫
E

χρ̃(φu − u)(τρ)x +
∑
E∈Eh

∫
E

χρ̃(φv − v)(τρ)y =: T ρ1 + T ρ2 + · · ·+ T ρ14.(5.17)

Next, we bound each term on the RHS of (5.17) using standard DG techniques. The
quantities εi in the estimates below are positive real numbers, which will be defined
later.

We begin with the first term on the RHS of (5.17). The Cauchy–Schwarz inequal-
ity yields

|T ρ1 | ≤ (1− ε)
∑
e∈Γh

‖{∇τρ}‖0,e‖[τρ]‖0,e.
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As before, we denote by E1 and E2 the two elements sharing the edge e. Then, using
the inequality (2.5), we obtain

∑
e∈Γh

‖{∇τρ}‖0,e‖[τρ]‖0,e ≤
∑
e∈Γh

1
2

(∥∥∥(∇τρ)E1

e

∥∥∥
0,e

+
∥∥∥(∇τρ)E2

e

∥∥∥
0,e

)
‖[τρ]‖0,e

≤ Ctrρ

2
√
h

∑
e∈Γh

(
‖∇τρ‖0,E1 + ‖∇τρ‖0,E2

)
‖[τρ]‖0,e,

and hence, using the fact that |e| ≤ √h, we end up with the following bound on T ρ1 :

|T ρ1 | ≤ ερ1
∑
E∈Eh

‖∇τρ‖20,E + Cρ1
∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e = ερ1|||∇τρ|||20,Ω + Cρ1
∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,e.

(5.18)
Consider now the second term on the RHS of (5.17). From Lemma 5.1 we know

that φu is a bounded function, and hence T ρ2 can be bounded as follows:

|T ρ2 | ≤ ερ2
∑
E∈Eh

‖(τρ)x‖20,E + Cρ2‖τρ‖20,Ω ≤ ερ2|||(τρ)x|||20,Ω + Cρ2‖τρ‖20,Ω.(5.19)

Next, we bound the third term on the RHS of (5.17) as

|T ρ3 | ≤
∑
e∈Γver

h

(∣∣∣∣∣
∫
e

aout
L

aout
L − ain

L

(
(χφρLφ

u)E
1

e − (χρu)E
1

e

)
nx[τρ]

∣∣∣∣∣
+

∣∣∣∣∣
∫
e

−ain
L

aout
L − ain

L

(
(χφρLφ

u)E
2

e − (χρu)E
2

e

)
nx[τρ]

∣∣∣∣∣
+

∣∣∣∣∣
∫
e

−ain
L a

out
L

aout
L − ain

L

[φρL − ρ]nx[τρ]
∣∣∣∣∣
)

=: I + II + III.(5.20)

Using (5.11) and (5.14), the first term on the RHS of (5.20) can be estimated by

I ≤ χ
∑
e∈Γver

h

∣∣∣∣∣
∫
e

(
(φρLφ

u)E
1

e − (ρu)E
1

e

)
nx[τρ]

∣∣∣∣∣
≤ χ

∑
e∈Γver

h

(∣∣∣∣∣
∫
e

(τρφu)E
1

e nx[τρ]

∣∣∣∣∣ +

∣∣∣∣∣
∫
e

(ξρφu)E
1

e nx[τρ]

∣∣∣∣∣
+

∣∣∣∣∣
∫
e

((φu − ũ)ρ)E1

e nx[τρ]

∣∣∣∣∣ +

∣∣∣∣∣
∫
e

(ξuρ)E
1

e nx[τρ]

∣∣∣∣∣
)

=: Ĩ.

We now use the Cauchy–Schwarz inequality, the trace inequality (2.3), the inequality
(2.5), the assumption (3.2), the approximation inequality (2.2), and the bound on φu

from Lemma 5.1 to obtain the bound on Ĩ:

Ĩ ≤1
2
‖τρ‖20,Ω +K

∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,e + C∗
∑
α=ρ,u

h2min(rα+1,sα)

r2sα
α

+ C∗∗‖φu − ũ‖20,Ω.

A similar bound can be derived for the second term II on the RHS of (5.20). To
estimate the last term on the RHS of (5.20), we first use (5.14) and the definition of
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the one-sided local speeds (5.10) to obtain

III ≤ C
∑
e∈Γver

h

(
‖[τρ]‖20,e +

∣∣∣∣∣
∫
e

[ξρ][τρ]

∣∣∣∣∣
)

:= ĨII.

Then, using the Cauchy–Schwarz inequality, the trace inequality (2.3), and the ap-
proximation inequality (2.2), we bound ĨII as follows:

ĨII ≤
(
K1h

r2ρ
+K2

) ∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e + C
h2min(rρ+1,sρ)

r
2sρ
ρ

.

Combining the above bounds on I, II, and III, we arrive at

|T ρ3 | ≤ ‖τρ‖20,Ω +Cρ3
∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,e+C∗
∑

α∈{ρ,u}

h2min(rα+1,sα)

r2sα
α

+C∗∗‖φu − ũ‖20,Ω.

(5.21)
The terms T ρ4 and T ρ5 are bounded in the same way as the terms T ρ2 and T ρ3 ,

respectively, and the bounds are

|T ρ4 | ≤ ερ2|||(τρ)y|||20,Ω + Cρ4‖τρ‖20,Ω(5.22)

and

|T ρ5 | ≤ ‖τρ‖20,Ω+Cρ5
∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e+C∗
∑

α∈{ρ,v}

h2min(rα+1,sα)

r2sα
α

+C∗∗‖φv − ṽ‖20,Ω.

(5.23)
The term T ρ6 is bounded using the Cauchy–Schwarz inequality and the approxi-

mation inequality (2.2):

|T ρ6 | ≤ ‖τρ‖20,Ω + C∗
h2min(rρ+1,sρ)

r
2sρ
ρ

.(5.24)

Using the Cauchy–Schwarz inequality, Young’s inequality, and the approximation
inequality (2.2) for ρ, we obtain the following bound for the term T ρ7 :

|T ρ7 | ≤ ερ7|||∇τρ|||20,Ω + C∗
h2min(rρ+1,sρ)−2

r
2sρ−2
ρ

.(5.25)

The term T ρ8 is bounded using the Cauchy–Schwarz inequality, the trace inequality
(2.4), and the approximation inequality (2.2):

|T ρ8 | ≤ Cρ8
∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e + C∗
h2min(rρ+1,sρ)−2

r
2sρ−2
ρ

.(5.26)

To bound the term T ρ9 , we use the trace inequality (2.5), inequality (2.3), the
Cauchy–Schwarz inequality, and Young’s inequality:

|T ρ9 | ≤ ερ9|||∇τρ|||20,Ω + C∗
h2min(rρ+1,sρ)−2

r
2sρ−4
ρ

.(5.27)
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Similarly, we bound the term T ρ10 by

|T ρ10| ≤ Cρ10
∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e + C∗
h2min(rρ+1,sρ)−2

r
2sρ−4
ρ

.(5.28)

For the terms T ρ11 and T ρ12, we use our assumption on the smoothness of the
exact solution together with the Cauchy–Schwarz inequality and the approximation
inequality (2.2) to obtain the following bounds:

|T ρ11| ≤ ερ11|||(τρ)x|||20,Ω+C∗
h2min(rρ+1,sρ)

r
2sρ
ρ

, |T ρ12| ≤ ερ11|||(τρ)y|||20,Ω+C∗
h2min(rρ+1,sρ)

r
2sρ
ρ

.

(5.29)
Consider now the term T ρ13. We first use (5.14) to obtain

|T ρ13| ≤ C
∑
E∈Eh

(∣∣∣∣∣
∫
E

(φu − ũ)(τρ)x

∣∣∣∣∣ +

∣∣∣∣∣
∫
E

ξu(τρ)x

∣∣∣∣∣
)
.

Then we apply the Cauchy–Schwarz inequality and the approximation inequality (2.2),
which result in

|T ρ13| ≤ ερ13|||(τρ)x|||20,Ω + C∗
h2min(ru+1,su)

r2su
u

+ C∗∗‖φu − ũ‖20,Ω.(5.30)

The bound on the term T ρ14 is obtained in the same way as the bound on T ρ13:

|T ρ14| ≤ ερ13|||(τρ)y|||20,Ω + C∗
h2min(rv+1,sv)

r2sv
v

+ C∗∗‖φv − ṽ‖20,Ω.(5.31)

Finally, we plug the estimates (5.18)–(5.19) and (5.21)–(5.31) into (5.17) and use
the assumption that h < 1 to obtain

1
2
d

dt
‖τρ‖20,Ω + (1− ερ1 − ερ2 − ερ7 − ερ9 − ερ11 − ερ13)|||∇τρ|||20,Ω

+ (σρ − Cρ1 − Cρ3 − Cρ5 − Cρ8 − Cρ10)
∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,Ω ≤ (3 + Cρ2 + Cρ4 )‖τρ‖20,Ω

+ C∗ρ

⎛
⎝h2min(rρ+1,sρ)−2

r
2sρ−4
ρ

+
∑

α∈{u,v}

h2min(rα+1,sα)

r2sα
α

⎞
⎠ + C∗∗

∑
α∈{u,v}

(‖φα − α̃‖20,Ω).(5.32)

We now choose ερi and the penalty parameter σρ so that the coefficients of |||∇τρ|||20,Ω
and

∑
e∈Γh

r2ρ
|e|‖[τρ]‖20,Ω on the LHS of (5.32) are equal to 1/2. We then multiply (5.32)

by 2 and integrate it in time from 0 to t. Taking into account that (φu, φv) ∈ S and
using the fact that τ0 = 0, we obtain

‖τρ‖20,Ω +
∫ t

0

(
|||∇τρ|||20,Ω +

∑
e∈Γh

r2ρ
|e|‖[τ

ρ]‖20,e
)
≤ C̃ρ

∫ t

0

‖τρ‖20,Ω + CuvE1.(5.33)

Next, we apply Gronwall’s Lemma 2.6 and take the supremum with respect to t of
both sides of (5.33):

sup
[0,T ]

‖τρ‖20,Ω +
∫ T

0

(
|||∇τρ|||20,Ω +

∑
e∈Γh

r2ρ
|e| ‖[τ

ρ]‖20,e
)
≤ CIE1,(5.34)
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where E1 is given in (5.3) and CI is a constant that depends on ‖ρ‖(L∞([0,T ]);H2(Ω)),‖ρt‖(L∞([0,T ]);L2(Ω)), ‖u‖(L∞([0,T ]);L2(Ω)), ‖v‖(L∞([0,T ]);L2(Ω)), and T only.
According to the definition of the broken Sobolev space S given on p. 393, the

estimate (5.34) implies that φρL ∈ S. Using similar techniques, it can be shown that
(φcL, φ

u
L, φ

v
L) ∈ S as well (see [20] for the detailed proof). Therefore, we have shown

that A(S) ⊂ S, and the proof of Theorem 5.3 is now complete.
Let us recall that our goal is to show that the operator A has a fixed point.

Equipped with Theorem 5.3, it remained to prove that A is compact. To this end, we
need to show that A is continuous and equicontinuous.

Lemma 5.4. The operator A is continuous and equicontinuous.
Proof. We consider the sequence {(φρn, φcn, φun, φvn)} and assume that

sup
t∈[0,T ]

(‖(φρn, φcn, φun, φvn)− (φρ, φc, φu, φv)‖S)→ 0 as n→∞.

Let

(φρL,n, φ
c
L,n, φ

u
L,n, φ

v
L,n) = A(φρn, φ

c
n, φ

u
n, φ

v
n)(5.35)

and

(φρL, φ
c
L, φ

u
L, φ

v
L) = A(φρ, φc, φu, φv)(5.36)

be two solutions of (5.5)–(5.8). We denote by (φ̂ρL, φ̂
c
L, φ̂

u
L, φ̂

v
L) the difference between

these two solutions (note that (φ̂ρ,0L , φ̂c,0L , φ̂u,0L , φ̂v,0L ) = (0, 0, 0, 0)), subtract (5.36) from
(5.35), and choose the test function in the resulting equation for ρ to be wρ = φ̂ρL.
This yields

1
2
d

dt

∥∥∥φ̂ρL∥∥∥2

0,Ω
+

∣∣∣∣∣∣∣∣∣∇φ̂ρL∣∣∣∣∣∣∣∣∣2
0,Ω

+ σρ
∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e

= (1− ε)
∑
e∈Γh

∫
e

{
∇φ̂ρL · ne

}[
φ̂ρL

]
+

∑
E∈Eh

∫
E

χφ̂ρLφ
u
(
φ̂ρL

)
x

+
∑
E∈Eh

∫
E

χφρL,n(φ
u
n − φu)

(
φ̂ρL

)
x

−
∑
e∈Γver

h

∫
e

(
χφ̂ρLφ

u
)∗
nx

[
φ̂ρL

]
+

∑
e∈Γver

h

∫
e

(
(χφρL,nφ

u)∗ − (χφρL,nφ
u
n)∗

)
nx

[
φ̂ρL

]

+
∑
E∈Eh

∫
E

χφ̂ρLφ
v
(
φ̂ρL

)
y

+
∑
E∈Eh

∫
E

χφρL,n(φ
v
n − φv)

(
φ̂ρL

)
y

−
∑
e∈Γhor

h

∫
e

(
χφ̂ρLφ

v
)∗
ny

[
φ̂ρL

]

+
∑
e∈Γhor

h

∫
e

(
(χφρL,nφ

v)∗ − (χφρL,nφ
v
n)∗

)
ny

[
φ̂ρL

]
=: R1 +R2 + · · ·+R9.(5.37)

We now bound each term on the RHS of (5.37).
The term R1 can be bounded using the Cauchy–Schwarz inequality, Young’s in-

equality, and the inequality (2.5):

|R1| ≤ 1
6

∣∣∣∣∣∣∣∣∣∇φ̂ρL∣∣∣∣∣∣∣∣∣2
0,Ω

+ C1

∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e
.(5.38)
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Next, applying the Cauchy–Schwarz and Young’s inequalities and using the bound-
edness of ||φu||∞,Ω, established in Lemma 5.1, we obtain the following bound on R2:

|R2| ≤ 1
6

∣∣∣∣∣∣∣∣∣(φ̂ρL)
x

∣∣∣∣∣∣∣∣∣2
0,Ω

+ C2

∥∥∥φ̂ρL∥∥∥2

0,Ω
.(5.39)

Using the Cauchy–Schwarz and Young’s inequalities and the fact that φρL,n ∈ S, we
bound the term R3 by

|R3| ≤ 1
6

∣∣∣∣∣∣∣∣∣(φ̂ρL)
x

∣∣∣∣∣∣∣∣∣2
0,Ω

+ C3‖φun − φu‖20,Ω.(5.40)

We then use the Cauchy–Schwarz inequality, the inequality (2.5), and the first nu-
merical flux formula in (5.9) to estimate R4:

|R4| ≤
∥∥∥φ̂ρL∥∥∥2

0,Ω
+ C4

∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e
.(5.41)

We now consider the term R5. It follows from formulas (5.9)–(5.10) that the numerical
fluxes (χφρL,nφ

u)∗ are the composition of the continuous functions with respect to the
variables (φu)E

1

e and (φu)E
2

e . Hence, we can apply the Cauchy–Schwarz inequality
and the inequality (2.5) to R5 so that it is bounded by

|R5| ≤ ‖(χφρL,nφu)∗ − (χφρL,nφ
u
n)∗‖2

0,Ω
+ C5

∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e
.(5.42)

The terms R6, R7, R8, and R9 are similar to the terms R2, R3, R4, and R5 estimated
in (5.39), (5.40), (5.41), and (5.42), respectively. Therefore, we obtain

|R6| ≤ 1
6

∣∣∣∣
∣∣∣∣
∣∣∣∣(φ̂ρL)y

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

0,Ω

+ C6

∥∥∥φ̂ρL∥∥∥2

0,Ω
,(5.43)

|R7| ≤ 1
6

∣∣∣∣
∣∣∣∣
∣∣∣∣(φ̂ρL)

y

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

0,Ω

+ C7‖φvn − φv‖20,Ω,(5.44)

|R8| ≤
∥∥∥φ̂ρL∥∥∥2

0,Ω
+ C8

∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e
,(5.45)

|R9| ≤ ‖(χφρL,nφv)∗ − (χφρL,nφ
v
n)∗‖2

0,Ω
+ C9

∑
e∈Γh

r2ρ
|e|

∥∥∥[φ̂ρL]∥∥∥2

0,e
.(5.46)

Substituting the estimates (5.38)–(5.46) into (5.37) yields

1
2
d

dt

∥∥∥φ̂ρL∥∥∥2

0,Ω
+

1
2

∣∣∣∣∣∣∣∣∣∇φ̂ρL∣∣∣∣∣∣∣∣∣2
0,Ω

+ (σρ − C)
∑
e∈Γh

r2ρ
|e|

∣∣∣∣∣∣[φ̂ρL]∣∣∣∣∣∣2
0,e
≤ C∗

∥∥∥φ̂ρL∥∥∥2

0,Ω

+ C∗∗
∑

α∈{u,v}

(
‖φαn − φα‖20,Ω + ‖(χφρL,nφα)∗ − (χφρL,nφ

α
n)∗‖2

0,Ω

)
,

where the penalty parameter σρ is chosen sufficiently large so that the coefficient
(σρ − C) is nonnegative.
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We now integrate the latter inequality with respect to time from 0 to t and apply
Gronwall’s Lemma 2.6 to obtain

∥∥∥φ̂ρL∥∥∥2

0,Ω
+
∫ t

0

(∣∣∣∣∣∣∣∣∣∇φ̂ρL∣∣∣∣∣∣∣∣∣2
0,Ω

+ (σρ − C)
∑
e∈Γh

r2ρ
|e|

∣∣∣∣∣∣[φ̂ρL]∣∣∣∣∣∣2
0,e

)
dt ≤M

(∥∥∥φρ,0L ∥∥∥2

0,Ω

+
∑

α∈{u,v}

∫ t

0

(
‖φαn − φα‖20,Ω + ‖(χφρL,nφα)∗ − (χφρL,nφ

α
n)∗‖2

0,Ω

))
.

Finally, taking the supremum over t and since φ̂ρ,0L = 0, we arrive at

sup
t∈[0,T ]

∥∥∥φ̂ρL∥∥∥2

0,Ω
+

∫ T

0

( ∣∣∣∣∣∣∣∣∣∇φ̂ρL∣∣∣∣∣∣∣∣∣2
0,Ω

+
∑
e∈Γh

r2ρ
|e|

∣∣∣∣∣∣[φ̂ρL]∣∣∣∣∣∣2
0,e

)
dt

≤M∗
∑

α∈{u,v}

∫ T

0

(
‖φαn − φα‖20,Ω + ‖(χφρL,nφα)∗ − (χφρL,nφ

α
n)∗‖2

0,Ω

)
.

This inequality together with the similar inequalities for φ̂c, φ̂u, and φ̂v, which can
be obtained in an analogous way, imply continuity of the operator A.

Applying similar techniques to the difference (φ
ρ

L, φ
c

L, φ
u

L, φ
v

L) := (φρL, φ
c
L, φ

u
L, φ

v
L)

(t1, x1, y1)− (φρL, φ
c
L, φ

u
L, φ

v
L)(t2, x2, y2) and using the fact that (φu, φv) ∈ S, one can

show that the operator A is equicontinuous.
Equipped with Lemma 5.4, we conclude that the operator A is compact. Hence,

by the second Schauder fixed-point theorem [25], it has at least one fixed point
(ρDG, cDG, uDG, vDG), which is the DG solution of (3.3)–(3.6). For this solution, we
establish the convergence rate results, stated in the following theorem.

Theorem 5.5 (L2(H1)- and L∞(L2)-error estimates). Let the solution of the
Keller–Segel system (1.3)–(1.6) satisfy the smoothness assumption (5.2). If the penalty
parameters σρ, σc, σu, and σv in the DG method (3.3)–(3.9) are sufficiently large and
rmin ≥ 2, then there exist constants Cρ and Cc, independent of h, rρ, rc, ru, and rv,
such that the following two error estimates hold:∥∥ρDG − ρ∥∥

L∞([0,T ];L2(Ω))
+

∣∣∣∣∣∣∇ (
ρDG − ρ)∣∣∣∣∣∣

L2([0,T ];L2(Ω))

+

(∫ T

0

∑
e∈Γh

r2ρ
|e|

∥∥[ρDG − ρ]∥∥2

0,e

) 1
2

≤ CρE,
∥∥cDG − c∥∥

L∞([0,T ];L2(Ω))
+

∣∣∣∣∣∣∇ (
cDG − c)∣∣∣∣∣∣

L2([0,T ];L2(Ω))

+

(∫ T

0

∑
e∈Γh

r2c
|e|

∥∥[cDG − c]∥∥2

0,e

) 1
2

≤ CcE,

where

E :=
∑

α∈{ρ,c,u,v}

hmin(rα+1,sα)−1

rsα−2
α

.

Proof. The result follows from the definition of space S, the fact that the DG solu-
tion is a fixed point of the compact operator A (defined above), the hp approximation
Lemma 2.1, and the triangle inequality.
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Remark. The obtained error estimates are h-optimal but only suboptimal for r.
Finally, equipped with the results established in Theorem 5.5, we obtain the

following bound for the blow-up time of the exact solution of the Keller–Segel system.
Theorem 5.6. Let us denote by tb the blow-up time of the exact solution of the

Keller–Segel system (1.1) and by tDG
b the blow-up time of the DG solution of (3.3)–

(3.9). Then tb ≤ tDG
b .

Proof. The solution ρ of the Keller–Segel model blows up if ‖ρ‖L∞(Ω) becomes
unbounded in either finite or infinite time (see, e.g., [27, 28]). Therefore, in order to
prove the theorem we need to establish an L∞-error bound.

From Theorem 5.5 we have the following L2-error bound: ‖ρDG − ρ‖L2(Ω) ≤ CρE,
and hence from (2.6) we obtain ‖ρDG − ρ‖L∞(Ω) ≤ CρE1, which, in turn, implies that
‖ρDG‖L∞(Ω) ≤ ‖ρ‖L∞(Ω) + CρE1, where E1 :=

∑
α∈{ρ,c,u,v}

hmin(rα+1,sα)−2

rsα−3
α

. From the
last estimate the statement of the theorem follows.

6. Numerical example. In this section, we demonstrate the performance of
the proposed DG method. In all of our numerical experiments, we have used the
third-order strong stability-preserving Runge–Kutta method for the time discretiza-
tion [24]. No slope-limiting technique has been implemented. The values of the
penalty parameters used are σρ = σc = 1 and σu = σv = 0.01. We note that no
instabilities have been observed when the latter two parameters were taken as zero;
however, since our convergence proof requires σu and σv to be positive, we show only
the results obtained with positive σu and σv, which are almost identical to the ones
obtained with σu = σv = 0.

We consider the initial boundary value problem for the Keller–Segel system in
the square domain [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]. We take the chemotactic sensitivity χ = 1 and

the bell-shaped initial data

ρ(x, y, 0) = 1200e−120(x2+y2), c(x, y, 0) = 600e−60(x2+y2).

According to the results in [26], both components ρ and c of the solution are expected
to blow up at the origin in finite time. This situation is especially challenging since
capturing the blowing up solution with shrinking support is extremely hard.

In Figures 6.1–6.4, we plot the logarithmically scaled density ln(1+ρDG) computed
at different times on two different uniform grids with h = 1/51 (Figures 6.1 and 6.3)
and h = 1/101 (Figures 6.2 and 6.4). The results shown in Figures 6.1–6.2 have
been obtained with quadratic polynomials (i.e., rρ = rc = ru = rv = r = 2), while
the solution shown in Figures 6.3–6.4 have been computed with the help of cubic
polynomials (i.e., rρ = rc = ru = rv = r = 3).

Numerical convergence of the scheme is verified by refining the mesh and by
increasing the polynomial degree. As one can see, the computed solutions are in very
good agreement at the smaller times (t = 1.46 · 10−5, 2.99 · 10−5, and 6.03 · 10−5).
However, at time close to the blow-up time (t = 1.21·10−4) the maximum value of ρDG

grows, while its support shrinks, and no mesh-refinement convergence is observed: the
numerical solution keeps increasing when the mesh is refined. Using Theorem 5.6, we
can conclude that in this example the blow-up time of the exact solution is less than or
equal to the blow-up time of the DG solution, which is approximately tDG

b ≈ 1.21·10−4.
We note that even though no slope-limiting or any other positivity-preserving

techniques have been implemented, the computed solutions have never developed
negative values and are oscillation-free.

Finally, we check the numerical order of the convergence of the proposed DG
method. We first consider the smooth solution at a very small time t = 1.0 · 10−7
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Fig. 6.1. h = 1/51, r = 2. Logarithmically scaled density computed at t = 1.46 · 10−5 (top left),
t = 2.99 · 10−5 (top right), t = 6.03 · 10−5 (bottom left), and t = 1.21 · 10−4 ≈ tDG

b (bottom right).
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Fig. 6.2. The same as in Figure 6.1 but with h = 1/101, r = 2.

and test the convergence with respect to the mesh size h for the fixed r = 2 (piece-
wise quadratic polynomials). Since the exact solution for the Keller–Segel system
is unavailable, we compute the reference solution by the proposed DG method on a
fine mesh with h = 1/128 and using the fifth-order (r = 5) piecewise polynomials.
We then use the obtained reference solution to compute the relative L2- and relative
H1-errors. These errors are presented in Table 6.1. From this table, one can see that
the solution numerically converges to the reference solution with the (optimal) second
order in the H1-norm which confirms the theoretical results predicted by our conver-
gence analysis. Moreover, the achieved third order of convergence in the L2-norm is
optimal for quadratic piecewise polynomials.
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Fig. 6.3. The same as in Figures 6.1–6.2 but with h = 1/51, r = 3.
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Fig. 6.4. The same as in Figures 6.1–6.3 but with h = 1/101, r = 3.

We then test the convergence of the proposed DG method with respect to the
degree r of piecewise polynomials for the fixed h = 1/32. The obtained results,
reported in Table 6.2, show that the error decreases almost exponentially when the
polynomial degree increases (this is a typical situation when DG methods capture
smooth solutions).

We also compute the L2-errors with respect to the reference solution for the
solutions plotted on Figures 6.1 and 6.2 at times t = 2.99 · 10−5 and t = 6.03 · 10−5.
These times are close to the blow-up time, and the solutions develop a pick at the
origin. The obtained errors are reported in Table 6.3. As one can see, even for the
spiky solutions, the convergence rate is very high though it, as expected, deteriorates
as t approaches tDG

b .
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Table 6.1

Relative errors as functions of the mesh size h; r = 2 is fixed.

h L2-error Rate H1-error Rate

1/4 3.0578 – 1.5591 –
1/8 1.0290 1.6 1.2348 0.35
1/16 0.0796 3.7 0.5206 1.3
1/32 0.0075 3.4 0.0937 2.5
1/64 0.0006 3.6 0.0157 2.6

Table 6.2

Relative errors as functions of the piecewise polynomial degree r; h = 1/32 is fixed.

r L2-error Rate H1-error Rate

2 7.5e-03 – 9.4e-02 –
3 9.0e-04 5.2 2.2e-02 3.6
4 8.0e-05 8.4 2.6e-03 7.4
5 6.9e-06 11.0 2.9e-04 9.8

Table 6.3

Relative L2-errors at two different times; r = 2 is fixed.

h
t = 2.99 · 10−5 t = 6.03 · 10−5

L2-error Rate L2-error Rate
1/51 5.5e-02 – 5.0e-02 –
1/101 5.2e-03 3.4 1.1e-02 2.2
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Abstract. We consider the stability and convergence analysis of pressure stabilized finite element
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1. Introduction. In this paper we consider stabilized finite element methods for
the transient Stokes problem. For methods of standard pressure stabilized Petrov–
Galerkin (PSPG) or Galerkin least squares (GLS) type, the analysis of time-discretiza-
tion schemes is a difficult issue, unless a space-time approach is applied with a
discontinuous Galerkin discretization in time. Indeed, for standard finite difference
type time discretizations, the finite difference term must be included in the stabiliza-
tion operator to ensure consistency (see, e.g., [11, 23]). It has been shown in [3] that
even for first order backward difference (BDF1) schemes this perturbs the stability
of the numerical scheme when the time step is small, unless the following condition
between the space mesh size and the time step is verified:

(1.1) δt ≥ Ch2,

where δt denotes the time step and h the space discretization parameter. For higher
order schemes, such as Crank–Nicholson or second order backward differencing, the
strongly consistent scheme appears to be unstable (see, e.g., [1]). Similar initial time-
step instabilities were observed in [19] for the algebraic (static) subscale stabilization
scheme applied to the Navier–Stokes equations, and they were cured by including
time dependent subscales.

Our goal in this work is to consider a fairly large class of pressure stabiliza-
tion methods and show that convergence of velocities and pressures, for the tran-
sient Stokes problem, can be obtained without conditions on the space- and time-
discretization parameters (like (1.1)), provided the initial data are chosen as a
specific (method-dependent) Ritz-projection (see, e.g., [33, 34]) onto a space of dis-
cretely divergence-free functions. Discretely divergence-free should here be interpreted
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in the sense of the stabilized method. If, on the other hand, the initial data are chosen
as some interpolant that does not conserve the discrete divergence-free character, the
condition

(1.2) δt ≥ C̃h2k,

with k the polynomial degree of the velocity approximation space, has to be respected
in order to avoid pressure oscillations in the transient solution for small times.

Although the stability conditions (1.1) and (1.2) are similar, their natures are dif-
ferent. As mentioned above, if (1.2) fails to be satisfied, pressure instabilities appear
when dealing with nondiscrete divergence-free initial velocity approximation, but they
are not related to the structure of the pressure stabilization. For residual-based stabi-
lization methods (PSPG, GLS, etc.) on the other hand, the finite difference/pressure
coupling of the stabilization perturbs the coercivity of the discrete pressure operator
(see [3]) unless condition (1.1) is satisfied (irrespective of the divergence-free character
of the initial velocity approximation).

The analysis carried out in this paper is valid not only for pressure stabilization op-
erators that are symmetric and weakly consistent but also for standard methods using
inf-sup stable velocity/pressure pairs, but it does not apply to residual-based pres-
sure stabilizations (PSPG, GLS, etc.). In particular, space and time discretizations
commute (i.e., lead to the same fully discrete scheme) for the methods we analyze.

We prove unconditional stability of velocities and pressures and optimal con-
vergence (in natural norms) when the initial data are chosen as a certain Ritz-type
projection. In the case when a standard interpolation of the initial data is applied, an
inverse parabolic Courant–Friedrich–Lewy (CFL)-type condition must be respected in
order to maintain pressure stability for small time steps. We give the full analysis only
for the backward difference formula of order one, and we indicate how the analysis
changes in the case of second order approximations in time. Indeed, any A-stable
implicit scheme is expected to yield optimal performance.

The remainder of the paper is organized as follows. In the next section we intro-
duce the problem under consideration and some useful notation. The space- and
time-discretized formulations are introduced in section 3. In subsection 3.1, the
space discretization is formulated using a general framework; we also discuss how
some known pressure stabilized finite element methods enter this setting. The time
discretization is performed in subsection 3.2 using the first order backward difference
(BDF1), Crank–Nicholson, and second order backward difference (BDF2) schemes.
Section 4 is devoted to the stability analysis of the resulting fully discrete formula-
tions. The convergence analysis for the BDF1 scheme is carried out in section 5. We
illustrate the theoretical results with some numerical experiments in section 6, using
interior penalty stabilization of the gradient jumps. Finally, some conclusions are
given in section 7.

2. Problem setting. Let Ω be a domain in R
d (d = 2 or 3) with a polyhedral

boundary ∂Ω. For T > 0 we consider the problem of solving, for u : Ω× (0, T ) −→ R
d

and p : Ω× (0, T ) −→ R, the following time-dependent Stokes problem:

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu− νΔu + ∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.
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Here, f : Ω × (0, T ) −→ R stands for the source term, u0 : Ω −→ R
d for the initial

velocity, and ν > 0 for a given constant viscosity. In order to introduce a variational
setting for (2.1) we consider the following standard velocity and pressure spaces:

V
def= [H1

0 (Ω)]d, H
def= [L2(Ω)]d, Q

def= L2
0(Ω),

normed with

‖v‖H def= (v,v)
1
2 , ‖v‖V def= ‖ν 1

2 ∇v‖H , ‖q‖Q def= ‖ν− 1
2 q‖H ,

where (·, ·) denotes the standard L2-inner product in Ω.
Problem (2.1) can be formulated in weak form as follows: For all t > 0, find

u(t) ∈ V and p(t) ∈ Q such that

(2.2)

⎧⎪⎪⎨
⎪⎪⎩

(∂tu,v) + a(u,v) + b(p,v) = (f ,v) a.e. in (0, T ),

b(q,u) = 0 a.e. in (0, T ),

u(·, 0) = u0 a.e. in Ω

for all v ∈ V , q ∈ Q and with

a(u,v) def= (ν∇u,∇v), b(p,v) def= −(p,∇ · v).
From these definitions, the following classical coercivity and continuity estimates hold:

(2.3) a(v,v) ≥ ‖v‖2V , a(u,v) ≤ ‖u‖V ‖v‖V , b(v, q) ≤ ‖v‖V ‖q‖Q
for all u,v ∈ V and q ∈ Q. It is known (see, e.g., [22]) that if f ∈ C0([0, T ];H)
and that u0 ∈ V ∩ H0(div; Ω), problem (2.2) admits a unique solution (u, p) in
L2(0, T ;V )× L2(0, T ;Q) with ∂tu ∈ L2(0, T ;V ′).

Thoroughout this paper, C stands for a generic positive constant independent of
the physical and discretization parameters.

3. Space and time discretization. In this section we discretize problem (2.2)
with respect to the space and time variables. Symmetric pressure stabilized finite
elements are used for the space discretization (subsection 3.1), and some known A-
stable schemes are used for the time discretization (subsection 3.2).

3.1. Space semidiscretization: Symmetric pressure stabilized formula-
tions. Let {Th}0<h≤1 denote a shape-regular family of triangulations of the domain
Ω. For each triangulation Th, the subscript h ∈ (0, 1] refers to the level of refinement
of the triangulation, which is defined by

h
def= max

K∈Th

hK ,

with hK the diameter of K. In order to simplify the analysis, we assume that the
family of triangulations {Th}0<h≤1 is quasi uniform. For more precise information on
the constraint on the mesh, we refer the reader to the analysis of the various finite
element methods in the steady case; see subsection 3.1.1.

In this paper, we let Xk
h and M l

h denote, respectively, the standard spaces of
continuous and (possibly) discontinuous piecewise polynomial functions of degree k ≥
1 and l ≥ 0 (k − 1 ≤ l ≤ k),

Xk
h

def=
{
vh ∈ C0(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

M l
h

def=
{
qh ∈ L2(Ω) : qh|K ∈ Pl(K) ∀K ∈ Th

}
.
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For the approximated velocities, we will use the space [V kh ]d def= [Xk
h ∩H1

0 (Ω)]d, and

for the pressure, we will use either Qlh
def= M l

h ∩L2
0(Ω) or Qlh

def= M l
h ∩L2

0(Ω)∩C0(Ω).
In order to stabilize the pressure we introduce a bilinear form j : Qh × Qh −→ R

satisfying the following properties:
• Symmetry:

(3.1) j(ph, qh) = j(qh, ph) ∀ph, qh ∈ Qlh;
• continuity:

(3.2) |j(ph, qh)| ≤ j(ph, ph) 1
2 j(qh, qh)

1
2 ≤ C‖ph‖Q‖qh‖Q ∀ph, qh ∈ Qlh;

• weak consistency:

(3.3) j(Πl
hq,Π

l
hq)

1
2 ≤ Ch

sp

ν
‖q‖sp,Ω ∀q ∈ Hs(Ω),

with sp
def= min{s, l̃, l + 1}, l̃ ≥ 1, denoting the order of weak consistency of

the stabilization operator, and Πl
h : Q −→ Qlh a given projection operator

such that

(3.4) ‖q −Πl
hq‖Q ≤

C

ν
1
2
hl+1‖q‖l+1,Ω

for all q ∈ H l+1(Ω).
Finally, we assume that there exists a projection operator Ikh : V −→ V kh satisfying
the following approximation properties:

‖v − Ikhv‖H + hν−
1
2 ‖v − Ikhv‖V ≤ CIhru‖v‖ru,Ω,(3.5)

|b(qh,v − Ikhv)| ≤ Cj(qh, qh)
1
2

(
ν

1
2 ‖h−1(v − Ikhv)‖H + ‖v − Ikhv‖V

)
(3.6)

for all v ∈ [Hr(Ω)]d, ru = min{r, k + 1}, and (qh,vh) ∈ Qlh × [V kh ]d.
Our space semidiscretized scheme reads as follows: For all t ∈ (0, T ), find (uh(t), ph(t)) ∈

[V kh ]d ×Qlh such that

(3.7)
(∂tuh,vh) + a(uh,vh) + b(ph,vh)− b(qh,uh) + j(ph, qh) = (f ,vh),

uh(0) = u0
h,

for all (vh, qh) ∈ [V kh ]d ×Qlh and with u0
h a suitable approximation of u0 in [V kh ]d.

The following modified inf-sup condition states the stability of the discrete pres-
sures in (3.7).

Lemma 3.1. There exists two constants C, β > 0, independent of h and ν, such
that

(3.8) sup
vh∈[V k

h ]d

|b(qh,vh)|
‖vh‖V + Cj(qh, qh)

1
2 ≥ β‖qh‖Q

for all qh ∈ Qlh.
Proof. Let qh ∈ Qlh; from [25, Corollary 2.4] and (3.5) there exists vq ∈ H1

0 (Ω)
such that ∇ · vq = ν−1qh and

(3.9) ‖Ikhvq‖V ≤ C‖vq‖V ≤ C‖qh‖Q.
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On the other hand, using (3.6), we have

‖qh‖2Q = b(qh,vq)

= b(qh,vq − Ikhvq) + b(qh, Ikhvq)

≤ Cj(qh, qh) 1
2

(
‖ν 1

2 h−1(v − Ikhv)‖H + ‖v − Ikhv‖V
)

+ b(qh, Ikhvq)

≤ Cj(qh, qh) 1
2 ‖qh‖Q + b(qh, Ikhvq).

We conclude the proof by dividing this last inequality by ‖Ikhvq‖V and using (3.9).
The above lemma ensures the well-posedness of problem (3.7). This is stated in

the following theorem.
Theorem 3.2. The discrete problem (3.7) with u0

h ∈ V div
h,k

def= {vh ∈ V kj :
b(qh,vh) = 0 for all qh ∈ Qh∩Ker j} has a unique solution (uh, ph) ∈ C1

(
(0, T ]; [V kh ]d

)×
C0
(
(0, T ];Qkh

)
.

To facilitate the analysis we introduce the following (mesh-dependent) seminorm,
which is a norm for the velocity and a seminorm for the pressure:

(3.10) |||(vh, qh)|||2h def= ‖vh‖2V + j(qh, qh).

Remark 3.3. If the velocity/pressure finite element pair V kh /Q
k
h is inf-sup stable,

we can take j(·, ·) def= 0 in (3.7), as usual. Obviously, this choice is compatible with
hypothesis (3.1)–(3.3) so that the results of this paper still apply. In particular, the
relation (3.8) becomes the standard inf-sup condition between V kh and Qkh.

3.1.1. Examples. In this section we will review some of the most well-known
pressure projection stabilization methods and discuss how they enter the abstract
framework of the previous subsection. For detailed results on analysis for the respec-
tive methods, we refer the reader to the references considering the stationary case.

Recently, several different weakly consistent symmetric pressure stabilized finite
element methods have been proposed. These methods take their origin from the
works of Silvester [32] and Codina and Blasco [17]. Further developments include
the work by Becker and Braack [2] on local projection schemes; the extension of the
interior penalty method, using penalization of gradient jumps, to the case of pressure
stabilization by Burman and Hansbo [14]; and the interpretation of these methods as
minimal stabilization procedures by Brezzi and Fortin [9]. Similar approaches have
been advocated in Dohrmann and Bochev in [21], and a review of the analysis (with
special focus on discontinuous pressure spaces and the Darcy problem) is given in [12].

The main idea underpinning all these methods is that, when using a velocity-
pressure space pair Vh × Qh, the inf-sup stability constraint on the spaces may be
relaxed by the addition of an operator penalizing the difference between the discrete
pressure variable and its projection onto a subspace Q̃h ⊂ Qh, such that Vh × Q̃h is
inf-sup stable. The penalization may either act directly on the pressure, as in [21, 12],
or on the gradient of the pressure, as in [2, 18, 14]. Generally speaking, the pressure
approximation properties of the numerical scheme will be given by Q̃h, expressed
in the weak consistency satisfied by the penalty operator. For the Oseen’s problem,
some of these methods may be extended to include high Reynolds number effects (see,
e.g., [13, 6, 16]). The advantages and disadvantages of symmetric weakly consistent
pressure stabilization methods compared to GLS or PSPG approaches is discussed in
a recent review paper [7].
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The methods of Brezzi and Pitkäranta, Silvester, and Dohrmann and
Bochev. The original pressure stabilized finite element method was proposed by
Brezzi and Pitkäranta in [10]. Here, the velocity and pressure discrete spaces are
chosen as the standard finite element space of piecewise affine continuous functions,
[V 1
h ]d ×Q1

h. The operator j(·, ·) is given by

(3.11) j(ph, qh) =
(
h2

ν
∇ph,∇qh

)
.

A variant of this method was recently proposed by Dohrmann and Bochev in [21],
using an equivalent stabilization operator, namely,

(3.12) j(ph, qh) =
(

1
ν

(I − π0)ph, (I − π0)qh

)
,

where π0 : Q −→ Q0
h denotes the (elementwise) projection onto piecewise constants.

Property (3.6) is verified after an integration by parts, with I1
h simply the Scott–Zhang

interpolant onto [V 1
h ]d (see, e.g., [31, 22]),

b(qh,v − I1
hv) = (∇qh,v − I1

hv)

≤ j(qh, qh) 1
2

(
h−1ν

1
2 ‖v − I1

hv‖H + ‖v − I1
hv‖V

)
.

One readily verifies that (3.2) and (3.3) hold. Moreover, in both cases (3.11) and
(3.12), the weak consistency property holds (with l̃ = 1),

j(Π1
hp,Π

1
hp)

1
2 ≤ C

ν
1
2
h‖p‖1,Ω,

with Π1
h being, for instance, the L2-projection onto Q1

h (we could use instead the
Clément [15] or Scott–Zhang interpolants). Indeed, for (3.11) we apply the H1-
stability of the L2-projection (see, e.g., [22, 20, 8, 5]), whereas for (3.12) we add
and subtract suitable terms (p and π0p) and use the approximation properties of π0

and Π1
h (see, e.g., [22]). As a result, our analysis for the time discretization is valid.

Another low order scheme, covered by the analysis, is the method which consists
of using piecewise affine continuous velocities and elementwise constants pressures,
[V 1
h ]d × Q0

h; see, e.g., [27]. Stability is obtained by the addition of the jump over
element faces of the discontinuous pressure, namely,

j(ph, qh) =
∑
K∈Th

∫
∂K\∂Ω

h

ν
[[ph]][[qh]].

Here, [[qh]] denotes the jump of qh over the interelement boundary, defined by

[[qh]](x) def= lim
ε→0

(qh(x+ εn)− qh(x− εn)) ∀x ∈ F,
with n standing for a fixed, but arbitrary, normal to the internal face F . In this
case, (3.6) is obtained after an integration by parts in the term b(qh,v−I1

hv) and an
elementwise trace inequality (see, e.g., [22]),

b(qh,v − I1
hv) = −

∑
K

∫
∂K\∂Ω

[[qh]](v − I1
hv) · n

≤ j(qh, qh) 1
2

(
h−1ν

1
2 ‖v − I1

hv‖H + ‖v − I1
hv‖V

)
.
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In addition, by taking, for instance, Π0
h as the L2-projection onto Q0

h, using an el-
ementwise trace inequality and the approximation properties of Π0

h (see, e.g., [22]),
one also easily shows that the weak consistency property holds,

j(Π0
hp,Π

0
hp)

1
2 = j

(
(I −Π0

h)p, (I −Π0
h)p
) 1

2 ≤ C

ν
1
2
h‖p‖1,Ω,

and hence l̃ = 1.
For details on the cases of stabilization of the pressure jumps only in macro-

elements, or the generalization to higher order finite element spaces of the Taylor–
Hood family with discontinuous pressures, we refer the reader to [12].

Orthogonal subscale stabilization. The orthogonal subscale stabilization was
proposed by Codina and Blasco in [17]. Equal order (k = l ≥ 1) continuous approxi-
mation spaces are used for the velocities and the pressures.

Here the main idea is to penalize the difference between the pressure gradient
and its projection onto the finite element space. This imposes the introduction of an
auxiliary variable for the projection since it may not be localized and is given only
implicitly. Hence, the stabilization operator is given by

j(ph, qh) =
(
h2

ν
(∇ph − πkh∇ph),∇qh

)
,

where πkh : [L2(Ω)]d −→ [V kh ]d stands for the L2-projection onto [V kh ]d, which is given
as the solution of the (global) problem

(πkh∇ph, ξh) = (∇ph, ξh) ∀ξh ∈ [V kh ]d.

One may readily show that (3.2) and (3.3) hold. Disregarding for simplicity the
boundary conditions, the projection operator Ikh = πkh of (3.6) is here chosen also
as the L2-projection onto [V kh ]d. This can be justified if boundary conditions are
imposed weakly, for instance, using Nitsche’s method (see [29, 24]), and V kh includes
the degrees of freedom on the boundary. Indeed, then we have

(3.13)
b(qh,v − Ikhv) = (∇qh − πkh∇qh,v − Ikhv)

≤ j(qh, qh) 1
2

(
h−1ν

1
2 ‖v − Ikhv‖H + ‖v − Ikhv‖V

)
.

Finally, by taking Πkh : Q −→ Qkh as the L2-projection onto Qkh, adding and subtract-
ing suitable terms (∇p and πkh∇p), and using the approximation properties of πkh and
Πk
h (see, e.g., [22]), one readily verifies the weak consistency

j(Πk
hp,Π

k
hp)

1
2 =

h

ν
1
2

∥∥(I − πkh)∇Πk
hp
∥∥

0,Ω
≤ C

ν
1
2
hsp‖p‖sp,Ω,

for all p ∈ Hs(Ω) and with sp = min{k + 1, s}. In particular, l̃ = l = k. The above
analysis is hence valid also in this case (with some modifications of a technical nature
due to the weakly imposed boundary conditions).

Local projection stabilization. In the local projection stabilization proposed
in [2], stability is obtained by penalizing the projection of the gradient onto piecewise
discontinuous functions defined on patches consisting of several elements, obtained by
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using hierarchic meshes, or by penalizing the gradient of the difference of the pressure
and its projection on polynomials of lower polynomial order. The construction relies
on the inf-sup stability of a velocity/pressure pair typically of mini-element character
or of the Taylor–Hood family. Similar ideas were advocated in [21]. The stabilization
operator is written as

j(ph, qh) =
∑
K̃

(
h2

ν
κ∇ph, κ∇qh

)
,

where κ is the so-called fluctuation operator defined as κ def= I − π̃h, where π̃h denotes
a local projection operator onto either a polynomial of order k on a macropatch
consisting of three triangles (or four quadrilaterals) or a polynomial of order k − 1
on the element. One may show that (3.6), (3.2), and (3.3) hold (for details on the
construction of Ikh , see [2, 6], and for general conditions on the finite element spaces
and stabilization operators, see [28]). In the case when we consider the projection π̃h
onto polynomials of order k − 1, the stabilization operator may be written as

(3.14) j(ph, qh) =
∑
K̃

(
h2

ν
∇(κph),∇(κqh)

)
,

or, equivalently, following [21], as

j(ph, qh) =
∑
K̃

(
1
ν
κ ph, κ qh

)
.

In these latter cases, condition (3.6) is obtained by choosing Ikh as the Fortin inter-
polation operator associated with [V kh ]d × Q̃h, where Q̃h is the space of continuous
piecewise polynomial functions of order k − 1. Clearly, we then have

b(qh,v − Ikhv) = b(κqh,v − Ikhv)

≤ j(qh, qh) 1
2

(
h−1ν

1
2 ‖v − Ikhv‖H + ‖v − Ikhv‖V

)
,

since b(q̃h,v−Ikhv) = 0 for all q̃h ∈ Q̃h. The form (3.14) is treated in a similar fashion
after an integration by parts. On the other hand, by taking Πlh : Q −→ Qlh as the
L2-projection operator onto Qlh and using approximation properties of Πl

h and π̃h, we
have

j(Πl
hp,Π

l
hp)

1
2 ≤ j((I −Πl

h)p, (I −Πl
h)p
) 1

2 + j(p, p)
1
2

≤ C

ν
1
2
hsp‖p‖sp,Ω ∀p ∈ Hs(Ω),

where sp = min{l̃, s, l + 1} and l̃ − 1 denotes the polynomial order of the space on
which the local projection is taken. Clearly, if we project on polynomials of order
k− 1, the stabilization operator loses one order in the weak consistency; however, the
estimates remain optimal since we expect the velocities to be one order more regular
than the pressure.
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Continuous interior penalty (CIP) stabilization. The CIP stabilization
for the stationary Stokes problem was proposed in [14] and generalized to Oseen’s
problem in [13]. It uses equal order continuous approximation spaces for velocities
and pressures (k = l ≥ 1) and relies on the fact that the component of the pressure
gradient orthogonal to the finite element space may be controlled by the gradient
jumps using an interpolation estimate between discrete spaces. Indeed, it was shown
in [13] that the following inequality holds:

(3.15) ‖h(∇ph − ĩ∇ph)‖2H ≤
∑
K∈Th

∫
∂K\∂Ω

h3
K [[∇ph · n]]2

for a certain Clément-type quasi-interpolation operator ĩ. This motivates the use of
the pressure stabilization operator

j(ph, qh) =
∑
K∈Th

∫
∂K\∂Ω

h3

ν
[[∇ph · n]][[∇qh · n]].

Clearly (3.2) and (3.3) are verified in this case. Moreover, (3.6) may be shown to
hold if Ikh is chosen to be the L2-projection onto [V kh ]d and boundary conditions are
imposed weakly [13]. To show the inequality we combine (3.13) with (3.15). Finally,
by taking Πk

h as the L2-projection onto Qkh, since [[Ckh∇p]] = 0 (with Ckh the Clément
interpolant onto [Xk

h ]d), using an elementwise trace inequality, adding and subtracting
∇p, and using the approximation properties of Ckh and Πk

h , one readily verifies (see
[13, Lemma 4.7]) the weak consistency

j(Πk
hp,Π

k
hp)

1
2 ≤ C h

ν
1
2
‖∇Πk

hp− Ckh∇p‖0,Ω

≤ C

ν
1
2
hsp‖p‖sp,Ω ∀p ∈ Hs(Ω),

with sp = min{k + 1, s}, so that l̃ = l = k.
We refer the reader to [13] for the details on the technical issue related to the

weak imposition of the boundary conditions using Nitsche’s method.

3.1.2. The Ritz-projection operator. For the purpose of the stability and
convergence analysis below we introduce the Ritz-projection operator

Sk,lh : [H1(Ω)]d × L2(Ω) −→ V kh ×Qlh.

For each (u, p) ∈ [H1(Ω)]d×L2(Ω), the projection Sk,lh (u, p) def=
(
P kh (u, p), Rlh(u, p)

) ∈
[V kh ]d ×Qlh is defined as the unique solution of

(3.16)

{
a(P kh (u, p),vh) + b(Rlh(u, p),vh) = a(u,vh) + b(p,vh),

−b(qh, P kh (u, p)) + j(Rlh(u, p), qh) = 0

for all (vh, qh) ∈ [V kh ]d ×Qlh.
Problem (3.16) is well-posed thanks to the inf-sup condition (3.8); in particular,

we have the following a priori stability estimate:

(3.17) ||| (P kh (u, p), Rlh(u, p)
) |||2

h
≤ C (‖u‖2V + ‖p‖2Q

)
,
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with C > 0 a constant independent of h and ν.
Finally, we have the following approximation result.
Lemma 3.4. Let (u, p) ∈ C1([0, T ], [Hr(Ω) ∩ H1

0 (Ω))]d ∩ H0(div; Ω) × Hs(Ω))
with r ≥ 2 and s ≥ 1. The following error estimate for the projection Sk,lh holds with
α = 0, 1 :

|||(∂αt (u − P kh (u, p)), ∂αt R
l
h(u, p)

)|||
h
≤ C

(
ν

1
2 hru−1‖∂αt u‖ru,Ω + ν−

1
2hsp‖∂αt p‖sp,Ω

)
,

‖p−Rlh(u, p)‖Q ≤ C
(
ν

1
2 hru−1‖u‖ru,Ω + ν−

1
2hsp‖p‖sp,Ω

)

for all t ∈ [0, T ] and with ru
def= min{r, k + 1} and sp

def= min{s, l̃, l + 1}, and C > 0
independent of ν and h. Moreover, provided the domain Ω is sufficiently smooth and,
if l̃ ≥ 1, there also holds

(3.18) ‖∂αt (u− P kh (u, p))‖H ≤ Ch|||(∂αt (u− P kh (u, p)), ∂αt R
l
hp)|||h.

Proof. For simplicity we here use the notation uh
def= P kh (u, p) and ph

def= Rlh(u, p).
From (3.10), the V -coercivity of a(·, ·) (see (2.3)), and the orthogonality provided by
(3.16), we have

|||(uh − Ikhu, ph −Πl
hp
)|||2
h

=a(u− Ikhu,uh − Ikhu) + b(p−Πl
hp,uh − Ikhu)

+ b(ph −Πl
hp,u− Ikhu) + j(Πl

hp, ph −Πl
hp).

Finally, using (2.3) and (3.6), we have that

|||(uh − Ikhu, ph −Πl
hp
)|||2
h
≤ (‖u− Ikhu‖V + ‖p−Πl

hp‖Q
) ‖uh − Ikhu‖V

+C
(
ν

1
2 ‖h−1(u− Ikhu)‖H + ‖u− Ikhu‖V + j(Πl

hp,Π
l
hp)

1
2

)
j(ph −Πl

hp, ph − Πk
l p)

1
2 .

We obtain the estimation for the velocity (α = 0) using the approximation properties
of Ikh and Πl

h (see (3.5) and (3.4)) and the weak consistency (3.3) of the stabilizing
term j(·, ·). The convergence for the time derivative (α = 1) is obtained in a similar
fashion after the time derivation of (3.16).

For the pressure estimate, we use the generalized inf-sup condition (3.8) and the
orthogonality provided by (3.16). We then have

β‖Πl
hp− ph‖Q

≤ sup
vh∈[V k

h ]d

b(Πl
hp− ph,vh)
‖vh‖V + Cj(Πl

hp− ph,Πl
hp− ph)

1
2

≤ sup
vh∈[V k

h ]d

b(Πk
hp− p,vh)− a(u− uh,vh)

‖vh‖V + Cj(Πl
hp− ph,Πl

hp− ph)
1
2 .

We conclude by using the continuity of a(·, ·) and b(·, ·), approximability, the weak
consistency of j(·, ·), and the previous error estimate. For a proof of the optimality
in the H-norm, see, e.g., [13, Theorem 4.14].
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3.2. Fully discrete formulation: Time discretization. In this subsection
we discretize (3.7) with respect to the time variable. To this end, we will use some
known A-stable time discretization schemes for ODEs.

Let N ∈ N
∗ be given. We consider a uniform partition {[tn, tn+1]}0≤n≤N−1, with

tn
def= nδt, of the time interval of interest [0, T ] with time-step size δt def= T/N . The

discrete pair (unh, p
n
h) stands for an approximation of (u(tn), p(tn)) in [V kh ]d ×Qlh.

First order backward difference formula (BDF1). By introducing the first
order backward difference quotient

D̄un+1
h

def=
un+1
h − unh
δt

,

our first fully discrete scheme reads as follows: For 0 ≤ n ≤ N−1, find (un+1
h , pn+1

h ) ∈
[V kh ]d ×Qlh such that

(3.19) (D̄un+1
h ,vh) + a(un+1

h ,vh) + b(pn+1
h ,vh)− b(qh,un+1

h )

+ j(pn+1
h , qh) = (f (tn+1),vh)

for all (vh, qh) ∈ V kh ×Qlh and with u0
h a suitable approximation of u0 in [V kh ]d.

Crank–Nicholson scheme. Let us consider now the scheme given by the fol-
lowing: For 0 ≤ n ≤ N − 1, find (un+1

h , p
n+ 1

2
h ) ∈ [V kh ]d ×Qlh such that

(3.20) (D̄un+1
h ,vh) + a(un+ 1

2
h ,vh) + b(pn+ 1

2
h ,vh)− b(qh,un+ 1

2
h )

+ j(pn+ 1
2

h , qh) = (fn+ 1
2 ,vh)

for all (vh, qh) ∈ [V kh ]d × Qlh, where un+ 1
2

h
def= 1

2 (un+1
h + unh) and u0

h is a suitable
approximation of u0 in [V kh ]d.

Remark 3.5. Note that (3.20) uniquely determines un+1
h , since u0

h is given. For
the pressure, however, neither pn+1

h nor pnh is used in (3.20). Therefore, by working

with pn+ 1
2

h as the pressure variable, we do not need to provide an initial condition for
the pressure. On the other hand, we do not have an approximation of pn+1

h unless
one is constructed by extrapolation.

Second order backward difference (BDF2). Finally, by considering the sec-
ond order backward difference quotient

D̃un+1 def=
1

2δt
(3un+1

h − 4unh + un−1
h ),

we obtain the following BDF2 scheme: For 1 ≤ n ≤ N − 1, find (un+1
h , pn+1

h ) ∈
[V kh ]d ×Qlh such that

(3.21) (D̃un+1
h ,vh) + a(un+1

h ,vh) + b(pn+1
h ,vh)− b(qh,un+1

h )

+ j(pn+1
h , qh) = (fn+1,vh)

for all (vh, qh) ∈ [V kh ]d × Qlh and (u1
h, p

1
h) ∈ [V kh ]d × Qlh given by the first step of

backward Euler scheme (3.19).
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4. Stability. In this section we analyze the stability properties of the fully dis-
crete schemes introduced in subsection 3.2. For the sake of simplicity, full details
will be given only for the backward scheme (3.19). Nevertheless, in subsection 4.2,
we will discuss how the results extend to the second order time-stepping schemes
Crank–Nicholson and BDF2.

4.1. First order A-stable scheme. The next result provides the unconditional
stability of the velocity. It also provides a uniform estimate for the pressure, in terms
of the discrete velocity time derivative. Theorem 4.2 points out the role of the initial
velocity approximation on the stability of the velocity time derivative approxima-
tions. Finally, Corollary 4.3 states the (conditional or unconditional) stability of the
pressure, depending on the choice of the initial velocity approximation.

Theorem 4.1. Let u0
h be a given H-stable approximation of u0 in [V kh ]d, and

let {(unh , pnh)}Nn=1 be the solution of the fully discrete problem (3.19). The following
estimate holds for 1 ≤ n ≤ N :

(4.1)

‖unh‖2H +
n−1∑
m=0

δt|||(um+1
h , pm+1

h )|||2h ≤ C‖u0‖2H +
C2

P

ν

n−1∑
m=0

δt‖f(tm+1)‖2H ,

n−1∑
m=0

δt‖pm+1
h ‖2Q

≤ C

β2

n−1∑
m=0

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1

∥∥D̄um+1
h

∥∥2

H
+ ν−1‖f(tm+1)‖2H

)
,

with CP > 0 the Poincaré constant.
Proof. Taking vh = un+1

h and qh = pn+1
h in (3.19), using the coercivity of the

bilinear form, the Cauchy–Schwarz inequality, and the Poincaré inequality, we have

(4.2) (D̄un+1
h ,un+1

h ) +
1
2
|||(un+1

h , pn+1
h )|||2h ≤

C2
P

2ν
‖f(tn+1)‖2H .

Now, recalling that

(4.3) (D̄un+1
h ,un+1

h ) =
1
2
D̄‖un+1

h ‖2H +
1

2δt
‖un+1

h − unh‖2H ,

we have

D̄‖un+1
h ‖2H + |||(un+1

h , pn+1
h )|||2h ≤

C2
P

ν
‖f(tn+1)‖2H ,

leading to, after summation over 0 ≤ m ≤ n− 1,

‖unh‖2H +
n−1∑
m=0

δt|||(um+1
h , pm+1

h )|||2h ≤ ‖u0
h‖2H +

C2
P

ν

n−1∑
m=0

δt‖f(tm+1)‖2H .

For the pressure estimate, from (3.8), (3.19) (with qh = 0) and the Poincaré
inequality, we have

β‖pn+1
h ‖Q ≤ C

(
|||(un+1

h , pn+1
h )|||h + ν−

1
2 ‖D̄un+1

h ‖H + ν−
1
2 ‖f(tn+1)‖H

)
,
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which completes the proof.
The next theorem states some a priori estimates of the approximations of the

velocity time derivative.
Theorem 4.2. Let {(unh , pnh)}Nn=1 be the solution of the fully discrete problem

(3.19).
• If u0 ∈ [H1(Ω)]d and u0

h = P kh (u0, 0), the following estimate holds for 1 ≤
n ≤ N :

(4.4)
n−1∑
m=0

δt‖D̄um+1
h ‖2H + |||(unh, pnh)|||2h ≤ C

(
‖u0‖2V +

n−1∑
m=0

δt‖f(tm+1)‖2H
)
.

• If u0 ∈ [Hr(Ω) ∩H1
0 (Ω)]d ∩H0(div; Ω), r ≥ 2, and u0

h = Ikhu0, the following
estimate holds for 1 ≤ n ≤ N :

(4.5)
n−1∑
m=0

δt‖D̄um+1
h ‖2H + |||(unh, pnh)|||2h

≤ C
(
‖u0‖2V+νh2(ru−1)‖p1

h‖2Q+‖u0‖2ru,Ω+
n−1∑
m=0

δt‖f(tm+1)‖2H
)
,

with ru
def= min{k + 1, r}.

Proof. For 0 ≤ n ≤ N − 1, by taking vh = D̄un+1
h and qh = 0 in (3.19) and using

the Cauchy–Schwarz inequality, we have

(4.6)
1
2
‖D̄un+1

h ‖2H + a(un+1
h , D̄un+1

h ) + b(pn+1
h , D̄un+1

h ) =
1
2
‖f(tn+1)‖2H .

On the other hand, for 1 ≤ n ≤ N − 1, testing (3.19) at the time levels n and n+ 1
with vh = 0 and qh = pn+1

h , we have

(4.7)
b(pn+1

h ,un+1
h ) = j(pn+1

h , pn+1
h ),

b(pn+1
h ,unh) = j(pnh, p

n+1
h ).

Therefore, by subtracting these equalities and using the bilinearity of j(·, ·), we obtain

(4.8) b(pn+1
h , D̄un+1

h ) = j(D̄pn+1
h , pn+1

h )

for 1 ≤ n ≤ N − 1. It then follows from (4.6) that

(4.9)
1
2
‖D̄un+1

h ‖2H + a(un+1
h , D̄un+1

h ) + j(pn+1
h , D̄pn+1

h ) ≤ 1
2
‖f(tn+1)‖2H .

On the other hand, using the symmetry and bilinearity of a(·, ·) and j(·, ·), we have

a(un+1
h , D̄un+1

h ) =
1
2
D̄a(un+1

h ,un+1
h ) +

δt

2
a(D̄un+1

h , D̄un+1
h ),

j(pn+1
h , D̄pn+1

h ) =
1
2
D̄j(pn+1

h , pn+1
h ) +

δt

2
j(D̄pn+1

h , D̄pn+1
h ).

Hence,

‖D̄un+1
h ‖2H + D̄

(
a(un+1

h ,un+1
h ) + j(pn+1

h , pn+1
h )

) ≤ ‖f(tn+1)‖2H
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for 1 ≤ n ≤ N − 1. After multiplication by δt and summation over 1 ≤ m ≤ n− 1, it
follows that

(4.10)
n−1∑
m=1

δt‖D̄um+1
h ‖2H + |||(unh , pnh)|||2h ≤ |||(u1

h, p
1
h)|||2h +

n−1∑
m=1

δt‖f(tm+1)‖2H .

In order to highlight the impact of the initial velocity approximation on the
stability of the time derivative, we consider now the first time level (n = 0) of (3.19).
By testing with vh = D̄u1

h, qh = 0, after multiplication by 2δt and using the symmetry
and bilinearity of a(·, ·), we get

(4.11) δt‖D̄u1
h‖2H + a(u1

h,u
1
h)− a(u0

h,u
0
h) + 2δtb(p1

h, D̄u
1
h) ≤ δt‖f(t1)‖2H .

If the initial velocity approximation is given in terms of the Ritz-projection, u0
h =

P kh (u0, 0) with u0 ∈ [H1(Ω)]d, by setting p0
h

def= Rlh(u0, 0) it follows that (4.7) also
holds for n = 0. Therefore,

(4.12) b(p1
h, D̄u

1
h) = j(D̄p1

h, p
1
h).

Thus, from the symmetry and bilinearity of j(·, ·) and (4.11), we have

δt‖D̄u1
h‖2H + |||(u1

h, p
1
h)|||2h ≤ |||(u0

h, p
0
h)|||2h + δt‖f(t1)‖2H .(4.13)

Estimate (4.4) is obtained by adding this last inequality to (4.10) and using the
stability of the Ritz-projection (3.17), |||(u0

h, p
0
h)|||2h ≤ C‖u0‖2V .

If the initial velocity approximation is given in terms of a general interpolant,
u0
h = Ikhu0 with u0 ∈ [Hr(Ω) ∩H1

0 (Ω)]d ∩H0(div; Ω), equality (4.12) does not hold
in general. Instead, we can use an approximation argument to obtain

(4.14)
b(p1

h, D̄u
1
h) =

1
δt

(
j(p1

h, p
1
h)−

(
p1
h,∇ · (Ikhu0 − u0)

))

≥ 1
δt
j(p1

h, p
1
h)−

CI
δt

(
νh2(ru−1)‖p1

h‖2Q + ‖u0‖2ru,Ω

)
,

with ru
def= min{k + 1, r}. As a result, from (4.11) it follows that

δt‖D̄u1
h‖2H+|||(u1

h, p
1
h)|||2h ≤ a(u0

h,u
0
h)+CI

(
νh2(ru−1)‖p1

h‖2Q + ‖u0‖2ru,Ω

)
+δt‖f(t1)‖2H .

We conclude the proof by adding this equality to (4.10) and using the stability of the
Ritz-projection.

The next corollary solves the problem of the stability of the pressures by combin-
ing the results of Theorems 4.1 and 4.2.

Corollary 4.3. Let {(unh, pnh)}Nn=1 be the solution of the fully discrete problem
(3.19). Then

• if u0 ∈ [H1(Ω)]d and u0
h = P kh (u0, 0), the following estimate holds for 1 ≤

n ≤ N :

(4.15)
n−1∑
m=0

δt‖pm+1
h ‖2Q ≤

C

β2ν
‖u0‖2V

+
C

β2

n−1∑
m=0

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1‖f(tm+1)‖2H

)
.
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• if u0 ∈ [Hr(Ω) ∩H1
0 (Ω)]d ∩H0(div; Ω), r ≥ 2, u0

h = Ikhu0, and

(4.16)
2CI
β2

h2(ru−1) ≤ δt,

the following estimate holds for 1 ≤ n ≤ N :

(4.17)
n−1∑
m=0

δt‖pm+1
h ‖2Q ≤

C

β2ν

(‖u0‖2V + ‖u0‖2ru,Ω

)

+
C

β2

n−1∑
m=0

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1‖f(tm+1)‖2H

)
,

with ru
def= min{k + 1, r}.

Proof. Estimate (4.17) is a direct consequence of Theorem 4.1 and estimate (4.4).
On the other hand, from Theorem 4.1 and estimate (4.5), we have

(
β2δt− CIh2(ru−1)

)
‖p1
h‖2Q + β2

n−1∑
m=1

δt‖pm+1
h ‖2Q

≤ C

ν

(‖u0‖2V + ‖u0‖2ru,Ω

)
+ C

n−1∑
m=0

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1‖f(tm+1)‖2H

)
,

which combined with the stability condition (4.16) leads to (4.17).
A few observations are now in order. Corollary 4.3 states the unconditional sta-

bility of the pressure provided the initial velocity approximation u0
h is given in terms

of the Ritz-projection operator (3.16). In the general case, i.e., whenever u0
h does

not satisfy a discrete divergence-free condition (as u1
h does), only conditional stability

can be guaranteed. As a matter of fact, from the stability condition (4.16), pressure
instabilities are expected for very small time steps. This issue will be illustrated by
numerical experiments in section 6.

Finally, let us mention that residual-based stabilization methods, such as PSPG
and GLS, combined with finite difference time discretization schemes, are known to
give rise to pressure instabilities in the small time-step limit; see [3, 19]. Indeed, it
has been shown in [3] that the finite difference/pressure coupling of the stabilization
perturbs the coercivity of the discrete pressure operator unless a condition of the type

(4.18) Ch2 ≤ δt

is satisfied. It is worth emphasizing that, although the stability conditions (4.18)
and (4.16) are somehow similar, their natures are different. Actually, the instabilities
anticipated by Corollary 4.3 are related to the discrete divergence-free character of the
initial velocity approximation, but not to the structure of the pressure stabilization
j(·, ·).

4.2. Second order A-stable schemes. In this subsection we discuss how the
results of Theorems 4.1 and 4.2 and Corollary 4.3 extend to the second order time-
stepping schemes Crank–Nicholson and BDF2.
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Crank–Nicholson. The following theorem summarizes the resulting stability
estimates.

Theorem 4.4. Let u0
h be a given H-stable approximation of u0 in [V kh ]d, and

let {(unh, pnh)}Nn=1 be the solution of the discrete scheme (3.20). Then the following
estimate holds for 1 ≤ n ≤ N :

‖unh‖2H +
n−1∑
m=0

δt|||(um+ 1
2

h , p
m+ 1

2
h )|||

2

h ≤ C‖u0‖2H +
C2

P

ν

n−1∑
m=0

δt‖f(tm+ 1
2
)‖2H .

Moreover, if u0 ∈ [H1(Ω)]d and u0
h = P kh (u0, 0), the following estimate holds for

1 ≤ n ≤ N :

n−1∑
m=0

δt‖pm+ 1
2

h ‖2Q ≤
C

β2ν
‖u0‖2V +

C

β2

n−1∑
m=0

δt

(
|||(um+ 1

2
h , p

m+ 1
2

h )|||
2

h
+ ν−1‖f(tm+ 1

2
)‖2H

)
.

On the other hand, if u0 ∈ [Hr(Ω) ∩H1
0 (Ω)]d ∩H0(div; Ω), r ≥ 2, u0

h = Ikhu0, and
the stability condition (4.16) is satisfied, the following estimate holds for 1 ≤ n ≤ N :

n−1∑
m=0

δt‖pm+ 1
2

h ‖2Q ≤
C

β2ν

(‖u0‖2V + ‖u0‖2ru,Ω

)

+
C

β2

n−1∑
m=0

δt

(
|||(um+ 1

2
h , p

m+ 1
2

h )|||
2

h + ν−1‖f(tm+ 1
2
)‖2H

)
.

Proof. The first estimate, corresponding to Theorem 4.1, holds by taking vh =
u
n+ 1

2
h and qh = p

n+ 1
2

h in (3.20).
The pressure estimate requires an a priori bound of the discrete velocity time

derivative. As in Theorem 4.2, such an estimate can be obtained by taking vh =
D̄un+1

h and qh = 0 in (3.20) for 0 ≤ n ≤ N − 1. The main difference, with respect to

the proof of Theorem 4.2, arises in the treatment of the coupling term b(pn+ 1
2

h , D̄un+1
h ).

Indeed, in the Crank–Nicholson scheme incompressibility is enforced on un+ 1
2

h instead
of un+1

h . We first note that, since

un+1
h − unh = 2

(
u
n+ 1

2
h − unh

)
, unh = 2un−1+ 1

2
h − un−1

h ,

we have

un+1
h − unh = 2un+ 1

2
h + 4

n∑
l=1

(−1)lun−l+
1
2

h − (−1)n2u0
h

for 0 ≤ n ≤ N − 1. Therefore, from (3.20) and using the bilinearity of j(·, ·), we get

(4.19)
b(pn+ 1

2
h ,un+1

h − unh) =j

(
2pn+ 1

2
h + 4

n∑
l=1

(−1)lpn−l+
1
2

h , p
n+ 1

2
h

)

− 2(−1)nb
(
p
n+ 1

2
h ,u0

h

)
.
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On the other hand, for 0 ≤ n ≤ N − 1, we introduce the following change of variables
(or extrapolation):

1
2
(
pn+1
h + pnh

) def= p
n+ 1

2
h ,

with p0
h ∈ Qlh to be specified later on. By inserting this expression into (4.19), we

obtain

(4.20)
b(pn+ 1

2
h ,un+1

h − unh) =j
(
pn+1
h − pnh, pn+ 1

2
h

)

+ 2(−1)n
[
j
(
p0
h, p

n+ 1
2

h

)
− b(pn+ 1

2
h ,u0

h

)]
.

If u0
h = P kh (u0, 0) and we choose p0

h
def= Rlh(u0, 0), from (3.16)2 it follows that the

last term in (4.20) cancels. Thus, we have

b(pn+ 1
2

h , D̄un+1
h ) = j

(
D̄pn+1

h , p
n+ 1

2
h

)

=
1
2
D̄j
(
pn+1
h , pn+1

h

)
,

which corresponds to the Crank–Nicholson counterpart of (4.8).
Finally, when the initial velocity approximation is given in terms of a general

interpolant, u0
h = Ikhu0 with u0 ∈ [Hr(Ω) ∩H1

0 (Ω)]d ∩H0(div; Ω), we take p0
h

def= 0.
Therefore, from (4.20) and using an approximation argument (as in (4.14)), we get

(4.21)

b(pn+ 1
2

h , D̄un+1
h ) =

1
2
D̄j
(
pn+1
h , pn+1

h

)− 2
δt

(−1)nb
(
p
n+ 1

2
h ,u0

h

)

≥1
2
D̄j
(
pn+1
h , pn+1

h

)

− 2CI
δt

(
νh2(ru−1)‖pn+ 1

2
h ‖2Q + ‖u0‖2ru,Ω

)
,

which leads to the stability condition (4.16). The rest of the proof follows with minor
modifications.

Remark 4.5. By comparing the proofs of Corollary 4.3 and the previous theorem,
we can notice that, if the initial velocity approximation is not discretely divergence
free, the stability condition (4.16) has to be satisfied at each time level when using
the Crank–Nicholson scheme (due to (4.21)), whereas for the backward Euler scheme
that condition is needed only at the first time step (thanks to (4.8) and (4.14)).

BDF2. The following theorem summarizes the resulting stability estimates.
Theorem 4.6. Let u0

h be a given H-stable approximation of u0 in [V kh ]d, let
(u1
h, p

1
h) be the corresponding first time step of the backward Euler scheme (3.19), and

let {(unh, pnh)}Nn=2 be the solution of the discrete scheme (3.21). Then, the following
estimate holds for 2 ≤ n ≤ N :

‖unh‖2H + 2
n−1∑
m=1

δt|||(um+1
h , pm+1

h )|||2h ≤ C
(‖u0‖2H + ‖u1

h‖2H
)
+

2C2
P

ν

n−1∑
m=1

δt‖f(tm+1)‖2H .
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Moreover, if u0 ∈ [H1(Ω)]d and u0
h = P kh (u0, 0), the following estimate holds for

2 ≤ n ≤ N :

n−1∑
m=1

δt‖pm+1
h ‖2Q ≤

C

β2ν

(
‖u0‖2V + |||(u1

h, p
1
h)|||2h

)

+
C

β2

n−1∑
m=1

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1‖f(tm+1)‖2H

)
.

On the other hand, if u0 ∈ [Hr(Ω) ∩H1
0 (Ω)]d ∩H0(div; Ω), r ≥ 2, u0

h = Ikhu0, and
the stability condition (4.16) is satisfied, the following estimate holds for 2 ≤ n ≤ N :

n−1∑
m=1

δt‖pm+1
h ‖2Q ≤

C

β2ν

(
‖u0‖2V + ‖u0‖2ru,Ω + |||(u1

h, p
1
h)|||2h

)

+
C

β2

n−1∑
m=1

δt
(
|||(um+1

h , pm+1
h )|||2h + ν−1‖f(tm+1)‖2H

)
.

Proof. The first estimate, corresponding to Theorem 4.1, holds by taking vh =
un+1
h and qh = pn+1

h in (3.21) and applying the standard identity

(4.22) (3a− 4b+ c)a =
1
2
[
a2 − b2 + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2

]
,

which provides the numerical dissipation of the BDF2 scheme.
Since the pressure estimate is here based on the control of the time derivative,

D̃un+1
h , we take vh = D̃un+1

h and qh = 0 in (3.21). In particular, for the coupling
term b

(
pn+1
h , D̃un+1

h

)
, using (3.21) and (4.22), we have

(4.23)
b
(
pn+1
h , D̃un+1

h

)
= j
(
D̃pn+1

h , pn+1
h

)

≥ 1
4
D̄
(
j(pn+1

h , pn+1
h ) + j(2pn+1

h − pnh, 2pn+1
h − pnh)

)
for 2 ≤ n ≤ N − 1, which corresponds to the BDF2 counterpart of (4.8). On the
other hand, for n = 1, from (3.21) and (3.19), we obtain

(4.24) b
(
p2
h, D̃u

2
h

)
=

1
2δt

(
3j(p2

h, p
2
h)− 4j(p1

h, p
2
h) + b(p2

h,u
0
h)
)
.

If the initial velocity approximation is given in terms of the Ritz-projection, u0
h =

P kh (u0, 0), it follows that b(p2
h,u

0
h) = j(p0

h, p
2
h), with p0

h
def= Rlh(u0, 0). Thus, (4.24)

reduces to

b
(
p2
h, D̃u

2
h

)
= j(D̃p2

h, p
2
h),

so that (4.23) holds true also for n = 1.
Finally, if the initial velocity approximation is given in terms of a general in-

terpolant, u0
h = Ikhu0, we apply an approximation argument (as in (4.14)). Hence,
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from (4.24)

(4.25)

b
(
p2
h, D̃u

2
h

)
≥ 1

2δt

[
3j(p2

h, p
2
h)− 4j(p1

h, p
1
h)− CI

(
νh2(ru−1)‖p2

h‖2Q + ‖u0‖2ru,Ω

)]
,

which is the BDF2 counterpart of (4.14) and leads to the stability condition (4.16).
The rest of the proof follows with minor modifications.

Remark 4.7. A bound for the backward Euler initialization terms ‖u1
h‖H and

|||(u1
h, p

1
h)|||h, appearing in the above estimates, is provided by Theorems 4.1 and 4.2

with n = 1.
Remark 4.8. When the initial velocity approximation is not discretely divergence

free, the stability condition (4.16) has to be satisfied twice when using BDF2, at
the first time step (according to (4.25)) and at the backward Euler initialization (see
Theorem 4.2).

5. Convergence. In this section we provide optimal convergence error estimates
for the discrete formulation (3.19), the backward Euler scheme.

Theorem 5.2 concerns the convergence for the velocity and gives an estimate for
the pressure in terms of the error in the velocity time derivative. Theorem 5.3 an-
swers the question of optimal convergence of the pressure by providing an optimal
error estimate for the time derivative, provided the exact pressure is smooth. Fi-
nally, Theorem 5.4 provides an improved L∞((0, T ), H) estimate that justifies the
initialization of the BDF2 scheme with a backward Euler step.

The following result expresses the modified Galerkin orthogonality in terms of the
consistency error in space and time.

Lemma 5.1 (consistency error). Let (u, p) be the solution of (2.1) and let {(unh,
pnh)}0≤n≤N be the solution of (3.19). Assume that u ∈ C0

(
[0, T ];V

) ∩ C1
(
(0, T ];H

)
,

and let p ∈ C0
(
(0, T ];Q

)
. Then, for 0 ≤ n ≤ N − 1, there holds

(
D̄u(tn+1)− D̄un+1

h ,vh
)

+ a
(
u(tn+1)− un+1

h ,vh
)

+ b(p(tn+1)− pn+1
h ,vh)

− b(qh,u(tn+1)− un+1
h ) = j

(
pn+1
h , qh

)
+
(
D̄u(tn+1)− ∂tu(tn+1),vh

)
for all (vh, qh) ∈ [V kh ]d ×Qlh.

Theorem 5.2. Assume that u ∈ H1(0, T ; [Hr(Ω)]d)∩H2(0, T ; [L2(Ω)]d) and p ∈
C0((0, T ];Hs(Ω)) with r ≥ 2 and s ≥ 1, and set u0

h ∈ [V kh ]d as a given approximation
of u0. Then the following estimate holds for 1 ≤ n ≤ N :

‖unh − u(tn)‖2H +
n−1∑
m=0

δt|||(um+1
h − u(tm+1), pm+1

h )|||2h ≤ ‖Ikhu0 − u0
h‖2H

+ Ch2ru

(
‖u‖2C0([t1,tn];Hru (Ω)) + ν−1‖∂tu‖2L2(0,tn;Hru (Ω))

)

+ C
(δt2
ν
‖∂ttu‖2L2(0,tn;H) +

h2sp

ν
tn‖p‖2C0([t1,tn];Hsp (Ω))

+ νh2(ru−1)tn‖u‖2C0([t1,tn];Hru (Ω))

)
,
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n−1∑
m=0

δt‖pm+1
h − p(tm+1)‖2Q ≤ C

(
1 +

1
β2

)
h2sp

ν
tn‖p‖2C0([t1,tn];Hsp (Ω))

+
C

β2

n−1∑
m=0

δt
(
|||(um+1

h − u(tm+1), pm+1
h )|||2h + ν−1

∥∥∂tu(tm+1)− D̄um+1
h

∥∥2

H

)
,

with C > 0 a positive constant independent of h, δt, and ν.
Proof. The error estimate for the velocity follows standard energy arguments, and

for the pressure we use the modified inf-sup condition (3.8). We start by decomposing
the velocity and pressure error using, respectively, the projections Ikh and Πl

h. This
yields

(5.1)

u(tn+1)− un+1
h = u(tn+1)− Ikhu(tn+1)︸ ︷︷ ︸

θn+1
π

+ Ikhu(tn+1)− un+1
h︸ ︷︷ ︸

θn+1
h

= θn+1
π + θn+1

h ,

p(tn+1)− pn+1
h = p(tn+1)−Πl

hp(tn+1)︸ ︷︷ ︸
yn+1
π

+ Πl
hp(tn+1)− pn+1

h︸ ︷︷ ︸
yn+1
h

= yn+1
π + yn+1

h .

The first term θn+1
π can bounded using approximation (3.5). In order to estimate

θn+1
h we first note, using (4.3) and the coercivity of the bilinear form a(·, ·) + j(·, ·),

(5.2)
1
2
D̄‖θn+1

h ‖2H + |||(θn+1
h , yn+1

h )|||2h ≤ (D̄θn+1
h ,θn+1

h ) + |||(θn+1
h , yn+1

h )|||2h
≤ (D̄θn+1

h ,θn+1
h ) + a(θn+1

h ,θn+1
h ) + b(yn+1

h ,θn+1
h )− b(yn+1

h ,θn+1
h ) + j(yn+1

h , yn+1
h )︸ ︷︷ ︸

T n+1
1

.

In addition, using (5.1) we have

T n+1
1 =− (D̄θn+1

π ,θn+1
h )− a(θn+1

π ,θn+1
h ) + j(Πl

hp(tn+1), yn+1
h )− b(yn+1

π ,θn+1
h )

+ b(yn+1
h ,θn+1

π ) + (D̄u(tn+1)− D̄un+1
h ,θn+1

h ) + a(u(tn+1)− un+1
h ,θn+1

h )

+ b(p(tn+1)− pn+1
h ,θn+1

h )− b(yn+1
h ,u(tn+1)− un+1

h )− j(pn+1
h , yn+1

h ).

By the modified Galerkin orthogonality (Lemma 5.1), this expression reduces to

(5.3)

T n+1
1 =− (D̄θn+1

π ,θn+1
h ) +

(
D̄u(tn+1)− ∂tu(tn+1),θn+1

h

)
− a(θn+1

π ,θn+1
h ) + j(Πl

hp(tn+1), yn+1
h )− b(yn+1

π ,θn+1) + b(yn+1
h ,θn+1

π ).

Now, using the Cauchy–Schwarz and the Poincaré inequalities and (3.6), we have

(5.4) T n+1
1 ≤ (‖D̄u(tn+1)− ∂tu(tn+1)‖H + ‖D̄θn+1

π ‖H
)

︸ ︷︷ ︸
T n+1

2

CP

ν
1
2
|||(θn+1

h , yn+1
h )|||

+
(
‖θn+1

π ‖V + ‖yn+1
π ‖Q + ν

1
2 ‖h−1θn+1

π ‖H

+j
(
Πl
hp(tn+1),Πl

hp(tn+1)
) 1

2
)
|||(θn+1

h , yn+1
h )|||.
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The term T n+1
2 can be treated, in a standard way (see, e.g., [30]), using a Taylor

expansion and the Cauchy–Schwarz inequality, which yields

(5.5)
T n+1

2 ≤ 1
δt

∫ tn+1

tn

(δt‖∂ttu(s)‖H + ‖∂tθπ(s)‖H) ds

≤ δt 1
2 ‖∂ttu(s)‖L2((tn,tn+1);H) + δt−

1
2 ‖∂tθπ‖L2((tn,tn+1);H).

Thus, from (5.4), using Young’s inequality, it follows that

T n+1
1 ≤ 1

2
|||(θn+1

h , yn+1
h )|||2

+ C

[
C2

P

ν

(
δt‖∂ttu‖2L2((tn,tn+1);H) + δt−1‖∂tθπ‖2L2((tn,tn+1);H)

)

+ ‖θn+1
π ‖2V + ‖yn+1

π ‖2Q + ν‖h−1θn+1
π ‖2H + j

(
Πl
hp(tn+1),Πl

hp(tn+1)
)]
.

By inserting this expression into (5.2), multiplying the resulting expression by 2δt,
and summing over 0 ≤ m ≤ n− 1, we obtain

‖θnh‖2H +
n−1∑
m=0

δt|||(θm+1
h , ym+1

h )|||2
h

≤ ‖θ0
h‖2H + C

[
δt2ν−1‖∂ttu‖2L2(0,tn;H) + ν−1‖∂tθπ‖2L2(0,tn;H)

+
n−1∑
m=0

δt

(
‖θm+1

π ‖2V + ‖ym+1
π ‖2Q + ν‖h−1θm+1

π ‖2H + j
(
Πl
hp(tm+1),Πl

hp(tm+1)
))]

.

Finally, the velocity error estimate is obtained using approximation (3.5) and the
consistency of the pressure stabilization (3.3), which yields

‖θnh‖2H +
n−1∑
m=0

δt|||(θm+1
h , ym+1

h )|||2h ≤ ‖θ0
h‖2H

+ C

[
δt2

ν
‖∂ttu‖2L2(0,tn;H) +

h2ru

ν
‖∂tu‖2L2(0,tn;Hru (Ω))

+ νh2(ru−1)
n−1∑
m=0

δt‖u(tm+1)‖2ru,Ω +
h2sp

ν

n−1∑
m=0

δt‖p(tm+1)‖2sp,Ω

]
.

For the pressure error estimate we first note that, from (5.1), it suffices to control
‖yn+1
h ‖0,Ω. To this end, we use the modified inf-sup condition (3.8):

(5.6) β‖yn+1
h ‖Q ≤ sup

vh∈[V k
h ]d

|b(yn+1
h ,vh)|
‖vh‖V + Cj(yn+1

h , yn+1
h )

1
2 .

From (5.1) we get

b(yn+1
h ,vh) = −b(yn+1

π ,vh) + b(p(tn+1)− pn+1
h ,vh).
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The first term can be bounded, using the continuity of b(·, ·) (see (2.3)), which yields

b(yn+1
π ,vh) ≤ ‖yn+1

π ‖Q‖vh‖V .
On the other hand, using the modified Galerkin orthogonality (Lemma 5.1 with qh =
0) we have

b(p(tn+1)− pn+1
h ,vh)

= −a(u(tn+1)− un+1
h ,vh

)− (∂tu(tn+1)− D̄un+1
h ,vh

)
≤ C|||(u(tn+1)− un+1

h , 0)|||h‖vh‖V + ‖∂tu(tn+1)− D̄un+1
h ‖H‖vh‖H .

As a result, from the above estimations we have

β‖yn+1
h ‖Q ≤ C

(‖yn+1
π ‖Q + |||(u(tn+1)− un+1

h , yn+1
h )|||h

)
+
CP

ν
1
2
‖∂tu(tn+1)−D̄un+1

h ‖H .

Therefore,

β2
n−1∑
m=0

δt‖ym+1
h ‖2Q ≤C

n−1∑
m=0

δt
(
‖ym+1
π ‖2Q + |||(u(tm+1)− um+1

h , ym+1
h )|||2h

+ ν−1‖∂tu(tm+1)− D̄um+1
h ‖2H

)
,

and we conclude using approximation and the error estimate for the velocity.
We solve the problem of the pressure convergence by providing an error estimate

for the time derivative of the velocity.
Theorem 5.3. Under the assumptions of Theorem 5.2, assuming that p ∈

C0([0, T ];Hs(Ω)), u0 ∈ V ∩ H0(div; Ω), and u0
h

def= P kh (u0, 0), for 1 ≤ n ≤ N we
have
n−1∑
m=0

δt
∥∥D̄um+1

h − ∂tu(tm+1)
∥∥2

H
+ |||(P kh (u(tn), p(tn)

)− unh, Rlh(u(tn), p(tn)
)− pnh)|||2h

≤ C
(
δt2‖∂ttu‖2L2(0,T ;H) + h2ru‖∂tu‖2L2(0,T ;Hru (Ω))

)
+ C

h2sp

ν
‖p(0)‖2sp,Ω.

Proof. In order to provide an optimal error estimate, we decompose the error in
terms of the Ritz-projection operator (3.16) as follows:

(5.7)

u(tn+1)− un+1
h = u(tn+1)− P kh (u(tn+1), p(tn+1))︸ ︷︷ ︸

θn+1
π

+P kh (u(tn+1), p(tn+1))− un+1
h︸ ︷︷ ︸

θn+1
h

= θn+1
π + θn+1

h ,

p(tn+1)− pn+1
h = p(tn+1)−Rlh(u(tn+1), p(tn+1))︸ ︷︷ ︸

yn+1
π

+Rlh(u(tn+1), p(tn+1))− pn+1
h︸ ︷︷ ︸

yn+1
h

= yn+1
π + yn+1

h .
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Using the triangle inequality, we then have

(5.8)
n−1∑
m=0

δt‖∂tu(tm+1)− D̄um+1
h ‖2H

≤ C
n−1∑
m=0

δt
(‖∂tu(tm+1)− D̄u(tm+1)‖2H + ‖D̄θm+1

π ‖2H + ‖D̄θm+1
h ‖2H

)
.

For the first term, we proceed as in (5.5) using a Taylor expansion, which yields

‖∂tu(tn+1)− D̄u(tn+1)‖H ≤ δt 1
2 ‖∂ttu(s)‖L2((tn,tn+1);H).

For the second term, we have

(5.9) ‖D̄θn+1
π ‖H =

1
δt

∫ tn+1

tn

‖∂tθπ(s)‖Hds ≤ δt− 1
2 ‖∂tθπ‖L2((tn,tn+1);H).

Finally, for the third term we use the modified Galerkin orthogonality (Lemma 5.1
with qh = 0) and the definition of the Ritz-projection (3.16) to obtain

‖D̄θn+1
h ‖2H + a(θn+1

h , D̄θn+1
h ) + b(yn+1

h , D̄θn+1
h )

= −(D̄θn+1
π , D̄θn+1

h )− a(θn+1
π , D̄θn+1

h )

− b(yn+1
π , D̄θn+1

h ) + (D̄u(tn+1)− ∂tu(tn+1), D̄θn+1
h )

= −(D̄θn+1
π , D̄θn+1

h ) + (D̄u(tn+1)− ∂tu(tn+1), D̄θn+1
h ).

Young’s inequality yields

1
2
‖D̄θn+1

h ‖2H + a(θn+1
h , D̄θn+1

h ) + b(yn+1
h , D̄θn+1

h )

≤ C (‖D̄θn+1
π ‖2H + ‖D̄u(tn+1)− ∂tu(tn+1)‖2H

)
.

In addition, for 0 ≤ n ≤ N , testing (3.16) at the time level n with vh = 0, we have

(5.10) b
(
qh, P

k
h (u(tn), p(tn))

)
= j
(
Rlh(u(tn), p(tn)), qh

)
.

On the other hand, for 1 ≤ n ≤ N , testing (3.19) at the time level n with vh = 0 and
since, by definition, u0

h
def= P kh (u0, 0), we have

(5.11) b(qh,unh) = j(pnh, qh)

for all qh ∈ Qlh and 0 ≤ n ≤ N and where we have defined p0
h

def= Rlh(u0, 0). As a
result, from (5.10)–(5.11), we have

b(qh,θnh) = j(ynh , qh)

for all qh ∈ Qlh and 0 ≤ n ≤ N . We therefore have, for 0 ≤ n ≤ N − 1,

b(yn+1
h , D̄θn+1

h ) = j(D̄yn+1
h , yn+1

h ).
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On the other hand, using the symmetry of a and j, we have

a(θn+1
h , D̄θn+1

h ) =
1
2
D̄a(θn+1

h ,θn+1
h ) +

δt

2
a(D̄θn+1

h , D̄θn+1
h ),

j(yn+1
h , D̄yn+1

h ) =
1
2
D̄j(yn+1

h , yn+1
h ) +

δt

2
j(D̄yn+1

h , D̄yn+1
h ),

so that

1
2
‖D̄θn+1

h ‖2H +
1
2
D̄
(
a(θn+1

h ,θn+1
h ) + j(yn+1

h , yn+1
h )

)
≤ ‖D̄θn+1

π ‖2H + ‖D̄u(tn+1)− ∂tu(tn+1)‖2H .
Thus, after multiplication by 2δt and summation over 0 ≤ n ≤ N − 1, we have

n−1∑
m=0

δt‖D̄θm+1
h ‖2H + |||(θnh , ynh)|||2h(5.12)

≤ |||(θ0
h, y

0
h)|||

2

h + C

n−1∑
m=0

δt
(‖D̄θm+1

π ‖2H + ‖D̄u(tm+1)− ∂tu(tm+1)‖2H
)
.

For the initial terms, we use the linearity of the Ritz-projection and its approxi-
mation properties (Lemma 3.4) to obtain

|||(θ0
h, y

0
h)|||

2

h = |||(P kh (0, p(0)), Rlh(0, p(0)))|||2h

≤ C

ν
h2sp‖p(0)‖2sp,Ω.

Therefore, using (5.9) and (5.5), we have

n−1∑
m=0

δt‖D̄θm+1
h ‖2H + |||(θnh, ynh)|||2h ≤ C

(
h2sp

ν
‖p(0)‖2sp,Ω + δt2‖∂ttu‖2L2(0,tn;H)

)

for 1 ≤ n ≤ N .
Finally, for completeness, we here give a result of optimal convergence in the

L∞((0, T ), H)-norm. For this we assume that the domain Ω is such that the optimal
convergence in the H-norm holds for the Ritz-projection (see Lemma 3.4). This result
is of importance since it shows that the initialization of the BDF2 method using one
BDF1 step is justified (i.e., we keep error optimality in time).

Theorem 5.4. Assume that the domain Ω is sufficiently smooth so that the H-
estimate (3.18) holds. Assume also that u ∈ H1(0, T ; [Hr

u(Ω)]d)∩H2(0, T ; [L2(Ω)]d),
p ∈ C0([0, T ];Hsp(Ω)) with ru ≥ 2, sp ≥ 1, u0 ∈ V ∩H0(div; Ω), and u0

h
def= P kh (u0, 0).

Then the following estimate holds for 1 ≤ n ≤ N :

‖u(tn)− unh‖H ≤
C

ν
1
2

(
hru‖u0‖ru,Ω + hsp+1‖p(0)‖sp,Ω

+ hru‖∂tu‖L1(0,tn;Hru (Ω)) + δt‖∂ttu‖L1(0,tn;H)

)
.
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Proof. Since the proof is similar to that of Theorem 5.3 and we will give only the
outline. Let θn+1

h and yn+1
h be defined as in (5.7). From (5.2) and (5.3), it follows

that

(D̄θn+1
h ,θn+1

h ) ≤ −(D̄θn+1
π ,θn+1

h ) + (D̄u(tn+1)− ∂tu(tn+1),θn+1
h ).

Applying now the Cauchy–Schwarz inequality, we have

‖θn+1
h ‖H ≤ ‖θnh‖H + δt

(‖D̄θn+1
π ‖H + ‖D̄u(tn+1)− ∂tu(tn+1)‖H

)
,

and by summation over n, we get

‖θnh‖H ≤ ‖θ0
h‖H +

n−1∑
m=0

δt
(‖D̄θn+1

π ‖H + ‖D̄u(tn+1)− ∂tu(tn+1)‖H
)

for 1 ≤ n ≤ N . The first term in the right-hand side can be estimated using Lemma 3.4
since, by definition,

(5.13) θ0
h = P kh (u(0), p(0))− u0

h = P kh (u0, p(0))− P kh (u0, 0) = P kh (0, p(0)).

Finally, for the finite difference consistency terms we use a standard argument (see,
e.g., [34, Theorem 1.5, page 14]).

Remark 5.5. From (5.13), one could pretend to initialize the time-stepping pro-
cedure with u0

h = P kh (u0, p(0)) (as in [33], for instance). In practice, however, the
initial pressure is unknown, so that the choice u0

h = P kh (u0, 0) is more convenient.
Lemma 3.4 shows that we can preserve optimality while keeping this choice (see also
[4]).

Remark 5.6. Note that the above convergence proofs use only stability, Galerkin
orthogonality, and the truncation error of the finite difference time approximation
scheme. Hence the extension to the second order Crank–Nicholson or BDF2 scheme
is straightforward. In particular we recall that the estimate of Theorem 5.4 shows
that the initialization using one BDF1 step does not make the convergence deterio-
rate, provided the solution is sufficiently smooth under the first time step. Indeed,
for smooth solutions we expect ‖∂ttu‖L1(0,δt;H) to be O(δt), and hence the global
convergence will be second order in spite of the initial low order perturbation.

6. Numerical experiments. In this section we will consider some numerical
examples using the CIP stabilization, described in subsection 3.1.1. We present com-
putations demonstrating the optimal convergence using finite element spaces con-
sisting of quadratic functions, for the space discretization, BDF1, BDF2, and the
Crank–Nicholson scheme for the time discretization. We also verify numerically that,
for small time steps, the pressure is unstable for initial data that are not discretely
divergence free. All computations have been performed using FreeFem++ [26].

6.1. Convergence rate in time. We consider problem (2.1) in two dimensions,
Ω = [0, 1]× [0, 1] and T = 1, with nonhomogeneous boundary conditions. The right-
hand side f and the boundary and initial data are chosen in order to ensure that the
exact solution is given by

u(x, y, t) = g(t)

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
,

p(x, y, t) = g(t)
(
sin(x) cos(y) + (cos(1)− 1) sin(1)

)
,
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with g(t) = 1 + t5 + e−
t
10 + sin(t).

In order to illustrate the convergence rate in time of the discrete solution, we
have used quadratic approximations in space and a mesh parameter h = 0.01. In
this case, the stability condition (4.16) is always satisfied for the range of time steps
considered. Thus, the choice of the Lagrange interpolant or of the Ritz-projection as
approximation of the initial velocity give similar results.

In Figures 1(a)–(c) we report the convergences of the errors for the velocities
(‖·‖L∞(0,T ;L2(Ω))) and the pressures (‖·‖L2(0,T ;L2(Ω))) for the BDF1, Crank–Nicholson,
and BDF2 schemes. In all the numerical examples, both the velocities and the pres-
sures converge at the optimal rate (O(δt) for BDF1 and O(δt2) for Crank–Nicholson
and BDF2). The BDF2 scheme was initialized using one step of BDF1.

6.2. Behavior in the small time-step limit. In this subsection we illustrate
the impact of the initial velocity approximation on the approximate pressures for
small time steps. For nondiscrete divergence-free initial approximations, a pressure
instability is predicted by Corollary 4.3 unless condition (4.16) is satisfied. In other
words, pressure instabilities are expected for very small time steps.

We consider problem (2.1) in two dimensions and with nonhomogeneous boundary
conditions. We set Ω = [0, 1] × [0, 1], and the right-hand side f and the boundary
data are chosen in order to ensure that the exact (steady) solution is given by

u(x, y, t) =

(
sin(πx − 0.7) sin(πy + 0.2)
cos(πx − 0.7) cos(πy + 0.2)

)
,

p(x, y, t) = sinx cos y + (cos(1)− 1) sin(1).

This numerical experiment is, in some degree, motivated by the work reported
in [3] (see also [19]), where pressure instabilities, of a different nature, are illustrated
for pressure stabilizations involving residuals of the PDEs (e.g., PSPG and GLS).
Indeed, the time derivative involved in the residual perturbs the coercivity of the space
semidiscrete operator, which leads to pressure instabilities for (sufficiently) small time
steps (see [3]). Let us emphasize that, according to section 4, such instabilities do not
appear here, in particular since the CIP pressure stabilization (and the other examples
of subsection 3.1.1) are consistent without introducing the time derivative.

For different initial velocity approximations, we compare the behavior of the error
in the pressure after one time step of the backward Euler scheme, i.e.,

δt
1
2 ‖p(t1)− p1

h‖Q.

We choose the initial data either as the Lagrange interpolant, u0
h = Ikhu0, or as the

Ritz-projection, u0
h = P kh (u0, 0).

In Figure 2 we have reported the convergence history (in space) of the pressure
error, at the first time step, using P1/P1 finite elements for different time step sizes.
The pressure instability for small time steps is illustrated in Figure 4(a), where the
initial velocity approximation is given in terms of the Lagrange interpolant. Indeed,
we can observe that the pressure error has the right convergence rate in space, but it
grows when the time step is decreased. On the other hand, as shown in Figure 4(b),
the instability is eliminated when the initial velocity approximation is provided by the
Ritz-projection, as stated in Corollary 4.3. In this case the error remains bounded
(dominated by the space discretization) while reducing the time-step size.
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(a) BDF1 scheme

(b) Crank–Nicholson

(c) BDF2 scheme

Fig. 1. Convergence history in time: P2/ P2 CIP stabilized finite elements.

Similar results are found with P2/P2 finite elements, as shown in Figure 3. In
particular, we can notice, from Figures 2(a) and 3(a), that for quadratic approxima-
tions the pressure instability shows up only for very small time steps. As a matter
of fact, condition (4.16) is less restrictive for quadratic than for affine velocity ap-
proximations of smooth initial data. Finally, some pressure contours are reported in
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(a) Lagrange interpolant u0
h = I1hu0 (b) Ritz-projection u0

h = P 1
h(u0, 0)

Fig. 2. Convergence history: P1/P1 finite elements.

(a) Lagrange interpolant u0
h = I2hu0 (b) Ritz-projection u0

h = P 2
h(u0, 0)

Fig. 3. Convergence history: P2/P2 finite elements.

(a) δt = 10−1 (b) δt = 10−6

Fig. 4. Pressure contour lines with P2/P2 finite elements in a 40 × 40 mesh: u0
h = I2hu0.

Figure 4 for the Lagrange interpolation, and in Figure 5 for the Ritz-projection. The
pressure degradation is clearly visible in Figure 4, whereas with the Ritz-projection
initialization (Figure 5) the pressure remains unconditionally stable.

7. Conclusion. In this paper we have proved unconditional stability and opti-
mal error estimates, in natural norms, for pressure stabilized finite element approx-
imations of the transient Stokes problem. It should be noted that the extension of
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(a) δt = 10−1 (b) δt = 10−6

Fig. 5. Pressure contour lines with P2/P2 finite elements in a 40 × 40 mesh: u0
h = P 2

h(u0, 0).

the present results to mixed formulations of the Poisson problem is straightforward.
We have shown that for small initial time steps the use of a pressure stabilization
dependent Ritz-projection, for the initial data, is essential to avoid pressure instabili-
ties, unless a condition between time and space discretization parameters is satisfied.
From the analysis, we also conclude that a second order scheme (e.g., BDF2) can be
initialized (without optimality loss) using a first step with BDF1, provided that the
Ritz-projection (3.16) is used for the initial data.

It is interesting to note that for low order elements the weakly consistent stabiliza-
tion operators still yield optimal convergence in time when used with a second order
scheme. However, in the case when streamline upwind Petrov–Galerkin (SUPG)-type
stabilization is used for the convective term, the convergence order in time will be lost
unless full consistency is guaranteed in the stabilization term. This is why SUPG-
type stabilizations prompt space time finite element formulations with discontinuous
approximation in time.

Some of the methods described in subsection 3.1.1, on the other hand, may be
extended to the case of Oseen’s equations, handling all Reynolds numbers, by applying
the same type of stabilizing term for the convection (see [13, 6, 16, 7] for details).
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QUADRATURE FORMULAS ON THE SPHERE∗
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Abstract. The purpose of this paper is to construct universal, auto-adaptive, localized, linear,
polynomial (-valued) operators based on scattered data on the (hyper) sphere Sq (q ≥ 2). The ap-
proximation and localization properties of our operators are studied theoretically in deterministic as
well as probabilistic settings. Numerical experiments are presented to demonstrate their superiority
over traditional least squares and discrete Fourier projection polynomial approximations. An essen-
tial ingredient in our construction is the construction of quadrature formulas based on scattered data,
exact for integrating spherical polynomials of (moderately) high degree. Our formulas are based on
scattered sites; i.e., in contrast to such well-known formulas as Driscoll–Healy formulas, we need not
choose the location of the sites in any particular manner. While the previous attempts to construct
such formulas have yielded formulas exact for spherical polynomials of degree at most 18, we are
able to construct formulas exact for spherical polynomials of degree 178.

Key words. quadrature formulas, localized kernels, polynomial quasi interpolation, learning
theory on the sphere
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1. Introduction. The problem of approximation of functions on the sphere
arises in almost all applications involving modeling of data collected on the surface of
the earth. More recent applications such as manifold matching and neural networks
have led to the approximation of functions on the unit sphere S

q embedded in the Eu-
clidean space R

q+1 for integers q ≥ 3 as well. Various applications in learning theory,
meteorology, cosmology, and geophysics require analysis of scattered data collected
on the sphere [9, 7, 8]. This means that the data is of the form {(ξ, f(ξ))} for some
unknown function f : S

q → R, where one has no control on the choice of the sites ξ.
There are many methods to model such data: spherical splines, radial basis func-

tions (called zonal function networks in this context), etc. However, the most tradi-
tional method is to approximate by spherical polynomials, i.e., restrictions of algebraic
polynomials in q+1 variables to S

q. Apart from tradition, some important advantages
of polynomials are that they are eigenfunctions of many pseudodifferential operators
which arise in practical applications and that they are infinitely smooth. Unlike in
the case of spline approximation with a given degree of the piecewise component poly-
nomials, global polynomial approximation does not exhibit a saturation property [2,
section 2, Chapter 11]; i.e., for an arbitrary sequence δn ↓ 0, it is possible to find a con-
tinuous function on the sphere, not itself a polynomial, which can be approximated by
spherical polynomials of degree at most n uniformly within δn, n ≥ 1. In [21, 19], we
have shown how a good polynomial approximation also yields a good zonal function
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network approximation. In [20], we have shown that the approximation spaces deter-
mined by zonal function network approximation are the same as those determined by
polynomial approximations.

To illustrate the issues to be discussed in this paper, we consider an example in
the case q = 1 or, equivalently, the case of 2π-periodic functions on the real line. In
this discussion only, let f(x) = | cosx|1/4, x ∈ R. In Figure 1 (left), we show the
log-plot of the absolute errors between f and its (trigonometric) Fourier projection
of order 31, where the Fourier coefficients are estimated by a 128 point DFT. In Fig-
ure 1 (right), we show a similar log-plot where the Fourier projection is replaced by
a suitable summability operator (described more precisely in (3.1)), yielding again a
trigonometric polynomial of order 31. It is clear that our summability operator is far
more localized than the Fourier projection; i.e., the error in approximation decreases
more rapidly as one goes away from the singularities at π/2 and 3π/2. The maximum
error on [3π/4, 5π/4] is 0.0103 for the projection, and 0.0028 for our operator. Out
of the 2048 points considered for the test, the error by the summability operator is
less than 10−3 at 38.96% points, the corresponding percentage for the projection is
only 4.88%. In contrast to free-knot spline approximation, our summability operator
is universal; i.e., its construction (convolution with a kernel) does not require any a
priori knowledge about the location of singularities of the target function. It yields a
single, globally defined trigonometric polynomial, computed using global data. Nev-
ertheless, it is auto-adaptive, in the sense that the error in approximation on different
subintervals adjusts itself according to the smoothness of the target function on these
subintervals. In [24, 25], we have given a very detailed analysis of the approximation
properties of these operators in the case q = 1.
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Fig. 1. The log-plot of the absolute error between the function f(x) = | cos x|1/2 and its Fourier
projection of order 31 (left). The log-plot of the absolute error between the function f and its
trigonometric polynomial approximation obtained by our summability operator (right). The numbers
on the x axis are in multiples of π; the actual absolute errors are 10y.

Our computation based on a 128 point DFT implies that the values of the function
are available at 128 equidistant points. If only scattered data is available, the following
method is often used (especially in the context of approximation on the sphere) to
estimate the values needed for the DFT. For each point ξ, we consider the nearest
point of the form 2πk/128 and imagine that the value of f at this point is f(ξ),
taking averages in the case of multiplicities and interpolating in the case of gaps. If
we use our summability operator, estimating the Fourier coefficients in this way, then
the maximum error on [3π/4, 5π/4] is 0.0357, and the proportion of points where the
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error is less than 10−3 is 7.08%. It is clear that a careful construction of quadrature
formulas is essential to obtaining good approximation results.

The purpose of this paper is to construct universal, auto-adaptive, localized, lin-
ear, polynomial (-valued) operators based on scattered data on S

q (q ≥ 2) and to
analyze their approximation properties. An essential ingredient in our construction is
the construction of quadrature formulas based on scattered data, exact for integrat-
ing spherical polynomials of (moderately) high degree, and satisfying certain technical
conditions known as the Marcinkiewicz–Zygmund (M–Z) conditions. Our construc-
tion is different from the usual construction of quadrature formulas (designs) studied
in numerical analysis, where one has a choice of the placement of nodes. In [22, 23],
we proved the existence of such quadrature formulas for scattered data. However,
previous efforts to compute such formulas did not yield exactness beyond degree 18
polynomials. This was a severe limitation on the practical applications of our the-
oretical constructions. We will show that a very simple idea of solving a system
of equations involving a Gram matrix yields surprisingly good results, in particular,
quadrature formulas exact for integrating polynomials of degree as high as 178. Gram
matrices are typically ill conditioned. However, we will show both theoretically and
numerically that the ones which we use are, in fact, very well conditioned. We will
introduce another algorithm of theoretical interest to compute data dependent or-
thogonal polynomials and use these to compute the quadrature formulas in a memory
efficient manner. To the best of our knowledge, this is the first effort to extend the
univariate constructions in Gautschi’s book [11] to a multivariate setting. Consider-
ing that computation of classical spherical harmonics is a very delicate task, requiring
many tricks based on the special function properties of these polynomials for a stable
computation, it is not expected that our computation of data dependent orthogonal
polynomials with no such special function properties would be stable. In describing
this algorithm, we hope to stimulate further research in this interesting direction. We
note that even if this algorithm is not as stable for high degrees as the other algorithm,
it yields satisfactory quadrature formulas exact for integrating polynomials of degree
32. Most importantly, our newfound ability to compute quadrature formulas for mod-
erately high degrees allows us to offer our operators as a viable, practical method of
approximation, even superior to the commonly used methods of least squares and
Fourier projection as far as localized approximation is concerned.

An additional problem is when the available values of the target function are noisy.
One may assume that the noise is an additive random variable with mean zero. It is
also routine in learning theory to assume that the random variables have a bounded
range. This assumption is usually satisfied with a high probability even if the random
variables do not actually have a bounded range. However, one does not typically know
the actual distribution of these random variables. We obtain probabilistic estimates
in this setting on the global and local approximations by our operators. To underline
the practical utility of our operators, we use them for modeling the MAGSAT data
supplied to us by Dr. Thorsten Maier, obtaining results comparable to those obtained
by other techniques.

In section 2, we review certain facts about spherical polynomials, the existence
of quadrature formulas to integrate these, a few properties of the quadrature weights,
and certain polynomial kernels which we will need throughout the paper. In section 3,
we study the approximation properties of the linear polynomial operators. The new
results here are Theorems 3.1 and 3.2. The first parts of these theorems were proved
essentially in [18], but were not stated in the form given here. In order to apply these
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operators in practice, one needs quadrature formulas exact for high degree spherical
polynomials. Explicit algorithms to construct such formulas are described in section 4.
The new results in this section are Theorems 4.1 and 4.2. Numerical results are
presented in section 5, and the proofs of all new results are given in section 6.

2. Background. In this section, we review some known results regarding spher-
ical polynomials and localized polynomial kernels.

2.1. Spherical polynomials. Let q ≥ 1 be an integer, S
q be the unit sphere em-

bedded in the Euclidean space R
q+1 (i.e., S

q := {(x1, . . . , xq+1) ∈ R
q+1 :

∑q+1
k=1 x

2
k =

1}), and μq be its Lebesgue surface measure, normalized so that μq(Sq) = 1. The
surface area of S

q is 2π(q+1)/2

Γ((q+1)/2) . For δ > 0, a spherical cap with radius δ and center
x0 ∈ S

q is defined by

S
q
δ(x0) := {x ∈ S

q : arccos(x · x0) ≤ δ}.

If 1 ≤ p ≤ ∞, and f : S
q → R is measurable, we write

‖f‖p :=

⎧⎪⎪⎨
⎪⎪⎩
{∫

Sq

|f(x)|pdμq(x)
}1/p

if 1 ≤ p <∞,

ess sup
x∈Sq

|f(x)| if p =∞.

The space of all Lebesgue measurable functions on S
q such that ‖f‖p < ∞ will be

denoted by Lp, with the usual convention that two functions are considered equal as
elements of this space if they are equal almost everywhere. The symbol C(Sq) denotes
the class of all continuous, real-valued functions on S

q, equipped with the norm ‖◦‖∞.
For a real number x ≥ 0, let Πq

x denote the class of all spherical polynomials of
degree at most x. (This is the same as the class Πq

n, where n is the largest integer
not exceeding x. However, our extension of the notation allows us, for example, to
use the simpler notation Πq

n/2 rather than the more cumbersome notation Πq
�n/2�.)

For a fixed integer � ≥ 0, the restriction to S
q of a homogeneous harmonic polynomial

of exact degree � is called a spherical harmonic of degree �. Most of the following
information is based on [26], [33, section IV.2], and [5, Chapter XI], although we use
a different notation. The class of all spherical harmonics of degree � will be denoted
by Hq

� . The spaces Hq
� are mutually orthogonal relative to the inner product of L2.

For any integer n ≥ 0, we have Πq
n =

⊕n
�=0 Hq

� . The dimension of Hq
� is given by

d q� := dimHq
� =

⎧⎪⎨
⎪⎩

2�+ q − 1
�+ q − 1

(
�+ q − 1

�

)
if � ≥ 1,

1 if � = 0
(2.1)

and that of Πq
n is

∑n
�=0 d

q
� = d q+1

n . Furthermore, L2 = L2-closure
{⊕∞

�=0 Hq
�

}
.

Hence, if we choose an orthonormal basis {Y�,k : k = 1, . . . , dq�} for each Hq
� , then

the set {Y�,k : � = 0, 1, . . . and k = 1, . . . , d q�} is a complete orthonormal basis for L2.
One has the well-known addition formula [26] and [5, Chapter XI, Theorem 4]:

d q
�∑

k=1

Y�,k(x)Y�,k(ζ) =
2q−1Γ(q/2)2

Γ(q)
p�(1)p�(x · ζ), � = 0, 1, . . . ,(2.2)
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where p� := p
(q/2−1,q/2−1)
� is the orthonormalized Jacobi polynomial with positive

leading coefficient

∫ 1

−1

p�(t)pk(t)(1 − t2)q/2−1dt =

{
1 if � = k,
0 otherwise.

In particular, for x ∈ S
q, � = 0, 1, . . . ,

dq
�∑

k=1

Y 2
�,k(x) =

2q−1Γ(q/2)2

Γ(q)
p�(1)2 =

∫
Sq

dq
�∑

k=1

Y 2
�,k(ζ)dμq(ζ) = dq� .(2.3)

2.2. Localized polynomial kernels. Let h : [0,∞)→ R be a compactly sup-
ported function, and let t > 0. We define for u ∈ R

Φt(h;u) :=
2q−1Γ(q/2)2

Γ(q)

∞∑
�=0

h

(
�

t

)
p�(1)p�(u)(2.4)

and define Φt(h;u) = 0 if t ≤ 0.
In what follows, we adopt the following convention regarding constants. The

letters c, c1, . . .will denote generic, positive constants depending only on the dimension
q and other fixed quantities in the discussion such as the function h, the different norms
involved in the formula, etc. Their value will be different at different occurrences, even
within the same formula. The symbol A ∼ B will mean cA ≤ B ≤ c1A.

The following proposition summarizes some of the important properties of the
kernels defined in (2.4).

Proposition 2.1. Let S ≥ q be an integer, h : [0,∞)→ R be an S times iterated
integral of a function of bounded variation, h(x) = 1 for x ∈ [0, 1/2], h(x) = 0 for
x > 1, and h be nonincreasing. Let x ∈ S

q. We have, for every integer n ≥ 0,
Φn(h; ◦ · x) ∈ Πq

n and∫
Φn(h;x · ζ)P (ζ)dμq(ζ) = P (x), P ∈ Πn/2.(2.5)

Further,

sup
n≥1, ζ∈Sq

∫
|Φn(h; ζ · ξ)|dμq(ξ) = sup

n≥1

∫
|Φn(h;x · ξ)|dμq(ξ)

=
2πq/2

Γ(q/2)
sup
n≥1

∫ 1

−1

|Φn(h;u)|(1− u2)q/2−1du <∞,(2.6)

∫
|Φn(h;x · ξ)|2dμq(ξ) =

2πq/2

Γ(q/2)

∫ 1

−1

|Φn(h;u)|2(1− u2)q/2−1du

∼ nq ∼ max
ξ∈Sq
|Φn(h;x · ξ)| = |Φn(h; 1)|,(2.7)

and for every ξ ∈ S
q, ξ �= x,

|Φn(h;x · ξ)| ≤ cnq
{

(n
√

1− x · ξ)1/2−q/2−S if 0 ≤ x · ξ < 1,
n−S if − 1 ≤ x · ξ < 0.

(2.8)
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Except for (2.7), all parts of Proposition 2.1 have been proved and verified repeat-
edly in [17, 18, 12, 19]. We will sketch a proof of this proposition, mainly to reconcile
notation.

Proof of Proposition 2.1. Equation (2.5) and the first two equations in (2.6) are
clear. The last estimate in (2.6) follows from [17, Lemma 4.6] with the following
choice of the parameters there: α = β = q/2− 1, hν = h(ν/n), where we observe that
by a repeated application of the mean value theorem,

∞∑
ν=0

(ν + 1)s|Δrh(ν/n)| ≤ cns−r+1, s ∈ R, r, n = 1, 2, . . . ,

where Δr is the rth order forward difference applied with respect to ν. Similarly, the
estimate (2.8) follows from [17, Lemma 4.10] with the same parameters as above, S
in place of K in [17], and y = x ·ξ (cf. the appendix in [12]). We prove (2.7). The first
equation is a consequence of the rotation invariance of μq. In view of the addition
formula (2.2),

Φn(h;x · ξ) =
n∑
�=0

h

(
�

n

) dq
�∑

k=1

Y�,k(x)Y�,k(ξ).(2.9)

It follows, using (2.3) and the facts that h(�/n) = 1 for � ≤ n/2 and 0 ≤ h(t) ≤ 1 for
t ∈ [0,∞), that

∫
Φn(h;x · ξ)2dμq(ξ) =

n∑
�=0

h

(
�

n

)2 dq
�∑

k=1

Y�,k(x)2 =
n∑
�=0

h

(
�

n

)2

dq� ∼ nq.

Similarly, using the Schwarz inequality, (2.2), (2.3), and the fact that h(�/n) ≥ 0,

Φn(h; 1) = |Φn(h;x · x)| ≤ sup
ξ∈Sq

|Φn(h;x · ξ)|

≤
n∑
�=0

h

(
�

n

)⎧⎨
⎩

dq
�∑

k=1

Y�,k(x)2

⎫⎬
⎭

1/2 ⎧⎨
⎩

dq
�∑

k=1

Y�,k(ξ)2

⎫⎬
⎭

1/2

=
n∑
�=0

h

(
�

n

)
dq� = Φn(h; 1).

Since dq� ∼ �q−1, 0 ≤ h(�/n) ≤ 1, and h(�/n) = 1 for � ≤ n/2, the above two estimates
lead to (2.7).

In the remainder of this paper, h will denote a fixed function satisfying the con-
ditions of Proposition 2.1.

2.3. Quadrature formulas. Let C be a finite set of distinct points on S
q. A

quadrature formula based on C has the form Q(f) =
∑

ξ∈C wξf(ξ), where wξ, ξ ∈ C,
are real numbers. For integer n ≥ 0, the formula is exact for degree n if Q(P ) =∫

Sq Pdμq for all P ∈ Πq
n. It is not difficult to verify that if Qn(f) =

∑
wξnf(ξn) is a

sequence of quadrature formulas, with Qn being exact with degree n, then Qn(f)→∫
fdμq for every continuous function f on S

q if and only if
∑ |wξn | ≤ c, with c

being independent of n. In what follows, we will assume tacitly that C is one of the
members of a nested sequence of finite subsets of S

q, whose union is dense in S
q.

All the constants may depend upon the whole sequence, but not on any individual
member of this sequence. Thus, a formula Q will be called a bounded variation
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formula if
∑

ξ∈C |wξ| ≤ c, with the understanding that this is an abbreviation for the
concept described above with a sequence of quadrature formulas.

Definition 2.1. Let m ≥ 0 be an integer. The set C admits an M–Z quadrature
of order m if there exist weights wξ such that∫

Sq

P (x)dμq(x) =
∑
ξ∈C

wξP (ξ), P ∈ Πq
2m,(2.10)

and ⎛
⎝∑
ξ∈C
|wξ||P (ξ)|p

⎞
⎠

1/p

≤ c‖P‖p, P ∈ Πq
2m, 1 ≤ p <∞.(2.11)

The weights wξ will be called M–Z weights of order m. The condition (2.11) will be
referred to as the M–Z condition.

If C admits an M–Z quadrature of order m, and {wξ} are the weights involved, it
is clear from using (2.11) with the polynomial identically equal to 1 in place of P that∑

ξ∈C |wξ| ≤ c. Further, if ζ ∈ C, then applying (2.11) with p = 2 and Φm(h; ζ · ◦) in
place of P , we obtain for M–Z weights of order m:

|wζ |Φm(h; 1)2 ≤
∑
ξ∈C
|wξ|Φm(h; ζ · ξ)2 ≤ c

∫
Φm(h; ζ · x)2dμq(x).

The estimate (2.7) now implies that for all M–Z weights {wξ} of order m,

|wξ| ≤ cm−q, ξ ∈ C.(2.12)

In [22, 23], we proved that every finite set C ⊂ S
q admits an M–Z quadrature with

an order depending upon how dense the set C is. This density is measured in terms
of the mesh norm. The mesh norm of C with respect to a subset K ⊆ S

q is defined to
be

δC(K) := sup
x∈K

dist(x, C).(2.13)

The following theorem summarizes the quadrature formula given in [22, 23].
Theorem 2.1. There exists a constant αq with the following property. Let C be

a finite set of distinct points on S
q, and let m be an integer with m ≤ αq(δC(Sq))−1.

Then C admits an M–Z quadrature of order m, and the set {wξ} of M–Z weights may
be chosen to satisfy

|{ξ : wξ �= 0}| ∼ mq ∼ dim(Πq
2m).(2.14)

3. Polynomial operators. For t > 0, f ∈ L1, we define the summability oper-
ator σ∗t by the formula

σ∗t (h; f,x) =
∫

Sq

f(ζ)Φt(h;x · ζ)dμq(ζ)

=
∞∑
�=0

h

(
�

t

) dq
�∑

k=1

f̂(�, k)Y�,k(x), x ∈ S
q.(3.1)
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(It is convenient, and customary in approximation theory, to use the notation σ∗t (h;
f,x) rather than σ∗t (h; f)(x).) Although we defined the operator for L1 to underline
the fact that it is a universal operator, we will be interested only in its restriction to
C(Sq). If f : S

q → R is a continuous function, the degree of approximation of f from
Πq
x is defined by

Ex(f) = inf
P∈Πq

x

‖f − P‖∞.

It is well known [16, 18] that, for all integers n ≥ 1 and f ∈ C(Sq),

En(f) ≤ ‖f − σ∗n(h; f)‖∞ ≤ cEn/2(f).(3.2)

Following [18], we now define a discretized version of these operators.
If C ⊂ S

q is a finite set and W = {wξ}ξ∈C and Z = {zξ}ξ∈C are sets of real
numbers, we define the polynomial operator

σt(C,W;h;Z,x) :=
∑
ξ∈C

wξzξΦt(h;x · ξ), t ∈ R, x ∈ S
q.(3.3)

If f : S
q → R and zξ = f(ξ), ξ ∈ C, we will write σt(C,W;h; f,x) in place of

σt(C,W;h;Z,x). In [18], we denoted these operators by σt(ν;h, f), where ν is the
measure that associates the mass wξ with ξ ∈ C. In this paper, we prefer to use the
slightly expanded notation as in (3.3). If n ≥ 1 is an integer, C ⊂ S

q is a finite set
that admits an M–Z quadrature of order n, and W is the set of the corresponding
M–Z weights, then it is shown in [18, Proposition 4.1] that

En(f) ≤ ‖f − σn(C,W;h; f)‖∞ ≤ cEn/2(f), f ∈ C(Sq).(3.4)

In this paper, we will be especially interested in the approximation of functions
in the class Wr, r > 0, composed of functions f ∈ C(Sq) for which En(f) = O(n−r),
n ≥ 1. A complete characterization of the classes Wr in terms of such constructive
properties of its members as the number of partial derivatives and their moduli of
smoothness is well known [27, 16]. In view of (3.2), f ∈Wr if and only if

‖f‖Wr := ‖f‖∞ + sup
n≥1

2nr‖σ∗2n(h; f)− σ∗2n−1(h; f)‖∞ <∞.

In practical applications, the data is contaminated with noise. Therefore, we wish
to examine the behavior of our operators based on data of the form {(ξ, f(ξ) + εξ)},
where εξ are independent random variables with unknown probability distributions,
each with mean 0. If the range of these random variables is not bounded, one can still
assume that the probability of the variables going out of a sufficiently large interval is
small. Hence, it is customary in learning theory to assume that the variables εξ have
a bounded range, so that one may use certain technical inequalities of probability
theory known as Bennett’s inequalities; see the proof of Lemma 6.2 below.

In the statements of the theorems below, we use three parameters. The symbol
M denotes the number of points in the data set; we assume that the set admits
an M–Z quadrature of order m, and the degree n of the polynomial approximant
σn(C,W;h; f) is determined in terms of m. For theoretical considerations where one
is not concerned about the actual numerical constructions of the quadrature weights,
one can imagine a data set C with M := |C| ∼ δC(Sq)−q and assume that the weights
W are as guaranteed by Theorem 2.1. If so, then we can take M ∼ mq ∼ δC(Sq)−q in
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the discussion in this section. For example, the estimates (3.7) and (3.8) below can
then be expressed in terms of the number of samples, respectively, as follows:

‖f − σn(C,W;h; f)‖∞ ≤ cM−r/q, with some n ∼M1/q,(3.5)

and

Prob
(
‖σn(C,W;h;Z)− f‖∞ ≥ c1 (logM)c

M r/(q+2r)

)
≤ c2M−c,(3.6)

with some n ∼ (M/ logM)1/(2r+q).
Theorem 3.1. Suppose that m ≥ 1 is an integer and C = {ξj}Mj=1 admits an

M–Z quadrature of order m, and let W be the corresponding quadrature weights. Let
r > 0, f ∈Wr, ‖f‖Wr = 1.

(a) For integer n ≤ m, we have

‖f − σn(C,W;h; f)‖∞ ≤ cn−r.(3.7)

(b) For j = 1, . . . ,M , let εj be independent random variables with mean 0 and
range [−1, 1], and let Z = {εj + f(ξj)}. If A > 0 and n ≥ 1 is the greatest integer
with (A+ q)n2r+q logn ≤ c3mq, n ≤ m, then

Prob
(‖σn(C,W;h;Z)− f‖∞ ≥ c1n−r

) ≤ c2n−A.(3.8)

Here, the constants c1, c2, c3 are independent of the distribution of the variables εj.
We now turn our attention to local approximation by our operators. In what

follows, if K ⊆ S
q, f : K → R, then ‖f‖∞,K := supx∈K |f(x)|. If x0 ∈ S

q, a function
f is defined to be r-smooth at x0 if there is a spherical cap S

q
δ(x0) such that fφ ∈Wr

for every infinitely differentiable function φ supported on S
q
δ(x0). We have proved in

[18, Theorem 3.3] that f is r-smooth at a point x0 if and only if there is a cap S
q
δ(x0)

such that

‖σ∗2n(h; f)− σ∗2n−1(h; f)‖∞,Sq
δ(x0) = O(2−nr).

Accordingly, if K is a spherical cap, we may define the class Wr(K) as consisting of
f ∈ C(Sq), for which

‖f‖Wr(K) := ‖f‖∞ + sup
n≥1

2nr‖σ∗2n(h; f)− σ∗2n−1(h; f)‖∞,K <∞.

Theorem 3.2. Suppose that m ≥ 1 is an integer and C = {ξj}Mj=1 admits an
M–Z quadrature of order m, and let W be the corresponding quadrature weights. Let
0 < r ≤ S − q, K ′ ⊂ K be concentric spherical caps, f ∈ C(Sq), and ‖f‖Wr(K) = 1.

(a) For integer n, 1 ≤ n ≤ m,

‖f − σn(C,W;h; f)‖∞,K′ ≤ cn−r.(3.9)

(b) For j = 1, . . . ,M , let εj be independent random variables with mean 0 and
range contained in [−1, 1], and let Z = {εj+f(ξj)}. If A > 0 and n ≥ 1 is the greatest
integer with (A+ q)n2r+q log n ≤ c3mq, n ≤ m, then

Prob
(‖σn(C,W;h;Z)− f‖∞,K′ ≥ c1n−r

) ≤ c2n−A.(3.10)

Here, the constants c1, c2, c3 are independent of the distribution of the variables εj.
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4. Construction of quadrature formulas. In this section, we describe two
algorithms to obtain bounded variation quadrature formulas associated with a given
finite set of points C ⊂ S

q. Both of these constructions can be described in a very
general setting. Since this also simplifies the notation and ideas considerably by
avoiding the use of real and imaginary parts of a doubly indexed polynomial Y�,k, we
will describe the algorithms in this generality.

Let Ω be a nonempty set; μ be a probability measure on Ω; C ⊂ Ω, y1, y2, . . . ,
be a complete orthonormal basis for L2(Ω, μ), where y1 ≡ 1; and Vk denote the span
of y1, . . . , yk. Let ν be another measure on Ω, and 〈◦, ◦〉 denote the inner product of
L2(Ω, ν). For an integer N ≥ 1, the Gram matrix GN is an N × N matrix, defined
by (GN )�,k = 〈y�, yk〉 = (GN )k,�, 1 ≤ k, � ≤ N . We wish to find a weight function W
on Ω such that

∫
Ω Pdμ =

∫
Ω PWdν for all P ∈ VN for an integer N for which GN is

positive definite.
For the applications to the case of quadrature formulas for the sphere, Ω = S

q,
μ = μq, and yk’s are the orthogonal spherical harmonics, arranged in a sequence,
so that y1 ≡ 1, and all polynomials of lower degree are listed before those of a
higher degree. To include all polynomials in Πqn, we need N = dq+1

n . There are
many possibilities for defining the measure ν. The simplest is the measure νMC that
associates the mass 1/|C| with each point of C. A more sophisticated way to define
the measure ν is the following. We obtain a partition of S

q into a dyadic triangulation
such that each triangle contains at least one point of C. We choose only one point
in each triangle and, hence, assume that each triangle contains exactly one point of
C. We define the measure νTR to be the measure that associates with each ξ ∈ C the
area of the triangle containing ξ.

One of the simplest ideas for computing the quadrature weights is the following.
Let N be an integer for which GN is positive definite. If P =

∑N
j=1 ajyj , then∫

Ω Pdμ = a1. Also, the vector a = (a1, . . . , aN )T satisfies the matrix equation

GNa = (〈P, y1〉, . . . , 〈P, yN 〉)T ,

so that

∫
Ω

Pdμ =
N∑
k=1

(GN )−1
1,k〈P, yk〉 =

〈
P,
∑
k

(GN )−1
1,kyk

〉
.(4.1)

In the setting of the sphere, this gives the following quadrature formula:

∫
Sq

Pdμq =
∑
ξ∈C

P (ξ)

{
ν({ξ})

N∑
k=1

(GN )−1
1,kyk(ξ)

}
=:

∑
ξ∈C

wLSQξ P (ξ).(4.2)

We formulate this as the following algorithm.
Algorithm LSQ.

Input: The matrix Y = (yk(ξ)), k = 1, . . . , N (optional), and the vector v =
(ν({ξ}).

1. Solve Y diag(v)Y Tb = (1, 0, . . . , 0)T .
2. Return wLSQξ = ν({ξ})∑N

k=1 bkyk(ξ).
We observe that GN = Y diag(v)Y T . It is clear that the matrix GN is always

positive semidefinite; the assumption that it is positive definite is equivalent to the as-
sumption that no nonzero element of VN vanishes identically on C. If C and {ν({ξ})}
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satisfy the M–Z inequalities, Theorem 4.1 shows that GN is well conditioned. Assum-
ing that the matrix Y is input, the time to compute GN is O(N2|C|), and the space
requirement is O(N2). (In the case of the sphere S

q, we need N = dq+1
n = O(nq)

to compute formulas exact for degree n.) The vector b in step 1 can be found using
such iterative methods as the conjugate residual method. We refer the reader to [6]
for a more detailed analysis of this method. Using this approach, the matrix Y and
GN need not be stored or precomputed, but the product of the matrix GN with an
arbitrary residual vector r needs to be computed. This observation results in a sub-
stantial savings in the time and memory complexity of the algorithm when the results
are desired only within a given accuracy. For the unit sphere S

2, when N = (n+ 1)2,
the product GNr = Y diag(v)Y T r can be computed within an accuracy ε using a
recent algorithm of Keiner [14] using O(n2(logn)2 + log(1/ε)|C|) operations, where ε
is the accuracy of the method.

One way to interpret this algorithm is the following. Let f : S
q → R, and P be

the solution to the least squares problem

P = argmin{〈f −Q, f −Q〉 : Q ∈ VN}.
If f is the vector (〈f, yj〉), then P =

∑
j(G
−1
N f)jyj . The quadrature formula with

weights wLSQξ thus offers
∫

Sq Pdμq as the approximation to
∫

Sq fdμq. The weights
wLSQξ also satisfy a least squares property among all the possible quadrature formulas,
as shown in Lemma 6.1(a). We summarize some of the properties of the weights wLSQξ

in the following theorem.
Theorem 4.1. Let n ≥ 1 be an integer, N = dq+1

n , C be a finite set of points on
S
q, and ν be a measure supported on C. Let vξ := ν({ξ}), ξ ∈ C, and

c1‖P‖p ≤
⎧⎨
⎩
∑
ξ∈C

vξ|P (ξ)|p
⎫⎬
⎭

1/p

≤ c2‖P‖p, P ∈ Πq
n, 1 ≤ p ≤ ∞.(4.3)

(a) For the Gram matrix GN , the lowest eigenvalue is ≥ c21, and the largest
eigenvalue is ≤ c22, where c1, c2 are the constants in (4.3) with p = 2. In particular,
GN is positive definite. Moreover,

∑
ξ∈C |wLSQξ | ≤ c.

(b) If ∣∣∣∣
∫
P 2dν −

∫
P 2dμq

∣∣∣∣ ≤ c

nq

∫
P 2dμq, P ∈ Πq

n,(4.4)

then |wLSQξ | ≤ cvξ, ξ ∈ C. In particular, the weights {wLSQξ } satisfy the M–Z condi-
tion.

(c) Let M ≥ 1 be an integer, C be an independent random sample of M points
chosen from the distribution μq, and A, η > 0. Let vξ = 1/M , ξ ∈ C. There exists a
constant c = c(A) such that if n ≥ 2 is an integer with M ≥ cnq logn/η2, then

Prob
(∣∣∣∣
∫
P 2dν −

∫
P 2dμq

∣∣∣∣ ≥ η
∫
P 2dμq, P ∈ Πq

n

)
≤ c1n−A.(4.5)

In particular, if M ≥ cn3q logn, then condition (4.4) is satisfied with probability
exceeding 1− c1n−A.

One disadvantage of Algorithm LSQ is that one needs to know the value of N in
advance. We now describe an idea which has the potential to avoid this problem. In
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the case when Ω is a subset of a Euclidean space and the yj ’s are polynomials, with y1
denoting the constant polynomial, one can construct a system {tk} of orthonormalized
polynomials with respect to ν using recurrence relations. Recurrence relations for
orthogonal polynomials in several variables have been discussed in detail by Dunkl and
Xu [4, Chapter 3]. In contrast to the viewpoint in [4], we may depend upon a specific
enumeration but require the recurrence relation to have a specific form described in
Theorem 4.2 below. This form allows us to generalize the ideas in Gautschi’s book
[11, Chapter 2] in our context.

To describe our ideas in general, let Ω ⊂ R
q+1, u1, u2, . . . , be an enumeration of

the monomials in q + 1 variables, so that u1 is the monomial identically equal to 1,
the restrictions of uk’s to Ω are linearly independent, all lower degree polynomials are
listed before the higher degree ones, and Vk = span {u1, . . . , uk}. It is not difficult to
see that, for every integer k ≥ 1, there is a minimal index p(k) such that there exists
a monomial f̃k of degree 1 with

f̃kup(k) = uk+1, k = 1, 2, . . . .(4.6)

We now let, for each k = 1, 2, . . . , {y1, . . . , yk} be a basis for Vk orthonormal with
respect to μ, N ≥ 1 be an integer for which the Gram matrix GN is positive definite,
and, for each k = 1, . . . , N , {t1, . . . , tk} be a basis for Vk orthonormal with respect to
ν. Clearly, any polynomial P ∈ VN can be written in the form

P (x) =
∫
P (ζ)

∑
k

tk(x)tk(ζ)dν(ζ),

and, consequently, one gets the “quadrature formula”∫
P (x)dμ(x) =

∫
P (ζ)

{∑
k

(∫
tk(x)dμ(x)

)
tk(ζ)

}
dν(ζ).(4.7)

In this discussion only, let tk =:
∑

j ck,jyj , and let the matrix (ck,j) be denoted by C.
The condition that t1, . . . , tN is an orthonormal system with respect to ν is equivalent
to the condition that CGNCT = I, where I is the N × N identity matrix. Hence,
G−1
N = CTC. Moreover,

∫
tkdμ = ck,1 for k = 1, . . . , N , and, hence, we conclude that

∑
k

(∫
tk(x)dμ(x)

)
tk =

∑
j

∑
k

ck,1ck,jyj =
∑
j

(GN )−1
1,jyj.

Thus, the quadrature weights in (4.7) are the same as those in (4.1).
First, we summarize the various recurrence relations in Theorem 4.2, although we

will not use all of them. We will denote the (total) degree of uk by Dk, and observe
that Dk is also the degree of yk and tk, Dj ≤ j, and Dp(k) = Dk+1 − 1.

Theorem 4.2. There exist real numbers sk,j , r̃k,j , Ak ≥ 0, and a linear polyno-
mial fk such that

fkyp(k) = yk+1 −
∑

Dk+1−2≤Dj≤Dk
j≤k

r̃k,jyj , fktp(k) = Aktk+1 −
∑

Dk+1−2≤Dj≤Dk
j≤k

sk,jtj .(4.8)

More generally, if P is any linear polynomial, there exist real numbers rk,j(P ) such
that

Pyk =
∑

Dk−1≤Dj≤Dk+1

rk,j(P )yj .(4.9)
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We have tk =
∑

j ck,jyj, where

Akck+1,� =

⎧⎨
⎩

∑
D�−1≤Dm≤D�+1

r�,m(fk)cp(k),m +
∑

Dk+1−2≤Dj≤Dk

sk,jcj,�

⎫⎬
⎭ .(4.10)

In the context of the sphere S
q, we will compute tk’s using (4.8) and compute∫

tkdμq using a known quadrature formula. The resulting algorithm, Algorithm REC,
in the context of the sphere is summarized below. This algorithm is similar to the
Stieltjes method in Gautschi’s book [11, section 2.2]. Even though it is feasible to
carry out the algorithm for as large an N as the data allow and to find this value of
N during run time, it is still desirable from the point of view of numerical stability to
limit the largestN from the outset. Accordingly, in describing the following algorithm,
we stipulate that the quadrature formula is to be computed to be exact only for
polynomials in VN for the largest possible N ≤ L for some integer L ≥ 1. We assume
further that we know another quadrature formula (for example, the Driscoll–Healy
formula [3]) exact for polynomials in VL:∑

ζ∈C∗
λζP (ζ) =

∫
Pdμq, P ∈ VL.(4.11)

Algorithm REC.

Input: An integer L; the sequence p(k), k = 1, . . . , L; sets C, C∗; weights (λζ)ζ∈C∗
so that (4.11) holds; the values {yj(ξ)}ξ∈C , {yj(ζ)}ζ∈C∗ for j = 1, 2, 3, 4; and the values
fk(ξ), fk(ζ), k = 1, . . . , L.

1. Using the Gram–Schmidt procedure, initialize t1, t2, t3, t4, for points in both
C and C∗, and initialize N = 4.

2. For k = 1, . . . , 4, let γk =
∑

ζ∈C∗ λζtk(ζ).
3. For each ξ ∈ C, initialize wξ =

∑4
k=1 γktk(ξ).

4. For k = 4, 5, . . . (so that the degrees are at least 0 for all polynomials entering
in the recursions) and while N ≤ L, repeat steps 5–8 below.

5. For j with Dk+1 − 2 ≤ Dj ≤ Dk, set

sk,j = 〈fktp(k), tj〉.
6. Define Tk+1 by

Tk+1 = fktp(k) −
∑

Dk+1−2≤Dj≤Dk

sk,jtj

for points in both C and C∗. If Ik+1 = 〈Tk+1, Tk+1〉 = 0, then stop and set
N = k. Otherwise, define tk+1 = Tk+1/I

1/2
k+1.

7. Set γk+1 =
∑
ζ∈C∗ λζtk+1(ζ).

8. For each ξ ∈ C, wξ = wξ + γk+1tk+1(ξ), k = k + 1, N = N + 1.
In the case of the sphere S

q, we take L = dq+1
ñ for some integer ñ ≥ 1. The number

of j’s with Dk+1 − 2 ≤ Dj ≤ Dk, 1 ≤ j, k ≤ L, is O(ñq−1). In this discussion only,
let M = |C|+ |C∗|. Consequently, steps 5 and 6 require O(Mñq−1) operations. Since
the remaining two steps in the loop take O(M) operations, the loop starting at step 4
requires O(Mñ2q−1) operations. Finally, we observe that in implementing the above
algorithm, one need not keep the whole matrix tk(ξ); only the rows corresponding to
three degrees are required in any step. In particular, the memory requirement of this
algorithm is O(Mñq−1).
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5. Numerical experiments. The objective of this section is to demonstrate
and supplement the theoretical results presented in sections 3 and 4.

Our first set of experiments illustrates Algorithms LSQ and REC. The exper-
iments were conducted over a long period of time, many of them long before we
started to write the paper. Hence, the normalizations for the spherical polynomials
Y�,k in Tables 1 and 2 are somewhat different from those in the rest of the paper.
This is reflected in the sum of the absolute values of the weights, but has no effect on
the various results other than scaling.

First, we report on Algorithm LSQ. Each of the experiments in this case was
repeated 30 times with data sets chosen randomly from the distribution μ2 on S

2. To
test our algorithms, we computed the computed Gram matrix GCOM given by

GCOM
�,m =

∑
ξ∈C

wLSQξ y�(ξ)ym(ξ), �,m < �n/2�.

The average maximum matrix norm of the difference between GCOM and the identity
matrix of the same size indicates the error of the quadrature formulas. The results are
shown in Table 1. Based on these results we conjecture that in order to obtain stable
quadrature formulas (i.e., with small condition number for the original Gram matrix
GN ) exact for degree n ≥ 1, one has to use at most 4dq+1

n uniformly distributed
points. In contrast, the theoretical guarantee in Theorem 4.1(c) requires O(n3q logn)
points.

Table 1

The statistics for the experiments with Algorithm LSQ. M = |C|; n−2 is the degree of spherical
polynomials for which exact quadrature formulas were computed; N = n2; pos stands for the number
of positive weights; and κ(GN ), λmin, and λmax are the condition number, the maximum eigenvalue,
and the minimum eigenvalue of the matrix GN , respectively.

M n Error
∑ |wξ| minwξ maxwξ pos κ(GN ) λmin λmax

8192 16 2.41 ∗ 10−15 3.5449 2.29 ∗ 10−4 7.88 ∗ 10−4 8192 2.43 0.607 1.4730
44 4.32 ∗ 10−15 3.5714 −5.06 ∗ 10−4 0.0029 8039 37.52 0.078 2.8047
64 6.15 ∗ 10−15 5.5575 −0.00664 0.0073 6068 1695.1 0.003 3.9315
84 9.73 ∗ 10−12 82.152 −0.16274 0.1551 4431 3.52 ∗ 106 2.6 ∗ 10−6 5.4851

16384 44 4.43 ∗ 10−15 3.5449 −9.50 ∗ 10−6 8.82 ∗ 10−4 16382 9.19 0.24036 2.1590
64 5.25 ∗ 10−15 3.5787 −3.75 ∗ 10−4 0.0015 16014 51.9 0.05964 2.9150
84 7.10 ∗ 10−15 4.4757 −0.0024 0.0032 13361 944.86 0.00612 3.8457
100 1.94 ∗ 10−15 9.1325 −0.0077 0.0072 10625 11896.1 4.8 ∗ 10−4 4.6008

32768 44 6.02 ∗ 10−15 3.5449 3.11 ∗ 10−5 2.90 ∗ 10−4 32768 4.270 0.4157 1.7652
64 7.09 ∗ 10−15 3.5450 −1.79 ∗ 10−5 5.23 ∗ 10−4 32761 7.977 0.8208 5.2519
84 7.71 ∗ 10−15 3.5574 −1.43 ∗ 10−4 7.92 ∗ 10−4 32410 42.97 0.0716 2.7967
100 7.62 ∗ 10−15 3.6777 −4.28 ∗ 10−4 9.96 ∗ 10−4 30819 145.6 0.0250 3.2967

As can be seen from the table, for a fixed degree n, the condition number κ(GN )
decreases as the number of points increases. For n > 140 and various sets of randomly
generated points on the sphere, we do not obtain good numerical results. This might
be due to a defect in the built-in numerical procedures used by MATLAB in computing
the spherical harmonics of high degree at values close to −1 or 1. The situation was
much better for the dyadic points, i.e., the centers of the dyadic triangles.

For dyadic points on the sphere, the best result we obtained so far is n = 178
with 131072 points. As a further verification of this quadrature, we considered the
following data. The data is constructed using coefficients {a�,k} for spherical poly-
nomials up to degree 90, taken from model MF4 used for modeling the lithospheric
field. The model, based on CHAMP satellite data, is computed by geophysicists at
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GeoForschungsZentrum Potsdam in Germany. We use those coefficients to construct
the samples of a function f =

∑
�,k a�,kY�,k at the centers of 8 ∗ 47 dyadic triangles.

We then use our precomputed quadrature based at these centers which can integrate
spherical polynomials up to degree 178 to compute the Fourier coefficients â�,k. The
maximum difference between the vector {â�,k} and the vector {a�,k} was found to be
6.66 ∗ 10−15.

Next, we considered Algorithm REC. In the context of spherical polynomials,
the recurrence relations have to be chosen very carefully using the special function
properties of the spherical harmonics Y�,k in order to get stable results [29]. In the
present situation, the polynomials tk have no special structure. Therefore, it turns out
that Algorithm REC is not very stable for high degrees. However, when we took the
centers of 8192 dyadic triangles as the quadrature nodes and used the measure νTR

as the starting measure, then we were able to obtain satisfactory quadrature formulas
for degree 32. We note an interesting feature here that all the weights obtained by
this algorithm are positive. These results are summarized in Table 2.

Table 2

Quadrature constructed using REC on 8192 dyadic points.

n Error min(wξ) max(wξ)
∑
wξ

16 4.196643 ∗ 10−14 5.181468 ∗ 10−4 2.538441 ∗ 10−3 12.56637
22 5.302425 ∗ 10−13 5.175583 ∗ 10−4 2.543318 ∗ 10−3 12.56637
32 9.240386 ∗ 10−11 5.154855 ∗ 10−4 2.544376 ∗ 10−3 12.56637
42 4.434868 ∗ 10−8 5.086157 ∗ 10−4 2.544141 ∗ 10−3 12.56637
44 2.320896 ∗ 10−5 5.094771 ∗ 10−4 2.562948 ∗ 10−3 12.56638

Our second set of experiments demonstrates the local approximation properties of
the operators σn(C,W;h) for a smooth function h. For this purpose, we consider the
following benchmark functions (5.1), considered by various authors [32, 31, 15, 10].
Using the notation x = (x1, x2, x3), the functions are defined by

g1(x) = (x1 − 0.9)3/4+ + (x3 − 0.9)3/4+ ,

g2(x) = [0.01− (x2
1 + x2

2 + (x3 − 1)2)]+ + exp(x1 + x2 + x3),

g3(x) = 1/(101− 100x3),

g4(x) = 1/(|x1|+ |x2|+ |x3|),

g5(x) =

{
cos2

(
3π
2 dist(x,x0)

)
if dist(x,x0)) < 1/3,

0 if dist(x,x0)) ≥ 1/3,

where x0 = (−1/2,−1/2, 1/
√

2).(5.1)

In order to define the function h, we recall first that the B spline Bm of order m is
defined recursively [1, p. 131] by

Bm(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if m = 1, 0 < x ≤ 1,
0 if m = 1, x ∈ R \ (0, 1],

x

m− 1
Bm−1(x) +

m− x
m− 1

Bm−1(x − 1) if m > 1, x ∈ R.

(5.2)
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The function Bm is an m−1 times iterated integral of a function of bounded variation.
We will choose h to be

hm(x) =
m∑

k=−m
Bm(2mx− k),(5.3)

for different values of m, in order to illustrate the effect of the smoothness of hm on
the quality of local approximation. If m ≥ 3, the function hm satisfies the conditions
in Proposition 2.1 with S = m − 1. We note that the discretized Fourier projection
operator σ63(C,W;h1) has been called the hyperinterpolation operator [30].

One example of the localization properties of our operators is given in Table 3,
where we show the error in approximation of g1 on the whole sphere and on the
cap K = S

2
0.4510((−1/

√
2, 0,−1/

√
2)). The operators were constructed using the

Driscoll–Healy quadrature formulas [3] based on 4(n+1)2 points, exact for integrating
polynomials of degree 2n. The maximum error on the whole sphere, given in columns 2
and 3, is estimated by the error at 10000 randomly chosen points; the maximum error
on the cap, given in columns 4 and 5, is estimated by the error at 1000 randomly
chosen points on the cap. It is clear that even though the maximum error on the
whole sphere is slightly better for the (discretized) Fourier projection than for our
summability operator, the singularities of g1 continue to dominate the error in the
Fourier projection on a cap away from these singularities; the performance of our
summability operator is far superior.

Table 3

S2errh1=maxx∈S2 |g1(x)−σn(C,W;h1, g1,x)|, S2errh5=maxx∈S2 |g1(x)−σn(C,W;h5, g1,x)|,
Kerrh1 = maxx∈K |g1(x) − σn(C,W;h1, g1,x)|, Kerrh5 = maxx∈K |g1(x) − σn(C,W;h5, g1,x)|,
and (C,W) are given by the Driscoll–Healy formulas.

n S2errh1 S2errh5 Kerrh1 Kerrh5

63 0.0097 0.0112 3.4351 ∗ 10−4 6.5926 ∗ 10−7

127 0.0044 0.0055 8.0596 ∗ 10−5 6.5240 ∗ 10−8

255 0.0033 0.0038 1.4170 ∗ 10−5 1.1816 ∗ 10−8

Theorem 3.2 points out another way to demonstrate the superior localization of
our summability operator without a priori knowledge of the locations of the singu-
larities. Since each of the test functions is infinitely differentiable on large caps of
different sizes, Theorem 3.2 suggests that the more localized the method, the greater
the probability that the approximation error would be smaller than a given num-
ber. To demonstrate also how our ability to construct quadrature formulas based on
scattered data helps us to analyze the approximation properties of our summability
operators, we took for the set C a randomly generated sample of 65536 points. For
these points, the weights W computed by Algorithm LSQ yield a quadrature formula
exact for integrating spherical polynomials of degree 126. We compared three approx-
imation methods, the least squares approximation from Π2

63, the approximation given
by the operator σ63(C,W;h1), and the approximation given by σ63(C,W;h5). For
each function, we computed the absolute value of the difference between the approxi-
mate value computed by each of the three methods and the true value of the function
at 20000 randomly chosen points on the sphere. The percentage of points where the
value of this difference is less than 10−x is reported in Table 4 for x = 2 : 10. It is
very obvious that σ63(C,W;h5) gives a performance far superior to those of the other
methods, due to its localization properties.
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Table 4

Percentages of error less than 10−x for different functions: S1 = error with σ63(C,W;h1),
LS = least squares, S5 = error with σ63(C,W; h5). For example, for the function g3, S5 was less
than 10−7 for 82.22% of the 20000 randomly selected points, while S1 (respectively, LS) was less
than 10−7 for 1.26% (respectively, 1.49%) points.

x→ 10 9 8 7 6 5 4 3 2
S1 0 0 0.005 0.02 0.42 4.44 39.43 94.79 100

g1 LS 0 0 0 0.04 0.56 5.32 46.38 95.45 100
S5 0.02 0.19 1.87 16.89 59.36 68.34 79.01 93.09 99.97
S1 0 0.01 0.09 0.74 7.94 84.99 99.19 99.99 100

g2 LS 0 0.01 0.15 1.29 13.29 86.09 99.28 100 100
S5 0.39 3.34 41.95 90.78 94.52 97.19 99.18 99.97 100
S1 0 0.01 0.11 1.26 12.02 91.87 99.86 100 100

g3 LS 0 0.01 0.10 1.49 16.26 93.12 99.87 100 100
S5 0.51 5.43 51.08 82.22 91.90 95.79 98.49 99.87 100
S1 0 0 0 0.01 0.18 1.91 18.28 83.81 99.97

g4 LS 0 0 0.01 0.02 0.25 2.16 21.24 86.43 99.98
S5 0.01 0.01 0.04 0.36 3.47 17.48 40.98 80.06 99.88
S1 0 0 0.01 0.09 1.12 11.84 88.94 99.45 100

g5 LS 0 0.01 0.01 0.15 1.42 15.23 90.47 99.75 100
S5 0.08 0.64 5.73 66.82 83.54 88.74 92.95 96.78 97.64

Table 5

Percentages of error less than 10−x for ε = 0.01, S1 = error with σ63(C,W; h1), LS = least
squares, S5 = error with σ63(C,W; h5). The random noise in the left half comes from the uniform
distribution in [−ε, ε]; that in the right half is from the normal distribution with mean 0 and standard
deviation ε.

x→ 5 4 3 2 3.0 2.75 2.5 2.25
S1 0.05 0.635 9.93 97.45 0 7.97 92.75 100.00
LS 0 0 0 100 0 0.04 30.93 99.07
S5 0.085 1.015 10.03 97.49 0.24 51.97 99.87 100.00

Next, we illustrate the stability of our operators under noise. Since our operators
are linear operators, we assume for this part of the study that the target function f
is the zero function contaminated either by uniform random noise in the range [−ε, ε]
or by a normally distributed random variable with mean 0 and standard deviation ε.
We let C be a set of 65536 random points and computed corresponding weights W
that integrate exactly polynomial up to degree 126. These were used in calculating
σ63(C,W;h1) and σ63(C,W;h5) at each point of a test data set consisting of 20000
random samples from the distribution μ2. For each value of ε = 0.1; 0.01; 0.001; 0.0001,
the experiment was repeated 50 times, and the errors were then averaged over the
number of repetitions. The percentage of points at which the absolute computed value
was less than 10−x is reported in Table 5 in the case when ε = 0.01. The results for
the other values of ε were consistent with the linearity of the operator. We observe
that in each case, both σ63(C,W;h1) and σ63(C,W;h5) yield better results than the
least squares approximation, while σ63(C,W;h5) is slightly superior to σ63(C,W;h1).

Finally, we used our operator σ22(C,W;h7) with the MAGSAT data. Our purpose
here was only to test how our methods work on “real life” data. This data, kindly
supplied to us by Dr. Thorsten Maier, measures the magnetic field of the earth in
nano-Tesla as a vector field. It was derived from vectorial MAGSAT morning data
that has been processed by Nils Olsen of the Danish Space Research Institute. The
measurements are averaged on a longitude-latitude grid with Δφ = 4◦ and Δθ = 2◦

in geomagnetic coordinates. The radial variations of the MAGSAT satellite have
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Fig. 2. From left to right: The original data, its reconstruction using σ22(C,W;h7), and the
error in the approximation, |σ22(C,W;h7) − y|.

been neglected in the data set and, therefore, prior to the averaging process, the
GSFC(12/83) reference potential model has been subtracted. The data results from
one month of measurements, centered at March 21, 1980. We extract the east-west
component of the vectorial data as a scalar-valued function on the sphere. In total,
there are 8190 data sites. A quadrature of degree 44 was computed based on those
sites. Figure 2 shows the original data, its reconstruction using σ22(C,W;h7), and
the error in the approximation, |σ22(C,W;h7)−y|, as a map in the longitude-latitude
plane. As can be seen from the figures, the reconstruction preserves the key features
of the original data.

6. Proofs. In the interest of organization, we will prove the various new re-
sults in the paper in the following order. We will prove Theorem 4.2 first, since its
proof does not require any preparation. We will then use Proposition 2.1 to prove
Theorems 3.1(a) and 3.2(a). Next, we will prove Lemma 6.1 and use it to prove
parts (a) and (b) of Theorem 4.1. The remaining results involve probabilities. We
prove Lemma 6.2 next, estimating the probability that the supremum norm of a sum
of random spherical polynomials exceeds a given number. This lemma will be used
immediately to prove Theorem 4.1(c). Finally, we will prove Theorems 3.1(b) and
3.2(b).

Proof of Theorem 4.2. It is convenient to prove (4.9) first. Since Pyk is a poly-
nomial of degree Dk + 1, there exist real numbers rk,j(P ) such that

Pyk =
∑

Dj≤Dk+1

rk,j(P )yj .
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Since the system {yk} is orthonormal with respect to μ,

rk,j(P ) =
∫

Ω

Pykyjdμ.

If Dj < Dk − 1, then the degree of Pyj is less than Dk. Because of the lexicographic
ordering where lower degree polynomials appear before the higher degree ones, this
implies that Pyj ∈ Vk−1. Since yk is orthogonal to Vk−1, it follows that rj,k(P ) = 0
if Dj < Dk − 1. This completes the proof of (4.9).

We observe that yp(k) ∈ span {u1, . . . , up(k)}. Thus, there exists a constant α such
that αyp(k) − up(k) ∈ Vp(k)−1. Thus, αf̃kyp(k) − f̃kup(k) = αf̃kyp(k) − uk+1 is a linear
combination of terms of the form f̃kuj , 1 ≤ j ≤ p(k) − 1. Since p(k) is the minimal
index for which there exists a monomial f̃k with f̃kup(k) ∈ Vk+1, each of the terms
f̃kuj , 1 ≤ j ≤ p(k) − 1, is in Vk. It follows that αf̃kyp(k) − uk+1 ∈ Vk. Again, there
exists a constant α′ such that α′uk+1 − yk+1 ∈ Vk. Therefore, writing fk = αα′f̃k,
we conclude that fkyp(k) − yk+1 = α′(αf̃kyp(k) − uk+1) + α′uk+1 − yk+1 ∈ Vk; i.e.,
fkyp(k) = yk+1 −

∑
Dj≤Dk

r̃k,jyj. The first equation in (4.8) is now proved in view of
(4.9), applied with p(k) in place of k and the fact that Dp(k) = Dk+1 − 1. We note
that fk is a constant multiple of the monomial f̃k. The second equation in (4.8) is
proved in the same way.

Using the second equation in (4.8) and (4.9), we obtain from the definition of
ck,j ’s that

Akck+1,� = Ak

∫
Ω

tk+1y�dμ

=
∫

Ω

fktp(k)y�dμ+
∑

Dk+1−2≤Dj≤Dk

sk,j

∫
Ω

tjy�dμ

=
∑

D�−1≤Dm≤D�+1

r�,m(fk)
∫

Ω

tp(k)ymdμ+
∑

Dk+1−2≤Dj≤Dk

sk,jcj,�

=
∑

D�−1≤Dm≤D�+1

r�,m(fk)cp(k),m +
∑

Dk+1−2≤Dj≤Dk

sk,jcj,�.

This proves (4.10).
Next, we use Proposition 2.1 to prove Theorems 3.1(a) and 3.2(a).
Proof of Theorem 3.1(a). To prove part (a), we assume without loss of generality

that n ≥ 8, and let � ≥ 1 be the largest integer with 2�+2 ≤ n. In view of (3.4),

‖f − σ∗n(C,W;h; f)‖∞ ≤ cEn/2(f) ≤ cE2�+1(f) ≤ c‖f − σ∗2�+1(h; f)‖∞

≤ c
∞∑

k=�+1

‖σ∗2k+1(h; f)− σ∗2k(h; f)‖∞ ≤ c2−r� ≤ cn−r.

This proves part (a).
Proof of Theorem 3.2(a). Let K ′′ be a spherical cap, concentric with K, K ′, and

having radius equal to the average of the radii of K, K ′. Let ψ be a fixed C∞ function
that is equal to 1 on K ′′ and equal to 0 outside of K. Without loss of generality, we
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can assume that n ≥ 8, and let � ≥ 1 be the largest integer such that 2�+2 ≤ n. The
direct theorem of approximation theory (cf. [27]) implies that there exists P ∈ Πq

2�

such that

‖ψ − P‖∞ ≤ c2−�S.

Therefore, using the definition of ‖f‖Wr(K), we conclude that

E2�+1(fψ) ≤ ‖fψ − Pσ∗2�(h; f)‖∞ ≤ ‖(f − σ∗2�(h; f))ψ‖∞ + ‖(ψ − P )σ∗2�(h; f)‖∞
≤ c{‖f − σ∗2�(h; f)‖∞,K + 2−nS‖f‖∞}

≤ c
{ ∞∑
k=�+1

‖σ∗2k+1(h; f)− σ∗2k(h; f)‖∞,K + 2−nS‖f‖∞
}
≤ c2−r�.

In view of (3.4),

‖f − σn(C,W;h; fψ)‖∞,K′ = ‖fψ − σn(C,W;h; fψ)‖∞,K′

≤ ‖fψ − σn(C,W;h; fψ)‖∞
≤ cEn/2(fψ) ≤ E2�+1(fψ) ≤ c2−r� ≤ cn−r.(6.1)

Since 1− ψ(ζ) = 0 for ζ ∈ K ′′, we can use (2.8) to deduce that, for x ∈ K ′,

|σn(C,W;h; (1− ψ)f,x)| =
∣∣∣∣∣∣

∑
ξ∈C\K′′

wξf(ξ)(1− ψ(ξ))Φn(h;x · ξ)
∣∣∣∣∣∣

≤ c(K,K ′,K ′′)
nS−q

‖(1− ψ)f‖∞
∑
ξ∈C
|wξ| ≤ c(K,K ′,K ′′)

nS−q
.

Together with (6.1) and the fact that r ≤ S − q, this implies (3.9).
Next, we prove Lemma 6.1, describing certain extremal properties for the weights

wLSQξ . These will be used in the proof of parts (a) and (b) of Theorem 4.1.
Lemma 6.1. Let n ≥ 1 be an integer, N = dq+1

n , C be a finite set of points on S
q,

and ν be a measure supported on C. Let vξ := ν({ξ}), ξ ∈ C.
(a) If the Gram matrix is positive definite, then the weights wLSQξ are solu-

tions of the extremal problem to minimize
∑

ξ∈C w
2
ξ/vξ subject to the conditions that∑

ξ∈C wξy�(ξ) = δ1,�.
(b) If (4.3) holds, there exist real numbers Wξ, ξ ∈ C, such that |Wξ| ≤ vξ for

ξ ∈ C and
∑

ξ∈CWξP (ξ) =
∫
Pdμq for all P ∈ Πq

n.
Proof. In this proof, we will write G in place of GN . The Lagrange multiplier

method for solving the minimization problem sets up parameters λ� and minimizes

∑
ξ∈C

w2
ξ/vξ − 2

∑
�

λ�

⎛
⎝∑

ξ

wξy�(ξ)− δ1,�
⎞
⎠ .

Setting the gradient (with respect to wξ) equal to 0, we get wξ = vξ
∑
� λ�y�(ξ).

Writing, in this proof only, Q =
∑

� λ�y�, we see that wξ = vξQ(ξ). Substituting back
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in the linear constraints, this reduces to
∑
ξ∈C vξQ(ξ)y�(ξ) = δ1,�. These conditions

determine Q uniquely; indeed, Q =
∑

j G
−1
1,jyj . This proves part (a).

Part (b) is proved essentially in [22, 23], but since it is not stated in this manner,
we sketch a proof again. During this proof, different constants will retain their values.
Let M = |C|, R

M be equipped with the norm ‖|r‖| = ∑
ξ∈C vξ|rξ|. In this proof only,

let S be the operator defined on Πq
n by S(P ) = (P (ξ))ξ∈C ∈ R

M , and let V be the
range of S. The estimate ∫

|P |dμq ≤ c1
∑
ξ∈C

vξ|P (ξ)|(6.2)

implies that the operator S : Πq
n → V is invertible. We may now define a linear

functional on V by

x∗(r) =
∫
S−1(r)dμq, r ∈ V.

It is clear from (6.2) that the norm of x∗ is bounded above by c1. The Hahn–Banach
theorem yields a norm-preserving extension of this functional to the whole space R

M .
Identifying this functional with the vector (Wξ)ξ∈C , the extension property implies
that

∑
ξ∈CWξP (ξ) =

∫
Pdμq for all P ∈ Πq

n, while the norm preservation property
implies that |Wξ| ≤ c1vξ for ξ ∈ C.

Proof of Theorem 4.1(a), (b). Let N = dq+1
n , r ∈ R

N , and P =
∑

� r�y�. In this
proof only, we write G in place of GN . Then

rTGr =
∑
�,m

r�

⎧⎨
⎩
∑
ξ∈C

vξy�(ξ)ym(ξ)

⎫⎬
⎭ rm =

∑
ξ∈C

vξP (ξ)2,

and rT r = ‖P‖22.
Therefore, (4.3) with p = 2 implies that c21rT r ≤ rTGr ≤ c22r

T r for all r ∈ R
N .

The statements about the eigenvalues of G are an immediate consequence of the
Raleigh–Ritz theorem [13, Theorem 4.2.2]. Using Lemma 6.1(b), we obtain weights
Wξ such that

∑
ξ∈CWξy�(ξ) = δ1,�, � = 1, . . . , N , and |Wξ| ≤ cvξ, ξ ∈ C. During the

remainder of this proof, we write wξ = wLSQξ . In view of Lemma 6.1(a), we have

∑
ξ∈C
|wξ| ≤

⎧⎨
⎩
∑
ξ

vξ

⎫⎬
⎭

1/2 ⎧⎨
⎩
∑
ξ∈C

w2
ξ

vξ

⎫⎬
⎭

1/2

≤
⎧⎨
⎩
∑
ξ

vξ

⎫⎬
⎭

1/2 ⎧⎨
⎩
∑
ξ∈C

W 2
ξ

vξ

⎫⎬
⎭

1/2

≤ c
∑
ξ∈C

vξ ≤ c1.

This completes the proof of part (a).
In order to prove part (b), we adopt the following notation during this proof only.

Let I denote the N ×N identity matrix. For any N ×N matrix H , let ‖H‖ denote
sup ‖Hr‖, ‖r‖ = 1, r ∈ R

N . We note that ‖H‖ is the largest singular value of H .
If H is a symmetric, positive definite matrix, then it is also the largest eigenvalue
of H , and, moreover, |rT1 Hr2| ≤ ‖H‖‖r1‖‖r2‖, r1, r2 ∈ R

N . Using (4.4), it is easy
to conclude using the Raleigh–Ritz theorem that ‖G − I‖ ≤ cn−q, ‖G−1‖ ≤ c, and,
hence,

‖G−1 − I‖ = ‖G−1(I −G)‖ ≤ c‖G−1‖‖G− I‖ ≤ cn−q.
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Let y(x) denote the vector (y1(x), . . . , yN (x))T for x ∈ S
q. In view of the addition

formula, ‖y(x)‖2 is independent of x, and, hence,

‖y(x)‖2 =
∫

Sq

N∑
j=1

yj(x)2dμq(x) = dq+1
n ≤ cnq, x ∈ S

q.

Consequently, we have

|wLSQξ |
vξ

=
∣∣∣∣
∫

y(x)TG−1y(ξ)dμq(x)
∣∣∣∣

≤
∣∣∣∣
∫

y(x)T (G−1 − I)y(ξ)dμq(x)
∣∣∣∣ +

∣∣∣∣
∫

y(x)Ty(ξ)dμq(x)
∣∣∣∣

≤ ‖G−1 − I‖
∫
‖y(x)‖‖y(ξ)‖dμq + |(1, 0, . . . , 0)Ty(ξ)| ≤ cn−qnq + c ≤ c.

This completes the proof of part (b).
The proof of the remaining new results in the paper are based on the following

lemma, which gives a recipe for estimating the probabilities involving polynomial-
valued random variables.

Lemma 6.2. Let n,M ≥ 1 be integers, let {ωj}Mj=1 be independent random vari-
ables, and, for j = 1, . . . ,M , let Zj = Z(ωj, ◦) ∈ Πq

n have mean equal to 0 according
to ωj. Let B,R > 0, max1≤j≤M, x∈Sq |Zj(x)| ≤ Rnq, and the sum of the variances of
Zj be bounded by Bnq uniformly on S

q. If A > 0 and 12R2(A+ q)nq logn ≤ B, then

Prob

⎛
⎝
∥∥∥∥∥∥
M∑
j=1

Zj

∥∥∥∥∥∥
∞

≥
√

12B(A+ q)nq logn

⎞
⎠ ≤ c1n−A.(6.3)

Here, the positive constant c1 is independent of M and the distributions of ωj.
Proof. The proof depends upon Bennett’s inequality [28, p. 192]. In this proof

only, we adopt a slightly different meaning for the symbols L, V , η. Let L, V, η
be positive numbers, and let Xj , j = 1, . . . ,M , be independent random variables.
According to Bennett’s inequality, if the mean of each Xj is 0, the range of each Xj

is a subset of [−L,L], and V exceeds the sum of the variances of Xj , then, for η > 0,

Prob

⎛
⎝
∣∣∣∣∣∣
M∑
j=1

Xj

∣∣∣∣∣∣ ≥ η
⎞
⎠ ≤ 2 exp

(
− V
L2
g

(
Lη

V

))
,(6.4)

where, in this proof only, g(t) := (1+t) log(1+t)−t. We observe that g(t) =
∫ t
0

∫ u
0 (1+

w)−1dwdu. Therefore, if 0 ≤ t ≤ 1/2, then for 0 ≤ w ≤ u ≤ t, (1 + w)−1 ≥ 2/3 and
hence, g(t) ≥ t2/3. Consequently, if Lη ≤ V/2, then

Prob

⎛
⎝
∣∣∣∣∣∣
M∑
j=1

Xj

∣∣∣∣∣∣ ≥ η
⎞
⎠ ≤ 2 exp

( −η2

(3V )

)
.(6.5)

Now, let x ∈ S
q. We apply (6.5) with Zj(x) in place of Xj, Rnq in place of L,

Bnq in place of V , and η =
√

3B(A+ q)nq logn. Our condition on n ensures that
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Lη/V ≤ 1/2 with these choices. Therefore,

Prob

⎛
⎝
∣∣∣∣∣∣
M∑
j=1

Zj(x)

∣∣∣∣∣∣ ≥
√

3B(A+ q)nq logn

⎞
⎠ ≤ 2n−A−q.(6.6)

Next, in the proof only, let P ∗ =
∑M

j=1 Zj, x∗ ∈ S
q be chosen so that |P ∗(x∗)| =

‖P ∗‖∞, and let C ⊂ S
q be chosen so that |C| ∼ cnq and δC(Sq) ≤ 1/(2n). Then we

may find ξ∗ ∈ C such that dist(x∗, ξ∗) ≤ 1/(2n). Since P ∗ ∈ Πq
n, its restriction to the

great circle through x∗ and ξ∗ is a trigonometric polynomial of order at most n. In
view of the Bernstein inequality for these polynomials [2, Chapter 4, inequality (1.1)],

|P ∗(ξ∗)− P ∗(x∗)| ≤ n‖P ∗‖∞dist(ξ∗,x∗) ≤ (1/2)|P ∗(x∗)|.

We deduce that ∥∥∥∥∥∥
M∑
j=1

Zj

∥∥∥∥∥∥
∞

≤ 2 max
x∈C

∣∣∣∣∣∣
M∑
j=1

Zj(x)

∣∣∣∣∣∣ .

Therefore, the event ‖∑M
j=1 Zj‖∞ ≥ 2

√
3B(A+ q)nq logn is a subset of the union of

the |C| events |∑M
j=1 Zj(x)| ≥√

3B(A+ q)nq logn, x ∈ C. Hence, the estimate (6.6)
implies (6.3) with c1 = 2c.

We are now in a position to prove Theorem 4.1(c).
Proof of Theorem 4.1(c). Let x ∈ S

q. In this proof only, let Zξ = Φ4n(h;x ·
ξ) − ∫

Φ4n(h;x · ζ)dμq(ζ). Then the mean of each Zξ is 0, and its variance can be
estimated by ∫

Z2
ξdμq(ξ) ≤

∫
(Φ4n(h;x · ξ))2dμq(ξ) ≤ cnq.

Finally, |Zξ| ≤ cnq for each ξ. Hence, we may use Lemma 6.2, with cM in place of B
and c in place of R, to conclude that

Prob

⎛
⎝ sup

x∈Sq

∣∣∣∣∣∣
1
M

∑
ξ∈C

Φ4n(h;x · ξ)−
∫

Φ4n(h;x · ζ)dμq(ζ)
∣∣∣∣∣∣ ≥ c2

√
nq logn
M

⎞
⎠ ≤ cn−A

and, with M ≥ cnq logn/η2,

Prob

⎛
⎝ sup

x∈Sq

∣∣∣∣∣∣
1
M

∑
ξ∈C

Φ4n(h;x · ξ)−
∫

Φ4n(h;x · ζ)dμq(ζ)
∣∣∣∣∣∣ ≥ η

⎞
⎠ ≤ cn−A.

Since any P ∈ Πq
2n can be written in the form

P (ζ) =
∫
P (x)Φ4n(h;x · ζ)dμq(x),

we see that, with probability exceeding 1− cn−A,
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1
M

∑
ξ∈C

P (ξ)−
∫
P (ζ)dμq(ζ)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1
M

∑
ξ∈C

∫
P (x)Φ4n(h; ξ · x)dμq(x)

−
∫ ∫

P (x)Φ4n(h;x · ζ)dμq(x)dμq(ζ)
∣∣∣∣

≤
∫
|P (x)|

∣∣∣∣∣∣
1
M

∑
ξ∈C

Φ4n(h; ξ · x)−
∫

Φ4n(h;x · ζ)dμq(ζ)
∣∣∣∣∣∣ dμq(x)

≤ η
∫
|P (x)|dμq(x).

For P ∈ Πq
n, we may now apply this estimate with P 2 ∈ Πq

2n.
Another immediate consequence of Lemma 6.2 is the following lemma, describing

the probabilistic behavior of the operator σn(C,W;h).
Lemma 6.3. Suppose that m ≥ 1 is an integer and that C = {ξj}Mj=1 admits an

M–Z quadrature of order m, and let W be the corresponding quadrature weights. Let
R, V > 0, and, for j = 1, . . . ,M , let εj be independent random variables with mean
0, variance not exceeding V , and range [−R,R]. Let g ∈ C(Sq), ‖g‖∞ ≤ 1, and
E = {εjg(ξj)}ξj∈C′ . Then, for integer n ≥ 1 with (R2/V )(A+ q)nq logn ≤ c3mq,

Prob

(
‖σn(C,W;h;E)‖∞ ≥ c1

√
V (A+ q)nq logn

mq

)
≤ c2n−A.(6.7)

Here the positive constants c1, c2, c3 depend only on q but not on M and the distri-
butions of εj.

Proof. In this proof only, if ξ = ξj ∈ C, we will write εξ for εj and wξ for the weight
in W corresponding to ξ. We use Lemma 6.2 with Eξ = mqwξεξg(ξ)Φn(h; ξ ·◦), ξ ∈ C.
We note that the random variable ωj in Lemma 6.2 is εξ in this case. It is clear that
the mean of each Eξ is 0. Since (2.12) implies that |wξ| ≤ cm−q, (2.7) shows that
‖Eξ‖∞ ≤ cRnq. Moreover, for any x ∈ S

q, the variance of Eξ(x) does not exceed
V m2qw2

ξΦn(h; ξ ·x)2. In view of the fact that wξ are M–Z quadrature weights, (2.12)
and (2.7) imply that

∑
ξ∈C

m2qw2
ξΦn(h; ξ · x)2 ≤ cmq

∑
ξ∈C
|wξ|Φ2

n(h; ξ · x)

≤ cmq

∫
Sq

Φ2
n(h; ζ · x)dμq(ζ) ≤ cmqnq.

Thus, we may choose B in Lemma 6.2 to be cV mq. The estimate (6.7) now follows
as a simple consequence of (6.3).

We are now in a position to prove the probabilistic assertions of Theorems 3.1
and 3.2.
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Proof of Theorem 3.1(b). To prove part (b), we use Lemma 6.3 with g ≡ 1. Since
the range of εj’s is contained in [−1, 1], we can take R = V = 1 and obtain from (6.7)
that

Prob

(
‖σn(C,W;h;E)‖∞ ≥ c4

√
(A+ q)nq logn

mq

)
≤ c2n−A.

The choice of n with an appropriate c3 ensures that (A + q)nq logn/mq ≤ n−2r.
Therefore,

Prob
(‖σn(C,W;h;E)‖∞ ≥ c4n−r

) ≤ c2n−A.
The estimate (3.8) is now clear in view of (3.4) and the linearity of the operators
σn(C,W;h).

Proof of Theorem 3.2(b). We apply Lemma 6.3 again with g ≡ 1. As before,
we may choose R = V = 1. The choice of n with an appropriate c3 ensures that
(A+ q)nq logn/mq ≤ n−2r. Therefore, (6.7) with these choices implies that

Prob
(‖σn(C,W;h;E)‖∞ ≥ c4n−r

) ≤ c2n−A.
Together with inequality (3.9) and the linearity of the operators σn(C,W;h), this
leads to (3.10).

7. Conclusion. We have described a construction of linear operators yielding
spherical polynomial approximations based on scattered data on a Euclidean sphere.
While the operators can be defined for arbitrary continuous functions on the sphere,
without any a priori knowledge about the location and nature of its singularities, they
are auto-adaptive in the sense that the approximation properties of these globally de-
fined polynomials adapt themselves on the different parts of the sphere according to
the smoothness of the target function on these parts. While the theoretical properties
of these operators and their localization were studied in [18], a bottleneck in their nu-
merical construction was the construction of quadrature formulas based on scattered
data, exact for integrating moderately high degree spherical polynomials. Until now,
it has been possible only to compute quadrature formulas exact for at most degree 18
polynomials. We show that a simple construction involving a Gram matrix is surpris-
ingly well conditioned, and yields the necessary quadrature rules, up to degree 178.
Using these newly constructed quadrature formulas, we are able to demonstrate that
our constructions yield approximation properties superior to those of more traditional
techniques of least squares and Fourier projection, in the sense that the presence of
singularities in some parts of the sphere affects the degree of approximation by our
operators on other parts far less than in the case of these other traditional techniques.
We give probabilistic estimates on the local and global degrees of approximation by
our operators in the presence of noise and demonstrate its use in the modeling of a
“real life” data set. We also describe a theoretical algorithm for construction of data
dependent multivariate orthogonal polynomials and their use in the construction of
quadrature formulas, analogous to the univariate algorithms in Gautschi’s book [11].
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ON THE INTERPOLATION ERROR ESTIMATES FOR Q1

QUADRILATERAL FINITE ELEMENTS∗

SHIPENG MAO† , SERGE NICAISE‡ , AND ZHONG-CI SHI†

Abstract. In this paper, we study the relation between the error estimate of the bilinear
interpolation on a general quadrilateral and the geometric characters of the quadrilateral. Some
explicit bounds of the interpolation error are obtained based on some sharp estimates of the integral
over 1

|J|p−1 for 1 ≤ p ≤ ∞ on the reference element, where J is the Jacobian of the nonaffine mapping.

This allows us to introduce weak geometric conditions (depending on p) leading to interpolation error
estimates in the W 1,p norm, for any p ∈ [1,∞), which can be regarded as a generalization of the
regular decomposition property (RDP) condition introduced in [G. Acosta and R. G. Durán, SIAM
J. Numer. Anal., 38 (2000), pp. 1073–1088] for p = 2 and new RDP conditions (NRDP) for p �= 2.
We avoid the use of the reference family elements, which allows us to extend the results to a larger
class of elements and to introduce the NRDP condition in a more unified way. As far as we know,
the mesh condition presented in this paper is weaker than any other mesh conditions proposed in
the literature for any p with 1 ≤ p ≤ ∞.

Key words. error estimates, quadrilateral elements, isoparametric finite elements, maximal
angle condition

AMS subject classifications. 65N30, 65N15

DOI. 10.1137/070700486

1. Introduction. Quadrilateral finite elements, particularly low order quadri-
lateral elements, are widely used in engineering computations due to their flexibil-
ity and simplicity. However, numerical accuracy cannot be achieved over arbitrary
quadrilateral meshes, and certain geometric conditions are indispensable to guarantee
the optimal convergence error estimates. It is known that the Q1 quadrilateral finite
element is one of the most widely used quadrilateral elements. In order to obtain
its optimal interpolation error, many mesh conditions have been introduced in the
literature; let us give a review of them.

Denoting by Q the Lagrange interpolation operator and using the standard nota-
tion for Sobolev spaces (cf. [11]), the first interpolation error estimate for the operator
Q goes back to Ciarlet and Raviart in [14], where the regular quadrilateral is supposed
to satisfy

hK/h̄K ≤ μ1(1.1)

and

| cos θK | ≤ μ2 < 1(1.2)

for all angles θK of the quadrilateral K; here hK is the diameter of K, and h̄K is the
length of the shortest side of K. Under the above so-called nondegenerate condition,
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Ciarlet and Raviart proved the following interpolation error estimate:

|u−Qu|1,K ≤ ChK |u|2,K .(1.3)

On the other hand, error estimates for degenerate elements have attracted much
attention since the works by Babus̆ka and Aziz [9] and by Jamet [19]; interested
readers are also referred to the works [5, 7, 8, 12, 13, 15, 17, 18, 21, 23, 24, 22, 32],
the book [6] by Apel, the ICM report [16] by Durán, and the references therein.
For triangular elements, the constant C in the estimate (1.3) depends only on the
maximal angle of the element. For quadrilaterals, the situation may be different since
the maximal angle condition is not necessary due to [20]. In such a case, the term
“degenerate” is used in the following two situations: one refers to elements which are
close to a triangle, while the other refers to narrow elements or anisotropic elements;
interested readers are referred to Jamet [20] for the first case and to Z̆enisek and
Vanmaele [29, 30] and Apel [5] for the second.

In the first case, Jamet [20] considered a quadrilateral that can degenerate into
a regular triangle and proved the error estimate (1.3) under the condition that there
exists a constant σ such that

hK/ρK ≤ σ,
where ρK denotes the diameter of the maximum circle contained in quadrilateral K.

In view of this result, one may believe that the maximal angle condition is not
necessary for the optimal interpolation error of the Q1 Lagrange interpolation oper-
ator. Recently, Acosta and Durán [2] made a great contribution in this regard and
obtained the optimal interpolation error of Q1 interpolation under the regular de-
composition property (RDP) condition (cf. the definition in section 2), which states
that, if we divide the quadrilateral into two triangles by one diagonal, the ratio of the
length of the other diagonal to that of the first is bounded, and both of the divided
triangles satisfy the maximal angle condition. The above RDP condition is so weak
that almost all of the degenerate quadrilateral conditions proposed before fall into this
scope. Furthermore, the authors of [2] assert that this condition is necessary and state
it as an open problem in the conclusion of their paper. For related papers concerning
this assertion, we refer the reader to [25, 26, 31]. More recently, interpolation error
estimates have been extended to the Lp setting; more precisely, the estimate

|u−Qu|1,p,K ≤ ChK |u|2,p,K
was proved by Acosta and Monzón [4] in the case 1 ≤ p < 3. In addition, the authors
of [4] introduced the double angle condition (DAC), which is indeed equivalent to (1.2),
and showed that this condition is a sufficient condition for the optimal interpolation
error in the W 1,p norm with p ≥ 3. Though the DAC condition is much stronger
than the RDP condition, so far, it is the weakest mesh condition for the optimal
interpolation error in the W 1,p norm with p ≥ 3. One of the key techniques employed
in [2] and [4] is to introduce an appropriate affine change of variables, which reduces
the problem to a reference family of elements.

In this paper, we revisit the optimal error estimates of Q1 isoparametric Lagrange
interpolation for degenerate quadrilaterals. Our motivation comes from the observa-
tion that, if we divide the quadrilateral into two triangles by the longer diagonal,
when the two triangles have comparable areas, we should impose the maximal angle
condition for both triangles. Otherwise, we may need to impose the maximal an-
gle condition only for the big triangle T1, and because the error on the small triangle
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T3 contributes little to the interpolation error on the global quadrilateral, its maximal
angle may become very large as |T3|

|T1| approaches zero. Based on this observation, we
introduce a generalized RDP condition which involves the ratio between the area of
the two divided triangles in the mesh condition and show that under this generalized
RDP condition the estimate (1.3) is valid. The interpolation error of Q1 Lagrange
interpolation in the W 1,p norm with 1 ≤ p ≤ ∞ is proved in the same spirit. More
precisely, we have found the weakest known geometric condition on a quadrilateral K
(that depends on p) such that

|u−Qu|1,p,K ≤ ChK |u|2,p,K , p ∈ [1,∞),(1.4)

holds. One of the key points in the proof of this estimate is to bound the integral∫
K̂

1
|J |p−1

,

where J is the Jacobian of the mapping sending the reference element K̂ toK. It turns
out that to obtain such a bound, the cases p ∈ [1, 2), p = 2, p ∈ (2, 3), p ∈ [3, 7

2 ], p ∈
(7
2 , 4], and p > 4 have to be distinguished, leading to different geometric hypotheses.

Note that, for p ≥ 3, the proposed condition is much weaker than the DAC condition
proposed in [4]. The technique developed in this paper is a combination of those in
[2] and [20].

The rest of the paper is organized as follows. In section 2, we present our motiva-
tion for the geometric condition by revisiting a simple example considered in [2], and
based on some observations we propose our generalized RDP (GRDP) condition for
the optimal H1 interpolation error. In section 3, following the techniques developed
in [2] and [20], we prove the optimal interpolation error in the H1 norm for the Q1

quadrilateral finite element. In section 4, we prove the above-mentioned technical
bounds for different values of p. Then in section 5 we introduce our different geomet-
ric conditions depending on the values of p ≥ 1 in the above-mentioned intervals and
prove the interpolation error estimate (1.4) for all p ≥ 1.

2. The generalized regular decomposition property. In this section, we
will introduce a mesh condition that is sufficient for (1.3). This can be regarded as a
generalization of the regular decomposition property presented by Acosta and Durán
in [2].

We will adopt the following notation. Let K be a general quadrilateral with its
vertices M1,M2,M3,M4 enumerated in counterclockwise order. In order to define the
isoparametric elements on K, if K̂ = [0, 1]2 denotes the reference element, then there
exists a bijective mapping FK : K̂ −→ K which is defined as

M = FK(M̂) =
4∑
i=1

Miφ̂i(ξ, η) ∀ M̂ = (ξ, η) ∈ K̂,(2.1)

where φ̂i is the bilinear basis function associated with the vertex M̂i, i.e., φ̂i(M̂j) =
δji , i = 1, 2, 3, 4 and j = 1, 2, 3, 4.

Let the basis functions on the general quadrilateral K be defined as φi(M) =
φ̂i(M̂) = φ̂i(F−1

K (M)) for any point M ∈ K. Then the Q1 isoparametric interpolation
operator is defined by

Qu(M) = Q̂û(M̂) for any point M ∈ K,
and Q̂ is the bilinear Lagrange interpolation operator on K̂.
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There are several mesh conditions in the literature that lead to (1.3). Among
them, the RDP condition proposed by Acosta and Durán in [2] is the weakest. It is
defined as follows.

Definition 2.1. A quadrilateral or a triangle verifies the maximal angle condi-
tion (MAC) with constant ψ < π, or MAC(ψ), if the interior angles of K are less
than or equal to ψ.

Definition 2.2. Let K be a convex quadrilateral. We say that K satisfies the
regular decomposition property with constants N ∈ R+ and 0 < ψ < π, or RDP(N,ψ),
if we can divide K into two triangles along one of its diagonals, always called d1, the
other being denoted by d2 in such a way that |d2|/|d1| ≤ N and both triangles satisfy
MAC(ψ).

In order to motivate our mesh condition introduced below, we first analyze the
following examples. Let K = K(a, b, ã, b̃) be the convex quadrilateral with vertices
M1 = (0, 0),M2 = (a, 0),M3 = (ã, b̃),M4 = (0, b). Consider the case K(1, a, a, a) (cf.
the left-hand side of Figure 2.1) and take u = x2. Straightforward computations show
that ∥∥∥∥∂(u−Qu)

∂y

∥∥∥∥
2

0,K

≥ Ca ln(a−1) and |u|22,K ≤ Ca.

Then the constant on the right-hand side of (1.3) cannot be bounded when a ap-
proaches zero. This is just the counterexample given in [2].

�

�

��������

a
(a, a)

1
K(1, a, a, a)

�

�

�
�

�
�

�
�

�
��

M4
M3

M2M1
K(1, a, as, a), s > 1

Fig. 2.1.

If we consider the caseK(1, a, as, a) with s > 1 (the right-hand side of Figure 2.1),
we have ∥∥∥∥∂(u−Qu)

∂y

∥∥∥∥
2

0,K

≤ Ca2s−1 ln(a−1), |u|22,K ≥ Ca.

However, in this case the error constant

‖∂(u−Qu)
∂y ‖20,K
|u|22,K

≤ Ca2s−2 ln(a−1)

can be bounded with a constant independent of a. Both cases do not satisfy the RDP
condition since the MAC of 	M2M3M4 is violated if we divide the quadrilateral by
the diagonal M2M4.

What is the difference between these two examples? One reasonable interpretation
is that for s > 1 the ratio |�M2M3M4|

|�M1M2M4| = as for K(1, a, as, a) is much smaller than the
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Fig. 2.2. A general convex quadrilateral K.

ratio for K(1, a, a, a). This suggests relaxing the MAC on 	M2M3M4 because the
error on 	M2M3M4 contributes less compared to that on 	M2M1M4.

Based on these considerations, we introduce the following geometric condition,
which can be regarded as a GRDP condition and in section 3 will be proved to be suf-
ficient for the optimal interpolation error estimate for the Q1 Lagrange interpolation.

Definition 2.3. Let K be a convex quadrilateral (illustrated by Figure 2.2).
We say that K satisfies the generalized regular decomposition property with constant
N ∈ R+ and 0 < ψ < π, or GRDP(N,ψ), if we can divide K into two triangles along
one of its diagonals, always called d1, in such a way that the big triangle satisfies
MAC(ψ) and that

hK
|d1| sinα

( |T3|
|T1| ln

|T1|
|T3|

) 1
2

≤ N,(2.2)

where the big triangle will always be called T1, the other is denoted by T3, hK denotes
the diameter of the quadrilateral K, and α is the maximal angle of T3.

Remark 2.4. Noticing that the term |T3|
|T1| = |a3|

|a1| , where a3 = d2 ∩ T3 and a1 =
d2∩T1 denote the two parts of the diagonal d2 divided by the diagonal d1, the condition
(2.2) can be easily checked in practical computations; in particular, if we choose the
longest diagonal for d1, the condition (2.2) becomes 1

sinα ( |a3|
|a1| ln

|a1|
|a3|)

1
2 ≤ N since the

big triangle satisfies MAC(ψ). Note that the above constant N is a generic constant
and may be different from that in (2.2).

Remark 2.5. It is easy to see that if a quadrilateralK satisfies the RDP condition,
then it also satisfies the GRDP condition. However, the converse is not true, as shown
by the example K(1, a, as, a) with s > 2. Note that the elements K(1, a, as, a) do not
satisfy the RDP condition if s > 1, while they satisfy the GRDP condition if and only
if s > 2.

Remark 2.6. In fact, if one divides the quadrilateral into two triangles by the
longest diagonal and if the small triangle is much smaller compared to the big one,
then the quadrilateral K is almost degenerated into the big triangle, and the MAC of
the small triangle should be relaxed under the control of |T3|

|T1| because the error on T3

contributes little to the interpolation error on the global quadrilateral. This is just
our motivation for the presentation of the GRDP condition.

Remark 2.7. Let us finish this section by showing that for some particular exam-
ples the condition in Definition 2.3 that the big triangle satisfy the MAC is necessary.
Indeed, consider the family of quadrilateralsQα of verticesM1 = (−1+cosα,− sinα),
M2 = (1, 0), M3 = (1−cosα, sinα), andM4 = (−1, 0), with the parameter α ∈ (π2 , π);
see Figure 2.3. Since the angles at M2 and M4 are larger than α, any triangle obtained
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Fig. 2.3. The quadrilateral Qα.

by subdividing Qα by one diagonal does not satisfy MAC(ψ) for some ψ < π inde-
pendent on α. If we consider u(x, y) = x2, we directly see that

|u|2,Qα = 2|Qα|1/2.
On the other hand, by using the affine transformation that maps Qα into the reference
K̂, we check that

|u−Qu|21,Qα
≥
∣∣∣∣ ∂∂y (u−Qu)

∣∣∣∣
2

0,Qα

=
∣∣∣∣∂Qu∂y

∣∣∣∣
2

0,Qα

≥ |Qα|
4(sinα)2

∫
K̂

(2 cosαη + 2(1− cosα)ξ + (1− cosα)2) dξdη.

As α goes to π, we see that∫
K̂

(2 cosαη + 2(1− cosα)ξ + (1− cosα)2) dξdη →
∫
K̂

(−2η + 4ξ + 4) dξdη = C2 > 0.

Hence there exists β0 > 0 small enough such that for all α ∈ (π − β0, π)∫
K̂

(2 cosαη + 2(1− cosα)ξ + (1− cosα)2) dξdη ≥ C2

2
.

This finally shows that for all α ∈ (π − β0, π) one has

|u−Qu|1,Qα

|u|2,Qα

≥ C

4 sinα
,

and hence the ratio |u−Qu|1,Qα

|u|2,Qα
goes to infinity as α tends to π.

3. Interpolation error estimate in H1 for Q1 elements. In this section, we
shall prove the optimal order error estimate for Q1 Lagrange elements satisfying the
GRDP condition by following the idea from [2] and [20]. Let Π be the conforming P1

Lagrange interpolation operator on the big triangle T1; i.e., Πu is the linear function
which admits the same values with the function u at the three vertices M1, M2, and
M4. Then we have

|u−Qu|1,K ≤ |Πu−Qu|1,K + |u−Πu|1,K .
Because Πu − Qu belongs to the isoparametric finite element space and vanishes at
M1, M2, and M4, it follows that

(Πu−Qu)(x) = (Πu− u)(M3)φ3(x),
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where φ3 is the basis function corresponding to M3. Hence we obtain

|u−Qu|1,K ≤ |(Πu− u)(M3)||φ3|1,K + |u−Πu|1,K .(3.1)

The goal of the rest of this section is to estimate the two terms of the right-hand side
of (3.1). We first give an estimate for the term |φ3|1,K following the idea developed
in [20] and leave the terms |(Πu− u)(M3)| and |u−Πu|1,K for the end.

In order to estimate |φ3|1,K , we start with a new bound for the term
∫
K̂

1
|J|dξdη,

where J is the Jacobian of the mapping FK .
Lemma 3.1. Let K be a general convex quadrilateral with consecutive vertices

M1, M2, M3, and M4 (cf. Figure 2.2). Let θ be the angle of the two diagonals M1M3

(denoted by d2) and M2M4 (denoted by d1), and let O be the point at which they
intersect. Let ai = |OMi| with ai > 0 for i = 1, 2, 4 and a3 ≥ 0. Let α, s be the
maximal angle and the shortest edge of the triangle T3, respectively. Without loss of
generality, we can assume that M3M4 = s. Then we have∫

K̂

1
|J |dξdη <

4
|d1||s| sinα

|T3|
|T1|

(
2 + ln

|T1|
|T3|

)
.(3.2)

Proof. Let (Ox̃,Oỹ) be two auxiliary axes oriented along the vectors M1M3 and
M2M4. Let J̃ be the Jacobian of the affine mapping (ξ, η) → (x̃, ỹ) and let J1 be
the Jacobian of the affine mapping (x̃, ỹ) → (x, y). Then we have J = J̃J1 with
|J1| = sin θ. It follows from (2.1) that{

x̃ = −(1− ξ)(1 − η)a1 + ξηa3,

ỹ = −ξ(1− η)a2 + (1− ξ)ηa4.

First we assume that a2 ≥ a4. It is easy to see that

J̃ = a2a3ξ + a3a4η + a1a4(1 − ξ) + a1a2(1− η)
≥ a2a3ξ + a1a2(1 − η) ≥ 0.

Then we can derive that∫
K̂

1
|J̃ |dξdη ≤

∫
K̂

1
a2a3ξ + a1a2(1− η)dξdη

=
1

a2a3

∫ 1

0

ln
(

1 +
a3

a1(1 − η)
)
dη

=
1

a2a3

(∫ a3
a1

0

+
∫ 1

a3
a1

)
ln
(

1 +
a3

a1t

)
dt

<
1

a2a3

(∫ a3
a1

0

√
a3

a1t
dt+

∫ 1

a3
a1

a3

a1t
dt

)

=
1

a1a2

(
2− ln

a3

a1

)
,

where we have used the inequalities ln(1+x) <
√
x for all x ∈ [1,∞) and ln(1+x) < x

for all x ∈ [a3
a1
, 1].
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On the other hand, an application of the sin theorem in the triangle M3OM4

yields

sin θ =
sin ∠M2M4M3|s|

a3
.(3.3)

Furthermore, it can be easily proved that sin∠M2M4M3 ≥ 1
2 sinα. Indeed, if α =

∠M2M4M3, the assertion is obvious; otherwise, α = ∠M2M3M4, and then

sin∠M2M4M3 = sin(∠M2M4M3 + ∠M4M2M3) ≤ 2 sin∠M2M4M3

because ∠M4M2M3 ≤ ∠M2M4M3. Therefore,∫
K̂

1
|J |dξdη <

2
a2|s| sinα

a3

a1

(
2− ln

a3

a1

)
,

together with the fact that a3
a1

= |T3|
|T1| and a2 ≥ 1

2 |d1|, implies (3.2).

In the case a2 < a4, we just use the inequality J̃ ≥ a3a4η+ a1a4(1− ξ) and prove
the assertion by the same argument.

Lemma 3.2. Let K be a general convex quadrilateral with the same hypotheses
as Lemma 3.1. Then we have

∣∣∣φ3

∣∣∣
1,K
≤ 8hK

(|d1||s| sinα)
1
2

( |T3|
|T1|

(
2 + ln

|T1|
|T3|

)) 1
2

.(3.4)

Proof. By Lemma 2.2 in [20], we have

∣∣∣φ3

∣∣∣
1,K
≤ 4hK

(∫
K̂

1
|J |dξdη

) 1
2 ∣∣∣φ̂3

∣∣∣
1,∞,K̂

.

The conclusion follows from Lemma 3.1 and the fact that |φ̂3|1,∞,K̂ = 1.
Remark 3.3. As mentioned in [2], the error estimate of the term |φ3|1,K is the

most technical one. It is estimated therein by introducing an appropriate affine change
of variables that reduces the problem to a reference family of elements. Here we did
not adopt the technique developed in [2] because we have not imposed the MAC on
the small triangle. Meanwhile, the estimate of |φ3|1,K in [2] (see Lemma 4.6 of [2])
can be easily recovered under the assumption that |d2||d1| is bounded.

Remark 3.4. Note that (3.4) gives a sharp estimate of the term |φ3|1,K up to
a generic constant. In fact, one can just consider the example of the quadrilateral
K(1, b, a, b) under the assumption 0 < a, b� 1. Some immediate calculations yield

∣∣∣φ3

∣∣∣
1,K
≥
∥∥∥∂φ3

∂y

∥∥∥
0,K
≥ C 1√

b(1− a)

(
ln

1
a

) 1
2

≥ C hK

(|d1||s| sinα)
1
2

( |T3|
|T1|

(
2 + ln

|T1|
|T3|

)) 1
2

since |s| = a, sinα > b, and |T3|
|T1| = a.

The next lemma gives an estimate for |(u −Πu)(M3)|.
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Lemma 3.5. Let K be a general convex quadrilateral; then we have

∣∣(u−Πu)(M3)
∣∣ ≤ ( 4|s|

|d1| sinα
) 1

2 {
|u−Πu|1,T3 + hK |u|2,T3

}
.(3.5)

Proof. The proof is just the same as that of Lemma 4.2 in [2], which exploited
a trace theorem with a sharp dependence of the constant given by [28]; we therefore
omit it here.

Remark 3.6. The result of Lemma 3.5 gives a sharp estimate up to a generic
constant. Consider the example of the quadrilateralK(1, b, a, b) under the assumption
0 < a, b� 1 and the function u(x, y) = x2. We then see that Πu = x and therefore

|(Πu− u)(M3)| = a(1 − a) ≥ C
( |s|
|d1| sinα

) 1
2 {
|u−Πu|1,T3 + hK |u|2,T3

}

since |s| = a, sinα > b, and |u−Πu|1,T3 + hK |u|2,T3 ≤
√
ab.

It remains to bound the term |u−Πu|1,K . This is the goal of the following lemma.

l1

l2

�
�

�
�

�
�

�
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����
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�
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�
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�
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��
M1 M2

M3
M4

T1

γ

Fig. 3.1.

Lemma 3.7. Let K be a general convex quadrilateral and Π be the linear Lagrange
interpolation operator defined on T1; then

|u−Πu|1,K ≤ 4
sinγ

(
1 +

2
π

)(
2|K|
|T1|

) 1
2

hK |u|2,K ,(3.6)

where γ is the maximal angle of T1.
Proof. Without loss of generality, we can assume that ∠M1M4M2 = γ is the

maximal angle of T1 and adopt the notation of Figure 3.1. Let v1, v2 be the directions
of the edges l1 and l2, respectively. Then we have

|u−Πu|1,K ≤ 1
sin γ

(
‖∇(u−Πu) · v1‖0,K + ‖∇(u−Πu) · v2‖0,K

)
.

Consider A = ∇(u − Πu) · v1 = ∂(u−Πu)
∂v1

, and let AK be the mean value of A on
K. The well-known Poincaré inequality gives

‖A−AK‖0,K ≤ hK
π
|A|1,K .(3.7)

Note that for a general convex domain the constant in the above Poincaré in-
equality can be taken explicitly and independent of its shape (i.e., it depends only on
its diameter). However, the original proof in [27] contains a mistake, and recently [10]
gives a corrected proof; fortunately, the optimal constant 1

π in the Poincaré inequality
remains valid.
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Now we bound ‖AK‖0,K following an idea from [2]. By the sharp trace theorem
of [28], the Cauchy–Schwarz inequality, and the fact that

∫
l1
Adv1 = 0, we have

‖AK‖0,K = |K| 12 |AK | = |K|
1
2

|l1|
∣∣∣∣
∫
l1

(A−AK)dv1

∣∣∣∣
≤
(

2|K|
|T1|

) 1
2 (
‖A−AK‖0,K + hK |A|1,K

)
,

which, together with (3.7), gives

‖∇(u−Πu) · v1‖0,K ≤
(

1 +
2
π

)(
2|K|
|T1|

) 1
2

hK |u|2,K .

The term ‖∇(u − Πu) · v2‖0,K is estimated similarly, and the proof of the lemma
follows.

Collecting all of the above lemmas, we can obtain the main theorem of this section,
which gives the optimal error estimate in the H1 norm for convex quadrilaterals.

Theorem 3.8. Let K be a convex quadrilateral satisfying GRDP(N,ψ); then we
have

|u−Qu|1,K ≤ ChK |u|2,K ,(3.8)

with C > 0 depending only on N and ψ.
Proof. A combination of (3.4) and (3.5) yields

|(Πu− u)(M3)||φ3|1,K ≤ 16hK
|d1| sinα

( |T3|
|T1|

(
2 + ln

|T1|
|T3|

)) 1
2

×
{
|u−Πu|1,T3 + hK |u|2,T3

}
,

which, together with (3.1) and (3.6), gives

∣∣u−Qu∣∣
1,K
≤
{

32hK
|d1| sinα

( |T3|
|T1|

(
2 + ln

|T1|
|T3|

)) 1
2

+ 1

}

× 4
sinγ

(
1 +

2
π

(
2|K|
|T1|

) 1
2
)
hK
∣∣u∣∣

2,K
.(3.9)

Since T1 satisfies the MAC and |T1| ≥ 1
2 |K|, (3.8) follows from the assumption

(2.2) and (3.9).
Remark 3.9. In fact, (3.9) gives an explicit error bound for the bilinear interpo-

lation operator. If the two divided triangles have comparable areas, i.e., |T3|
|T1| = O(1),

then the results of [2] can be recovered from (3.9) with the RDP condition. Other-
wise, if the quadrilateral is nearly degenerated into the triangle T1, i.e., |T3|

|T1| −→ 0,
we can see that the interpolation error of the Q1 element is dominated by that of
the P1 Lagrange interpolation operator on T1. Obviously, this is a quite reasonable
conclusion. This reinforces the fact that the MAC imposed on T1 cannot be relaxed
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because it is also a necessary condition for the optimal interpolation error of the P1

Lagrange interpolation operator (cf. [6, 9]).
Remark 3.10. One may ask whether the GRDP condition is necessary in the

sense that, given a family of elements that does not satisfy the GRDP condition,
the interpolation error estimate (3.8) cannot be uniformly bounded. Indeed we have
already shown in Remark 2.7 that the MAC on the biggest triangle seems to be
necessary. In its full generality we cannot hope to show that (2.2) is also necessary.
From Remarks 3.4 and 3.6 we present a family of quadrilaterals that satisfies the
MAC but not the condition (2.2) and for which the interpolation error estimate (3.8)
is not uniformly satisfied. In that sense our condition (2.2) is almost necessary. For
that purpose, we take the example from Remark 3.4 and the function u(x, y) = x2.
We then see that Πu(x, y) = x and therefore

(Πu− u)(M3) = a(1− a), |u|2,K ≤ C
√
b.

By the triangular inequality, we then have

|u−Qu|1,K ≥ |(Πu− u)(M3)||φ3|1,K − |u−Πu|1,K .

Hence by Lemma 3.7, we have

|u−Qu|1,K
hK |u|2,K ≥ |(Πu − u)(M3)||φ3|1,K

hK |u|2,K − |u−Πu|1,K
hK |u|2,K

≥ C1
a
√| ln a|
b

− C2

for some positive constants C1, C2 independent on a and b. By choosing b = a| ln a|α,
with α ≥ 0, the above right-hand side tends to infinity for a→ 0 and therefore (3.8) is
not uniformly satisfied. Furthermore, we easily check that this family of quadrilaterals
satisfies the MAC but not the condition (2.2). In our proof of (3.8), the point where
we make an overestimation is when we use the estimates ‖u−Πu‖1,T3 ≤ ‖u−Πu‖1,K
and |u|2,T3 ≤ |u|2,K . In many cases (for instance, in the case a = b2), the right-hand
sides are much larger than the corresponding left-hand sides.

4. Some technical bounds. Until now, we have studied the interpolation error
estimate of the Q1 element in the H1 norm. In this section and the next, we will
extend our mesh condition for the error estimate in W 1,p for p ≥ 1. As suggested
by section 3, the key point is to estimate |φ3|1,p,K

hK
. But noticing that |∂φ3

∂x | ≤ 2hK

|J| ,

|∂φ3
∂y | ≤ 2hK

|J| , we have

|φ3|1,p,K ≤ 4hK

(∫
K̂

1
|J |p−1

dξdη

) 1
p

,(4.1)

and we are reduced to estimating the quantity∫
K̂

1
|J |p−1

dξdη.

The remainder of this section is devoted to finding an explicit bound of this
quantity for different values of p.
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Let us start with the case 1 ≤ p < 3.
Lemma 4.1. Let K be a general convex quadrilateral; then we have∫

K̂

1
|J |p−1

dξdη <
4p−1

(2 − p)(|d1||s| sinα)p−1

( |T3|
|T1|

)p−1

for p ∈ [1, 2),(4.2)

∫
K̂

1
|J |p−1

dξdη <
4p−1

(p− 2)(3− p)(|d1||s| sinα)p−1

( |T3|
|T1|

)p−1

for p ∈ (2, 3).(4.3)

Proof. We adopt the notation introduced in Lemma 3.1. By direct computations,
if a2 ≥ a4, we can derive∫

K̂

1
|J̃ |p−1

dξdη ≤
∫
K̂

1
(a2a3ξ + a1a2(1− η))p−1

dξdη

=
1

(2 − p)(a1a2)p−1

∫ 1

0

((
1 +

a3

a1
ξ

)2−p
− ξ2−p

)
dξ

=
1

(2 − p)(3− p)ap−2
1 ap−1

2 a3

((
1 +

a3

a1

)3−p
−
(
a3

a1

)3−p
− 1

)
.

If p ∈ [1, 2), it can be easily proved that (1 + x)3−p < 1 + (3 − p)x + x3−p for all
x ∈ (0, 1]. Then we have∫

K̂

1
|J̃ |p−1

dξdη <
1

(2 − p)ap−1
1 ap−1

2

.

Recalling that |J | = |J̃ | sin θ and (3.3), we get∫
K̂

1
|J |p−1

dξdη <
4p−1

(2 − p)(|d1||s| sinα)p−1

(
a3

a1

)p−1

,

which implies (4.2).
Otherwise, if p ∈ (2, 3), we have∫

K̂

1
|J̃ |p−1

dξdη ≤ 1
(2− p)(a2a3)p−1

∫ 1

0

((
1 +

a1

a3
(1− η)

)2−p
−
(
a1

a3
(1− η)

)2−p)
dη

=
1

(p− 2)(3− p)ap−2
3 ap−1

2 a1

((
a1

a3

)3−p
+ 1−

(
1 +

a1

a3

)3−p)
.

On the other hand, we directly see that

(1 + x)3−p ≥ x3−p ∀x > 0.

Then we have ∫
K̂

1
|J̃ |p−1

dξdη <
1

(p− 2)(3− p)ap−2
3 ap−1

2 a1

and ∫
K̂

1
|J |p−1

dξdη <
4p−1

(p− 2)(3− p)(|d1||s| sinα)p−1

a3

a1
,

which implies (4.3).
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The case a2 < a4 is treated similarly. The proof is complete.
Remark 4.2. Comparing the upper bounds in (4.2), (4.3) with the one from (3.2),

we can make the following conclusions: the right-hand sides of (4.2) and (4.3) are not
valid for p = 2. Hence it is reasonable to have added a log factor in (3.2). Indeed, in
the proof of Lemma 4.1, passing to the limit p→ 2 in the estimates of

∫
K̂

1
|J̃|p−1 dξdη,

we can show that∫
K̂

1
|J̃ |dξdη = lim

p→2

∫
K̂

1
|J̃ |p−1

dξdη

≤ lim
p→2

1
(p− 2)(3− p)ap−2

3 ap−1
2 a1

((
a1

a3

)3−p
+ 1−

(
1 +

a1

a3

)3−p)

=
1

a1a2

(
a1

a3
ln
a1

a3
−
(

1 +
a1

a3

)
ln
(

1 +
a1

a3

))
.

This leads to (2.2) because (a1
a3

ln a1
a3
− (1 + a1

a3
) ln(1 + a1

a3
)) ≤ 2 + ln a1

a3
.

On the other hand, the right-hand side of (4.3) is not valid for the critical point
p = 3, so it is natural to make another analysis of the bound for p ≥ 3. This will be
discussed below.

Remark 4.3. When p approaches 2, the estimate (4.2) can be improved in order
to avoid a blowup. In fact, for p < 2, |φ3|1,p,K can be bounded directly from (3.2).
Indeed, taking into account 1

p−1 > 1 and applying Hölder’s inequality in the right-
hand side of (4.1), it holds that

∣∣∣φ3

∣∣∣
1,p,K

≤ 4hK

(∫
K̂

1
|J |dξdη

)1− 1
p

≤ 41+ 1
phK

(|d1||s| sinα)1−
1
p

( |T3|
|T1|

)1− 1
p
(

2 + ln
|T1|
|T3|

)1− 1
p

.

Let us proceed with the case p ≥ 3.
Lemma 4.4. Let K be a general convex quadrilateral, and let Ti = 	Mi−1MiMi+1,

i = 1, 2, 3, 4, with Mi±4 = Mi. Without loss of generality we may assume that
|T3| = mini=1,3 |Ti|, |T4| = mini=2,4 |Ti|. Then we have

∫
K̂

1
|J |p−1

dξdη ≤ 21+ 1
pM1− 3

p + 1
2p

|T1| 1p |T3|1− 2
p

for p ∈
[
3,

7
2

]
,(4.4)

∫
K̂

1
|J |p−1

dξdη ≤ 21+ 2
pM

1
p

(p− 2)
1
p |T1| 1p |T3|1− 2

p

for p ∈
(

7
2
, 4
]
,(4.5)

∫
K̂

1
|J |p−1

dξdη <
(p− 3)

1
p 21+ 2

pM1− 3
p

(p− 2)
1
p |T1| 1p |T3|1− 2

p

for p > 4,(4.6)

where M = max{1, |T3|
|T4|}.
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Proof. First consider the case p = 3. In view of the results in Lemma 3.1, we have

J = J̃J1 = 2
(|T1|+ (|T2| − |T1|)ξ + (|T4| − |T1|)η

)
.

Noticing the fact

|T1|+ |T3| = |T2|+ |T4| = |K|,
we can derive that∫

K̂

1
|J |2 dξdη =

1
4

∫
K̂

1(|T1|+ (|T2| − |T1|)ξ + (|T4| − |T1|)η
)2 dξdη

=
1

4(|T1| − |T2|)
∫ 1

0

(
1

|T2|+ (|T4| − |T1|)η −
1

|T1|+ (|T4| − |T1|)η
)
dη

=
1

4(|T1| − |T2|)(|T4| − |T1|) ln
|T1||T3|
|T2||T4|

=
1

4(|T1||T3| − |T2||T4|) ln
|T1||T3|
|T2||T4| .

Now let us discuss the above result. If |T3| ≤ |T4|, then we have

|T1| ≥ |T2| and |T1||T3| ≤ |T2||T4|,(4.7)

which implies ∫
K̂

1
|J |2 dξdη ≤

1
4|T1||T3| ,(4.8)

where we have used the inequality ln x
1− 1

x

≤ 1 for all x ∈ (0, 1].
On the other hand, if |T3| > |T4|, then

|T2| > |T1| and |T1||T3| > |T2||T4|;(4.9)

thus we can derive∫
K̂

1
|J |2 dξdη =

1
4(|T1||T3| − |T2||T4|) ln

(
1 +
|T1||T3| − |T2||T4|

|T2||T4|
)

≤ 1
4(
√|T1||T3|+

√|T2||T4|)
√|T2||T4|

<
1

4
√|T1||T3||T2||T4|

<
1

4|T1||T3|
( |T3|
|T4|

) 1
2

,(4.10)

where we have used the inequality ln(1 + x) ≤ √x for all x ∈ (0,∞).
Then a combination of (4.8), (4.10), and (4.1) gives (4.4) for the case p = 3.
For p ∈ (3, 7

2 ], we write∫
K̂

1
|J |p−1

dξdη =
∫
K̂

1
|J |p−3

1
|J |2 dξdη

≤
(

M

2|T3|
)p−3 ∫

K̂

1
|J |2 dξdη,
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where M = max{1, |T3|
|T4|}, since we notice that

min
K̂
|J | = 2 min{|T1|, |T2|, |T3|, |T4|} = 2 min{|T3|, |T4|} =

2|T3|
M

.

By the estimate (4.8) and (4.10), we deduce that

∫
K̂

1
|J |p−1

dξdη ≤
(

M

2|T3|
)p−3

M
1
2

4|T1||T3| .

This estimate yields

∣∣∣φ3

∣∣∣
1,p,K

≤ 21+ 1
phK

|T1| 1p |T3|1− 2
p

M1− 3
p + 1

2p .

Now we come to the case 7
2 < p. An immediate computation gives that

∫
K̂

1
|J |p−1

dξdη =
1

(2− p)2p−1(|T2| − |T1|)

(∫ 1

0

(
1

|T2|+ (|T4| − |T1|)η
)2−p

dη

−
∫ 1

0

(
1

|T1|+ (|T4| − |T1|)η
)2−p

dη

)

=
|T1|3−p + |T3|3−p − |T2|3−p − |T4|3−p

(p− 2)(p− 3)2p−1(|T1| − |T2|)(|T1| − |T4|) .(4.11)

If |T3| > |T4|, using (4.9) and the fact that |T2|−|T1| = |T3|−|T4|, and by applying
Cauchy’s mean value theorem repeatedly, we have

|T1|3−p + |T3|3−p − |T2|3−p − |T4|3−p

=
(|T2||T4|)p−3(|T1|p−3 + |T3|p−3)− (|T1||T3|)p−3(|T2|p−3 + |T4|p−3)

|T1|p−3|T2|p−3|T3|p−3|T4|p−3

=
(|T2||T4|)p−3(|T1|p−3 + |T3|p−3 − |T2|p−3 − |T4|p−3)

|T1|p−3|T2|p−3|T3|p−3|T4|p−3

+
((|T2||T4|)p−3 − (|T1||T3|)p−3)(|T2|p−3 + |T4|p−3)

|T1|p−3|T2|p−3|T3|p−3|T4|p−3

=
(p− 3)(|T2||T4|)p−3(mp−4

34 −mp−4
12 )(|T2| − |T1|)

|T1|p−3|T2|p−3|T3|p−3|T4|p−3

+
(p− 3)(|T2||T4| − |T1||T3|)mp−4

1324(|T2|p−3 + |T4|p−3)
|T1|p−3|T2|p−3|T3|p−3|T4|p−3

=
(p− 3)(p− 4)(|T2||T4|)p−3mp−5

1234(m12 −m34)(|T1| − |T2|)
|T1|p−3|T2|p−3|T3|p−3|T4|p−3

+
(p− 3)(|T1| − |T2|)(|T1| − |T4|)mp−4

1324(|T2|p−3 + |T4|p−3)
|T1|p−3|T2|p−3|T3|p−3|T4|p−3

;(4.12)
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here the constants m12,m34,m1324,m1234 are constants produced by the mean value
theorem that satisfy |T1| ≤ m12 ≤ |T2|, |T4| ≤ m34 ≤ |T3|, |T2||T4| ≤ m1324 ≤ |T1||T3|,
and |T34| ≤ m1234 ≤ |T12|.

Since, for 7
2 < p ≤ 4, we have

(p− 4)(|T2||T4|)p−3mp−5
1234(m12 −m34) ≤ 0

and

mp−4
1324 ≤ (|T2||T4|)p−4,

by (4.11) and (4.12), it holds that∫
K̂

1
|J |p−1

dξdη ≤ |T4|p−4|T2|2p−7

(p− 2)2p−2|T1|p−3|T2|p−3|T3|p−3|T4|p−3

=
1

(p− 2)2p−2|T1||T3|p−2

|T3|
|T4| .(4.13)

When p > 4, further noticing that

|T4|p−3mp−5
1234 ≤

{
|T4|2p−8, 4 < p ≤ 5,
|T2|p−5|T4|p−3, p > 5,

≤ (|T1||T3|)p−4

and

m12 −m34 ≤ |T2| − |T4| ≤ 2(|T1| − |T4|),

we can derive∫
K̂

1
|J |p−1

dξdη ≤ (p− 3)(|T1||T3|)p−4|T2|p−3

(p− 2)2p−2|T1|p−3|T2|p−3|T3|p−3|T4|p−3

≤ (p− 3)
(p− 2)2p−2|T1||T3|p−2

( |T3|
|T4|

)p−3

.(4.14)

In the case |T3| ≤ |T4|, we proved similarly that (4.13) and (4.14) hold by (4.7). This
yields (4.5) and (4.6).

Remark 4.5. The technique developed in Lemma 4.4 renders the continuity of
the upper bounds at the turning points p = 3, 7

2 , 4.

5. Interpolation error estimates in W 1,p. According to the bounds from
the previous section, we can make the following definition.

Definition 5.1. Let K be a convex quadrilateral. We say that K satisfies the
new RDP with constants N ∈ R+, 0 < ψ < π, and p ∈ [1,∞)\{2}, or NRDP(N,ψ, p),
if we can divide K into two triangles along one of its diagonals, always called d1, in
such a way that the big triangle satisfies MAC(ψ) and that

hK

(2− p) 1
p |d1| sinα

( |T3|
|T1|

)1− 1
p

≤ N for p ∈ [1, 2),(5.1)
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hK

(p− 2)
1
p (3− p) 1

p |d1| sinα

( |T3|
|T1|

) 1
p

≤ N for p ∈ (2, 3),(5.2)

hKM
1− 3

p + 1
2p

|d1| sinα
( |T3|
|T1|

) 1
p

≤ N for p ∈
[
3,

7
2

]
,(5.3)

hKM
1
p

|d1| sinα
( |T3|
|T1|

) 1
p

≤ N for p ∈
(

7
2
, 4
]
,(5.4)

hKM
1− 3

p

|d1| sinα
( |T3|
|T1|

) 1
p

≤ N for p > 4,(5.5)

where the big triangle will always be called T1, the other is called T3, hK denotes the
diameter of the quadrilateral K, α denotes the maximal angle of T3, and s denotes
the smallest edge of T3.

Remark 5.2. In view of Remark 4.3, when p < 2, the condition (5.1) could be
replaced by

hK
|d1| sinα

( |T3|
|T1| ln

|T1|
|T3|

)1− 1
p

≤ N.

This condition is more advantageous than (5.1) for p close to 2, while it is the converse
for p far from 2.

We first state an estimate for |(u − Πu)(M3)|, which follows from the proof of
Lemma 5.2 of [4].

Lemma 5.3. Let K be a general convex quadrilateral and Π be the linear Lagrange
interpolation operator defined on T1; then

|(u−Πu)(M3)| ≤
(

2p|s|p−1

|d1| sinα
) 1

p {
|u−Πu|1,p,T3 + hK |u|2,p,T3

}
, p ≥ 1.(5.6)

Remark 5.4. Since K is convex, it is well known that the Poincaré inequality
holds for general p ≥ 1; i.e., there exists a constant Cp depending only on p such that

‖v‖0,p,K ≤ Cph|v|1,p,K(5.7)

for any v ∈ W 1,p(K) with vanishing average on K.
Now we are in a position to bound the term |u−Πu|1,p,K .
Lemma 5.5. Let K be a general convex quadrilateral and Π be the linear Lagrange

interpolation operator defined on T1; then

|u−Πu|1,p,K ≤ (1 + 2Cp)
22− 1

p

sin γ

( |K|
|T1|

) 1
p

hK |u|2,p,K ,

where γ is the maximal angle of T1.
Proof. The proof is just a combination of the arguments of Lemma 3.7 in section 3

(using here (5.7)) and of Lemma 5.3 of [4].
Now we come to the main theorem of this section.
Theorem 5.6. Let K be a convex quadrilateral satisfying NRDP(N,ψ, p) with

p ∈ [1,∞) \ {2}; then we have

|u−Qu|1,p,K ≤ ChK |u|2,p,K ,(5.8)

with C > 0 depending only on N, p, and ψ.
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Proof. A combination of (4.1), Definition 5.1, and (5.6) yields

|(Πu − u)(M3)||φ3|1,p,K ≤ CpN
{
|u−Πu|1,p,T3 + hK |u|2,p,T3

}
,

where Cp > 0 depends only on p.
Now invoking Lemma 5.5, we get

|u−Qu|1,p,K ≤ |(Πu − u)(M3)||φ3|1,p,K + |u−Πu|1,p,K
≤ κ(K, p)C′phK |u|2,p,K ,

where C′p > 0 depends only on p and κ(K, p) is defined by

κ(K, p) = N + (1 + CpN)
1

sin γ

( |K|
|T1|

) 1
p

.

Hence we will obtain (5.8) if κ(K, p) is bounded uniformly. By the definition of T1

implying that |K| ≤ 2|T1|, we have

( |K|
|T1|

) 1
p

≤ 2p.

We therefore conclude by using the assumption on γ from Definition 5.1.
Let us finish our paper by comparing our geometrical conditions with the double

angle condition (DAC) introduced in [4], which we recall here.
Definition 5.7. Let K be a convex quadrilateral. We say that K satisfies the

DAC with constants ψm, ψM , or DAC(ψm, ψM ), if the interior angles ω of K verify
0 < ψm ≤ ω ≤ ψM < π.

Obviously, the above DAC(ψm, ψM ) is equivalent to (1.2). In [4], the authors
proved that it is a sufficient condition for the optimal error estimate in W 1,p with
p ≥ 3 and showed that the restriction on the maximal angle cannot be relaxed by some
counterexamples. In fact, the DAC(ψm, ψM ) is a quite strong geometric condition,
and the following elementary implications hold:

DAC(ψm, ψM ) =⇒ MAC(ψM ) =⇒ RDP(N,ψM ) =⇒ GRDP(N,ψM ).

One can see that the above NRDP condition for p ≥ 3 is much weaker than
the DAC. In fact, if the quadrilateral K satisfies DAC(ψm, ψM ), it can be easily
proved that |T3|

|T4| ≤ C(ψm, ψM ) and d1 = O(hK); hence there exists a constant N =
N(ψm, ψM ) such that K satisfies NRDP(N(ψm, ψM ), ψM , p) for all p ≥ 3.

If K satisfies |T3|
|T4| ≤ C which is satisfied in many cases, the above NRDP condition

for p ≥ 3 is even weaker than the RDP condition. However, there are some examples
such that K satisfies the RDP condition but not the above NRDP condition for p ≥ 3,
e.g., K(1, 1, s, s) with s −→ 1

2 (cf. Figure 5.1), which is employed as a counterexample
in [4]. In this sense we may say that our NRDP conditions for p ≥ 3 are as weak as
the RDP condition.

If K satisfies |T3|
|T4| −→ ∞, the quadrilateral K is almost degenerated into the

triangle T2. In such a case, the constant of the interpolation error in the W 1,p norm
(p > 3) may not be bounded even if K satisfies the RDP condition. This can be partly
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d1

Fig. 5.1. K(1, 1, s, s).

interpreted by the fact that max
{
1, |T3|
|T4|
}

appears as a factor in our NRDP condition.
Taking K(1, 1, s, s) with s −→ 1

2 (see Figure 5.1) as an example, if one chooses d1 to
divide K into two triangles, K does satisfy the RDP condition, but (5.8) does not
hold because |T3|

|T4| −→ ∞, which violates the NRDP condition for p ≥ 3.

6. Conclusion. Interpolation error estimates of the finite elements play an im-
portant role in the finite element literature. In this paper, we have introduced a
generalized RDP (GRDP) condition for p = 2 and new RDP (NRDP) conditions for
p �= 2, which permit us to prove some interpolation error estimates in the W 1,p norm
with 1 ≤ p < ∞ for the Q1 isoparametric finite elements. As far as we know, our
NRDP conditions presented here are weaker than any other mesh conditions proposed
in the literature for the same p with 1 ≤ p <∞.

The results of this paper are valid only for bilinear elements, and it seems difficult
to extend them to higher order Lagrange quadrilateral elements or other quadrilateral
elements, e.g., mixed elements and nonconforming elements. Some preliminary results
for some mixed elements and nonconforming elements are already obtained and will
be investigated in our future work.
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squares methods for the Darcy equation illustrate our approach. We prove that reformulated methods
converge optimally with respect to a norm involving the mimetic divergence operator. Furthermore,
we prove that standard and reformulated versions of the mixed Galerkin method lead to identical
linear systems, but the two versions of the least-squares method are veritably different. The surprising
conclusion is that the degradation of convergence in the mixed method on nonaffine quadrilateral
grids is superficial, and that the lowest-order Raviart–Thomas elements are safe to use in this method.
However, the breakdown in the least-squares method is real, and there one should use our proposed
reformulation.

Key words. Raviart–Thomas, quadrilateral, mixed methods, least-squares methods, mimetic
methods

AMS subject classifications. 65F10, 65F30, 78A30

DOI. 10.1137/070704265

1. Introduction. We consider finite element solution of the elliptic boundary
value problem

(1.1)

{ ∇ · u + σΘ0p = f,

∇p+ Θ−1
1 u = 0,

in Ω and
p = 0 on ΓD,

n · u = 0 on ΓN ,

where Ω ⊂ �2 has a Lipschitz-continuous boundary ∂Ω = ΓD ∪ ΓN , n is the unit
outward normal to ∂Ω, Θ1 is a symmetric tensor, Θ0 is a real valued function, and
σ is a nondimensional parameter that is either 0 or 1. Regarding Θ1 and Θ0, we will
assume that there exists a constant α > 0 such that for every x ∈ Ω and ξ ∈ �2,

(1.2)
1
α
ξT ξ ≤ ξTΘ1(x)ξ ≤ αξT ξ and

1
α
≤ Θ0(x) ≤ α.

The equations (1.1) are often called the Darcy problem and provide a simplified model
of a single phase flow in porous media. In this context, p is the pressure, u is the
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Darcy velocity, and Θ1 is the permeability tensor divided by the viscosity. The use of
this first-order system as a basis for a finite element method stems from the fact that
in porous media flow the vector variable u is more important than the pressure p.
In such cases numerical methods that compute accurate, locally conservative velocity
approximations are favored.

Two such methods are the mixed Galerkin method [11] and the locally conserva-
tive least-squares method [7, 8, 13]. The main focus of this paper will be on imple-
mentations of these two methods with the lowest-order quadrilateral Raviart–Thomas
elements (RT0) [19, 11]. Several reasons motivate our interest in these elements.
Quadrilateral grids are widely used in the petroleum industry for porous media flow
simulations and there are connections between conservative finite difference methods
for (1.1) and mixed methods implemented with the lowest-orderH(div ,Ω)-compatible
spaces; see [1, 5, 22] and the references therein. Our study is also prompted by the
recent work of Arnold, Boffi, and Falk [4], whose paper asserts that the accuracy
of H(div ,Ω)-conforming finite element spaces deteriorates on nonaffine quadrilateral
grids, which in turn leads to reduced orders of convergence in finite element meth-
ods. Arnold, Boffi, and Falk [4] support this assertion by examples that show reduced
convergence in H(div ,Ω) of the vector variable in the mixed method, and exam-
ples which suggest that in the least-squares method loss of accuracy also spreads to
pressure approximations.

These examples are particularly damning for low-order elements because for them
the degradation of accuracy in the methods takes the form of a total loss of convergence
in some norms for one or both variables. The main goal of this paper is to restore
confidence in RT0 elements and show that with some simple modifications in the
finite element methods they can be safely used on general, shape-regular, but not
necessarily affine quadrilateral grids.

The proposed reformulation of the mixed and least-squares methods is motivated
by mimetic finite difference methods [20]. A mimetic discretization of (1.1) uses the
so-called natural mimetic divergence, DIV, and derived gradient, GRAD, operators; see
[15, 16]. Of particular interest to us is DIV, which is constructed using the coordinate-
invariant definition [2, p. 188]

(1.3) ∇ · u(x) = lim
κ�x;μ(κ)→0

∫
∂κ

u · n dS
μ(κ)

of the divergence operator.1 The result is a discrete operator2 that maps face-
based values (the fluxes of u) onto cell-based constants. Because DIV acts on the same
set of degrees of freedom as used to define the lowest-order Raviart–Thomas
space, its action can be extended to that space in a natural way. This is the key to
our mimetic reformulation of finite element methods, in which the main idea is to

1In this definition κ is a bounded region and μ(κ) denotes its measure. The mimetic approxi-
mation of ∇ · u on an element κ, belonging to a finite element partition Th of Ω, is defined by the
right-hand side in this formula, assuming that u and n are constant on the faces of κ.

2For brevity we call this operator “natural divergence.”
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replace3 the analytic divergence ∇· by the natural divergence DIV.
A somewhat unexpected byproduct of our analysis is a theorem which shows that

the mimetic reformulation of the mixed method is actually equivalent to its standard
version, in the sense that the two methods generate identical linear algebraic systems
with identical solutions. Since in the mimetic reformulation DIV(uh) converges to
the divergence of the exact solution, it follows that the same must be true for the
solution of the standard mixed method. In other words, the flux degrees of freedom
in the mixed Galerkin solution do contain accurate information about the divergence
of the exact solution. The reason ∇· fails to recover this information on nonaffine
quads is that it acts on the flux data indirectly via basis functions defined by the
Piola transform, which makes the result dependent upon the element shape.4 In
contrast, DIV is able to always recover accurate divergence approximation because it
acts directly on the flux degrees of freedom, which makes its action independent of
the element shape. It follows that the loss of convergence in the mixed method is
superficial and that this method can be safely used on nonaffine quadrilateral grids.

Unlike the mixed method, mimetic reformulation of the least-squares method
turns out to be veritably different from its standard finite element realization, and
the loss of convergence in this method, reported in [4], is genuine. We refine the
conclusions of [4] by showing that for Darcy problems that include a “reaction” term
(σ = 1) the loss of accuracy does not spread to the pressure approximation. However,
the “information content” of the velocity approximation is ruined, and using DIV in
lieu of∇· to extract divergence information does not help much. Thus, the breakdown
in the least-squares method is real, and for general quadrilateral grids one should use
our proposed reformulation.

This paper is organized as follows. Section 2 reviews notation and definitions of
finite element spaces. Section 3 discusses the natural divergence operator, its proper-
ties, and extension to the lowest-order Raviart–Thomas elements. Section 4 presents
mimetic reformulations of mixed and least-squares methods. Section 5 contains anal-
yses of these methods. Numerical results are collected in section 6.

2. Notation and quotation of results. For p > 0, Hp(Ω) denotes the Sobolev
space of order p with norm and inner product denoted by ‖·‖p and (·, ·)p, respectively.
When p = 0, we use the standard notation L2(Ω). The symbol |·|k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω), while H1

D(Ω) is the subspace of H1(Ω) consisting of all
functions that vanish on ΓD. The set H(div ,Ω) = {u ∈ (L2(Ω))2 | ∇ · u ∈
L2(Ω)} and its subset HN (div ,Ω) = {v ∈ H(div ,Ω) | v ·n = 0 on ΓN} are Hilbert
spaces when equipped with the graph norm ‖u‖div = (‖u‖20 + ‖∇ · u‖20)1/2.

Throughout this paper Th is a partition of Ω into convex quadrilateral elements
κ, Nh is the set of nodes xi in Th, and Fh is the set of oriented faces f i in Th. A face
is oriented by choosing a unit normal nf , and an element is oriented by choosing a
unit normal nκ to its boundary ∂κ. By default, all elements are oriented as sources

3A perfectly valid alternative solution is to divide each element into two affine triangles and
simply use an RT0 space on triangles [17]. Nonetheless, quadrilateral elements may still be favored
for the following reasons. When a quadrilateral grid is transformed into a triangular one by the above
procedure, the number of faces increases by a number equal to the number of elements in the original
mesh. Because in the RT0 space each face is associated with a degree of freedom, this means that
the size of the discretized problem will also increase by the same number without formally increasing
its accuracy. Second, for problems with advection, quadrilateral grids are easier to align with the
flow, which reduces the amount of artificial numerical diffusion.

4This is also the reason why formal finite element analysis fails to recognize that the mixed
Galerkin solution does contain accurate divergence information.
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so that nκ is the outer unit normal to ∂κ.
We assume that the elements in Th satisfy the usual conditions required of finite

element partitions; see [12, pp. 38–51]. In what follows we restrict our attention to
shape-regular partitions Th where each κ is a bilinear image of the reference square
κ̂ = [−1, 1]2. We recall that for such partitions there exists a positive α such that

(2.1)
1
α
μ(κ) ≤ ‖ detDΦκ‖∞,κ̂ ≤ αμ(κ) ∀κ ∈ Th;

see [14, p. 105]. In (2.1) DΦκ(x̂) is the derivative of the bilinear function Φκ(x̂) that
maps κ̂ to a given quadrilateral κ. When the range of Φκ is clear from the context
we will skip the subscript κ. There also hold (see [14, p. 105])

(2.2) detDΦκ(x̂) > 0 ∀x̂ ∈ κ̂ and μ(κ) = detDΦκ(0, 0)μ(κ̂) .

The first property follows from the convexity of each κ.
Pqr(V ) denotes polynomial functions on a region V ⊂ �2, whose degree in x and y

does not exceed q and r, respectively. Thus, P00(V ) is the set of constant polynomials
on V ; P11 is the set of bilinear polynomials on V ; and so on.

Since our focus is on low-order methods, for the mixed Galerkin method we con-
sider pressure approximations by the piecewise constant space

(2.3) Q0 = {ph ∈ L2(Ω) | ph|κ ∈ P00(κ) ∀κ ∈ Th}

and velocity approximations by the lowest-order Raviart–Thomas space

(2.4) RT0 = {uh ∈ H(div ,Ω) |uh|κ = Pκ ◦ ûh; ûh ∈ P10(κ̂)× P01(κ̂) ∀κ ∈ Th},

where Pκ = det(DΦ(x̂))−1DΦ(x̂) is the Piola transform; see [11, p. 97]. The least-
squares method uses the same space for the velocity, and the C0 Lagrangian space

(2.5) Q1 = {ph ∈ C0(Ω); ph|κ = p̂ ◦ Φ−1
κ ; p̂ ∈ P11(κ̂) ∀κ ∈ Th}

for the pressure approximation.
Finite element spaces are restricted by boundary conditions. RTN0 is the subspace

of RT0 such that uh · n = 0 on ΓN , and QD1 is the subspace of Q1 such that ph = 0
on ΓD. No boundary conditions are imposed on Q0.

Remark 1. The mapping Φκ is affine if and only if κ is a parallelogram. Therefore,
in general, RT0 and Q1 are not piecewise polynomial spaces.

The unisolvent set of Q0 consists of the element averages

(2.6) Λ(Q0) =
{
lκ | lκ(p) =

∫
κ

pdx; κ ∈ Th
}
,

the unisolvent set of Q1 is given by the nodal values

(2.7) Λ(Q1) =
{
lx | lx(p) =

∫
Ω

δ(x)pdx; x ∈ Nh
}
,

and the unisolvent set for RT0 is the average flux across element faces

(2.8) Λ(RT0) =
{
lf | lf (v) =

∫
f

v · n dS; f ∈ Fh
}
.
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The symbols {pκ}, {px}, and {uf} stand for the basis sets of Q0, Q1, and RT0, which
are dual to (2.6), (2.7), and (2.8), respectively; see [12, 11] for further details.
IQ0 , IQ1 , and IRT0 are the interpolation operators into Q0, Q1, and RT0 induced

by the degrees of freedom in (2.6)–(2.8). Domains of IQ1 and IRT0 consist of those
functions in H1(Ω) and H(div ,Ω) for which the functionals in (2.7) and (2.8) are
meaningful. For the domain of IRT0 we will use the space

(2.9) W (Ω) = {u ∈ (Ls(Ω))2 | ∇ · u ∈ L2(Ω); s > 2}.
With this choice IRT0 is uniformly bounded as an operatorW �→ RT0 (see [11, p. 125]):

(2.10) ‖Iu‖div ≤ C‖u‖W .

When the range of the interpolation operator is clear from this type of argument we
skip the space designation and simply write I.

Approximation properties of interpolation operators are as follows. The L2 pro-
jection IQ0 is first-order accurate (see [14, p. 108]):

(2.11) ‖p− IQ0p‖0 ≤ Ch‖p‖1 ∀p ∈ H1(Ω).

On shape-regular quadrilateral grids IRT0 is first-order5 accurate in L2:

(2.12) ‖u− IRT0u‖0 ≤ Ch‖u‖1 ∀u ∈ H1(Ω)2;

see [4, Theorem 4.1]. The nodal interpolant IQ1 satisfies the error bound

(2.13) ‖p− IQ1p‖0 + h‖∇(p− IQ1p)‖0 ≤ Ch‖p‖2 ∀p ∈ H2(Ω);

see [14, p. 107] and [3]. The next lemma states an important property of the divergence
operator that will be needed later.

Lemma 2.1. Divergence is a surjective mapping HN (div ,Ω) ∩W (Ω) �→ L2(Ω)
with a continuous lifting from L2(Ω) into HN (div ,Ω) ∩ W (Ω); that is, for every
q ∈ L2(Ω) there exists uq ∈ HN (div ,Ω) ∩W (Ω) such that

(2.14) q = ∇ · uq and ‖uq‖W ≤ C‖q‖0.
For details we refer the reader to [11, p. 136].

3. Extension of DIV to RT0. Definition of the natural divergence DIV is based
on the coordinate-independent characterization of ∇ · u in (1.3), applied to each cell
κ ∈ Th. Let F∗h and T ∗h denote the duals of Fh and Th, i.e., collections of real numbers
{Ff}, {Kκ} associated with the oriented faces and cells in the mesh. Clearly, F∗h and
T ∗h are isomorphic6 to RT0 and Q0, respectively; therefore, we denote their elements
by the same symbols.

The natural divergence is a mapping DIV : F∗h �→ T ∗h defined by

(3.1) DIV(uh)|κ =
1

μ(κ)

∑
f∈Fh(κ)

σfFf ∀κ ∈ Th,

5On nonaffine grids the divergence error of Raviart–Thomas spaces drops by one order. As a
result, ∇ · IRT0 (u) does not converge to ∇ · u; see [4, Theorem 4.2]. However, as we shall see, the
natural divergence of the interpolant is first-order accurate.

6This is the key reason why many conservative finite difference methods for (1.1) can be related
to low-order implementations of the mixed method—both types of schemes share the same set of
degrees of freedom.
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where uh ∈ F∗h , Fh(κ) is the set of oriented faces of κ and

σf =

{
1 if nf = nκ,

−1 if nf = −nκ.
Note that Ff are also the degrees of freedom that define vector fields in RT0:

uh =
∑

f∈Fh

Ffuf ∀uh ∈ RT0.

Therefore, the action of DIV can be extended to RT0 vector fields by simply adopt-
ing formula (3.1) to compute the discrete divergence of uh ∈ RT0. This defines an
operator DIV : RT0 �→ Q0 which we will use to reformulate mixed and least-squares
methods. It is easy to see that for the basis {uf} of RT0,

(3.2) DIV(uf ) =
σf

μ(κ)
∀f ∈ Fh.

The next lemma states an important property of the natural divergence.
Lemma 3.1. The natural divergence DIV has a pointwise Commuting Diagram

Property (CDP)

(3.3)

W (Ω) ∇·−→ L2(Ω)

IRT0 ↓ ↓ IQ0

RT0
DIV−→ Q0

Proof. We need to prove that DIV (IRT0u) = IQ0(∇ · u) for all u ∈W (Ω). From
definition (3.1) and equation (3.2) it follows that

DIV (IRT0u) |κ = DIV
∑

f∈Fh(κ)

Ffuf =
1

μ(κ)

∑
f∈Fh(κ)

σfFf .

On the other hand, from (2.6) and the divergence theorem

IQ0 (∇ · u) |κ =
1

μ(κ)

∫
κ

∇ · u dx =
1

μ(κ)

∫
∂κ

u · n dS =
1

μ(κ)

∑
f∈Fh(κ)

∫
f

u · n dS.

CDP follows from the identity∫
f

u · n dS = σfFf .

A discrete version of Lemma 2.1 holds for the natural divergence.
Lemma 3.2. The natural divergence is a surjective mapping RT0 �→ Q0 with a

continuous lifting from Q0 into RT0; that is, for every qh ∈ Q0 there exists uhq ∈ RT0

such that

(3.4) qh = DIV(uhq ) and ‖uhq ‖0 + ‖DIV(uhq )‖0 ≤ C‖qh‖0.
Proof. To show that DIV is surjective we use CDP and the fact that analytic

divergence is a surjective mapping W (Ω) �→ L2(Ω) (Lemma 2.1). Any qh ∈ Q0 is also
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in L2(Ω), and so there exists uq ∈ HN (div ,Ω) ∩W (Ω) such that ∇ · uq = qh. Let
uhq = IRT0(uq). From CDP it follows that DIV(uhq ) = IQ0(∇ · uq) = IQ0(qh) = qh.

Because by construction DIV(uhq ) = qh, to prove that the lifting of DIV from Q0

into RT0 is continuous it suffices to show that ‖uhq ‖0 = ‖IRT0(uq)‖0 ≤ ‖qh‖0. Using
(2.10) (uniform boundedness of IRT0) and (2.14) in Lemma 2.1, we see that

‖IRT0(uq)‖0 ≤ ‖IRT0(uq)‖div ≤ C‖uq‖W ≤ C‖qh‖0.
This proves the lemma.

Remark 2. According to Lemma 2.1, ∇· is surjection HN (div ,Ω) �→ L2(Ω).
In the mixed method the domain and the range of this operator are approximated
by RT0 and Q0 elements, respectively. However, on nonaffine quadrilateral grids,
∇ · RT0 �= Q0 , and the surjective property connecting the domain and the range of
∇· is lost.7 By replacing the analytic divergence by DIV, surjectivity is restored. As a
result, if RT0 is to approximate the domain of the divergence and Q0 its range, then
the approximation of ∇·, which is compatible with its surjective property, is given by
DIV rather than ∇·. In other words, DIV provides a better approximation of ∇· on
RT0 than the usual finite element practice of restricting the analytic operator to the
finite element space. This fact validates the mimetic reformulation strategy presented
in the next two sections.

Remark 3. The surjective property of DIV, and its lack thereof in ∇·, is a direct
consequence of the way these operators act on the flux degrees of freedom. As we
have already noted in section 1, DIV operates directly on these degrees of freedom,
whereas the action of ∇· is indirect via basis functions defined by the Piola transform.
As a result, the divergence approximation computed by DIV depends only on the flux
data and not on the element shape.

The following two lemmas will prove useful later.
Lemma 3.3. For every uh ∈ RT0 there holds

(3.5)
∫
κ

∇ · uh dx =
∫
κ

DIV(uh) dx, κ ∈ Th.

Proof. It is enough to show (3.5) for a basis function uf associated with a face
f ∈ ∂κ. Using (3.2) and the definition of the basis functions,∫

κ

DIV(uf ) dx =
σf

μ(κ)

∫
κ

dx = σf =
∫
∂κ

n · uf dS =
∫
κ

∇ · uf dx.

Lemma 3.4. Assume that Th is shape-regular. There is a positive constant CD
such that

(3.6) ‖∇ · uh‖0 ≤ CD‖DIV(uh)‖0.
Proof. It suffices to show (3.6) for one element κ and one basis function uf with

f ∈ ∂κ. After changing variables and noting that the Jacobian is positive (see (2.2)),

‖∇ · uf‖20,κ =
∫
κ

(∇ · uf )(∇ · uf ) dx =
∫
κ̂

(∇x̂ · ûf̂ )(∇x̂ · ûf̂ )(detDΦ)−1 dx̂ ,

7The reason why stability of the mixed method is not ruined on such grids is that the following
weak CDP holds for ∇·: IQ0(∇ · IRT0 (u)) = IQ0 (∇ · u), i.e.,∫

Ω
qh∇ · u dx =

∫
Ω
qh∇ · IRT0 (u) dx.

According to Fortin’s lemma this is enough for the inf-sup condition to hold; see [11, p. 138].



494 PAVEL B. BOCHEV AND DENIS RIDZAL

where f̂ is one of the faces of the reference element κ̂. From (2.4) and (2.8) it follows
that

ûf̂ =
1
4

[
1± x

0

]
or ûf̂ =

1
4

[
0

1± y
]
, and ∇x̂ · ûf̂ = 1/4.

Using the mean value theorem, the lower bound in (2.1), (3.2), and μ(κ̂) = 4, we have

‖∇ · uf‖20,κ =
1
16

∫
κ̂

(detDΦ)−1 dx̂ =
μ(κ̂)

16 detDΦ(x̂∗)
≤ αμ(κ̂)

16μ(κ)
=
α

4
‖DIV(uf )‖20,κ .

Thus, (3.6) holds with CD = α/4.

4. Mimetic reformulation of finite element methods. We begin with a
brief summary of the standard mixed method [11] and the locally conservative least-
squares method [8]. For further information about related least-squares methods, we
refer the reader to [6, 13, 7] and the references cited therein.

4.1. Standard methods. The standard mixed finite element method for (1.1)
solves the following variational problem: seek uh ∈ RTN0 and ph ∈ Q0 such that

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

uhΘ−1
1 vh dx−

∫
Ω

ph∇ · vh dx = 0 ∀vh ∈ RTN0 ,∫
Ω

∇ · uhqh dx+ σ

∫
Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ Q0.

The second method in our study is a compatible least-squares method for (1.1). In
this method the finite element approximation is determined by seeking the minimizer
of the least-squares quadratic functional

(4.2) J(ph,uh; f) = ‖Θ−1/2
0 (∇ · uh + σΘ0p

h − f)‖20 + ‖Θ1/2
1 (∇ph + Θ−1

1 uh)‖20
in Uh = QD1 × RTN0 . The standard finite element implementation of this method
solves the following variational equation: seek {ph,uh} ∈ QD1 ×RTN0 such that

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

(∇ph + Θ−1
1 uh)Θ1(∇qh + Θ−1

1 vh)dx

+
∫

Ω

(∇ · uh + σΘ0p
h)Θ−1

0 (∇ · vh + σΘ0q
h)dx

=
∫

Ω

fΘ−1
0 (∇ · vh + σΘ0q

h)dx ∀qh ∈ QD1 , ∀vh ∈ RTN0 .

The following theorem from [8] provides additional information about the stan-
dard least-squares method. Specifically, it asserts that (4.3) is locally conservative.

Theorem 4.1. Assume that the reaction term is present in (1.1), i.e., σ = 1.
Then, the least-squares equation (4.3) decouples into independent problems for the
velocity: seek uh ∈ RTN0 such that

(4.4)
∫

Ω

uhΘ−1vh dx+
∫

Ω

∇ · uhΘ−1
0 ∇ · vh dx =

∫
Ω

fΘ−1
0 ∇ · vh dx ∀vh ∈ RTN0 ;

and the pressure: seek ph ∈ QD1 such that

(4.5)
∫

Ω

∇phΘ1∇qh dx +
∫

Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ QD1 .
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If the grid is such that the analytic divergence is a surjective map RT0 �→ Q0, then
the solution of the weak problem (4.4) coincides with the velocity approximation in the
mixed method (4.1).

For proof of this theorem we refer the reader to [8]. On the positive side, Theorem
4.1 implies that for problems with a reaction term the deterioration of accuracy should
not spread to the pressure approximation. This follows from the fact that (4.5) defines
the Ritz–Galerkin method for (1.1) which retains optimal orders of convergence on
general quadrilateral grids; see [12].

On the negative side, for nonaffine quadrilateral elements the analytic divergence
does not mapRT0 ontoQ0 (see Remark 2), and so the solution of (4.4) will not coincide
with the velocity approximation in the mixed method. Considering that Theorem 5.1
will show that the mixed method produces accurate velocities, this spells potential
trouble for the least-squares velocity.

Of course, in the absence of a reaction term (σ = 0), the least-squares equation
remains coupled. In this case we can expect deterioration of accuracy in both vari-
ables. Numerical tests in [4] confirm this conjecture. Section 6 will provide further
computational evidence to corroborate these conclusions.

4.2. Reformulated methods. We obtain mimetic reformulations of (4.1) and
(4.3) by swapping the analytic divergence with DIV. The reformulated mixed method
is as follows: seek uh ∈ RTN0 and ph ∈ Q0 such that

(4.6)

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

uhΘ−1
1 vh dx −

∫
Ω

phDIV(vh) dx = 0 ∀vh ∈ RTN0 ,∫
Ω

DIV(uh)qh dx+ σ

∫
Ω

phΘ0q
h dx =

∫
Ω

fqh dx ∀qh ∈ Q0.

We make the usual identifications:

ah(uh,vh) =
∫

Ω

uhΘ−1
1 vh dx and bh(uh, ph) =

∫
Ω

phDIV(uh) dx.

Note that ah(·, ·) and bh(·, ·) are defined only for finite element functions.
The method for reformulation of the least-squares method is as follows: seek

{ph,uh} ∈ QD1 ×RTN0 such that

(4.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

(∇ph + Θ−1
1 uh)Θ1(∇qh + Θ−1

1 vh)dx

+
∫

Ω

(DIV(uh) + σΘ0p
h)Θ−1

0 (DIV(vh) + σΘ0q
h)dx

=
∫

Ω

fΘ−1
0 (DIV(vh) + σΘ0q

h)dx ∀qh ∈ QD1 , ∀vh ∈ RTN0 .

Remark 4. An existing finite element program for the standard mixed or the least-
squares method can be trivially converted to its mimetic reformulation by changing
just a few lines of code. From (3.1), (2.2), and μ(κ̂) = 4, it follows that

DIV(uf )|κ =
σf

μ(κ)
=

σf

4 det(DΦ(0, 0))
.

As a result, the conversion to mimetic reformulations amounts to replacing multiple
calls to the function that computes ∇ · uf (x) at quadrature points, along with the
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computation of detDΦ at those points, by a single call to compute det(DΦ(0, 0))
combined with a few Boolean operations related to the orientation choice σf .

Remark 5. An alternative approach that also restores the first-order conver-
gence in the divergence error has been proposed in [21]. The idea is to “correct” the
standard RT0 basis on κ̂ so that the basis functions on any κ ∈ Th have constant
divergence. Correction is affected by adding a vector field defined with the help of
detDΦκ which makes the reference basis dependent upon the elements in Th. This
should be contrasted with our approach, where the definition of the RT0 basis on κ̂
is unchanged and remains independent of κ ∈ Th; instead one changes the definition
of the divergence operator on κ. Connection between a mixed method implemented
with the modified RT0 space and a mimetic finite difference scheme for (1.1) is shown
in [10].

5. Properties of reformulated methods. This section examines stability and
convergence of the reformulated methods. We begin with the analysis of the reformu-
lated mixed method.

5.1. The mixed method. The following theorem shows that (4.1) and (4.6)
are equivalent.

Theorem 5.1. The standard mixed method (4.1) and its mimetic reformulation
(4.6) give rise to identical linear systems of equations for the unknown coefficients of
uh ∈ RTN0 and ph ∈ Q0; i.e., their solutions coincide.

Proof. The mixed problem (4.1) and its mimetic reformulation (4.6) reduce to
the linear systems of equations

[
Mu DT

D Mp

] [
�u
�p

]
=
[
�0
�f

]
and

[
Mu D̃T

D̃ Mp

][
�u
�p

]
=
[
�0
�f

]
,

respectively, for the unknown coefficients �u, �p of uh and ph. Here Mu and Mp are
the consistent mass matrices for RT0 and Q0 finite element spaces, respectively. The
matrices D and D̃ are given by their respective entries

Df ,κ =
∫

Ω

pκ∇ · uf dx and D̃f ,κ =
∫

Ω

pκDIV(uf ) dx , f ∈ Fh, κ ∈ Th.

The theorem will follow if we can show that Df ,κ = D̃f ,κ. Let κ be fixed and f
be one of its faces. The basis function pκ = 1/μ(κ) is constant on κ and pκ = 0 on
all other elements. Therefore, using (3.5) from Lemma 3.3 it follows that

Df ,κ =
∫

Ω

pκ∇ · uf dx =
1

μ(κ)

∫
κ

∇ · uf dx

=
1

μ(κ)

∫
κ

DIV(uf ) dx =
∫

Ω

pκDIV(uf ) dx = D̃f ,κ.

Remark 6. Boffi brought to our attention a similar equivalence result [9] for two
modifications of a primal finite element method for Maxwell’s eigenvalue problem8

defined by using a local L2 projection and reduced integration, respectively. From
(3.3) in Lemma 3.1 DIV

(
uh
)

= IQ0(∇ · uh) for all uh ∈ RT0, from which it follows
that the first approach of [9] is equivalent to our mimetic reformulation.

8Finite element solution of this problem in two dimensions requires “rotated” RT elements, which
suffer from the same accuracy problems as standard RT elements on nonaffine quadrilateral grids.
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In light of this theorem we could in principle skip a formal stability analysis of
the reformulated mixed method because we already know that the discrete system in
the standard mixed method is well behaved. However, a separate stability proof for
(4.6) will be very convenient for the error estimates in which we will work with the
discrete norm ‖uh‖DIV = (‖uh‖20 + ‖DIV(uh)‖20)1/2. The proofs are stated for the case
σ = 0. The extension to σ = 1 is straightforward.

Lemma 5.2. Let Zh = {uh ∈ RT0 |DIV(uh) = 0} denote the null-space of DIV.
The form ah(·, ·) is coercive on Zh × Zh:
(5.1) Ca‖vh‖2 ≤ ah(vh,vh) ∀vh ∈ Zh.
The form bh(·, ·) satisfies a discrete inf-sup condition:

(5.2) sup
vh∈RT0

bh(vh, ph)
‖vh‖DIV

≥ Cb‖ph‖0 ∀ph ∈ Q0.

Proof. The first statement is a direct consequence of the definition of Zh and
condition (1.2) on the tensor Θ1. To prove the inf-sup condition we proceed as follows.
Let ph ∈ Q0 be arbitrary. From Lemma 3.2 we know that there exists a uhp ∈ RT0

such that (3.4) holds. Therefore,

sup
vh∈RT0

bh(vh, ph)
‖vh‖DIV

≥ bh(uhp , ph)
‖uhp‖DIV

≥ ‖ph‖20
‖uhp‖DIV

≥ C‖ph‖0 .

Lemma 5.2 directly implies the following stability result.
Theorem 5.3. Define the discrete bilinear operator

Qh(uh, ph;vh, qh) = ah(uh,vh)− bh(vh, ph) + bh(uh, qh) .

There exists a positive constant CQ such that

(5.3) sup
(vh,qh)∈RTN

0 ×Q0

Qh(uh, ph;vh, qh)
‖vh‖DIV + ‖qh‖0 ≥ CQ

(‖uh‖DIV + ‖ph‖0
)
.

We can now prove optimal error estimates for (4.6).
Theorem 5.4. Assume that (2.1) holds for the finite element partition Th and

that the exact solution of (1.1) is such that p ∈ H1
D(Ω) and u ∈ HN (div ,Ω)∩(H2(Ω))2.

Solution of the reformulated mixed problem (4.6) satisfies the error bound

(5.4) ‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0 ≤ Ch (‖u‖2 + ‖p‖1) .
Proof. To avoid tedious technical details, we limit the proof to the case Θ1 = I.

We begin by splitting the left-hand side in (5.4) into interpolation error and discrete
error:

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0
≤ (‖∇ · u− DIVI(u)‖0 + ‖u− Iu‖0 + ‖p− Ip‖0)

+
(‖DIVI(u)− DIV(uh)‖0 + ‖Iu− uh‖0 + ‖Ip− ph‖0

)
= EI + Eh.

The next step is to estimate the discrete error Eh in terms of the interpolation er-
ror EI . We make use of the fact that for (vh, qh) ∈ RTN0 ×Q0,

(5.5)
∫

Ω

uhvh dx−
∫

Ω

phDIV(vh) dx = 0 =
∫

Ω

uvh dx−
∫

Ω

p∇ · vh dx
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and

(5.6)
∫

Ω

qhDIV(uh) dx =
∫

Ω

fqh dx =
∫

Ω

qh∇ · u dx .

For brevity we switch to inner product notation. Adding and subtracting Iu and Ip
in (5.5), we obtain(
u− Iu,vh)+

(Iu− uh,vh
)− (p− Ip,∇ · vh)− (Ip,∇ · vh)+

(
ph,DIV(vh)

)
= 0.

As Ip is constant, by Lemma (3.3) we can replace
(Ip,∇ · vh) by

(Ip,DIV(vh)
)
; thus

(5.7)
(
uh − Iu,vh)+

(Ip− ph,DIV(vh)
)

=
(
u− Iu,vh)+

(Ip− p,∇ · vh) .
Adding and subtracting I(∇ · u) in (5.6) yields(∇ · u− I(∇ · u), qh

)
+
(I(∇ · u)− DIV(uh), qh

)
= 0.

Using CDP, we obtain

(5.8)
(
DIV(uh − Iu), qh

)
=
(∇ · u− DIV(Iu), qh

)
.

Substituting (uh − Iu, Ip− ph) into the inf-sup result (5.3), we get

Qh(uh − Iu, Ip− ph;vh, qh)
≥ CQ

(‖uh − Iu‖0 + ‖DIV(uh − Iu)‖0 + ‖ph − Ip‖0
)

× (‖vh‖0 + ‖DIV(vh)‖0 + ‖qh‖0
)
.

On the other hand, due to the definition of Qh, (5.7), (5.8), Cauchy inequalities, and
Lemma 3.4,

Qh(uh − Iu, Ip− ph;vh, qh)
=
(
u− Iu,vh)+

(Ip− p,∇ · vh)+
(∇ · u− DIV(Iu), qh

)
≤ (‖u− Iu‖0 + ‖p− Ip‖0 + ‖∇ · u− DIV(Iu)‖0)
× (‖vh‖0 + CD‖DIV(vh)‖0 + ‖qh‖0

)
for a positive constant CD. It is safe to assume CD ≥ 1 (without loss of generality),
and thus

(‖vh‖0 + CD‖DIV(vh)‖0 + ‖qh‖0
) ≤ CD

(‖vh‖0 + ‖DIV(vh)‖0 + ‖qh‖0
)
,

which, combined with the previous two estimates of Qh, yields

Eh = ‖uh − Iu‖0 + ‖DIV(uh − Iu)‖0 + ‖ph − Ip‖0

≤ CD
CQ

(‖u− Iu‖0 + ‖p− Ip‖0 + ‖∇ · u− DIV(Iu)‖0) =
CD
CQ

EI .

Therefore,

(5.9) ‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖0 ≤
(

1 +
CD
CQ

)
EI .
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The remainder of the proof follows from CDP, (2.11), and (2.12). We have

‖∇ · u− DIV(Iu)‖0 = ‖∇ · u− I(∇ · u)‖0 ≤ Ch‖∇ · u‖1
and

‖u− Iu‖0 + ‖p− Ip‖0 ≤ Ch (‖u‖1 + ‖p‖1) ;

i.e.,

EI ≤ Ch (‖∇ · u‖1 + ‖u‖1 + ‖p‖1) ≤ Ch (‖u‖2 + ‖p‖1) ,
which establishes (5.4).

Remark 7. The presence of the constant CD in (5.9) indicates that the size of the
approximation error is directly related to assumption (2.1) on the shape-regularity of
the finite element partition Th.

5.2. The least-squares method. It is easy to see that the equivalence result of
Theorem 5.1 cannot be extended to the least-squares method. To convince ourselves
that the mimetic reformulation (4.7) of this method is genuinely different from its
standard version (4.3) let us examine the term∫

Ω

(DIV(uh) + σΘ0p
h)Θ−1

0 (DIV(vh) + σΘ0q
h)dx

from (4.7). It is clear that, for the same reasons as stated in Remark 2, on a nonaffine
quadrilateral element,∫

Ω

DIV(uh)Θ−1
0 DIV(vh)dx �=

∫
Ω

∇ · uhΘ−1
0 ∇ · vhdx.

The cross terms also do not match because in the least-squares method ph ∈ Q1 is
not constant and cannot be pulled out of the integral as in Theorem 5.1. Thus,∫

Ω

qhDIV(uh)dx �=
∫

Ω

qh∇ · uhdx .

Another difference between the two versions of the least-squares method is that
the splitting in Theorem 4.1 does not extend to the mimetic reformulation (4.7). This
would require the discrete Green’s identity∫

Ω

phDIV(uh) dx +
∫

Ω

uh∇ph dx = 0 ∀uh ∈ RTN0 , ∀ph ∈ QD1 ,

which in general does not hold. Therefore, velocity computed by (4.7) is not locally
conservative in the sense described in [8]. This can be fixed by using the flux-correction
procedure defined in [8].

The following theorem asserts stability of the reformulated least-squares method.
Theorem 5.5. Assume that (2.1) holds. There is a positive constant C such that

(5.10)
C
(‖DIV(uh)‖0 + ‖uh‖0 + ‖ph‖1

)
≤ ‖Θ−1/2

0

(
DIV(uh) + Θ0p

h
) ‖0 + ‖Θ1/2

1 (∇ph + Θ−1
1 uh)‖0

for every uh ∈ RTN0 and ph ∈ QD1 .
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Proof. To avoid simple but tedious technical details, we state the proof for Θ1 = I

and Θ0 = 1. In this case, the right-hand side in (5.10) expands into

‖DIV(uh) + ph‖20 + ‖∇ph + uh‖20 = 2
(∫

Ω

phDIV(uh) dx +
∫

Ω

uh∇ph dx
)

+‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖20 + ‖∇ph‖20 .

We switch to inner product notation. Adding and subtracting the projection of ph

onto Q0, using Green’s identity, (3.5) in Lemma 3.3, and Cauchy’s inequality, we get

(
DIV(uh), ph

)
+
(∇ph,uh)

=
(
DIV(uh), ph − IQ0p

h
)

+
(
DIV(uh), IQ0p

h
)− (∇ · uh, ph)

=
(
DIV(uh), ph − IQ0p

h
)

+
(∇ · uh, IQ0p

h − ph)
≤ ‖DIV(uh)‖0‖ph − IQ0p

h‖0 + ‖∇ · uh‖0‖ph − IQ0p
h‖0.

Using (3.6) from Lemma 3.4, the approximation result (2.11), and the inequality
2ab ≤ a2 + b2, we get

2
((

DIV(uh), ph
)

+
(∇ph,uh))

≤ 2(1 + CD)Ch‖DIV(uh)‖0‖∇ph‖0 ≤ (1 + CD)Ch
(‖DIV(uh)‖20 + ‖∇ph‖20

)
.

As a result, for sufficiently small h,

‖DIV(uh) + ph‖20 + ‖∇ph + uh‖20
≥ (1− (1 + CD)Ch)

(‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖20 + ‖∇ph‖20
)

≥ 1
2
(‖uh‖20 + ‖DIV(uh)‖20 + ‖ph‖21

)
.

Theorem 5.5 in conjunction with the Lax–Milgram lemma implies that the refor-
mulated least-squares problem has a unique solution. Using this theorem, we can also
prove optimal error estimates for the solution of (4.7).

Theorem 5.6. Assume that (2.1) holds for the finite element partition Th and
that the exact solution of (1.1) is such that p ∈ H1

D(Ω)∩H2(Ω) and u ∈ HN (div ,Ω)∩
(H2(Ω))2. Solution of the reformulated least-squares problem (4.7) satisfies the error
bound

(5.11) ‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1 ≤ Ch (‖p‖2 + ‖u‖2) .

Proof. For clarity we state the proof using the same setting as in the proof of
Theorem 5.5. We begin by splitting the left-hand side in (5.11) into interpolation
error and discrete error:

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1
≤ (‖∇ · u− DIVI(u)‖0 + ‖u− Iu‖0 + ‖p− Ip‖1)

+
(‖DIVI(u)− DIV(uh)‖0 + ‖Iu− uh‖0 + ‖Ip− ph‖1

)
= EI + Eh.
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The next step is to estimate Eh in terms of the interpolation error. For this purpose,
we use that f = ∇ · u + p and 0 = ∇p+ u to write (4.7) as(

DIV(uh) + ph,DIV(vh) + qh
)

+
(∇ph + uh,∇qh + vh

)
=
(∇ · u + p,DIV(vh) + qh

)
+
(∇p+ u,∇qh + vh

)
.

Subtracting the interpolants of p and u from both sides of this identity and using
Cauchy’s inequality gives(

DIV(uh − Iu) + ph − Ip,DIV(vh) + qh
)
+
(∇(ph − Ip) + uh − Iu,∇qh + vh

)
=
(∇·u− DIV(Iu)+p− Ip,DIV(vh) + qh

)
+
(∇(p− Ip) + u− Iu,∇qh + vh

)
≤ C(‖∇·u− DIV(Iu)‖0+‖u− Iu‖0+‖p− Ip‖1)

(‖DIV(vh)‖0+‖vh‖0+‖qh‖1
)

≤ CEI ×
(‖DIV(vh)‖0+‖vh‖0+‖qh‖1

)
.

Then we set vh = uh − Iu and qh = ph − Ip and use the stability bound (5.10):

E2
h ≤ C

(
DIV(uh − Iu) + ph − Ip,DIV(uh − Iu) + ph − Ip)
+
(∇(ph − Ip) + uh − Iu,∇(ph − Ip) + uh − Iu) ≤ CEI × Eh.

Therefore, Eh ≤ CEI and

‖∇ · u− DIV(uh)‖0 + ‖u− uh‖0 + ‖p− ph‖1 ≤ (1 + C)EI .

To complete the proof we estimate EI as follows. Using CDP (3.3) and (2.11),

‖∇ · u− DIVI(u)‖0 = ‖∇ · u− I(∇ · u)‖0 ≤ Ch‖∇ · u‖1,

while from (2.12) and (2.13) we have that

‖u− Iu‖0 + ‖p− Ip‖1 ≤ Ch (‖u‖1 + ‖p‖2) .

Therefore,

EI ≤ Ch (‖p‖2 + ‖u‖2) .

This establishes (5.11).

6. Numerical results. Computational experiments in this section illustrate the
properties of standard and reformulated finite element methods using three different
partitions of Ω = [0, 1]2 into quadrilateral elements; see Figure 6.1. We refer to
the leftmost partition in this figure as the “trapezoidal grid.” This grid was used
by Arnold, Boffi, and Falk [4] to demonstrate loss of accuracy in div-conforming
elements and is characterized by a high degree of “nonaffinity.” The middle partition
corresponds to a randomly perturbed9 uniform grid which provides a more realistic

9This grid was suggested by one of the anonymous referees and is defined as follows. We start
with a uniform partition of Ω into square elements with side lengths h and draw a circle of radius
h/4 around each node. All internal nodes are then randomly repositioned inside these circles, corner
nodes are held fixed, and the rest of the nodes on the boundary are moved randomly along the sides
of Ω within ±h/4 of their original locations.
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17 x 17 trapezoidal Grid 17 x 17 random Grid 17 x 17 sinusoidal Grid

Fig. 6.1. Quadrilateral grids used in the computational experiments. From left to right: Trape-
zoidal grid [4], randomly perturbed grid, and sinusoidal grid [18].

example of a highly nonaffine quadrilateral grid. The rightmost partition in Figure
6.1 provides an example of a smooth nonorthogonal grid10 which may become quite
distorted while retaining “near-affinity” of most of its quadrilateral elements. This
grid is used to underscore the fact that the root cause for the loss of convergence is
nonaffinity of the grid rather than the level of its distortion.

We show that on the first two partitions, i.e., on trapezoidal and random grids,
• the natural divergence of the velocity approximation in the standard mixed

method is first-order accurate; i.e., it is optimally accurate;
• the deterioration of accuracy in the least-squares method does not spread

to the pressure approximation if the reaction term is present; however, the
velocity approximation is worse than in the mixed method;
• without the reaction term, the deterioration of accuracy affects all variables

in the least-squares method;
• the mimetic reformulation of the least-squares method solves all of these

problems and yields optimally accurate pressure and velocity approximations.
As far as the last partition is concerned, we show that thanks to the almost affine
nature of the sinusoidal grid there is virtually no degradation of accuracy in mixed
and least-squares methods.

The linear systems are assembled using 2 × 2 Gauss quadrature and solved “ex-
actly” using direct solvers. The order of convergence study solves (1.1) with ΓN = ∅,

Θ1 =
[

exp((x + y/2)/2) sin(2πx)
sin(2πx) exp((x/2 + y)/2)

]
, Θ0 = 1 ,

and the right-hand side and boundary data generated from the manufactured solution

p = − exp(x) sin(y), and u = −Θ1∇p .
Orders of convergence are estimated using data on 33 × 33, 65 × 65, and 129 × 129
grids with 1024, 4096, and 16384 elements, respectively.

The maximum anisotropy of Θ1 is attained at the top right corner of Ω and equals
4 exp(3/2) ≈ 18. The nonconstant full tensor permeability is used only in order to

10The nodal positions in this grid are defined by

x(ξ, η, t) = ξ + α(t) sin(2πξ) sin(2πη) and y(ξ, η, t) = η + α(t) sin(2πξ) sin(2πη) ,

respectively, where α(t) ≤ 0.1 and t is a real parameter between 0 and 1; see [18]. The grid shown
in Figure 6.1 corresponds to t = 0.5 and α(t) = t/5.
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Table 6.1

Error data and estimated orders of convergence for the standard mixed Galerkin (MG) method
and its mimetic reformulation (RMG) on trapezoidal grids.

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p − ph‖0 MG 0.179E-01 0.893E-02 0.447E-02 0.9999

RMG 0.179E-02 0.893E-02 0.447E-02 0.9999

‖u − uh‖0 MG 0.652E-01 0.325E-01 0.162E-01 1.0029

RMG 0.652E-01 0.325E-01 0.162E-01 1.0029

‖∇ · u −∇ · uh‖0 MG 0.117E+01 0.110E+01 0.109E+01 0.0211

RMG 0.117E+01 0.110E+01 0.109E+01 0.0211

‖∇ · u − DIV(uh)‖0 MG 0.440E+00 0.220E+00 0.110E+00 1.0000

RMG 0.440E+00 0.220E+00 0.110E+00 1.0000

Table 6.2

Error data and estimated orders of convergence for the standard mixed Galerkin (MG) method
and its mimetic reformulation (RMG) on randomly perturbed grids.

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p− ph‖0 MG 0.170E-01 0.848E-02 0.424E-02 1.000

RMG 0.170E-01 0.848E-02 0.424E-02 1.000

‖u − uh‖0 MG 0.611E-01 0.308E-01 0.155E-01 1.000

RMG 0.611E-01 0.308E-01 0.155E-01 1.000

‖∇ · u−∇ · uh‖0 MG 0.975E+00 0.890E+00 0.875E+00 0.025

RMG 0.975E+00 0.890E+00 0.875E+00 0.025

‖∇ · u − DIV(uh)‖0 MG 0.464E+00 0.232E+00 0.116E+00 1.000

RMG 0.464E+00 0.232E+00 0.116E+00 1.000

Table 6.3

Error data and estimated orders of convergence for the standard mixed Galerkin method on
sinusoidal grids.

Error 33 × 33 65 × 65 129 × 129 Order

‖p − ph‖0 0.184E-01 0.902E-02 0.449E-02 1.007

‖u − uh‖0 0.638E-01 0.318E-01 0.159E-01 1.001

‖∇ · u −∇ · uh‖0 0.576E+00 0.288E+00 0.144E+00 0.999

‖∇ · u− DIV(uh)‖0 0.541E+00 0.271E+00 0.135E+00 0.999

make the tests more “realistic” and is not necessary to elicit the loss of convergence
in the two standard methods. The latter can be observed even in the trivial case of
Θ1 = I, where I is a 2× 2 unit matrix; see [4].

The mixed method and its reformulation. The presence of the reaction term in
(1.1) or lack thereof does not affect the overall behavior of the computed error. For
brevity, results without this term (σ = 0) are omitted. Error data and estimated
convergence rates for (4.1) and its mimetic reformulation (4.6) on trapezoidal and
randomly perturbed grids are summarized in Tables 6.1–6.2. The tables show iden-
tical11 errors for both versions of the mixed method, which confirms the assertion of

11To avoid data variations caused by the randomness of the grid, for each grid size the two methods
were run on the same instance of the random mesh.
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Table 6.4

Error data and estimated orders of convergence for the standard least-squares method (LS) and
its mimetic reformulation (RLS) on trapezoidal grids: Problem (1.1) with reaction term (σ = 1).

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p − ph‖0 LS 0.863E-04 0.216E-04 0.541E-05 1.998

RLS 0.876E-04 0.219E-04 0.549E-05 1.998

‖∇(p − ph)‖0 LS 0.1592E-01 0.799E-02 0.401E-02 0.997

RLS 0.1592E-01 0.799E-02 0.401E-02 0.997

‖u − uh‖0 LS 0.675E-01 0.362E-01 0.225E-01 0.683

RLS 0.652E-01 0.325E-01 0.162E-01 1.003

‖∇ · u −∇ · uh‖0 LS 0.115E+01 0.109E+01 0.107E+01 0.021

RLS – – – –

‖∇ · u − DIV(uh)‖0 LS 0.479E+00 0.285E+00 0.210E+00 0.439

RLS 0.440E+00 0.220E+00 0.110E+00 1.000

Theorem 5.1 that their solutions coincide.
As predicted by Theorem 5.1, when the divergence error of the velocity approx-

imation is measured directly by DIV instead of indirectly by ∇·, the order of conver-
gence improves to 1. This validates our assertion that the loss of convergence in the
mixed method is superficial rather than real. It follows that a standard implemen-
tation of this method with the lowest-order Raviart–Thomas element is safe to use
on general quadrilateral grids, as long as one remembers to extract the divergence
information using DIV.

Table 6.3 shows error data and estimated convergence rates for the standard
mixed method on the sinusoidal grid. Owing to the fact that this grid is nearly affine,
the rates of convergence measured by using the analytic and the mimetic divergence
operators are identical despite the small variations in their values.

The least-squares method and its reformulation. Theorem 4.1 suggests that the
reaction term could be very important for the standard least-squares method. This
turns out to be the case. Tables 6.4–6.5 show error data for (4.3) and (4.7) with
the term (σ = 1) on trapezoidal and randomly perturbed grids, respectively. For the
velocity in the standard method on both grids we see a reduced order of convergence
in the L2-norm and an almost complete loss of convergence in the divergence error.
It is worth pointing out that using DIV to extract the divergence information from
the standard least-squares solution does not help much. Nevertheless, the order of
convergence in the divergence error is somewhat improved.

As predicted by Theorem 4.1, when the reaction term is present the loss of accu-
racy does not spread to the pressure approximation in the standard method. Tables
6.4–6.5 show the expected second- and first-order convergence for the L2- and H1-
seminorm errors of this variable, respectively.

In the absence of the reaction term, the standard least-squares method fares much
worse. Tables 6.6–6.7 show that the loss of accuracy on trapezoidal and randomly
perturbed grids when σ = 0 affects both variables. We see that, without the reaction
term, the L2 order of convergence of the pressure is completely ruined, and the H1-
seminorm error is severely reduced. These results are consistent with the numerical
data on trapezoidal grids presented in [4] and confirm that, unlike in the mixed
method, the loss of accuracy in the least-squares method is real. Inclusion of the
reaction term helps to stem the deterioration of the pressure approximation, but, as
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Table 6.5

Error data and estimated orders of convergence for the standard least-squares method (LS) and
its mimetic reformulation (RLS) on randomly perturbed grids: Problem (1.1) with reaction term
(σ = 1).

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p− ph‖0 LS 0.650E-04 0.167E-04 0.414E-05 2.008

RLS 0.733E-04 0.200E-04 0.505E-05 1.984

‖∇(p − ph)‖0 LS 0.146E-01 0.734E-02 0.366E-02 1.003

RLS 0.148E-01 0.742E-02 0.372E-02 0.996

‖u − uh‖0 LS 0.627E-01 0.326E-01 0.185E-01 0.815

RLS 0.611E-01 0.308E-01 0.154E-01 0.999

‖∇ · u−∇ · uh‖0 LS 0.942E+00 0.882E+00 0.858E+00 0.040

RLS – – – –

‖∇ · u − DIV(uh)‖0 LS 0.484E+00 0.271E+00 0.190E+00 0.511

RLS 0.463E+00 0.232E+00 0.116E+00 1.001

Table 6.6

Error data and estimated orders of convergence for the standard least-squares method (LS) and
its mimetic reformulation (RLS) on trapezoidal grids: Problem (1.1) without reaction term (σ = 0).

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p− ph‖0 LS 0.175E-02 0.150E-02 0.144E-02 0.060

RLS 0.378E-03 0.947E-04 0.237E-04 1.999

‖∇(p − ph)‖0 LS 0.201E-01 0.136E-01 0.114E-01 0.254

RLS 0.161E-01 0.801E-02 0.401E-02 0.999

‖u − uh‖0 LS 0.676E-01 0.363E-01 0.227E-01 0.678

RLS 0.652E-01 0.325E-01 0.162E-01 1.003

‖∇ · u−∇ · uh‖0 LS 0.115E+01 0.109E+01 0.107E+01 0.021

RLS – – – –

‖∇ · u − DIV(uh)‖0 LS 0.479E+00 0.285E+00 0.211E+00 0.437

RLS 0.440E+00 0.220E+00 0.110E+00 1.000

Table 6.7

Error data and estimated orders of convergence for the standard least-squares method (LS) and
its mimetic reformulation (RLS) on random grids: Problem (1.1) without reaction term (σ = 0).

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p− ph‖0 LS 0.123E-02 0.101E-02 0.951E-03 0.082

RLS 0.396E-03 0.973E-04 0.251E-04 1.956

‖∇(p − ph)‖0 LS 0.169E-01 0.104E-01 0.793E-02 0.388

RLS 0.152E-01 0.745E-02 0.373E-02 0.997

‖u − uh‖0 LS 0.624E-01 0.328E-01 0.186E-01 0.816

RLS 0.610E-01 0.308E-01 0.153E-01 1.005

‖∇ · u−∇ · uh‖0 LS 0.930E+00 0.874E+00 0.861E+00 0.021

RLS – – – –

‖∇ · u − DIV(uh)‖0 LS 0.489E+00 0.273E+00 0.186E+00 0.553

RLS 0.463E+00 0.233E+00 0.116E+00 1.003

a whole, the standard version of the least-squares method cannot be deemed robust
enough for general quadrilateral grids.



506 PAVEL B. BOCHEV AND DENIS RIDZAL

Table 6.8

Error data and estimated orders of convergence for the standard least-squares method (LS) on
sinusoidal grids: Problem (1.1) with (σ = 1) and without (σ = 0) reaction term.

Error Method 33 × 33 65 × 65 129 × 129 Order

‖p− ph‖0 σ = 0 0.598E-03 0.151E-03 0.379E-04 1.996

σ = 1 0.158E-03 0.400E-04 0.100E-04 1.996

‖∇(p − ph)‖0 σ = 0 0.184E-01 0.902E-02 0.449E-02 1.007

σ = 1 0.179E-01 0.896E-02 0.448E-02 1.000

‖u − uh‖0 σ = 0 0.638E-01 0.318E-01 0.159E-01 1.001

σ = 1 0.638E-01 0.318E-01 0.159E-01 1.001

‖∇ · u−∇ · uh‖0 σ = 0 0.576E+00 0.288E+00 0.144E+00 1.000

σ = 1 0.576E+00 0.288E+00 0.144E+00 1.000

‖∇ · u − DIV(uh)‖0 σ = 0 0.541E+00 0.271E+00 0.135E+00 1.000

σ = 1 0.541E+00 0.271E+00 0.135E+00 1.000

As expected, the mimetic reformulation of the least-squares method completely
eliminates these problems. From the data in Tables 6.4–6.7 we see that the reformu-
lation restores the optimal order of convergence for all variables regardless of whether
or not the reaction terms are included.

Finally, Table 6.8 shows error and convergence data for the standard least-squares
method on sinusoidal grids. We see that despite the highly distorted nature of this
grid, the fact that most of its elements remain close to affine quads is enough to restore
convergence rates for all variables.

7. Conclusions. The mimetic reformulation proposed in this paper is a simple
yet effective approach to restoring convergence of finite element methods that employ
the lowest-order quadrilateral Raviart–Thomas elements.

By proving that the reformulation of the mixed method is equivalent to its stan-
dard version, we establish that the loss of convergence in this method is benign and
can be avoided by using DIV to compute the divergence of the velocity approximation.

Our results also show that the deterioration of accuracy in the least-squares
method is real. For problems with a reaction term it is confined to the velocity ap-
proximation, but without this term, the loss of convergence spreads to both variables.
The mimetic reformulation of the least-squares method mitigates convergence prob-
lems and should be used whenever computations with this method involve nonaffine
quadrilateral grids.
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Abstract. We consider DG-methods for second order scalar elliptic problems using piecewise
affine approximation in two or three space dimensions. We prove that both the symmetric and
the nonsymmetric versions of the DG-method have regular system matrices without penalization
of the interelement solution jumps provided boundary conditions are imposed in a certain weak
manner. Optimal convergence is proved for sufficiently regular meshes and data. We then propose
a DG-method using piecewise affine functions enriched with quadratic bubbles. Using this space we
prove optimal convergence in the energy norm for both a symmetric and nonsymmetric DG-method
without stabilization. All of these proposed methods share the feature that they conserve mass
locally independent of the penalty parameter.
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1. Introduction. The discontinuous Galerkin (DG) method for (2n)th order
elliptic problems was introduced by Baker [2] with special focus on the fourth order
case. In parallel, the interior penalty method of Douglas and Dupont for second order
elliptic problems [9] led to the symmetric interior penalty DG-method (SIPG-method)
proposed by Wheeler [15] and Arnold [1]. In the SIPG-method, a penalty term on
the solution jumps between adjacent elements and has to be introduced to ensure
coercivity of the bilinear form.

In the nineties, Babuska, Baumann, and Oden proposed a nonsymmetric method
for elliptic problems with a less stiff penalty term [12] (NIPG). The DG-methods for
second order elliptic problems have been further analyzed in the works by Girault,
Rivière, and Wheeler [13] and Larson and Niklasson [11]. In these papers the authors
proved that in the nonsymmetric case, when using high order polynomial approxima-
tion, optimal convergence can be obtained without any penalization of the solution
jumps. In a recent paper, Brezzi and Marini [6] showed that enriching the piecewise
affine discontinuous finite element space by some nonconforming quadratic bubbles
yields a space which is the smallest one for which the nonsymmetric version converges
optimally without interior penalty.

For a review of discontinuous Galerkin methods for elliptic problems, we refer the
reader to Arnold [1], and for a review of stabilization mechanisms in discontinuous
Galerkin methods, we refer the reader to Brezzi et al. [5].

One of the advantages of the DG-method is that it has enhanced local conserva-
tion compared to the continuous Galerkin method. However, only in the case of the
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nonsymmetric DG-method, without penalization of the solution jumps, is the conser-
vation independent of the stabilization parameter. The nonsymmetric formulation,
however, is not adjoint consistent and one may not analyze L2-convergence using the
Nitsche trick.

In this paper we discuss the relation between stabilization, existence of discrete
solution, and optimal convergence, in the case of scalar second order elliptic problems.
The aim is to design a low order DG-method that

1. has optimal convergence in the DG-energy norm (including both the broken
H1 semi-norm and the solution jumps over element faces) and the L2-norm,

2. is locally massconservative independently of the penalty parameter.
We will show that for the symmetric DG-method the only thing required to

guarantee the existence of a solution to the discrete system is to impose boundary
conditions in the same way as for the Crouzeix–Raviart nonconforming finite elements.
No interelement penalization of the solution jumps is needed. Under some assumptions
on the mesh and on the data, optimal convergence is obtained as well. Indeed, the
condition is either that the mesh is uniform in the asymptotic limit and that the
right-hand side is smooth enough or that the mesh satisfies a certain macroelement
property.

If these conditions are not satisfied, then the convergence of the solution jumps
can be perturbed by the appearance of a checkerboard mode that vanishes too slowly
in the absence of interior penalty. We exemplify the checkerboard mode numerically
and show how it is quenched by penalization.

To reduce the constraints on the mesh we enrich the space with quadratic non-
conforming bubble functions. These stabilizing bubbles eliminate the checkerboard
mode. We prove optimal convergence in the energy norm without stabilization both in
the symmetric and nonsymmetric case. In the symmetric case we obtain additionally
optimal convergence in the L2-norm. In both cases the analysis relies on a discrete
inf-sup condition drawing from earlier ideas on minimal stabilization for DG-methods
in [8, 7, 10, 11].

2. The problem setting. Let Ω be an open, bounded, and convex polygon
(polyhedron in three space dimensions) in R

d, d = 2, 3, with outer unit normal n.
Let K be a subdivision of Ω ⊂ R

d into nonoverlapping d-simplices κ. An element
κ ∈ K is assumed to be an closed set. We consider the following elliptic problem with
homogeneous Dirichlet boundary conditions.

Find u : Ω→ R such that

(2.1)

{−∇ · σ∇u = f in Ω,

u = 0 on ∂Ω,

where f ∈ L2(Ω) and with a diffusion coefficient that is piecewise constant on each
element σ(x)|κ = σκ ∈ R for all κ ∈ K and σ(x) > σ0 > 0. We assume that
there exists a constant ρ > 0 such that σ|κ1 ≤ ρ σ|κ2 for any two elements satisfying
∂κ1 ∩ ∂κ2 �= ∅. The fact that the boundary conditions are of homogeneous Dirichlet
type is not a limitation of the presented methods but rather to avoid technical details.

Let Fi denote the set of interior faces ((d−1)-manifolds) of the mesh; i.e., the set
of faces that are not included in the boundary ∂Ω. The set Fe denotes the faces that
are included in ∂Ω and defines F = Fi ∪ Fe. Note that for an element κ ∈ K, F(κ)
denotes the set of faces of κ. Furthermore, denote by Γ the skeleton of the mesh, i.e.,
the set of points belonging to faces, Γ =

{
x ∈ Ω : ∃F ∈ F s.t. x ∈ F}.
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Assume that K is shape-regular, does not contain any hanging node, and covers
Ω exactly. Suppose that each κ ∈ K is an affine image of the reference element
κ̂; i.e., for each element κ there exists an affine transformation Tκ : κ̂ → κ. For
an element κ ∈ K, hκ denotes its diameter. Set h = maxκ∈K hκ, and let h̃, m̃
be the functions such that h̃|κ = hκ (resp., m̃|κ = measd(κ)). We will say that a
family of subdivisions {K}h is asymptotically ζ-uniform with some ζ > 0 if there
exists a constant c > 0 such that for every mesh K and every F ∈ Fi there holds∣∣m̃|κ1−m̃|κ2

∣∣ ≤ cmeasd−1(F )ζ min(m̃|κ1 , m̃|κ2), where F = ∂κ1∩∂κ2 with κ1, κ2 ∈ K.
For a face F ∈ F , hF denotes its diameter, and let h̃F be the function such that

h̃F |F = hF .
For a nonempty subdomain R ⊂ Ω or R ⊂ Γ, (·, ·)R denotes the L2(R)-scalar

product, ‖ · ‖R = (·, ·)1/2R the corresponding norm, and ‖ · ‖s,R the Hs(R)-norm.
The elementwise counterparts will be distinguished using the discrete partition as
subscript, for example (·, ·)K =

∑
κ∈K(·, ·)K . For s ≥ 1, let Hs(K) be the space of

piecewise Sobolev Hs-functions and denote its norm by ‖ · ‖s,K.
For v ∈ H1(K), τ ∈ [H1(K)]d and an interior face F = κ1 ∩ κ2 ∈ Fi, where κ1

and κ2 are two distinct elements of K with respective outer unit normals n1 and n2,
define the jump and average by

[v] = (v|κ1n1 + v|κ2n2) ,

[τ ] = (τ |κ1 · n1 + τ |κ2 · n2) ,

{v} = 1
2 (v|κ1 + v|κ2) ,

{τ} = 1
2 (τ |κ1 + τ |κ2) .

Additionally we define on each face F ∈ F the unit normal nF in an arbitrary but
fixed manner.

On outer faces F = ∂κ ∩ ∂Ω ∈ Fe, for some κ ∈ K with outer unit normal n, the
jump and the average are defined as [v] = v|F n and {v} = v|F (resp., [τ ] = τ |F · n
and {τ} = τ |F ). The projection of {v} and [v] onto the space of facewise constant
functions are denoted by {v} ∈ R and [v] ∈ R

d and defined by∫
F

{v} ds =
∫
F

{v} ds and
∫
F

[v] ds =
∫
F

[v] ds

for all F ∈ F .
The shape-regularity implies that there exists a constant c > 0 independent of

the mesh size h such that on any face F ∈ F ,

hF ≤ {h̃} ≤ c hF .
In this paper c > 0 denotes a generic constant and can change at each occurrence,
while an indexed constant stays fixed. Any constant is independent of the mesh size
h but not necessarily of σ.

3. Finite element spaces. We will consider two low order finite element spaces,
the space of piecewise affine discontinuous functions, and the space of piecewise affine
discontinuous functions enriched with nonconforming quadratic bubbles. We show
that every function in the former space can be written as a sum of a midpoint con-
tinuous function (in the Crouzeix–Raviart space) and a “midpoint discontinuous”
function in a space that will be specified later. The motivation for this decomposition
is that such a choice of basis in the symmetric DG-bilinear form results in a block
diagonal matrix, and hence the continuous and the discontinuous contributions may
be analyzed separately.
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Define the piecewise affine discontinuous finite element space by

V 1
h =

{
vh ∈ L2(Ω) : vh|κ ∈ P1(κ)∀κ ∈ K} .

Then, introduce the enriched space

V bh = V 1
h ⊕ V b,

with

V b =
{
v ∈ L2(Ω) : v(x)|κ = ακx · x, where ακ ∈ R

}
,

where x = (x1, . . . , xd) denotes the physical variables. Observe that V bh is the space
introduced by Brezzi and Marini in [6]. Additionally, we define

V 1
h,0 =

{
vh ∈ V 1

h :
∫
F

vh ds = 0 ∀F ∈ Fe
}
,

the space of piecewise affine elements where the homogeneous Dirichlet boundary
conditions are imposed on the midpoints of each exterior face.

3.1. Splitting of the finite element space V 1
h,0. The idea is to split V 1

h,0 into a
midpoint continuous space, the Crouzeix–Raviart space, and a midpoint discontinuous
space, similar to what was proposed in the one-dimensional case in [10]. Recall the
definition of the Crouzeix–Raviart space

V C =
{
vh ∈ V 1

h,0 :
∫
F

[vh] ds = 0 ∀F ∈ Fi
}
.

Its “midpoint discontinuous” counterpart is defined by

V D =
{
vh ∈ V 1

h,0 :
∫
F

{vh} ds = 0 ∀F ∈ Fi
}
.

Denote by Nint the number of interior faces of the mesh K. Let us denote {φci}Nint

i=1 ,
the Crouzeix–Raviart basis defined such that∫

Fj

{φci} ds = δi,j measd−1(Fi) ∀ 1 ≤ i, j ≤ Nint.

This defines a basis for the space V C . Denote by xF ∈ F the midpoint of F ∈ F for a
one-dimensional face and the barycenter (which coincides with the Gauss point) of F
for a two-dimensional face. Recall that the midpoint integration rule on F is exactly
of order two in the one-dimensional case and of order one in the two-dimensional case.
Thus vc ∈ V C is midpoint continuous, i.e.,

[vc](xF ) =
1

measd−1(F )

∫
F

[vc] ds = 0 ∀F ∈ F ,

in two and three space dimensions. Now, let us define a basis for the space V D. For
each face Fi ∈ Fi consider the basis function φdi defined by

φdi = 1
2φ

c
i

∇φci · nFi

|∇φci · nFi |
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with nFi a fixed but arbitrary unit normal associated to the face Fi. It is easy to
verify that φdi ∈ V D and that∫

Fj

[φdi ] · nFj ds = δi,j measd−1(Fi) ∀Fi ∈ F .

Now we are ready to prove the following lemma.
Lemma 3.1. The splitting of V 1

h,0 into V C and V D is a direct sum; i.e., V 1
h,0 =

V C ⊕ V D. Any function vh in V 1
h,0 can be written as

vh(x) =
Nint∑
i=1

ciφ
c
i (x) + diφ

d
i (x),

where ci = 1
measd−1(Fi)

∫
Fi
{vh} ds and di = 1

measd−1(Fi)

∫
Fi

[vh] · nFi ds.
Remark 3.2. Note that, for v ∈ H1(Ω) the function

(3.1) icv(x) =
Nint∑
i=1

ciφ
c
i (x)

with ci = 1
measd−1(Fi)

∫
Fi
v ds is the Crouzeix–Raviart interpolant and has optimal

approximation properties.
Proof. First, assume that vh ∈ V C ∩ V D and show that vh ≡ 0. This is an

immediate consequence of the properties of V C and V D. One may then show that
V C ⊕ V D covers V 1

h,0 entirely. This is easily proven by taking vh ∈ V 1
h,0 and defining

wh ∈ V C ⊕ V D by

wh(x) =
Nint∑
i=1

ciφ
c
i (x) + diφ

d
i (x)

with ci = 1
measd−1(Fi)

∫
Fi
{vh} ds and di = 1

measd−1(Fi)

∫
Fi

[vh] · nFi ds. Using the

properties of the basis functions {φci}Nint

i=1 and {φdi }Nint

i=1 it follows that wh ≡ vh.
Lemma 3.3 (asymptotic L2-orthogonality between V C and V D). Assume that

the mesh is asymptotically ζ-uniform with some ζ > 0, then the spaces V C and V D

satisfy the following weak L2-orthogonality property: there exists a constant c > 0
independent of h, such that

|(vc, vd)K| ≤ chζ‖vc‖K‖vd‖K + r(d) ‖h̃∇vc‖K‖h̃∇vd‖K ∀vc ∈ V C , vd ∈ V D,

where r(2) = 0 and r(3) = c.
Proof. In the two-dimensional case we can proceed as follows. Take vc ∈ V C and

vd ∈ V D and develop

(3.2) |(vc, vd)K| =
∣∣∣∣∣
∑
κ∈K

(vc, vd)κ

∣∣∣∣∣ = 1
3

∣∣∣∣∣∣
∑
κ∈K

∑
F∈F(κ)

m̃|κ vc(xF )vd(xF )

∣∣∣∣∣∣
with numerical integration on κ using the midpoints/barycenters of its faces as inte-
gration points (xF denotes the midpoint/barycenter of the face F ). This numerical
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integration on κ is exact of order 2 in the two-dimensional case but not in the three-
dimensional one. Since vc(xF ) = vd(xF ) = 0 for exterior faces F ∈ Fe and since vc is
midpoint continuous we can rearrange the sum

|(vc, vd)K| = 2
3

∣∣∣∣∣
∑
F∈Fi

vc(xF ){m̃vd}(xF )

∣∣∣∣∣ .
Using the equality {wv} = {w}{v}+ 1

4 [w] · [v] and the fact that {vd}(xF ) = 0 for all
interior faces yields

|(vc, vd)K| ≤ c
∑
F∈Fi

|vc(xF )| |[m̃](xF ) · nF | |[vd](xF ) · nF |.

The regularity assumption on the mesh implies that |[m̃] · nF | ≤ chζF {m̃} with ζ > 0,
and since 1

2 |[vd](xF ) · nF | = |vd|κi(xF )|, for i = 1, 2, we can rearrange the sum again,

|(vc, vd)K| ≤ c hζ
∑
κ∈K

(|vc|, |vd|)κ ≤ c hζ‖vc‖K‖vd‖K.

In the three-dimensional case, since the numerical integration is no longer of
order two, we introduce the local midpoint interpolation iκh : H2(κ) → P1(κ) for
each element κ ∈ K by iκhv(xF ) = v(xF ) for all F ∈ F(κ). Then using the triangle
inequality yields

(3.3) |(vc, vd)K| ≤
∣∣∣∣∣
∑
κ∈K

∫
κ

iκh(vcvd) dx

∣∣∣∣∣+
∣∣∣∣∣
∑
κ∈K

∫
κ

(vcvd − iκh(vcvd)) dx
∣∣∣∣∣ .

The first term of the right-hand side of (3.3) can be developed as in (3.2) since now
for the local midpoint interpolation iκh the above defined numerical integration rule
is exact. For the second term of the right-hand side of (3.3), one can show using
standard interpolation results that∣∣∣∣∣

∑
κ∈K

∫
κ

(vcvd − iκh(vcvd)) dx
∣∣∣∣∣ ≤ c ‖h̃∇vc‖K‖h̃∇vd‖K.

3.2. Properties of the enriched space V b
h . The motivation for the particular

form of the enriched space is given in the following lemma. The key idea is that the
gradient of a function in V bh restricted to an element is locally in the Raviart–Thomas
space. Let RT0 denote the space of Raviart–Thomas elements of order zero.

Lemma 3.4. For all wh ∈ V bh there holds

∇wh|κ ∈ RT0(κ),

and for all rh ∈ RT0(κ) there exists wh ∈ V bh such that ∇wh|κ = rh for all κ ∈ K.
Proof. Let wh ∈ V bh , restricting wh to an arbitrary element κ we can write

wh|κ(x) = αx · x+ β · x+ γ,

where α, γ ∈ R and β ∈ R
d are the local degrees of freedom. Then

∇wh|κ(x) = 2αx+ β.
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To show that this function lies in the Raviart–Thomas finite element space we have
to map it on the reference element using the Piola transformation. But let us first
introduce the affine transformation Tκ between the reference element κ̂ defined by
its vertices ai = ei for i = 1, . . . , d and ad+1 = O and the physical element κ. The
vectors ei denote the unit vectors corresponding to the ith coordinate. The affine
transformation may be written as

Tκ(x̂) = Jκx̂+ tκ,

where x̂ = (x̂1, . . . , x̂d)� ∈ κ̂ denotes the variable in the reference element. Then we
denote by ψκ the Piola transformation between the physical element and the reference
element defined by

ψκ(v)(x̂) = |Jκ| J−1
κ v(Tκ(x̂)).

Thus

ψκ(∇wh|κ)(x̂) = |Jκ|J−1
κ (2αTκ(x̂) + β) = |Jκ|

(
2αx̂+ J−1

κ (β + 2αtκ)
)
,

and this function is clearly an element of the Raviart–Thomas finite element space on
the reference element.

On the other hand if rh ∈ RT0, then ψκ ◦ rh|κ is of the form

ψκ(rh|κ)(x̂) = ax̂+ b,

where a ∈ R and b = (b1, . . . , bd)� ∈ R
d. Thus

rh|κ(x) = 1
|Jκ| (ax+ Jκb− tκ) .

Defining locally,

wh|κ(x) = 1
|Jκ|

(
a
2x · x+ (Jκb− tκ) · x

)
yields that

∇wh|κ(x) = rh|κ(x).
4. Poincaré inequalities. The analysis of the model problem (2.1) relies on the

Poincaré inequality. In this section we state the Poincaré inequalities that hold for
the two spaces V C and V D, separately. Then we prove a stronger Poincaré inequality
for the space V D under some assumptions on the mesh.

Lemma 4.1. There is a constant c > 0 independent of h such that for all vh ∈ V bh
there holds

c ‖ω 1
2 h̃
− 1

2
F [vh]‖2F ≤ ‖ω

1
2 h̃
− 1

2
F [vh]‖2F + ‖σ 1

2∇vh‖2K,
where ω|F = max(σ|κ1 , σ|κ2) for F = ∂κ1 ∩ ∂κ2.

Proof. The proof is completed immediately by the approximation properties of
the average jump, a discrete trace inequality, and the bounded variation of σ over
faces.

Corollary 4.2. The following Poincaré inequality for broken H1-spaces holds
for all vh ∈ V bh :

c ‖σ 1
2 vh‖2K ≤ ‖ω

1
2 h̃
− 1

2
F [vh]‖2F + ‖σ 1

2∇vh‖2K.
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Proof. An immediate consequence of the previous lemma and the Poincaré in-
equality is

(4.1) c ‖σ 1
2 vh‖2K ≤ ‖ω

1
2 h̃
− 1

2
F [vh]‖2F + ‖σ 1

2∇vh‖2K
proved by Brenner [3].

Proposition 4.3 (Poincaré inequality for V C). There exists a constant c > 0
depending only on Ω such that, for all h < 1,

∀vc ∈ V C , c ‖vc‖K ≤ ‖∇vc‖K.
Proof. See Temam [14] for the proof.
Proposition 4.4 (Poincaré inequality for V D). There exists a constant c > 0

depending only on Ω such that, for all h < 1,

∀vd ∈ V D, c ‖vd‖K ≤ ‖∇vd‖K.
Proof. Let vd ∈ V D be fixed. Then, define the splitting of Ω into two parts K1

and K2 by

K1 = {κ ∈ K : ∃x ∈ κ s.t. vd(x) = 0} ,
K2 = {κ ∈ K : vd(x) �= 0 ∀x ∈ κ} .

First, prove the inequality for the region K1. Fix an element κ1 ∈ K1 and define

Z(κ1) = {x ∈ κ1 : vd(x) = 0}.
Since vd|κ1 ∈ P1(κ1) we may write

vd(x) = ∇vd · (x− x�) with x� ∈ Z(κ1).

Thus we conclude immediately that

(4.2) ‖vd‖K1 ≤ ‖h̃∇vd‖K1 .

Second, split K2 in maximal subsets {Kj2}mj=1 in order that each

Ωj2 =

◦⎛
⎝ ⋃
κ∈Kj

2

κ

⎞
⎠

is connected. Fix a subset Kj2 and observe that |vd| is midpoint continuous on interior
faces of Kj2. In consequence, |vd| lies in the Crouzeix–Raviart space over the domain
Ωj2, and we may proceed analogously to the proof of Proposition 4.3. Details are left
to the reader.

In case the mesh has a certain macroelement structure we may prove a stronger
Poincaré inequality for the space V D.

Proposition 4.5 (strong Poincaré inequality for V D). Let K be a mesh. Assume
that there exists a coarse mesh T covering Ω̄ such that each macroelement (d-simplex)

T ∈ T contains exactly d+1 elements κ1, . . . , κd+1 of K and such that κi∩κj ∩
◦
T �= ∅

for all 1 ≤ i, j ≤ d+ 1. Then the following inequality holds:

∀vd ∈ V D, c ‖vd‖K ≤ ‖h̃∇vd‖K.
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Fig. 1. Illustration of the macroelement argument of Lemma 4.5. The “+” and “−” signs refer
to the sign of vd at the midpoints of the faces.

Proof. Let vd ∈ V D and fix an element κ ∈ K. If there exists x� ∈ κ such that
vd(x�) = 0, then we conclude analogous to (4.2) that

‖vd‖κ ≤ ‖hκ∇vd‖κ.
Otherwise there exists in the same macroelement T ∈ T a neighbor element κ′ ∈ K
such that there exists x� ∈ κ′ with vd(x�) = 0. Indeed assume that vd(x) �= 0 for
all x ∈ T . Observe that vd changes sign in the midpoint of each face since it lies
in V D and hence

∫
F
{vd} = 0. Consider all three elements of T in two dimensions

and an arbitrary selection of three elements containing κ′ in three dimensions. The
solution changes sign over each face. However, in the three elements the sign has to
change four times. Hence it has to change sign within one element, which leads to a
contradiction. See the illustration in Figure 1. Thus there exists at least one element
κ� ∈ K of the macroelement T such that there exists a point x� ∈ κ� with vd(x�) = 0.
Since κ ∩ κ� �= ∅, we conclude that

‖vd‖κ ≤ c ‖hκ∇vd‖κ.
Remark 4.6. Observe that the above defined macroelement property is sufficient

but not necessary for the strong Poincaré inequality to hold. The sufficient and
necessary condition on the mesh is: For each element κ ∈ K there exists a path in an
h-neighborhood of κ, starting and ending at κ, passing an odd number of faces.

5. Discontinuous Galerkin methods. Define the following bilinear form:

as(uh, vh) = (σ∇uh,∇vh)K − ({σ∇uh}, [vh])F − s ({σ∇vh}, [uh])F(5.1)

for s ∈ {−1, 1} and the stabilization term

j(uh, vh) = (ωh̃−1
F [uh], [vh])Fi ,

where ω|F = max(σ|κ1 , σ|κ2) for F = ∂κ1 ∩ ∂κ2. Note that we only penalize the
average value of the jumps in the spirit of Lemma 4.1. Let us define two methods to
approximate the solution of (2.1).

Reduced interior penalty (RIP-) method. Find u1
h ∈ V 1

h,0 such that

(5.2) as(u1
h, vh) + γ j(u1

h, vh) = (f, vh)K ∀vh ∈ V 1
h,0,
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for some γ ∈ R and s ∈ {−1, 1}.
Bubble stabilized discontinuous Galerkin (BSDG-) method. Find ubh ∈

V bh such that, with s ∈ {−1, 1},

(5.3) as(ubh, vh) = (f, vh)K ∀vh ∈ V bh .

Remark 5.1 (local mass conservation property). The solutions u1
h, u

b
h of (5.2)

(resp., (5.3)) satisfy

−
∫
∂κ

{σ∇u1
h} · nκ ds+ γ

∫
∂κ

ωh̃−1
F [u1

h] · nκ ds =
∫
κ

f dx,

−
∫
∂κ

{σ∇ubh} · nκ ds =
∫
κ

f dx.

Lemma 5.2 (consistency of methods). If the exact solution u of problem (2.1)
satisfies u ∈ H2(Ω), then the formulations defined by (5.2) and (5.3) are consistent
(and adjoint consistent if the bilinear form is symmetric). Moreover, the following
Galerkin orthogonalities hold:

as(u − u1
h, vh) + γ j(u − u1

h, vh) = 0 ∀vh ∈ V 1
h,0,

as(u − ubh, vh) = 0 ∀vh ∈ V bh ,

where u1
h ∈ V 1

h,0 and ubh ∈ V bh denote the discrete solutions of (5.2) (resp., (5.3)).
Proof. Since u ∈ H2(Ω) and the form as(·, ·) coincides with the SIPG formulation

for s = 1 (resp., NIPG for s = −1) it is consistent. Moreover, for s = 1 the method
is adjoint consistent. Observe that for u ∈ H1(Ω) there holds

j(u, vh) = (ωh̃−1
F [u], [vh])Fi = 0.

6. Analysis of the RIP-method. For the analysis it is useful to introduce the
following norms:

|‖v‖|2 = ‖σ 1
2∇v‖2K + ‖ω 1

2 h̃
− 1

2
F [v]‖2F ,

|‖w‖|2c = ‖σ 1
2∇w‖2K + ‖h̃ 1

2
F{σ∇w}‖2Fi

for all v ∈ H1(K), w ∈ H2(K). We have the following standard approximability
results that we state without proof.

Lemma 6.1 (approximability in V C). Let u ∈ Hβ(Ω), with β ∈ {1, 2}, and
icu ∈ V C denote the Crouzeix–Raviart-interpolant of u onto V C defined by (3.1),
then there holds

(6.1) ‖u− icu‖K ≤ c hβ‖u‖β,K.

If u ∈ H2(Ω), then

|‖u− icu‖| ≤ c h‖u‖2,K,(6.2)

|‖u− icu‖|c ≤ c h‖u‖2,K.(6.3)
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6.1. Stability. In this section we will use the orthogonality properties of V C

and V D to obtain coercivity results for the unstabilized method also. These results
ensure the existence of the discrete solution.

Lemma 6.2 (orthogonality relations). The bilinear forms as(·, ·) and j(·, ·) satisfy
the following orthogonality relations:

as(vc, vd) = 0 ∀vc ∈ V C , ∀vd ∈ V D,

as(vd, vc) = (1− s)(σ∇vd,∇vc)K ∀vc ∈ V C , ∀vd ∈ V D,

j(vc, vd) = j(vd, vc) = 0 ∀vc ∈ V C , ∀vd ∈ V D.

Remark 6.3. The spaces V C and V D are orthogonal with respect to the symmetric
bilinear form a1(·, ·).

Proof. Let vc ∈ V C and vd ∈ V D. Since
∫
F [vc] ds = 0 for all interior faces F ∈ Fi,

it follows directly that

j(vc, vd) = j(vd, vc) = 0,

and that

as(vc, vd) = (σ∇vc,∇vd)K − ({σ∇vc}, [vd])Fi .

An integration by parts yields

as(vc, vd) = −(∇ · σ∇vc, vd)K + ([σ∇vc], {vd})F = 0,

since
∫
F
{vd} ds = 0 for all faces F ∈ F and ∇·σ∇vc|κ = 0 for all κ ∈ K. Analogously

we prove that

as(vd, vc) = (σ∇vd,∇vc)K − s ({σ∇vc}, [vd])Fi = (1− s)(σ∇vd,∇vc)K.

Lemma 6.4. The bilinear forms as(·, ·) and j(·, ·) satisfy the following relations:

as(uc, vc) = (σ∇uc,∇vc)K ∀uc, vc ∈ V C ,

as(ud, vd) = −s (σ∇ud,∇vd)K ∀ud, vd ∈ V D,

j(uc, vc) = 0 ∀uc, vc ∈ V C .

Proof. The proof is similar to the one of Lemma 6.2 and uses the properties of
the spaces V C and V D.

Lemma 6.5 (splitting of the RIP-method). The first method defined by (5.2) is
equivalent to: Find uc ∈ V C , ud ∈ V D such that

(σ∇uc,∇vc)K + (1− s)(σ∇ud,∇vc)K = (f, vc)K ∀vc ∈ V C ,(6.4)

−s (σ∇ud,∇vd)K + γ (ωh̃−1
F [ud], [vd])Fi = (f, vd)K ∀vd ∈ V D.(6.5)

Remark 6.6. Observe that for s = 1, (6.4) is the Crouzeix–Raviart method for
problem (2.1). As a consequence the stability and convergence analysis is known. It
follows that the midpoint continuous part of uh is independent of the parameter γ.
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Moreover, note that (6.5) is independent of (6.4). Hence we can solve first for the
discontinuous field ud and then for the continuous field uc also in the case s = −1.

Proof. Let vh ∈ V 1
h,0. Since V 1

h,0 = V C ⊕ V D we can write vh = vc + vd with
vc ∈ V C and vd ∈ V D. Analogously we can write u1

h = uc + ud. Testing in (5.2) with
vc and vd separately yields the problem: Find uc ∈ V C and ud ∈ V D such that

as(uc + ud, vc) + γ j(uc + ud, vc) = (f, vc)K ∀vc ∈ V C ,

as(uc + ud, vd) + γ j(uc + ud, vd) = (f, vd)K ∀vd ∈ V D.

Applying Lemma 6.2 leads directly to: Find uc ∈ V C and ud ∈ V D such that

as(uc + ud, vc) = (f, vc)K ∀vc ∈ V C ,(6.6)

as(ud, vd) + γ j(ud, vd) = (f, vd)K ∀vd ∈ V D.(6.7)

Note that the equivalences between the problems (6.6) and (6.4) (resp., (6.7) and
(6.5)) follow directly from Lemma 6.4.

Lemma 6.7 (coercivity of the RIP-method). A unique solution to the discrete
problem (6.5) exists for all sγ ≤ 0 and sγ > Cstab, where Cstab > 0 is a certain
constant independent of h. Moreover, the following coercivity bound holds:

C(γ) |‖ud‖|2 ≤ |as(ud, ud) + γ j(ud, ud)|,
where

C(γ) =

{
c min(1, |γ|) if sγ < 0,
c (γ − Cstab) if sγ > Cstab.

On general meshes for γ = 0 there holds

c ‖σ 1
2 ud‖2K ≤ |as(ud, ud)|.

On meshes described in Proposition 4.5 there holds, for γ = 0,

(6.8) c |‖ud‖|2 ≤ |as(ud, ud)|.
Proof. Let us prove first the regularity of (6.5) for sγ < 0. Observe, using

Lemma 4.1, that

c min(1, |γ|) |‖ud‖|2 ≤ ‖σ 1
2∇ud‖2K + |γ| ‖ω 1

2 h̃
− 1

2
F [ud]‖2Fi

= −sas(ud, ud) + |γ| j(ud, ud)
= |as(ud, ud) + γ j(ud, ud)|

since ‖ω 1
2 h̃
− 1

2
F [ud]‖2Fe

= 0.
For sγ > 0 observe that using the inverse and trace inequalities yields

|‖ud‖|2 = ‖σ 1
2∇ud‖2K + ‖ω 1

2 h̃
− 1

2
F [ud]‖2F ≤ c ‖h̃−1σ

1
2 ud‖2K.

On the other hand, by norm equivalence on discrete spaces there exists a constant
c� > 0, independent of the mesh size h, such that

‖ω 1
2 h̃
− 1

2
F [ud]‖2Fi

≥ c� ‖h̃−1σ
1
2 ud‖2K,
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since ω|F ≥ σ|κi , i = 1, 2, for F = ∂κ1 ∩ ∂κ2. Thus, using the inverse inequality with
constant cie yields

|as(ud, ud) + γ j(ud, ud)| ≥ −‖σ 1
2∇ud‖2K + sγ‖ω 1

2 h̃
− 1

2
F [ud]‖2Fi

≥ (sγc� − cie) ‖h̃−1σ
1
2 ud‖2K.

Observe that coercivity holds under the assumption that sγ = |γ| > cie

c�
=: Cstab.

For γ = 0 on general meshes observe that

c ‖σ 1
2ud‖2K = ‖σ 1

2∇ud‖2K = −s as(ud, ud) = |as(ud, ud)|
using the Poincaré inequality noted in Proposition 4.4.

For γ = 0 on meshes described in Proposition 4.5, we have

|‖ud‖|2 = ‖σ 1
2∇ud‖2K + ‖ω 1

2 h̃
− 1

2
F [ud]‖2F ≤ ‖σ

1
2∇ud‖2K + c ‖h̃−1σ

1
2ud‖2K

≤ c ‖σ 1
2∇ud‖2K = c |as(ud, ud)|

using the trace inequality and the strong Poincaré inequality noted in Proposition
4.5.

6.2. Convergence. We will now address the question of optimal convergence
for different values of the stabilization parameter. In the case where the stabilization
parameter is set to zero, the lack of continuity of the bilinear form may perturb
convergence. However, if the mesh has the macroelement structure of Proposition 4.5
optimal convergence is recovered.

Theorem 6.8. Let u ∈ H2(Ω) be the solution of (2.1), and let u1
h be the solution

of (5.2) with sγ < 0, sγ > Cstab, or γ = 0 on the meshes defined in Proposition 4.5,
then there holds

|‖u− u1
h‖| ≤ c h‖u‖2,K.

Remark 6.9. On general meshes, in the particular case γ = 0, this theorem is
no longer valid. In this case an optimal convergence result can be shown under some
restrictive regularity assumptions on f and the mesh; see Theorem 6.10.

Proof. First, note that for the bilinear form as(·, ·) the following continuity holds
for all w ∈ H1

0 (Ω), wc ∈ V C , and vh ∈ V 1
h by the Cauchy–Schwarz inequality:

(6.9) as(w − wc, vh) ≤ |‖w − wc‖|c |‖vh‖|.
1. Since u1

h = uc + ud decomposes the error in two midpoint-continuous parts
and one midpoint-discontinuous part,

(6.10) |‖u− u1
h‖| ≤ |‖u− icu‖|+ |‖uc − icu‖|+ |‖ud‖|.

2. Observe that by Lemmas 6.4, 5.2, and 6.2 and (6.9),

|‖uc − icu‖|2 = as(uc − icu, uc − icu) = as(u− icu− ud, uc − icu)

≤ c (|‖u− icu‖|c + |‖ud‖|)|‖uc − icu‖|,
since uc − icu+ u− u1

h = u− icu− ud and as(u− u1
h, icu− uc) = 0. Thus

(6.11) |‖u− u1
h‖| ≤ c (|‖u− icu‖|+ |‖u− icu‖|c + |‖ud‖|).
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3. Use Lemma 6.1 to bound the first two terms of the right-hand side of (6.11),

|‖u− icu‖|+ |‖u− icu‖|c ≤ ch‖u‖2,K.
4. For the third term of (6.11) use the coercivity noted in Lemma 6.7,

|‖ud‖|2 ≤ c

C(γ)
|as(ud, ud) + γ j(ud, ud)|.

In the particular case γ = 0, the constant C(0) denotes the constant of (6.8).
5. Use the consistency of the bilinear form noted in Lemma 5.2,

|‖ud‖|2 ≤ c

C(γ)
|as(u− uc, ud)|,

since ud + u− u1
h = u− uc and as(u− u1

h, ud)− γ j(u1
h, ud) = 0.

6. Conclude by applying the continuity (6.9) and the approximation result (6.3)
that

|‖u− u1
h‖| ≤ ch‖u‖2,K.

Under some restrictions we can show optimal convergence also in the particular
case of γ = 0 for the symmetric version on meshes without the macroelement property.

Theorem 6.10. Let u ∈ H2(Ω) be the solution of (2.1), and let u1
h be the solution

of (5.2) with s = 1 and γ = 0. Assume that f ∈ Hβ(Ω), with β ∈ {1, 2}, and that the
mesh is asymptotically ζ-uniform with some ζ > 0, then there holds

‖σ 1
2∇(u− u1

h)‖K ≤ c (h‖u‖2,K + (hζ + r(d)h2)‖f‖1,K + hβ‖f‖β,K),

where r(2) = 0 and r(3) = c.
Proof. Using the triangle inequality we can split

‖σ 1
2∇(u− u1

h)‖K ≤ ‖σ
1
2∇(u − uc)‖K + ‖σ 1

2∇ud‖K.
Since we only consider the symmetric version (s = 1), uc is the standard Crouzeix–
Raviart solution, and the first term of the right-hand side of the previous equation
can be bounded by

‖σ 1
2∇(u− uc)‖K ≤ c h‖u‖2,K.

From (6.5) we can write

(6.12) ‖σ 1
2∇ud‖2 = |(f, ud)K| ≤ |(f − icf, ud)K|+ |(icf, ud)K|,

where ic is the Crouzeix–Raviart interpolant introduced in Remark 3.2. The first
term of the right-hand side of (6.12) can be bounded by

(6.13) |(f − icf, ud)K| ≤ ‖f − icf‖K‖ud‖K ≤ c hβ‖f‖β,K‖σ 1
2∇ud‖K

by optimal approximation properties of the Crouzeix–Raviart interpolant and by the
Poincaré inequality for V D noted in Proposition 4.4.

For the second term of the right-hand side of (6.12), we use Lemma 3.3, the
Poincaré inequality for V D, Proposition 4.4, and the stability of the Crouzeix–Raviart
interpolant ‖icf‖K ≤ ‖f‖1,K (resp., ‖∇icf‖K ≤ ‖f‖1,K):

|(icf, ud)K| ≤ c (hζ‖icf‖K‖ud‖K + r(d)h2‖∇icf‖K‖σ 1
2∇ud‖K)(6.14)

≤ c (hζ + r(d)h2)‖f‖1,K‖σ 1
2∇ud‖K.
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Combining (6.13) and (6.14) completes the proof.
Remark 6.11. If β = 2 and ζ = 2, then optimal convergence can be shown in the

triple norm |‖ · ‖| since in this case

‖ω 1
2 h̃
− 1

2
F [ud]‖2F ≤ c ‖h̃−1∇ud‖K ≤ c h‖f‖2,K.

Remark 6.12. Observe that on uniform meshes the convergence is only limited
by the regularity of f .

We will now show that we have optimal L2-convergence for the symmetric version
thanks to the adjoint consistency. For the nonsymmetric version, the L2-convergence
rate depends on the regularity of the mesh and the right-hand side, as pointed out in
[10] in the one-dimensional case.

Theorem 6.13. Let u ∈ H2(Ω) with ‖u‖2,K ≤ c ‖f‖K be the solution of (2.1),
and let u1

h be the solution of (5.2) with sγ < 0, sγ > Cstab, or γ = 0 on meshes as
described in Proposition 4.5, then the following hold.

(a) If s = 1, then

‖u− u1
h‖K ≤ c h2‖u‖2,K.

(b) If s = −1, assuming that f ∈ Hβ(Ω), with β ∈ {1, 2}, and that the mesh is
asymptotically ζ-uniform with some ζ > 0, then

‖u− u1
h‖K ≤ c (h2‖u‖2,K + (hζ + r(d)h2)‖f‖1,K + hβ‖f‖β,K),

where r(2) = 0 and r(3) = c.
Proof. Let e = u− uh and consider the dual problem: Find φ ∈ H1

0 (Ω) such that

(σ∇φ,∇z)K = (e, z)K ∀z ∈ H1
0 (Ω).

Under the regularity assumptions on u we have ‖φ‖1,K ≤ c ‖e‖K and ‖φ‖2,K ≤ c ‖e‖K.
It follows that

−(∇ · σ∇φ, z)K = (e, z)K ∀z ∈ L2(Ω).

Then we have by the dual consistency of Lemma 5.2,

‖e‖2K = a1(e, φ) = as(e, φ) + (s− 1)({σ∇φ}, [e])F

= as(e, φ− icφ)− (s− 1)({σ∇φ}, [ud])Fi − (s− 1)({σ∇(φ− icφ)}, [e]− [e])F .

First, observe that using the Cauchy–Schwarz inequality, the trace inequality for
nondiscrete functions, and the approximation properties of the DG-solution, Theo-
rem 6.8, (resp., the interpolation property of the Crouzeix–Raviart interpolant from
(6.2)), implies that

as(e, φ− icφ) ≤ c
(
|‖e‖|2 + ‖h̃ 1

2
F{σ∇e}‖2F

) 1
2
(
|‖φ− icφ‖|2 + ‖h̃ 1

2
F{σ∇(φ − icφ)}‖2F

) 1
2

≤ c (|‖e‖|2 + h2‖u‖22,K
) 1

2
(|‖φ− icφ‖|2 + h2‖φ‖22,K

) 1
2

≤ c h2‖u‖2,K‖φ‖2,K ≤ c h2‖u‖2,K‖e‖K.
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Second, observe that

({σ∇φ}, [ud])Fi ≤ c ‖h̃
1
2
F{σ∇φ}‖F‖h̃

− 1
2
F ω

1
2 [ud]‖F ≤ c ‖φ‖

1
2
1,K‖φ‖

1
2
2,K|‖ud‖|

≤ c ‖e‖K|‖ud‖|

using a multiplicative trace inequality, see [4], and third, applying the approximability
of the average jump and the trace inequality for nondiscrete functions yields

({σ∇φ− σ∇icφ}, [e]− [e])F ≤ c ‖h̃
1
2
F{σ∇(φ− icφ)}‖F‖h̃

1
2
F [∇e]t‖F

≤ c (‖∇(φ− icφ)‖K + h‖φ‖2,K)(|‖e‖|+ h‖u‖2,K)

≤ c h2‖φ‖2,K‖u‖2,K ≤ ch2‖e‖K‖u‖2,K,

where [∇e]t denotes the tangential jump defined by [∇e]t|F = ∇e|κ1×n1 +∇e|κ2×n2
for F = ∂κ1 ∩ ∂κ2 ∈ F . We conclude that

‖e‖K ≤ c h2‖u‖2,K + c |s− 1|(|‖ud‖|+ h2‖u‖2,K).

For the symmetric case the result follows immediately since |s− 1| = 0.
Consider now the nonsymmetric case for which s = −1. By the coercivity noted

in Lemma 6.7, it follows that

C(γ) |‖ud‖|2 ≤ |a−1(ud, ud) + γ j(ud, ud)| = |(f, ud)K|.

Using Lemma 3.3, (6.1), and the stability of the Crouzeix–Raviart interpolant, we
may conclude that

C(γ) |‖ud‖|2 ≤ |(f − icf, ud)K|+ |(icf, ud)K|

≤ (‖f − icf‖K + chζ‖icf‖K) ‖ud‖K + r(d)h2‖∇icf‖K‖∇ud‖K

≤ (chβ‖f‖β,K + c (hζ + r(d)h2)‖f‖1,K) |‖ud‖|.

Remark 6.14. For γ = 0, in the particular case of Remark 6.11 optimal conver-
gence in the L2-norm can be shown also on regular meshes without the macroelement
property. The details are left to the reader.

6.3. Numerical tests. Observe that the only difference between the standard
SIPG/NIPG-method and the RIP-method is that in the latter case the stabilization
term is composed by the facewise L2-projection of order 0 of the jumps. From an
implementational viewpoint this can be realized by reducing the order of the quadra-
ture formula for the numerical integration on the faces; i.e., applying the midpoint
integration rules for the computation of the stabilization term.

6.3.1. Test problems. Let us briefly present the test problems used for the
numerical tests.

(i) Problem with smooth solution. We consider problem (2.1) with σ = 1 and
f(x, y) = 2 (2 − x2 − y2) on the square Ω = (−1, 1)2. The analytic exact solution is
given by u(x, y) = (x2 − 1)(y2 − 1) ∈ C∞(Ω). A sequence of unstructured meshes is
considered.
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Fig. 2. Comparison of the condition number of the matrices corresponding to the symmetric
version (a) and nonsymmetric version (b) of the RIP-method and the SIPG- (a), respectively, NIPG-
method (b) for the test problem (i) with smooth solution.

(ii) Problem with irregular solution. Now choose the following L-shaped domain:
Ω =

(
[−1, 1]× [−1, 0] ∪ [0, 1]2

)◦. We consider problem (2.1) with σ = 1 and f ≡ 0
and nonhomogeneous boundary conditions such that the solution is

u(x, y) = (x2 + y2)
1
3 sin

(
2
3

arctan∗

(
x

y

))
,

where arctan∗ is chosen in such a manner that it is a continuous function at points
with y = 0. One can prove that u /∈ H2(Ω). Therefore Theorems 6.8, 6.13, 7.4,
and 7.5 are no longer valid. A sequence of unstructured meshes is considered.

(iii) Problem with checkerboard mode. We consider problem (2.1) with σ = 1 and
f(x, y) = −1 + 2χx>y, where χ denotes the characteristic function on the square
Ω = (−1, 1)2. A sequence of structured meshes is considered.

6.3.2. Robustness with respect to the stabilization parameter. Let us
consider the test problem (i) with smooth solution. We compare the robustness of
the symmetric RIP-method with the SIPG-method; respectively, the nonsymmetric
RIP-method with the NIPG-method.

In Figure 2 we give comparisons of the condition number of the corresponding
matrices. We define the condition number of a square matrix (not necessarily sym-
metric positive definite) as the ratio of the largest singular value of the matrix to the
smallest one. Since the continuous and the discontinuous part of the approximation
decouples for our formulation, we may also consider negative values of the penaliza-
tion parameter. One readily verifies from the graphics that the approximate solution
degenerates for values of the stability parameter that do not satisfy the hypothesis
sγ ≤ 0 or sγ > Cstab given in Lemma 6.7. Observe in particular for the symmetric
methods that the RIP-method is stable for negative stabilization parameters whereas
the SIPG-method is not, which is due to the fact that the stabilization in the former
case affects only the discontinuous subspace.
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Fig. 3. L2-error (a) and energy-error (b) for h-refinement for the test problem (i) with smooth
solution using stabilization parameters γ = 0 for the RIP-method, γ = 10 for the SIPG-method, and
γ = 1 for the NIPG-method.
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Fig. 4. L2-error (a) and energy-error (b) for h-refinement for the test problem (ii) with irregular
solution using stabilization parameters γ = 0 for the RIP-method, γ = 10 for the SIPG-method, and
γ = 1 for the NIPG-method.

6.3.3. Convergence. The convergence rates of the RIP-method with stabiliza-
tion parameter γ = 0 are compared to those of the standard SIPG- and NIPG-method
once for the problem (i) with regular solution and once for the problem (ii) with ir-
regular solution.

Note that in several plots the curves of two different methods may have exactly
the same error and the two curves are indistinguishable.

Figure 3 shows the optimal convergence rates of the error in the approximations
of the solution of the smooth problem measured in the L2- and energy-norm. The
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Fig. 5. Different norms of the discontinuous field ud of the RIP-method for h-refinement and
for different stabilization parameters γ for the test problem (ii).

symmetric versions have slightly better convergence rates in the L2-norm, which can
be justified by Theorem 6.13.

Figure 4 shows the accuracy of the methods when solving the problem with an
irregular solution. The SIPG-method has a smaller L2-error than the other methods;
however, the convergence rates are the same.

The test problem (iii) is chosen so as to give rise to a checkerboard mode in the
discontinuous field. The convergence of the jump term for different values of the
stabilization parameter is given in Figure 5(a), and the convergence of the broken
H1 seminorm of ud is given in Figure 5(b). Clearly the broken H1 seminorm of ud
converges for the case without stabilization even though ud does not converge in the
norm |‖ · ‖| including the jumps. This lack of convergence of the interelement jumps
is caused by the checkerboard mode in the field ud. In Figure 6 we give plots of
the ud field for various values of the penalization parameter γ. This clearly illustrates
how the penalization localizes the perturbation caused by the discontinuous data, and
hence enhances convergence for γ �= 0.

7. Analysis of the BSDG-method. In the previous section we saw that for
the unstabilized symmetric DG-method the appearance of a checkerboard mode for
rough data destroyed convergence of the solution jumps. Optimal convergence is
recovered if the mesh has a certain macroelement structure. In the framework of
the BSDG-method this structure is replaced by a bubble enrichment of the space.
The motivation for the DG-method using the enriched space is to obtain local mass
conservation independent of the stabilization parameter for a low order DG-method
while keeping optimal convergence properties in the general case.

7.1. Projection. In order to prove stability of the method we first need to define
the following projection.
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Fig. 6. The discontinuous field ud of the RIP-method computed using different values of the
stabilization parameter for the test problem (ii) generating a checkerboard mode.

Lemma 7.1 (interpolant). Let uh ∈ V bh be a fixed function. Then there exists a
unique wh ∈ V bh such that∫

κ

wh dx = 0 ∀κ ∈ K,(7.1)

{σ∇wh}|F · nF = −sωh−1
F [uh]|F · nF ∀F ∈ F ,(7.2)

{wh}|F = 0 ∀F ∈ Fi.(7.3)

In addition the following a priori estimate holds:

(7.4) ‖σ 1
2∇wh‖K ≤ c ‖ω 1

2 h̃
− 1

2
F [uh]‖F ,

where ω = max(σ|κ1 , σ|κ2) for F = ∂κ1 ∩ ∂κ2.
Proof. Let us first observe that the number of conditions on the projection is equal

to the number of unknowns. The dimension of the finite element space V bh is (d+2)Nel,
where Nel denotes the number of elements in the mesh. On the other hand condition
(7.1) enforces Nel constraints whereas conditions (7.2) and (7.3) demand Nf + Nint
constraints where Nf and Nint denote the number of the number of faces, respectively,
the number of interior faces of the mesh. Observing thatNf+Nint = (d+1)Nel implies
directly a square linear system to determine the projection, let us now establish the
a priori estimate

(7.5) ‖σ 1
2∇wh‖K ≤ c ‖ω 1

2 h̃
− 1

2
F [uh]‖F .

Since wh has zero mean over each element, it satisfies the following strong Poincaré
inequality:

(7.6) ‖σ 1
2wh‖K ≤ c ‖h̃σ 1

2∇wh‖K.

Hence, using a trace inequality yields

(7.7) ‖ω 1
2 h̃
− 1

2
F [wh]‖2F ≤ c ‖σ

1
2 h̃−1wh‖2K ≤ c ‖σ

1
2∇wh‖2K.
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Moreover, integrating by parts and using the properties of wh, it follows that

‖σ 1
2∇wh‖2K = − (∇ · σ∇wh, wh)K︸ ︷︷ ︸

=0

+({σ∇wh}, [wh])F + ([σ∇wh], {wh})Fi︸ ︷︷ ︸
=0

= −s (ωh̃−1
F [uh], [wh])F ≤ ‖ω 1

2 h̃
− 1

2
F [uh]‖F‖ω 1

2 h̃
− 1

2
F [wh]‖F

since {σ∇wh}|F ·nF and [σ∇wh]|F are constant along each face F ∈ F ; see Lemma 3.4.
Applying further (7.7) proves (7.4):

‖σ 1
2∇wh‖K ≤ c ‖ω 1

2 h̃
− 1

2
F [uh]‖F .

Since we consider a square linear system, existence and uniqueness of a solution of
the linear system are equivalent. Uniqueness follows by the a priori estimate.

Corollary 7.2. Let uh ∈ V bh be a fixed function. Then there exists a unique
yh ∈ V bh such that ∫

κ

yh dx =
∫
κ

(f −∇ · σ∇uh) dx ∀κ ∈ K,

{σ∇yh}|F · nF = −sωh−1
F [uh]|F · nF ∀F ∈ F ,

{yh}|F = [σ∇uh]|F ∀F ∈ Fi.
Proof. Since the matrix associated to the above defined projection wh has zero

kernel, yh exists and is unique.

7.2. Stability. Although we do not explicitly penalize the solution jumps, con-
trol of the solution jumps in the energy-norm is recovered by an inf-sup argument as
shown in this section.

Theorem 7.3 (discrete inf-sup condition). There exists a constant c > 0 inde-
pendent of h such that for all uh ∈ V bh there holds

c |‖uh‖| ≤ sup
vh∈V b

h

as(uh, vh)
|‖vh‖|

for s ∈ {−1, 1}.
Proof. Let us prove this theorem in four steps.
Step 1. First, we take vh = uh in a standard fashion

(7.8) as(uh, uh) = ‖σ 1
2∇uh‖2K − (1 + s)({σ∇uh}, [uh])F

since {σ∇uh}|F · nF is constant along each face F ∈ F . Applying a trace inequality
and the inverse inequality for the second term of the right-hand side of (7.8) followed
by an arithmetic-geometric inequality, there exists a constant cu > 0 independent on
the mesh size h such that

(7.9) as(uh, uh) ≥ 1
2‖σ

1
2∇uh‖2K − cu(1 + s)2‖ω 1

2 h̃
− 1

2
F [uh]‖2F .

Step 2. Second, by Lemma 7.1 there exists wh ∈ V bh such that
1.
∫
κ
whdx = 0 ∀κ ∈ K,

2. {σ∇wh} · nF = −sωh−1
F [uh] · nF on each face F ∈ F ,
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3.
∫
F
{wh} = 0 on each face F ∈ Fi.

An immediate consequence is that

as(uh, wh) = −(∇ · σ∇uh, wh)K + ([σ∇uh], {wh})Fi − s ({σ∇wh}, [uh])F

= ‖ω 1
2 h̃
− 1

2
F [uh]‖2F .(7.10)

Step 3. Combining the results (7.9) and (7.10), we may take

vh = uh + (1
2 + cu(1 + s)2)wh

to obtain

as(uh, vh) ≤ 1
2 (‖σ 1

2∇uh‖2K + ‖ω 1
2 h̃
− 1

2
F [uh]‖2F) ≤ c |‖uh‖|2

by Lemma 4.1.
Step 4. To conclude, it remains to show that there exists c > 0 independent of h

such that

|‖vh‖| ≤ c |‖uh‖|.
This follows by straightforward estimation,

|‖vh‖| = |‖uh + cwh‖| ≤ |‖uh‖|+ c |‖wh‖|.
Consider the second term of the right-hand side,

|‖wh‖|2 = ‖σ 1
2∇wh‖2K + ‖ω 1

2 h̃
− 1

2
F [wh]‖2F = I1 + I2.

It follows by (7.4) that

I1 ≤ c ‖ω 1
2 h̃
− 1

2
F [uh]‖2F ≤ c ‖ω

1
2 h̃
− 1

2
F [uh]‖2F ,

and by the trace inequality, the strong Poincaré inequality (7.6), and by (7.4) that

I2 ≤ c ‖σ 1
2 h̃−1wh‖2K ≤ c ‖σ

1
2∇wh‖2K ≤ c ‖ω

1
2 h̃
− 1

2
F [uh]‖2F ≤ c ‖ω

1
2 h̃
− 1

2
F [uh]‖2F .

7.3. Convergence. Using the previously derived inf-sup condition optimal con-
vergence is proved in a standard fashion.

Theorem 7.4. Let u ∈ H2(Ω) be the solution of (2.1) and ubh the solution of
(5.3). Then there holds

|‖u− ubh‖| ≤ c h‖u‖2,K.
Proof. First, note that for the bilinear form as(·, ·) the following continuity holds

for all v ∈ H1(Ω), vc ∈ V C , and vh ∈ V bh by Cauchy–Schwarz and trace inequalities

(7.11) as(v − vc, vh) ≤ |‖v − vc‖|c |‖vh‖|.
1. Decompose the error in a weakly continuous and a discrete part

|‖u− ubh‖| ≤ |‖u− icu‖|+ |‖icu− ubh‖|.
Recall that ic denotes the Crouzeix–Raviart interpolant onto V C and observe that
the convergence of the continuous part follows by Lemma 6.1.
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2. Use the inf-sup condition on the discrete part and the consistency of the
bilinear form (Lemma 5.2)

c |‖icu− ubh‖| ≤ sup
vh∈V b

h

as(icu− ubh, vh)
|‖vh‖| ≤ sup

vh∈V b
h

as(icu− u, vh)
|‖vh‖| .

3. Conclude by applying the continuity (7.11) and the approximation result of
Lemma 6.1 that

|‖u− u1
h‖| ≤ ch‖u‖2,K.

Finally, using Lemma 4.1 and Corollary 4.2 proves the result.
The following optimal L2-convergence for the symmetric version may readily be

proved for the symmetric version of the BSDG-method thanks to the adjoint consis-
tency.

Theorem 7.5. Let u ∈ H2(Ω) with ‖u‖2,K ≤ c ‖f‖K be the solution of (2.1) and
ubh the solution of (5.3) with s = 1, then there holds

‖u− ubh‖K ≤ c h2‖u‖2,K.

Additionally, this method has some interesting properties as pointed out in the
following remark.

Remark 7.6. Let ubh ∈ V bh be the solution of (5.3). If the right-hand side f is
elementwise constant, then there holds

‖∇ · σ∇ubh − f‖2K + ‖[σ∇ubh]‖2Fi
+ ‖ω 1

2 h̃
− 1

2
F [ubh]‖2F = 0.

Indeed, choosing the function yh defined in Corollary 7.2 in (5.3) and applying an
integration by parts leads to the result. As a consequence, since the flux σ∇ubh is
continuous across faces, the solution ubh satisfies the following local mass conservation
property:

−
∫
∂κ

σ∇ubh · nκ ds =
∫
κ

f dx.

7.4. Numerical tests. We consider the same three test problems as in sec-
tion 6.3.1 and give the convergence rates for those test problems. Note that in the
case of the BSDG-method the local mass conservation property is satisfied indepen-
dently of the stabilization parameter. We get optimal convergence of the error in the
L2- and energy-norms, and similar convergence curves as for the SIPG- and NIPG-
methods for the case of smooth exact solution (Figure 7). When the solution presents
a singularity (Figure 8) we once again observe a larger constant for the BSDG-method
than for the SIPG-method, in particular in the L2-norm. For the test problem (ii) we
compare the error of the jumps of the solution of the RIP-method using various sta-
bilization parameters and the same error of BSDG-method (Figure 9). As predicted
by Theorem 7.4 the solution of BSDG-method shows optimal convergence also in this
case. Hence the checkerboard mode is not present in the solution.

8. Conclusion. In this paper we discussed low order discontinuous Galerkin
methods for second order scalar elliptic problems in two and three space dimensions.
The main results are given in the following points.
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Fig. 7. L2-error (a) and energy-error (b) for h-refinement for the test problem (ii) with smooth
solution. For the SIPG- and NIPG-methods a stabilization parameter of γ = 10, respectively, γ = 1
is chosen.
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Fig. 8. L2-error (a) and energy-error (b) for h-refinement for the test problem (i) with irregular
solution. For the SIPG- and NIPG-methods a stabilization parameter of γ = 10, respectively, γ = 1
is chosen.

(i) Midpoint imposition of Dirichlet boundary conditions is sufficient to assure
existence of a discrete solution for the symmetric DG-formulation using piecewise
affine approximation (no interior stabilization is needed).

(ii) The symmetric version of RIP-method without stabilization has optimal
convergence in the energy-norm and in the L2-norm provided the meshes and data
are sufficiently regular or satisfy the macroelement property of Proposition 4.5.

(iii) For irregular data and general meshes a checkerboard mode destroys con-
vergence for the unstabilized DG-method when using piecewise affine approximations.

(iv) Enriching the space with nonconforming quadratic bubbles leads to a DG-
method where the symmetric and nonsymmetric versions are stable without stabiliza-
tion and optimally convergent in the energy-norm. Moreover, the methods are locally
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0.01 0.1

h

0.001

0.01
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BSDG, s=1
RIP, s=1, ϒ = 0
RIP, s=1, ϒ = -0.001
RIP, s=1, ϒ = -0.01
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1
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(a) ‖h̃− 1
2 [uh]‖F

Fig. 9. Error of the jumps ‖h̃− 1
2 [uh]‖F of the BSDG-method compared to the RIP-method for

h-refinement and the test problem (ii).

mass conservative independently of the penalty parameter.
(v) The symmetric DG-method on the enriched space has additionally optimal

convergence in the L2-norm.
The aim of this work was to construct a symmetric DG-method that enjoys opti-

mal convergence and local mass conservation independently of the penalty parameter.
This goal has been realized in the framework of low order approximation in the sym-
metric version of the BSDG-method (see (5.3)) or, in the symmetric version of the
RIP-method with γ = 0 on meshes having the macroelement property of Lemma 4.5.

Acknowledgments. The authors thank the anonymous reviewers for their com-
ments that helped improve this manuscript.
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CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR
PENALTY DISCONTINUOUS GALERKIN METHOD∗

R. H. W. HOPPE† , G. KANSCHAT‡, AND T. WARBURTON§

Abstract. We study the convergence of an adaptive interior penalty discontinuous Galerkin
(IPDG) method for a two-dimensional model second order elliptic boundary value problem. Based
on a residual-type a posteriori error estimator, we prove that after each refinement step of the
adaptive scheme we achieve a guaranteed reduction of the global discretization error in the mesh-
dependent energy norm associated with the IPDG method. In contrast to recent work on adaptive
IPDG methods [O. Karakashian and F. Pascal, Convergence of Adaptive Discontinuous Galerkin
Approximations of Second-order Elliptic Problems, preprint, University of Tennessee, Knoxville,
TN, 2007], the convergence analysis does not require multiple interior nodes for refined elements of
the triangulation. In fact, it will be shown that bisection of the elements is sufficient. The main
ingredients of the proof of the error reduction property are the reliability and a perturbed discrete
local efficiency of the estimator, a bulk criterion that takes care of a proper selection of edges and
elements for refinement, and a perturbed Galerkin orthogonality property with respect to the energy
inner product. The results of numerical experiments are given to illustrate the performance of the
adaptive method.

Key words. discontinuous Galerkin, adaptive methods, interior penalty, error estimates

AMS subject classifications. 65N30, 65N50
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1. Introduction. During the past decade, discontinuous Galerkin (DG) meth-
ods have emerged as a powerful algorithmic tool in the numerical solution of boundary
and initial boundary value problems for partial differential equations (PDE) (cf., e.g.,
[15, 17] and the references therein). For second order elliptic problems, one may
distinguish between primal schemes and mixed methods. Primal schemes rely on
augmenting the elliptic operator by an appropriate penalization of the discontinuous
nodal shape functions. On the other hand, in mixed methods the second order PDE
is reformulated as a system of first order PDEs for which suitable numerical fluxes
are designed. The most prominent primal schemes are interior penalty discontinuous
Galerkin (IPDG) methods, whereas a widely used class of mixed techniques is given
by the local discontinuous Galerkin (LDG) methods. Both IPDG and LDG methods
have been intensively studied with regard to an a priori error analysis in terms of
error estimates for the global discretization error (see, e.g., [2, 3, 12, 26]).

The a posteriori analysis of finite element methods (FEM) is in some state of
maturity, as documented by a series of monographs that have been published in
recent years [1, 4, 6, 19, 32, 37]. As far as DG methods are concerned, a posteriori
error estimators have been developed and analyzed for elliptic problems in H1 in
[7, 25, 27, 33, 34], for elliptic problems in H(curl) in [22, 23], and for the Stokes
problem in [24].
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In this paper, we will be concerned with a convergence analysis of an adaptive
IPDG method in the sense that for a two-dimensional (2D) second order elliptic
model problem we will prove guaranteed error reduction with respect to the mesh-
dependent energy norm. We note that for standard conforming P1 approximations of
elliptic problems the convergence analysis of adaptive finite element methods (AFEM)
has been initiated in [5] and further studied in [18, 29, 30, 31], whereas the issue of
optimal order of convergence has been addressed in [8] and [36]. Nonstandard finite
element techniques such as mixed and nonconforming methods and edge element
discretizations of Maxwell’s equations have been recently investigated in [9, 10, 11].
In the recent paper [28], a convergence analysis of symmetric IPDG methods has been
provided. In contrast to [28], our analysis does not require multiple interior nodes
for refined elements of the triangulation. In fact, we show that it suffices to refine by
bisection.

The paper is organized as follows: In section 2, we briefly introduce the IPDG
method. Section 3 describes the adaptive loop consisting of the basic steps SOLVE,
ESTIMATE, MARK, and REFINE and states the main convergence result. Section 4
recalls the reliability of the estimator from [27] and establishes a perturbed discrete lo-
cal efficiency, whereas section 5 is devoted to the proof of the error reduction property.
Finally, section 6 contains a documentation of the results of numerical experiments
that illustrate the performance of the adaptive IPDG (AIPDG).

2. The IPDG method. We assume Ω ⊂ R
2 to be a bounded, polygonal domain

with boundary Γ = ∂Ω,Γ = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅. We adopt standard notation
from Sobolev space theory and refer to (·, ·)k,D and ‖ · ‖k,D, k ∈ N0, D ⊆ Ω, as the
Hk(D)-inner product and associated norm, respectively.

As a model problem, for given f ∈ L2(Ω), uD ∈ H1/2(ΓD), uN ∈ L2(ΓN ), we
consider Poisson’s equation with inhomogeneous Dirichlet and Neumann boundary
data

−Δu = f in Ω,(2.1a)

u = uD on ΓD,(2.1b)

∂nΓN
u = uN on ΓN ,(2.1c)

whose variational formulation amounts to the computation of a solution u ∈ V :=
{v ∈ H1(Ω) | v|ΓD = uD} such that

(2.2) a(u, v) = (f, v)Ω + 〈uN , v〉ΓN , v ∈ H1
0,ΓD

(Ω),

where a(u, v) :=
∫
Ω∇u · ∇vdx.

For the DG approximation of (2.2), we further assume that TH(Ω) is a simplicial
triangulation of Ω which aligns with ΓD,ΓN on the boundary Γ. For D ⊆ Ω, we
denote by |D| the volume of D and by Πp(D), p ∈ N0, the linear space of polynomials
of degree p on D, and we refer to NH(D), EH(D), and TH(D) as the sets of vertices,
edges, and elements, respectively, in D. For T ∈ TH(Ω), hT stands for the diameter of
T , whereas for E ∈ EH(Ω), we denote by hE the length of E. Moreover, for an interior
edge E ∈ EH(Ω) such that E = T+ ∩ T−, T± ∈ TH(Ω), we refer to ωE := T+ ∪ T− as
the patch formed by the union of the elements sharing E as a common edge. Finally,
for a function g ∈ L2(D), D ⊂ Ω̄, the quantity ĝD stands for the integral mean of g
with respect to D, i.e., ĝD := |D|−1

∫
D
gdx.
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We define the product space VH :=
∏
T∈TH(Ω) Πp(T ), p ∈ N, and introduce the

bilinear form aH(·, ·) : VH × VH → R according to

(2.3) aH(uH , vH) :=
∑

T∈TH(Ω)

(∇uH ,∇vH)T

−
∑

E∈EH(Ω)

(
({∂nEuH}, [vH ])E + ([uH ]E , {∂nEvH})E

)

+ α
∑

E∈EH(Ω)

h−1
E ([uH ]E , [vH ]E)E ,

where the normal vector on E points from T+ to T− and with v±H := vH |T± on E,

[vH ]E := v+
H − v−H , E ∈ EH(Ω),

[vH ]E := vH |E , E ∈ EH(Γ),

{vH}E := 1
2

(
v+
H + v−H

)
, E ∈ EH(Ω),

{vH}E := vH |E , E ∈ EH(Γ),

and α > 0 stands for a properly chosen penalization parameter.
Then, the interior penalty method in its symmetric formulation amounts to the

computation of uH ∈ VH such that

(2.4) aH(uH , vH) = �(vH), vH ∈ VH ,

where

�(vH) := (f, vH)Ω +
(
uN , vH

)
ΓN
−
∑
E⊂ΓD

(
uD, ∂nvH − αh−1

E vH
)
E
.(2.5)

On VH , we introduce the mesh-dependent H1-norm

‖vH‖1,H,Ω :=

( ∑
T∈TH(Ω)

‖∇vH‖2T(2.6)

+
∑

E∈EH(Ω)

(hE‖{∂nEvH}‖2E + h−1
E ‖[vH ]‖2E)

)1/2

.

As has been shown in [27], the bilinear form aH(·, ·) is bounded

(2.7) |aH(uH , vH)| ≤ (1 + α) ‖uH‖1,H,Ω‖vH‖1,H,Ω, uH , vH ∈ VH ,

and for sufficiently large α coercive with respect to the ‖·‖1,H,Ω-norm, i.e., there exist
positive constants αmin and γ such that for α ≥ αmin

(2.8) |aH(vH , vH)| ≥ γ ‖vH‖21,H,Ω, vH ∈ VH .

It follows from (2.7) and (2.8) that for α ≥ αmin the IPDG (2.4) admits a unique
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solution uH ∈ VH . Moreover, for such α the mesh-dependent energy norm

(2.9) |||vH |||H,Ω := aH(vH , vH)1/2, vH ∈ VH ,

is equivalent to the ‖ · ‖1,H,Ω-norm

(2.10) γ ‖vH‖21,H,Ω ≤ |||vH |||2H,Ω ≤ (1 + α) ‖vH‖21,H,Ω, vH ∈ VH .

For a subset DH ⊂ TH(Ω) of the triangulation, ‖ · ‖1,H,DH and ||| · |||H,DH are defined
analogously.

Remark 2.1. We have chosen the 2D model problem (2.1a)–(2.1c) to focus on
the essential ingredients for the proof of the error reduction property and not to
overload the convergence analysis with too many technicalities. Using the tools from
[29], we think that the results can be extended to more general elliptic differential
operators, thus including advection-diffusion problems. We further believe that the
ideas presented in this paper can be also adopted to hybridized DG methods [16]
where the number of degrees of freedom is comparable to standard finite element
discretizations.

3. The adaptive loop and the main convergence result. An adaptive FEM
for the IPDG (2.4) consists of successive loops of the following sequence:

(3.1) SOLVE → ESTIMATE → MARK → REFINE.

Here, SOLVE stands for the numerical solution of (2.4) with respect to the given tri-
angulation TH(Ω). We remark that for this purpose efficient preconditioned iterative
solvers have been developed, analyzed, and implemented (cf., e.g., [20, 21, 25]).

The following residual-type a posteriori error estimator ηH has been introduced
and analyzed in [27]:

(3.2) η2
H :=

∑
T∈TH(Ω)

η2
T +

∑
E∈EH(Ω)

η2
E .

Here, ηT stands for the element residual

(3.3) ηT := hT ‖f + ΔuH‖T , T ∈ TH(Ω).

On the other hand, ηE summarizes the edge residuals

(3.4) η2
E := η2

E,1 + η2
E,2 + η2

E,N + η2
E,D

given by

ηE,1 := h
1/2
E ‖[∂nEuH ]‖E , E ∈ EH(Ω),(3.5a)

ηE,2 := h
−1/2
E ‖[uH ]‖E , E ∈ EH(Ω),(3.5b)

ηE,N := h
1/2
E ‖uN − ∂nEuH‖E, E ∈ EH(ΓN ),(3.5c)

ηE,D := h
−1/2
E ‖uD − uH‖E, E ∈ EH(ΓD).(3.5d)
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The convergence analysis further invokes the data oscillations

(3.6) osc2
H := osc2

H(f) + osc2
H

(
uD
)

+ osc2
H

(
uN
)
,

where

osc2
H(f) :=

∑
T∈TH(Ω)

osc2
T (f),(3.7a)

oscT (f) := hT ‖f − f̂T ‖T ,
osc2

H

(
uD
)

:=
∑

E∈EH(ΓD)

osc2
E

(
uD
)
,(3.7b)

oscE
(
uD
)

:= h
−1/2
E ‖uD − ûDE‖E,

osc2
H

(
uN
)

:=
∑

E∈EH(ΓN )

osc2
E

(
uN
)
,(3.7c)

oscE
(
uN
)

:= h
1/2
E ‖uN − ûNE ‖E.

In the step MARK of the adaptive loop, given a universal constant 0 < Θ ≤ 1,
we choose subsets MT ⊂ TH(Ω) and ME ⊂ MH(Ω̄) such that the following bulk
criterion is satisfied:

Θ
∑

T∈TH(Ω)

η2
T ≤

∑
T∈MT

η2
T ,(3.8a)

Θ
∑

E∈EH(Ω̄)

η2
E ≤

∑
E∈ME

η2
E .(3.8b)

The bulk criterion can be realized by a greedy algorithm.
As far as the data oscillations are concerned, for simplicity we assume that the

set MT selected by (3.8a) is already rich enough such that there exists a constant
0 ≤ ρ2 < 1 such that

(3.9) osc2
h ≤ ρ2 osc2

H .

We note that the data oscillations may be included in the bulk criterion as well to
guarantee (3.9). We refer to [30, 31] for details.

The refinement strategy in the final step REFINE of the adaptive loop is as
follows: If an element T ∈ TH(Ω) has been marked for refinement, it will be refined
by longest edge bisection. If an edge E ∈ EH(Ω), E = T+∩T− (resp., E ∈ TH(Γ), E =
∂T ∩ Γ) has been marked, the triangles T± (resp., the triangle T ) will be refined by
bisection. We note that this refinement is different from that used in [28] where the
refinement of a triangle requires multiple interior nodes based on subsequent regular
refinements.

The main result of this paper is a guaranteed error reduction of the global dis-
cretization error measured in the mesh-dependent energy norm associated with the
IPDG method.

Theorem 3.1. Let u ∈ V be the solution of (2.2), and suppose that uH ∈ VH
and uh ∈ Vh are the solutions of IPDG (2.4) with respect to the triangulation TH(Ω)
and the adaptively refined triangulation Th(Ω) generated according to the refinement
rules described before. Assume that (3.9) holds true. Then, for sufficiently large
penalization parameter α there exist positive constants 	1 < 1 and C which depend
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only on α,Θ and the shape regularity of the triangulations such that for eH := u−uH
and eh := u− uh there holds

(3.10)
(
ah(eh, eh)

osc2
h

)
≤
(
ρ1 C
0 ρ2

) (
aH(eH , eH)

osc2
H

)
.

The proof of Theorem 3.1 will be given in section 5 based on the reliability and a
perturbed discrete local efficiency of the estimator (3.2), which will be studied in the
following section.

4. Reliability and perturbed discrete local efficiency. The reliability of
the residual-type a posteriori error estimator (3.2) has been established in [27] using
standard techniques from AFEM [37]. Here, we prove that it is also locally efficient
in a relaxed way. We will derive the main lemmas for the case of the newest edge
bisection [13, 14, 35].

Theorem 4.1. Let u ∈ V and uH ∈ VH be the solution of (2.2) and its IPDG
approximation (2.4), and let ηH and oscH be the residual error estimator and the data
oscillations as given by (3.2) and (3.6), respectively. Then, for eH := u − uH there
holds

(4.1) aH(eH , eH) � η2
H .

Discrete local efficiency means that up to data oscillations the local contributions
of the estimator can be bounded from above by the energy norm of the difference
between the fine mesh and coarse mesh approximations on a refined triangle and the
patch ωE associated with a refined edge, respectively [18, 30]. In the framework of the
IPDG approximations under consideration, we can prove only a perturbed discrete
local efficiency in the sense that the upper bounds involve additional quantities in
terms of the fine mesh approximation. In particular, the following result holds true.

Theorem 4.2. Let u ∈ V and uH ∈ VH , uh ∈ Vh, be the solution of (2.2) and its
IPDG approximations (2.4) with respect to TH(Ω) and Th(Ω), respectively. Moreover,
let ηH and oscH be the residual error estimator (3.2) and the data oscillations (3.6),
respectively. Then, there holds∑

T∈MT

η2
T +

∑
E∈ME

η2
E � ah(uh − uH , uh − uH)(4.2)

+ α
∑

E′∈Eh(ME\ΓD)

h−1
E′ ‖[uh]‖2E′

+ α
∑

E′∈Eh(ME∩ΓD)

h−1
E′
∥∥uD − uh∥∥2

E′ + osc2
H .

Proof. The proof of (4.2) follows by collecting the estimates from the subsequent
series of lemmas.

Lemma 4.3. Let T ∈ TH(Ω) be a refined triangle such that T = T+ ∪ T−, T± ∈
Th(Ω). Then, there holds

(4.3) h2
T ‖f + ΔuH‖2T � ah|T (uh − uH , uh − uH) + osc2

T (f)

+ α
∑

E∈EH(∂T∩Ω)

η2
E,2 + α

∑
E∈EH(∂T∩ΓD)

η2
E,D +

∑
E∈EH(∂T∩ΓN )

osc2E
(
uN
)
.
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Proof. We denote by CRp(Ω; Th(Ω)), p ∈ N, the nonconforming Crouzeix–Raviart
finite element space, where vh|T ′ ∈ Πp(T ′), T ′ ∈ Th(Ω), is uniquely determined by the
degrees of freedom ∫

E

vhqE ds, qE ∈ Πp−1(E), E ∈ Eh(T ′),∫
T

vhqT ′ dx, qT ′ ∈ Πp−3(T ′) (p ≥ 3).

We choose ϕh ∈ Vh with ϕh|T± ∈ Πp(T±) and ϕh|T ′ ≡ 0, T ′ ∈ Th(Ω) \ {T }, such that

h2
T±

∥∥∥f̂T + ΔuH
∥∥∥2

T±
=
(
f̂T + ΔuH , ϕh

)
T±
,(4.4a)

‖ϕh‖2T± � h4
T±

∥∥∥f̂T + ΔuH
∥∥∥2

T±
,(4.4b)

(qh, ϕh)E = 0, qh ∈ Πp−1(E), E ∈ Eh(∂T ).(4.4c)

In particular, in the case p ≤ 2 we choose ϕh as a linear combination of the basis
functions associated with the interior edge E ∈ Eh(int(T )), whereas for p ≥ 3 we
choose ϕh as a linear combination of the basis functions associated with int(T±).
Using (4.4a), Green’s formula, and setting T1 := T+, T2 := T−, we obtain

(4.5) h2
T

∥∥∥f̂T + ΔuH
∥∥∥2

T
=

2∑
i=1

(
f̂T + ΔuH , ϕh

)
Ti

=
2∑
i=1

(
− (∇uH ,∇ϕh)Ti + (f, ϕh)Ti +

(
f̂T − f, ϕh

)
Ti

)
,

where we have used that due to (4.4c) for T ∈ TH there holds

(∂nEuH , ϕh)E = 0, E ∈ Eh(∂T ), p ≥ 1,(4.6a)
(∂nEuH , [ϕh])E = 0, E ∈ Eh(int(T )), p ≥ 1.(4.6b)

On the other hand, ϕh is an admissible test function in the fine grid equation (2.4)
whence

2∑
i=1

(
(∇uh,∇ϕh)Ti − (f, ϕh)Ti

)
(4.7)

+
∑

E∈Eh(∂T∩ΓD)

(
uD, ∂nEϕh − αh−1

E ϕh
)
E

−
∑

E∈Eh(∂T∩ΓN )

(
uN , ϕh

)
E

−
∑

E∈Eh(T )

(
({∂nEuh}, [ϕh])E + ([uh], {∂nEϕh})E

)

+ α
∑

E∈Eh(T )

h−1
E ([uh], [ϕh])E = 0.
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Adding (4.5) and (4.7) and observing again (4.6a)–(4.6b) as well as [uH ] = 0 on
E ∈ Eh(int(T )), it follows that

h2
T

∥∥∥f̂T + ΔuH
∥∥∥2

T
(4.8)

=
2∑
i=1

(
(∇(uh − uH),∇ϕh)Ti +

(
f̂T − f, ϕh

)
Ti

)

−
∑

E∈Eh(T )

(
({∂nE (uh − uH)}, [ϕh])E

+ ([uh − uH ], {∂nEϕh})E
)

−
∑

E∈Eh(∂T∩Ω)

([uH ], {∂nEϕh})E

+
∑

E∈Eh(∂T∩ΓD)

(
uD − uH , ∂nEϕh − αh−1

E ϕh
)
E

−
∑

E∈Eh(∂T∩ΓN )

(
uN − ûNE , ϕh

)
E

+ α
∑

E∈Eh(T )

h−1
E ([uh − uH ], [ϕh])E

+ α
∑

E∈Eh(∂T\ΓD)

h−1
E ([uH ], [ϕh])E .

In view of (4.4b), the inverse inequality and the trace inequalities imply that for
1 ≤ i ≤ 4

‖∇ϕh‖2Ti
� h2

Ti

∥∥f̂T + ΔuH
∥∥2

Ti
,(4.9a)

‖[ϕh]‖2E � h3
E

∥∥f̂T + ΔuH
∥∥2

Ti
, E ∈ Eh(∂Ti),(4.9b)

‖{∂nEϕh}‖2E � hE
∥∥f̂T + ΔuH

∥∥2

Ti
, E ∈ Eh(∂Ti).(4.9c)

Then, using (4.4b) and (4.9a)–(4.9c), straightforward estimation of the terms on the
right-hand side in (4.8) gives the assertion.

Lemma 4.4. Let E ∈ EH(Ω), E = T+ ∩ E−, T± ∈ TH(Ω), be a refined edge and
ωE := T+ ∪ T−. Then, there holds

hE‖[∂nEuH ]‖2E �
∑

T±∈TH(ωE)

η2
T± + α

∑
E′∈EH(ωE∩Ω)

η2
E′,2(4.10)

+ α
∑

E∈EH(∂ωE∩ΓD)

η2
E′,D +

∑
E∈EH(∂ωE∩ΓN )

osc2E′(uN ).

For a refined edge E ∈ EH(ΓN ) with E = ∂T ∩ ΓN , T ∈ TH(Ω), we have

(4.11) hE‖uN − ∂nEuH‖2E � η2
T + α

∑
E′∈EH(T∩Ω)

η2
E′,2.

Proof. For the proof of (4.10) let us assume that E = T+ ∩ T−, T± ∈ TH(Ω). We
choose ϕH ∈ CRp(Ω; TH(Ω)) as a linear combination of the basis functions associated
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with the edge E such that

hE‖[∂nEuH ]‖2E = ([∂nEuH ], ϕH)E ,(4.12a)

‖ϕH‖T± � h
3/2
E ‖[∂nEuH ]‖E ,(4.12b)

(qE′ , ϕH)E′ = 0, qE′ ∈ Πp−1(E′)(4.12c)

for any edge E′. Using the definition of ∂nEuH , it follows that

([∂nEuH ], ϕH)E(4.13)
= (ν+

E · ∇u+
H , ϕH)E + (ν−E · ∇u−H , ϕH)E .

By Green’s formula, we find

(∇uH ,∇ϕH)T±(4.14)

= −(ΔuH , ϕH)T± +
∑

E′∈EH(∂T±)

(∂nE′uH , ϕH)E′ .

By (4.12c) we have

(4.15) (∂nE′uH , ϕH)E′ = 0, E′ ∈ EH(∂ωE),

whence

hE ‖[∂nEuH ]‖2E(4.16)
= ([∂nEuH ], ϕH)E = (∇uH ,∇ϕH)ωE + (ΔuH , ϕH)ωE .

On the other hand, since ϕH is an admissible test function in (2.4), we have

(∇uH ,∇ϕH)ωE = (f, ϕH)ωE +
∑

E′∈EH(∂ωE∩ΓN )

(
uN , ϕH

)
E′(4.17)

−
∑

E′∈EH(∂ωE∩ΓD)

(
uD, ∂nE′ϕH − αh−1

E′ ϕH
)
E′

+
∑

E′∈EH(ωE)

([uH ], {∂nE′ϕH})E′ − α
∑

E′∈EH(∂ωE)

h−1
E′ ([uH ], [ϕH ])E′ ,

where we have used (4.15) and (4.12c) on E. Combining (4.16) and (4.17) results in

hE ‖{∂nEuH}‖2E = (f + ΔuH , ϕH)ωE(4.18)

+
∑

E′∈EH(ωE\ΓD)

([uH ], {∂nE′ϕH})E′

− α
∑

E′∈EH(∂ωE\ΓD)

h−1
E′ ([uH ], [ϕH ])E′

+
∑

E′∈EH(∂ωE∩ΓN )

(
uN − ûNE′ , ϕH

)
E′

−
∑

E′∈EH(∂ωE∩ΓD)

(
uD − uH , ∂nE′ϕH − αh−1

E′ ϕH
)
E′ .

Observing (4.12b), the trace inequalities yield

‖[ϕH ]‖E′ � hE‖[∂nEuH ]‖E , E′ ∈ EH(∂ωE),(4.19a)
‖{∂nE′ϕH}‖E′ � ‖[∂nEuH ]‖E , E′ ∈ EH(∂ωE).(4.19b)
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Taking advantage of (4.12b), (4.19a), and (4.19b), the assertion can be deduced by
straightforward estimation of the terms on the right-hand side in (4.18). The proof
of (4.11) follows by similar arguments.

Lemma 4.5. Let E ∈ EH(Ω), E = T+ ∩ T−, T± ∈ TH(Ω), be a refined edge and
ωE := T+ ∪ T−. Then, there holds

(4.20) αh−1
E ‖[uH ]|E‖2E � ah|ωE (uh − uH , uh − uH) + α

∑
E′∈Eh(E)

h−1
E′ ‖[uh]‖2E′ .

Likewise, if E ∈ EH(ΓD) is a refined edge such that E = ∂T ∩ ΓD, T ∈ TH(Ω), there
holds

(4.21) αh−1
E ‖uD − uH‖2E � ah|T (uh − uH , uh − uH)

+ α
∑

E′∈Eh(E)

h−1
E′ ‖uD − uh‖2E′ + osc2

E

(
uD
)
.

Proof. For the proof of (4.20), choose ψ±H ∈ CRp(Ω; TH(Ω)) with supp(ψ±H) = T±
as a linear combination of basis functions associated with E such that

(
[uH ], ψ±H

)
E

= ± 1
2‖[uH ]‖2E ,(4.22a) ∥∥ψ±H∥∥T±

� h
1/2
E ‖[uH ]‖E .(4.22b)

We define ϕH ∈ VH by ϕH |T± = ψ±H and ϕH |T ≡ 0, T ∈ TH(Ω) \ {ωE}. Then, it
follows from (4.22a) that

(4.23) αh−1
E ‖[uH ]|E‖2E = αh−1

E ([uH ], [ϕH ])E .

Since ϕH is an admissible test function in (2.4), we have

αh−1
E ([uH ], [ϕH ])E =(4.24)

− (∇uH ,∇ϕH)ωE + (f, ϕH)ωE

+
∑

E′∈EH(∂ωE∪{E})
({∂nE′uH}, [ϕH ])E′

+
∑

E′∈EH(∂ωE)∪{E}
([uH ], {∂nE′ϕH})E′

− α
∑

E′∈EH(∂ωE)

h−1
E′ ([uH ], [ϕH ])E′

+
∑

E′∈EH(∂ωE∩ΓN )

(
uN , ϕH

)
E′

− α
∑

E′∈EH(∂ωE∩ΓD)

(
uD, ∂nE′ϕH − αh−1

E′ ϕH
)
E′ .

On the other hand, (ϕH |T ′)T ′∈Th(Ω) is an admissible test function in the fine grid
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equation (2.4). Hence, observing [ϕH ] = 0 and [uH ] = 0 on E′ ∈ Eh(int(T±)), we get

0 = (∇uh,∇ϕH)ωE − (f, ϕH)ωE(4.25)

−
∑

E′∈Eh(∂ωE∪{E})
({∂nE′uh}, [ϕH ])E′

−
∑

E′∈Eh(∂ωE∪{E})
([uh], {∂nE′ϕH})E′

−
∑

E′∈Eh(int(ωE)\{E})
([uh − uH ], {∂nE′ϕH})E′

+ α
∑

E′∈Eh(∂ωE∪{E})
h−1
E′ ([uh], [ϕH ])E′

−
∑

E′∈Eh(∂ωE∩ΓN )

(
uN , ϕH

)
E′

+ α
∑

E′∈Eh(∂ωE∩ΓD)

(
uD, ∂nE′ϕH − αh−1

E′ ϕH
)
E′ .

In view of (4.22b), the inverse inequality and the trace inequalities imply

∥∥∇ψ±H∥∥T±
� h

−1/2
E ‖[uH ]‖E,(4.26a) ∥∥ψ±H∥∥E′ � ‖[uH ]‖E, E′ ∈ EH(ωE),(4.26b) ∥∥∂nE′ψ

±
H

∥∥
E′ � h−1

E ‖[uH ]‖E, E′ ∈ EH(ωE).(4.26c)

Combining (4.24) and (4.25) and using (4.22b) and (4.26a)–(4.26c), straightforward
estimation gives the assertion. The proof of (4.21) can be established similarly.

Remark 4.6. The proof of the perturbed discrete local efficiency is carried out
under the assumption of geometrically conforming meshes. However, the fact that in
Lemmas 4.4 and 4.5 the admissible test functions for the fine grid equation are chosen
as linear combinations of the coarse grid Crouzeix–Raviart basis functions allows the
handling of hanging nodes as well.

5. Proof of the error reduction property. In the convergence analysis of
standard FEMs [18, 30], the proof of the error reduction property makes essential use
of Galerkin orthogonality which in the framework of IPDG reads as follows:

(5.1) ah(uh − uH , uh − uH) = ah(eH , eH) − ah(eh, eh).

However, we measure the error eH with respect to the mesh-dependent energy norm
aH(·, ·) associated with the coarse mesh TH(Ω), and, hence, (5.1) cannot be used di-
rectly. It is known from the convergence analysis of adaptive nonconforming finite
elements [10] or of mixed finite elements [11] that in the absence of Galerkin or-
thogonality convergence can be established provided some sort of perturbed Galerkin
orthogonality holds true. For the IPDG under consideration, we can rewrite (5.1)
according to

(5.2) ah(uh − uH , uh − uH) = (1 + δh,H(eH)) aH(eH , eH) − ah(eh, eh),
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where in the case aH(eH , eH) �= 0 the perturbation term δh,H(eH) is given by

(5.3) δh,H(eH) :=
ah(eH , eH)− aH(eH , eH)

aH(eH , eH)
.

We would be able to conclude, if we can show that δh,H(eH) can be made sufficiently
small.

Lemma 5.1 (perturbed Galerkin orthogonality). There exists a positive con-
stant C1 depending only on the local geometry of the triangulations such that for the
perturbation term δh,H(eH) there holds

(5.4) δh,H(eH) ≤ C1

α
.

Proof. Following the reasoning in [28, Proposition 4.1], we can easily show

ah(eH , eH) ≤ aH(eH , eH)

+ c1 α

⎛
⎝ ∑
E∈EH(Ω)

h−1
E ‖[uH ]‖2E +

∑
E∈EH(ΓD)

h−1
E ‖uD − uH‖2E

⎞
⎠ ,

where c1 > 0 is a constant depending only on the local geometry of the triangulations.
On the other hand, the local efficiency of the residual estimator (cf. [27]) tells us that
there exists another positive constant c2 which also depends only on the local geometry
of the triangulations such that

∑
E∈EH(Ω)

h−1
E ‖[uH ]‖2E(5.5)

+
∑

E∈EH(ΓD)

h−1
E

∥∥uD − uH∥∥2

E
≤ c2

α2
aH(eH , eH).

Combining the two preceding estimates allows us to conclude with C1 := c1c2.
Proof of Theorem 3.1. The reliability, the bulk criterion, and the discrete local

efficiency infer the existence of a positive constant C2 depending only on γ,Θ, and
the local geometry of the triangulations such that

aH(eH , eH) ≤ C2

(
ah(uh − uH , uh − uH) + osc2

H

+ α
∑

E∈Eh(Ω)

h−1
E ‖[uh]‖2E + α

∑
E∈Eh(ΓD)

h−1
E ‖uD − uh‖2E

)
.

Using (5.2), (5.4), and (5.5) with h instead of H , we obtain the existence of a positive
constant C3 such that

aH(eH , eH) ≤ C2

(
1 +

2C1

α

)
aH(eH , eH)−

(
C2 − C3

α

)
ah(eh, eh) + C2 osc2

H ,
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from which we deduce

ah(eh, eh) ≤
(
C2 − C3

α

)−1 [((
1 +

2C1

α

)
C2 − 1

)
aH(eH , eH) + C2 osc2

H

]
.

For α > 2C1C2 + C3, the error reduction property (3.10) results with ρ1 := (C2 −
C3
α )−1((1 + 2C1

α )C2 − 1) < 1.
Remark 5.2. We note that ah(·, ·) is not coercive on the energy space. However,

it can be shown (cf. Proposition 4.2 in [28]) that ‖eh‖21,h,Ω � ah(eh, eh).
Remark 5.3. The coefficients Ci, 1 ≤ i ≤ 3, depend on the local geometry

of the triangulations which is determined by the initial coarse triangulation and the
refinement process. Moreover, C2 depends on γ in (2.8) and on 0 < Θ ≤ 1 in (3.8a) and
(3.8b). For an appropriate initial triangulation, we can expect Ci = O(1), 1 ≤ i ≤ 3,
so that the requirement α > C1C2 + C3 results in values of α of approximately the
same magnitude as required for the coercivity of the mesh-dependent bilinear forms.
This is confirmed by the numerical results in section 6.

6. Computational results. In the following numerical experiments, we used
the bisection algorithm, for all test cases, derived from the AFEM@Matlab implemen-
tation [14].

We verify the suitability of our theoretical results using standard test cases
(see [10]). They are studies of the behavior of the algorithm in the case of the stan-
dard singularities induced by a reentrant corner of the domain. The right-hand side
is chosen to be zero, and, therefore, data oscillations are present only on the bound-
ary edges not adjacent to the singularity, where values of the analytical solutions are
prescribed. The penalty parameter α has been chosen according to α = 15(p+ 1)2 as
dictated by the coercivity requirement (2.8) (cf. also Remark 5.3).

First, we study the L-shaped domain with Dirichlet data uD = 0 on the two edges
adjacent to the reentrant corner and Neumann data on the remaining boundary. The
refinement parameter is chosen as Θ = 0.6. Table 6.1 shows a decline of the energy
norm for this case by a factor of about 2/3 in each refinement step. This factor is
only slightly better for quartic shape functions, confirming that the reduction rate
depends mostly on Θ. Nevertheless, the meshes for P4 are growing much slower, and
in both cases we obtain the optimal approximation rates in terms of Ndof, namely,
N
−1/2
dof and N−2

dof . Data oscillation occurs only at the outer boundary and is negligible
in this case.

Table 6.1

Decline of the energy norm and data oscillation in terms of the refinement step, polynomial
degrees 1 and 4.

P1 P4

l Ndof ‖el‖A oscl Ndof ‖el‖A oscl

0 36 2.81e − 1 9.32e − 2 180 6.07e − 2 9.32e − 2
1 114 1.98e − 1 6.83e − 2 570 3.83e − 2 6.83e − 2
2 252 1.39e − 1 3.35e − 2 960 2.60e − 2 5.38e − 2
3 630 9.53e − 2 1.66e − 2 1440 1.75e − 2 3.35e − 2
4 1428 6.48e − 2 1.07e − 2 2280 1.23e − 2 2.28e − 2
5 3180 4.42e − 2 5.85e − 3 3000 7.72e − 3 1.71e − 2
6 6714 3.00e − 2 4.10e − 3 4020 4.86e − 3 1.15e − 2
7 14076 2.08e − 2 2.46e − 3 5355 3.06e − 3 8.41e − 3
8 28368 1.43e − 2 1.51e − 3 6330 1.93e − 3 6.20e − 3
9 58461 9.91e − 3 9.18e − 4 7620 1.22e − 3 4.31e − 3
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Table 6.2

Decline of the energy and data oscillation in terms of the refinement step, polynomial degrees
1 and 4.

P1 P4

l Ndof ‖el‖A oscl Ndof ‖el‖A oscl

0 18 8.83e-1 2.32e-1 90 5.16e-1 2.37e-1
1 48 6.90e-1 2.09e-1 165 4.39e-1 2.20e-1
2 138 5.76e-1 1.80e-1 285 3.61e-1 1.95e-1
3 219 4.86e-1 1.61e-1 690 3.03e-1 1.83e-1

. . .
18 54804 4.42e-2 3.59e-2 32400 2.27e-2 4.69e-2
19 76809 3.73e-2 3.21e-2 39630 1.91e-2 4.22e-2
20 106821 3.16e-2 2.88e-2 52605 1.59e-2 3.79e-2
21 149829 2.67e-2 2.57e-2 63480 1.34e-2 3.41e-2

 0.01
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Fig. 6.1. Error versus number of degrees of freedom for the slit domain, quartic polynomials.

Next, we study the higher singularity of the slit domain. Here, Dirichlet boundary
conditions are used on the whole boundary. Table 6.2 shows that for Θ = 0.4 we obtain
again constant error reduction rates.

The solution in this example is highly singular, and we expect that at least for
higher order polynomials the refinement should be very local. Indeed, Figure 6.1
shows that the parameter Θ must be chosen carefully in order to obtain the optimal
approximation with respect to the degrees of freedom, confirming results from [36] for
standard AFEM. Only the very small value of Θ = 0.1 is able to reproduce the optimal
convergence order of N−2. Figure 6.2 shows that this corresponds asymptotically to
adding only 1/16 of the current number of cells in each step.

Even with the small size of Θ = 0.1, the optimal N -term approximation rate
is obtained only after several thousand degrees of freedom. Comparing Figures 6.1
and 6.2, we note that this corresponds to the fact that the bulk criterion refines much
faster than the asymptotic rate in its initialization phase. On the other hand, this
fast refinement allows the method to reach the asymptotic regime in only about 10
steps. Figure 6.3 shows that the refinement for Θ = 0.1 is much more concentrated
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Fig. 6.2. Development of mesh sizes during adaptive refinement, quartic polynomials.

Fig. 6.3. Meshes for the slit domain, polynomial degree 4, Θ = 0.4 (left) and Θ = 0.1 (right).

at the central singularity, while Θ = 0.4 puts more weight in reducing the boundary
projection errors.
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[32] P. Neittaanmäki and S. Repin, Reliable Methods for Mathematical Modelling. Error Control
and a Posteriori Estimates, Elsevier, New York, 2004.



550 R. H. W. HOPPE, G. KANSCHAT, AND T. WARBURTON

[33] B. Rivière, M.F. Wheeler, and V. Girault, Improved energy estimates for interior penalty,
constrained and discontinuous Galerkin methods for elliptic problems, Part I., Comput.
Geom., 3 (1999), pp. 337–360.

[34] B. Rivière and M.F. Wheeler, A posteriori error estimates and mesh adaptation strategy
for discontinuous Galerkin methods applied to diffusion problems, Comput. Math. Appl.,
46 (2003), pp. 141–163.

[35] A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite
Element Toolbox ALBERTA, Lecture Notes in Comput. Sci. Engrg. 42, Springer, Berlin,
2005.

[36] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput.
Math., 7 (2007), pp. 245–269.

[37] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Tech-
niques, Wiley-Teubner, New York, Stuttgart, 1996.



SIAM J. NUMER. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 47, No. 1, pp. 551–574

MODELING OF THERMALLY ASSISTED MAGNETODYNAMICS∗
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Abstract. Thermomagnetic recording uses local heating of ferromagnetic media to locally
decrease coercivity and change saturation magnetization of the material and alleviate magnetization
reversal. A modified Landau–Lifshitz equation is proposed as a phenomenological model to allow for
changes in magnetization magnitude and is studied both analytically and numerically.

Key words. temperature dependent Landau–Lifshitz equation, full-discretization, numerical
analysis, convergence
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1. Introduction. The application of thermal energy to enable recording on ex-
tremely high anisotropy magnetic media at room temperature is a viable means of
extending the density of stored information on hard disk drives; cf. [14, 20, 21, 23]. In
order to guarantee long-term data/magnetic regions thermal stability, a usable signal-
to-noise ratio has to exist to find, follow, and read the smallest bits. Stability depends
on material properties like saturation magnetization M̃s = M̃s(τ) and uniaxial mag-
netocrystalline anisotropy K̃ = K̃(τ), where both (in magnitude) monotonically drop
towards zero as the material temperature τ is increased toward the Curie tempera-
ture τC—the temperature where thermal energy overcomes electronic exchange forces
in ferromagnets and produces a randomizing effect, leading to total disorder, and
hence zero saturation magnetization; cf. Figure 1. Thermomagnetic recording uses
local heating close to or above Curie temperature of the ferromagnetic medium dur-
ing recording to locally decrease K(τ) to thus lower the energy barrier for reversal,
and allow one to write data at available magnetic fields from recording heads. The
written bits rapidly freeze during the cooling process and are stable at room tem-
perature. Throughout this process in ferromagnetic films with tailored anisotropy,
saturation magnetization behavior, and Curie temperature (see, e.g., [28], [21]), the
heat deposition should be minimum and concentrated at the recording site, with op-
timized heating profile and cooling rate [20], to avoid lost of neighboring information
and damage of ferromagnetic material at peak cycling temperatures; see Figure 1.

Isothermal gyromagnetic dynamics of single magnetic moment particles are de-
scribed by the Landau–Lifshitz (LL) equation: LetMs(t,x) ≡ M̃s

(
τ(t,x)

)
for ( t,x ) ∈

ΩT . Given m(0, ·) = m0, for |m0| = Ms ≥ 0, solve

(1.1) mt = −γm× heff − γδ m
Ms
× (m × heff) in ΩT := (0, T )× Ω,
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Fig. 1. (a) thermally assisted magnetic recording, (b) temperature-dependent saturation mag-
netization M̃s resp. anisotropy K̃ (dotted), and (c) precession of magnetization.

with the first term on the right-hand side representing magnetic moment precession
(with gyromagnetic ratio γ > 0), and the second term on the right-hand side de-
scribing damping of the moment motion (with damping coefficient δ > 0). Here,
heff = −DE(m) is the effective field, with Landau energy

(1.2) E(m) = α

∫
Ω

|∇m|2 dx +
∫

Ω

ϕ(m) dx +
μ0

2

∫
Rn

|∇u|2 dx− μ0

∫
Ω

〈hext,m〉dx,

which ensembles exchange, anisotropy, magnetostatic, and Zeeman’s energy, respec-
tively. Here, α denotes the exchange constant and μ0 stands for the vacuum per-
meability. For uniaxial anisotropy with easy axis e ∈ S

2, it is common to choose
ϕ(m) = K |〈m, e⊥〉|2, with K̃(t,x) ≡ K

(
τ(t,x)

) ≥ 0 for all ( t,x ) ∈ ΩT introduced
before; see [19] for a recent survey.

Precessional motion of magnetization is based on quantum mechanics, where the
mean value saver of the spin operator s ∈ S

2 evolves according to Schrödinger’s
equation

d

dt
saver = − γ

μ0
saver × b,

with magnetic induction b = μ0heff ; if the magnetization m : ΩT → R
3 is understood

to be the dipole of spins per unit volume, we arrive at

(1.3) mt = −γm× heff .

Experimental evidence suggests an additional damping term to be responsible for
alignment of magnetization with the applied field heff , which is the reason for the
additional damping term in (1.2) introduced by Landau and Lifshitz. An important
feature of both (1.1) and (1.3) is conservation of length of initial magnetization; i.e.,
1
2
d
dt |m|2 = 0 almost everywhere in ΩT . Later on, Gilbert augmented heff by an Ohmic

dissipation term, by inserting the modified h̃eff = heff − βmt into (1.3). For different
constants, this Landau–Lifshitz–Gilbert equation can again be restated in the form
(1.1); see [1, 8, 9, 13, 15, 25] and [2, 3, 4, 5, 6, 7, 10, 12, 15, 18, 19, 22] for further
details. Despite the model’s success, the underlying physics of damping behavior is
still not clear to rigorously justify the corresponding term in (LL); moreover, the
saturation magnetization M̃s = M̃s(τ) varies for changing temperature, for which
Landau proposes the following phenomenological power-law behavior for all τ < τC ,

(1.4) M̃s(τ) = M̃0

(
1− τ

τC

)β
,
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where the exponent β > 0 is found by experimental or theoretical evidence. This law
agrees very well with experimental observations away from τC .

In this work, we propose and study an extended Landau–Lifshitz equation allow-
ing for changes in the saturation magnetization. The subsequent modified Landau–
Lifshitz model uses mutual orthogonality of m, m × heff , and m × (m × heff), for
every ( t,x ) ∈ ΩT , to describe temperature-dependent gyroscopic precession: For a
given 0 < Ms ∈ C2 (ΩT ) solve (with heff = Δm)

mt = κm− γm× heff − γδ m
Ms
× (m× heff) in ΩT ,(1.5)

∂nm = 0 on ∂ΩT := ∂Ω× [0, T ],(1.6)
m(0, ·) = m0 in Ω.(1.7)

Let κ(t,x) ≡ κ̃
(
τ(t,x), τt(t,x)

)
, for all ( t,x ) ∈ ΩT , which is chosen in such a way

that |m(t,x)| = Ms

(
t,x

)
holds in ΩT . We make the following assumptions: κ̃ ∈

C2 ([0, τC)× R) satisfies
1. κ̃(τ, τt) = 0 for τt = 0,
2. κ̃(τ, τt) ≤ 0 for τt ≥ 0, and κ̃(τ, τt) > 0 for τt < 0.

A scalar multiplication of (1.5) by m yields to

(1.8)
d

dt
M2
s = 2κM2

s in ΩT .

For a given temperature distribution τ : ΩT → R
+, we obtain by the chain rule,

(1.9) κ̃(τ, τt) =
τt
2
d

dτ
ln

[
M̃s(τ)

]2

= τt
d

dτ
ln M̃s(τ),

which satisfies the above requirements (1) and (2). Shrinking, extension, and conser-
vation of magnetization saturation by means of heating, cooling, as well as thermal
equilibrium as further effects may then be described by (1.9), once Ms ∈ C2([0, τC))
is provided, which is either by experiment or theory (e.g., mean field theory). For
0 ≤ t1 ≤ t2 ≤ T we compute

(1.10) M̃2
s

(
τ(t2, ·)

)
= M̃2

s

(
τ(t1, ·)

)
exp

(
−2

∫ t2

t1

κ̃
(
τ(s, ·), τt(s, ·)

)
ds
)

in Ω.

In passing, a possible explicit dependence of κ̃ on Ms may also by assumed, which
seems advantageous in a neighborhood of τC . Moreover, if we adopt the phenomeno-
logical power-law (1.4), then the relation (1.9) will take the form

(1.11) κ̃(τ, τt) = − τtβ

τC − τ .

In the literature, to verify solvability of (1.1) is often based on the reformulation
in Landau–Lifshitz–Gilbert form, which exploits the property |m| = const almost
everywhere in ΩT . In the present case, the target for solutions of (1.5)–(1.6) depends
on ( t,x ) ∈ ΩT , and the authors are not aware of any analytical studies where the
target of solutions is allowed to (smoothly) vary in space-time. Our first contribution
in this work is to verify the existence of locally strong (section 3) and globally weak
(section 5) solutions, for Ω ⊂ R

d, d = 2, 3 a bounded Lipschitz domain. While the first
result uses abstract results, where locally strong solutions are constructed as proper
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limits of a sequence of smooth solutions, whose existence follows from general inverse
function theorem (here, we follow [26, 27], and [18], where (LL) with Ms ≡ const
is studied), weak solutions are constructed as proper limits of iterates of a practical
discretization in space-time (see Scheme B).

From a numerical viewpoint, to construct convergent, fully practical numerical
schemes (including discretization in time and space, numerical integration, and a sim-
ple fixed point scheme to solve arising nonlinear algebraic problems), where iterates
respect the constraint |m| = Ms > 0 in a proper sense is a nontrivial endeavor. Over
the last decade, projection strategies have been shown to converge in the context of
(locally existing) strong solutions for (LL), where Ms ≡ const, and optimal conver-
gence rates have been verified in this case [22]. Unfortunately, convergence of these
methods in the case of only weak solutions is still not clear; it is only recently that
space-time discretizations of (LL) and for Ms = const were found, where iterates sat-
isfy |Mj | = const at all nodes of the triangulation (0 ≤ j ≤ J), and construct weak
solutions in the limit when all discretization parameters tend to zero. Interestingly,
both ansatzes use different formulations of the problem in the continuous setting,
leading to different schemes, numerical analysis, and properties as indicated.

The present case of 0 < Ms ≡Ms(t,x) makes the construction of stable, conver-
gent discretizations, which satisfy |Mj| = Ms > 0 even only at mesh-points challeng-
ing (0 ≤ j ≤ J). More specifically, we study two discretizations of (1.5)–(1.7), which
are also based on two formulations (1.5)–(1.7), and (5.1), (1.6)–(1.7) of the problem,
which are equivalent for strong solutions:

• Scheme A: At the end of each iterative step, vectors are projected to the
sphere of a given radius Ms = Ms(tj , z), for every 1 ≤ j ≤ J , and every
node of the mesh z ∈ Nh. The scheme is based on a reformulation of (1.5)
in the form (3.1). Iterates converge to (locally existing) strong solutions of
(1.5)–(1.7) at optimal rates.
• Scheme B: The scheme is a discretization in space-time of (5.1), (1.6)–(1.7),

which uses trapezoidal rule, reduced integration (in space), and discrete
Laplacian. Its motivation comes from (LL) with Ms = const, where conser-
vation of the “sphere-constraint” at mesh-points z ∈ Nh, and convergence to
weak solutions is known [6, 7]. As will be shown in section 5, Ms = Ms(tj , z)
at nodes z ∈ Nh holds only approximately, but is attained in the limit of
vanishing discretization parameters. Iterates are shown to converge to weak
solutions of (the reformulation) (5.1), (1.6)–(1.7).

Sections 3 and 4 briefly recall arguments to verify corresponding results on locally
existing strong solutions for Ms = const from [18, 10], and on optimal rates of conver-
gence for iterates of a projection method (Scheme A) [22, 12]. Main results are stated
in section 5, where weak solutions to (5.1), (1.6)–(1.7) are constructed as proper lim-
its of iterates of Scheme B. The paper closes with section 7, where 2D computational
academic and applied examples compare Schemes A and B, and evidence interesting
dynamics for the new model of targets varying in space-time for (LL). Benchmark
problems from [29] are adopted and studied for the case of smoothly varying spheres
in space-time, and comparative studies using Schemes A and B are discussed.

2. Preliminaries. Throughout this paper we assume that Th is a quasiuniform
triangulation of the polygonal or polyhedral bounded Lipschitz domain Ω ⊂ R

d into
triangles or tetrahedra of maximal diameter h for d = 2 or d = 3, respectively. We
let Vh ⊂ W 1,2(Ω) denote the lowest order finite element space on Th; i.e., φh ∈ Vh if
and only if φh ∈ C(Ω) and φh

∣∣
K

is affine for each K ∈ Th. Given the set of all nodes
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(or vertexes) Nh in Th and letting {ϕz : z ∈ Nh} denote the nodal basis in Vh, we
define the nodal interpolation operator Ih : C(Ω) → Vh by Ihψ :=

∑
z∈Nh

ψ(z)ϕz,
for ψ ∈ C(Ω), and Ph : L2(Ω)→ Vh the L2(Ω)-projection. We use boldface notation
to indicate vectorial quantities, like Vh = [Vh]3, for example. We write (f ,g) =∫
Ω
〈f ,g〉dx for f ,g ∈ L2(Ω,R3) and abbreviate ‖f‖ = ‖f‖L2(Ω). For functions f ,g ∈

C(Ω,R3) a discrete inner product is defined by

(2.1) (f ,g)h :=
∫

Ω

Ih[〈f ,g〉] dx =
∑

z∈Nh

βz〈f(z),g(z)〉,

where βz =
∫
Ω ϕz dx for all z ∈ Nh; we define ‖ψψψ‖2h := (ψψψ,ψψψ)h. We remark that there

holds

(2.2) ‖ψψψ‖ ≤ ‖ψψψ‖h ≤ (d+ 2)1/2‖ψψψ‖ ∀ψψψ ∈ Vh.

Basic interpolation estimates yield (cf., e.g., [7]) that

(2.3) |(φφφ,ψψψ)h − (φφφ,ψψψ)| ≤ Ch ‖φφφ‖ ‖∇ψψψ‖ ∀φφφ,ψψψ ∈ Vh,

where here and throughout this paper C > 0 denotes a (h, k )-independent generic
constant, which may change from place to place. We define a discrete Laplace operator
Δ̃h : W 1,2(Ω,R3)→ Vh by requiring(

−Δ̃hφφφ,χχχ
)
h

= (∇φφφ,∇χχχ) ∀χχχ ∈ Vh.

We note that there exists a constant c1 > 0 such that for all φφφ ∈ Vh there holds
(cf. [6])

(2.4)
∥∥Δ̃hφφφ

∥∥
h
≤ c1h−2 ‖φφφ‖h and

∥∥Δ̃hφφφ
∥∥
L∞ ≤ c1h−2 ‖φφφ‖L∞ .

Given a time-step size k > 0 and a sequence {ϕj}j≥0 in some vector space X , we
set

dtϕ
j+1 := k−1

(
ϕj+1 − ϕj) and ϕj+1/2 :=

ϕj + ϕj+1

2
,

for j ≥ 0. Note that there holds 〈dtϕj+1, ϕj+1/2〉X = 1
2dt‖ϕj+1‖2X , if X is a

Hilbert space. Finally, we recall some elementary properties of vector products: Let
a1,a2,a3,a4 ∈ R

3 there holds

〈a1 × a2,a3〉 = −〈a2,a1 × a3〉,
a1 × (a2 × a3) = 〈a1,a3〉a2 − 〈a1, a2〉a3,(2.5)

〈a1 × a2,a3 × a4〉 = 〈a1,a3〉〈a2, a4〉 − 〈a2, a3〉〈a1, a4〉.
3. Local existence of strong solutions for (1.5)–(1.7). We start with a

reformulation of (1.5)–(1.7). For a given 0 < Ms ∈ L∞
(
0, T ;W 2,2(Ω)

)
, solve

(3.1) mt − γδMsΔm− κm =
γδ

Ms
|∇m|2m− γδ

2Ms

(
ΔM2

s

)
m− γm×Δm,

together with (1.6), (1.7), where |m0| = Ms(0, ·). In the following, for given T >
0 we call m ∈ C

(
[0, T ];W 1,2(Ω,R3)

) ∩ L2
(
0, T ;W 2,2(Ω,R3)

)
that solves (1.5) in
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distributional sense, and (1.6)–(1.7), a strong solution to (1.5)–(1.7). We use the
same notion for (3.1), (1.6)–(1.7) below.

Lemma 3.1. Let 0 < Ms ∈ L∞
(
0, T ;W 2,2(Ω)

)
be given, with ∂nMs = 0 on ∂ΩT .

The function m : ΩT → R
3 is a strong solution of (1.5)–(1.7) if and only if it is a

strong solution to (3.1), (1.6)–(1.7).
Proof. We use the vector cross product formula (2.5)2 and (1.5), and |m|2 = M2

s

in ΩT to obtain

m× (m×Δm) = 〈m,Δm〉m− |m|2Δm

= −|∇m|2m +
1
2
(
ΔM2

s

)
m−M2

sΔm.(3.2)

Inserting this identity into (1.5) proves that a strong solution m : ΩT → R
3 of (1.5)–

(1.7) solves (3.1) in a distributional sense, satisfying (1.6)–(1.7).
Let now m : ΩT → R

3 be a strong solution to (3.1), (1.6)–(1.7). Setting W (t,x) =
|m(t,x)|2, and observing

Wt = 2〈m,mt〉, ∇W = 2〈m,∇m〉, ΔW = 2〈m,Δm〉+ 2|∇m|2,
implies a.e. in ΩT ,

Wt − γδMsΔW − 2κW =
2γδ
Ms
|∇m|2 (W −M2

s

)− γδ

Ms

(
ΔM2

s

)
W.

Setting Z = W −M2
s leads to

Zt − γδMsΔZ − 2κZ =
(
2κM2

s − ∂tM2
s

)
+
γδ

Ms

[
2|∇m|2 − (

ΔM2
s

)]
Z.

The first bracket on the right-hand side vanishes, owing to (1.8). Multiplying with Z
in L2 sense, and observing that ∂nZ = 0 on ∂ΩT gives(

Zt
Ms

, Z

)
+ γδ ‖∇Z‖2 =

(
2κ
Ms

+
2γδ
M2
s

|∇m|2 − γδ

M2
s

(
ΔM2

s

)
, Z2

)
.

Owing to c1 > Ms > 0 , rearranging terms then leads to

d

dt
‖Z‖2 + ‖∇Z‖2 ≤ C̃ ‖Z‖2,

for some finite 0 ≤ C̃ ≡ C̃
(|∇m|, |(ΔM2

s )|). Integration in time, observing Z(0, ·) =
0, and Gronwall’s inequality then shows that Z ≡ 0 in ΩT .

In order to verify existence of strong solutions to (3.1), (1.6)–(1.7), we either
suppose smallness of initial energies E(m0) ≡ 1

2‖∇m0‖2 to conclude global existence
of strong solutions, or local existence for bounded initial energies. The following
arguments are taken from [18, 26], and [27, section 1.4], and are mostly sketched, in
case their elaboration can be taken from these references on a line-by-line basis. First,
we verify a priori bounds, under the assumption that smooth solutions m : ΩT → R

3

of (3.1) exist.
Lemma 3.2. Let T > 0. There exists a constant 0 < C = C(Ms, γ, δ) <∞ such

that for any smooth solution to (3.1), (1.6)–(1.7) there holds for all 0 ≤ t ≤ T ,

δ2

2(1 + δ2)

∫ t

0

‖mt(s, ·)‖2 ds+
γδ

2
E (m(t, ·)) ≤ C (1 + E(m0)) .
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Proof. Multiply (3.1) by mt and integrate over [0, T ]× Ω. We compute

− (MsΔm,mt) =
1
2
d

dt

(
Ms, |∇m|2)− 1

2
(
∂tMs, |∇m|2)+

(∇M�s ∇m,mt

)
,

2 (κm,mt) =
d

dt

(
κ,M2

s

)− (
∂tκ,M

2
s

)
,( |∇m|2

2Ms
, ∂tM

2
s

)
=
(|∇m|2, ∂tMs

)
,(3.3) (

ΔM2
s

4Ms
, ∂tM

2
s

)
=

1
2
(
ΔM2

s , ∂tMs

)
.

Next, we bound | (m×Δm,mt) |: take the cross product of (3.1) with m, and use
(3.2) to obtain

m×mt = γδMsm×Δm− γm× (m×Δm)

= γδMsm×Δm + γM2
s Δm− γ

2
(
ΔM2

s

)
m + γ |∇m|2m(3.4)

= γMs

(
δ +

1
δ

)
m×Δm− Ms

δ
κm +

Ms

δ
mt.

Multiplying this equation with δ
Ms

mt leads to

0 = γ
(
δ2 + 1

)
(m×Δm,mt)− 1

2
(Msκ, ∂tMs) + ‖mt‖2,

and hence

γ

∫ T

0

|(m×Δm,mt)| ds ≤ C +
1

1 + δ2
‖mt‖2.

Putting things together, we arrive at

1
2

(
1− 1

1 + δ2

)∫ T

0

‖mt(s, ·)‖2 ds+
γδ

2
(
Ms(T, ·)|∇m(T, ·)|2)

≤ γδ

2
(
Ms(0, ·)|∇m(0, ·)|2)+ C̃1

∫ T

0

[‖∇m(s, ·)‖2 ds+ C̃2,

for some positive, bounded

C̃1 ≡ C̃2

(‖Ms‖W 1,∞(ΩT ), δ
)
, C̃2 ≡ C̃2

(‖Ms‖W 2,∞(ΩT )

)
.

The assertion of the lemma then follows from applying Gronwall’s inequality.
In the sequel, we limit ourselves to Ω ⊂ R

2. Let E(m;ω) =
∫
ω
|∇m|2 dy, for ω ⊂

Ω, and BR(x) ⊂ R
2 be a ball around x ∈ R

2 of radius R > 0. The following technical
lemma holds for functions from L∞

(
0, T ;W 1,2(Ω,R3)

) ∩ L2
(
0, T ;W 2,2(Ω,R3)

)
, and

is taken from [27, p. 274]; see also [18, Lemma 3.1].
Lemma 3.3. Let T > 0. There exist bounded, positive constants C,R0 > 0 such

that for any ϕ ∈ L∞(0, T ;W 1,2(Ω,R3)
) ∩L2

(
0, T ;W 2,2(Ω,R3)

)
, and any R ∈ (0, R0]

there holds∫ T

0

‖∇ϕ(s, ·)‖4L4 ds

≤ C
(

ess sup
(t,x)∈ΩT

∫
BR(x)

|∇ϕ(t, ·)|2 dx

)(∫ T

0

‖∇2ϕ‖2 dt+R−2

∫ T

0

‖∇ϕ(s, ·)‖2 ds

)
.
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Like in [26, Lemma 1.5], local energies at a fixed time can be controlled in terms
of those at earlier times. The proof on the subsequent lemma uses Lemma 3.2 and
localizes the argumentation around (3.4). A proof for (3.1) for Ms = const is given
in [18, Lemma 3.4], and can easily be adopted to the present case.

Lemma 3.4. Let T > 0. There exists a constant C ≡ C(Ms, γ, δ) > 0 such that
for any smooth solution of (3.1), any R ∈ (0, R0], and any ( t,x ) ∈ ΩT there holds
the estimate

E
(
m(t, ·);BR(x0)

)
≤ E

(
m0;B2R(x0)

)
+ C

t

R2

(
1 + E(m0)

)
.

We can now follow the general argumentation from [26, p. 274], which we include
for the convenience of the reader: For m0 ∈ W 1,2(Ω,R3) and any given ε0 > 0, let
R0 > 0 be the maximal number such that

sup
x0∈Ω

E
(
m0;B2R0(x0)

)
< ε0,

and let T0 > 0 be the number such that any smooth solution m : ΩT → R
3 of (3.1)

taking initial value m0 : Ω→ R
3 satisfies

sup
x0∈Ω

sup
0≤t≤T0

E
(
m(t, ·);BR0(x0)

)
< 2ε0.

Note that in view of Lemma 3.4, we may let T0 = ε0R
2
0

CE(m0) . Let {φi} be smooth cut-off
functions subordinate to a cover of Ω ⊂ R

2 by balls B2R0(xi) with finite overlap, and
such that 0 ≤ φi ≤ 1, and |∇φi| ≤ 2

R1
, such that

∑
i φ

2
i = 1. We may then compute

‖∇m(t, ·)‖4L4 =
∑
i

∫
Ω

|∇m(t, ·)|4φ2
i dx

≤ C sup
i
E (m(t, ·);B2R0(xi))

(∫
Ω

|∇2m(t, ·)|2 dx +R−2
0 E(m0)

)
(3.5)

≤ Cε0
(∫

Ω

|∇2m(t, ·)|2 dx +R−2
0 E(m0)

)
.

We are now in a position to verify the following bound.
Lemma 3.5. For sufficiently small ε0 > 0, and any R ∈ (0, R0], there exists

T0 > 0 such that an existing smooth solution of (3.1) satisfies

∫ t

0

‖∇2m(s, ·)‖2 ds ≤ C
(
E(m0) + 1

)(
1 +

t

R2

)
∀ 0 ≤ t ≤ T0.

Proof. Multiply (3.1) with −Δm to find

1
2
d

dt
‖∇m‖2 +

γδ

2
‖
√
MsΔm‖2 ≤ C (

1 + ‖∇m‖2 +
∣∣(∇κ⊗m,∇m

)∣∣+ ‖∇m‖4L4

)
.

For sufficiently small ε0 > 0, by (3.5) we can control the last term on the right-hand
side by the second one on the left-hand side. Integration in time and Lemma 3.2 then
yields the assertion.
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Summing up, for sufficiently small ε0 > 0 we have locally in time bounds for
m : ΩT0 → R

3 in

V (ΩT0 ; R
3) :=

{
ϕϕϕ : ΩT0 → R

3 : ess sup
0≤t≤T0

E
(
ϕϕϕ
)

+
∫ T0

0

‖∇2ϕϕϕ(s, ·)‖2 + ‖ϕϕϕt(s, ·)‖2 ds <∞
}
.

Then it is not difficult to verify uniqueness of smooth solutions m : ΩT → R
3 to (3.1),

(1.6)–(1.7) from these bounds; see [18, Theorem 3.9] for the simplified case Ms ≡ 1.
In order to prove the local existence in time of smooth solutions to (3.1), (1.6)–

(1.7), we may then exploit strong parabolicity of our problem and follow the arguments
given in [18, Theorem 3.12 and Lemma 3.10] for Ms ≡ const. Let us note that all
results from [18] are valid for an equation of the type

∂tu + u×Δu + u× (u×Δu) = 0.

Our equation (3.1) represents a slight modification of this by adding an additional term
of the type u, due to variable Ms. This can be handled in an easier way than other
terms (note that other terms contain derivatives) and therefore we skip unnecessary
details. According to [18, Theorem 3.13], we may say that:

Theorem 3.1. Let m0 : Ω→R
3 be a smooth map and 0<Ms∈L∞(0, T ;W 2,2(Ω)).

There exists T0 > 0, and a unique, smooth mapping m : ΩT0 → R
3 solving (3.1),

(1.6)–(1.7). Let � ∈ N, and m0,� ∈ C∞(Ω,R3) be such that

sup
(t,x0)∈ΩT0

E (m�(t, ·);BR(x0)) ≤ ε0 ∀R ∈ (0, R0],

for any ε0 > 0, with m0� → m0 in W 1,2(Ω,R3) for � → ∞. For every � ∈ N, let
m� : ΩT0 → R

3 be the smooth, unique local solution to (3.1), (1.6) starting from
m0�. Similar to [18, Lemma 3.7], a consequence from Lemmas 3.2 and 3.5, and the
Aubin–Lions lemma, there holds for �→∞,

(3.6)
∂tm� ⇀ ∂tm in L2

(
0, T0;L2(Ω,R3)

)
,

Δm� ⇀ Δm in L2
(
0, T0;L2(Ω,R3)

)
,

m� →m in L2
(
0, T0;W 1,2(Ω,R3)

) ∩ C (
[0, T0];L2(Ω,R3)

)
.

Take any smooth vector field φ and any t ∈ (0, T0). The solution m� to (3.1) satisfies

(m�(t)−m0�, φ)− γδ
∫ t

0

(MsΔm�, φ)− κ
∫ t

0

(m�, φ)

=
∫ t

0

(
γδ

Ms
|∇m�|2m�, φ

)
−
∫ t

0

(
γδ

2Ms

(
ΔM2

s

)
m�, φ

)
− γ

∫ t

0

(m� ×Δm�, φ) .

Using (3.6) and recalling that a product of a weak and a strong convergent sequence
is strongly convergent, we can pass to the limit for �→∞ and we get

(m(t)−m(0), φ)− γδ
∫ t

0

(MsΔm, φ)− κ
∫ t

0

(m, φ)

=
∫ t

0

(
γδ

Ms
|∇m|2m, φ

)
−
∫ t

0

(
γδ

2Ms

(
ΔM2

s

)
m, φ

)
− γ

∫ t

0

(m×Δm, φ) .
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Differentiating this with respect to the time variable we see that m ∈ V (ΩT0 ,R
3)

may be identified to be a strong solution of (3.1), (1.6)–(1.7) for t ∈ (0, T0). Hence
we verified:

Theorem 3.2. Let m0 ∈ W 1,2(Ω,R3), 0 < Ms ∈ L∞
(
0, T ;W 2,2(Ω)

)
be given.

Then there exists a unique, local in time strong solution to (3.1), (1.6)–(1.7), which—
by Lemma 3.1—is also a local in time strong solution to (1.5)–(1.7).

According to the imbedding W 2,2(Ω) ⊂ C(Ω) and the assumption 0 < Ms ∈
L∞

(
0, T ;W 2,2(Ω)

)
, we see that Ms always remains strictly positive. There arises a

natural question: what will happen if Ms → 0? The constants obtained from a priori
estimates depend on Ms is such a way that they blow up if Ms → 0. Therefore we do
not allow Ms to vanish.

4. Convergence with optimal rates for Scheme A. A space-time discretiza-
tion of (3.1) may produce iterates {Mj} ⊂ Vh, with |Mj(z)| �= Ms(tj , z) for 1 ≤ j ≤ J
and z ∈ Nh. This is the motivation for the following projection scheme, which adopts
the corresponding one for Ms = const in [22, p. 139] to the present case.

Scheme A: Let M0 ≡ M̃0 ∈ Vh. 1. For j = 1, 2, . . . , J − 1 find Mj ∈ Vh such
that for all ΦΦΦ ∈ Vh there holds

1
k

(
M̃j −Mj−1,ΦΦΦ

)
h

+ γδ
(
Ms(tj , ·)∇M̃j ,∇ΦΦΦ

)
= γδ

(
∇M̃j ,∇Ms(tj , ·)⊗ΦΦΦ

)
+
([ γδ

Ms(tj , ·)
(
|∇M̃j−1|2 − 1

2
ΔM2

s (tj , ·)
)

+ κ(tj , ·)
]
M̃j ,ΦΦΦ

)
+ γ

(
M̃j−1 ×∇M̃j ,∇ΦΦΦ

)
.

2. Compute Mj ∈ Vh according to

Mj(z) = Ms(tj , z)
M̃j(z)
|M̃j(z)| ∀ z ∈ Nh.

If we combine both steps, we obtain the following equation for iterates M̃j : Ω→
R

3,

(
dtM̃j,ΦΦΦ

)
h

+ γδ
(
Ms(tj , ·)∇M̃j ,∇ΦΦΦ

)
= γδ

(
∇M̃j,∇Ms(tj , ·)⊗ΦΦΦ

)
− 1
k

([
1− Ms(tj−1, ·)

|M̃j−1|

]
M̃j−1,ΦΦΦ

)
h

+
([ γδ

Ms(tj , ·)
(
|∇M̃j−1|2(4.1)

− 1
2
ΔM2

s (tj , ·)
)

+ κ(tj , ·)
]
M̃j ,ΦΦΦ

)
+ γ

(
M̃j−1 ×∇M̃j ,∇ΦΦΦ

)
∀ΦΦΦ ∈ Vh.

As is now evident from the leading term in the second line, the projection method
may be regarded as a semi-explicit penalization method. The following result asserts
optimal convergence rates for solutions of Scheme A. Its proof uses an inductive
argument, which has been developed in [22, Chapter 4] (d = 2), and used in [12]
(d = 3) for the case Ms = const; we skip a proof of the following.

Theorem 4.1. Let tJ ≤ T0, where [0, T0) is the interval, where a strong solu-
tion to (3.1), (1.6)–(1.7) exists. For k ≤ k0(T0,Ms, γδ) sufficiently small, solutions
{M̃j}Jj=1 of Scheme A exist. Suppose that ‖M0 −m0‖W 1,2 ≤ C(k + h). There exists
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a constant C > 0 independent from k, h ≥ 0, such that

max
1≤j≤J

‖M(tj, ·)− M̃j‖L2 +

⎛
⎝k J∑

j=1

‖M(tj, ·)− M̃j‖2W 1,2

⎞
⎠

1/2

≤ C(k + h).(4.2)

Moreover, there holds

(4.3) max
1≤j≤J

∥∥∥Ms(tj , ·)− |M̃j|
∥∥∥
L2
≤ C(k + h).

Remark 4.1 (Extension of results to 3D). Let Ω ⊂ R
3. Carbou and Fabrie

[10] have proved the local existence of a regular solution of (1.1), (1.6)–(1.7) (for
heff = Δm) in the case Ms = const. For variable, strictly positive Ms ∈ C2(ΩT ), we
may proceed accordingly then to generalize their result to 3D.

5. Construction of weak solutions. Scheme B. Let Ω ⊂ R
3. We consider a

reformulation of (1.5), which has been proposed by Gilbert for the case Ms = const;
cf. [19]. As in (3.4), we take the cross product of (3.1) with m, and hence restate
(1.5) (with heff = Δm) as

(5.1) mt = κm− γ (1 + δ2
)

m×Δm + δ
m
Ms
×mt.

We introduce the notion of weak solutions of (5.1), (1.6)–(1.7), which generalizes
strong solutions introduced in section 3. Let κ ∈ C1(ΩT ).

Definition 5.1. Let m0 ∈ L∞
(
Ω,R3

)∩W 1,2(Ω,R3), such that |m0(·)| = Ms(0, ·)
almost everywhere in Ω. A function m : ΩT → R

3 is called a weak solution of (5.1),
(1.6)–(1.7) if

(1) ∂tm ∈ L2(ΩT ,R3), and m ∈ L∞(0, T ;W 1,2(Ω,R3)
)
, with m(0, ·) = m0 in

the sense of traces,
(2) |m| ∈ L∞(ΩT ), and satisfies (1.8) almost everywhere in ΩT ,
(3) for all φφφ ∈ C∞(ΩT ,R3

)
, there holds

(5.2)∫
ΩT

[〈
mt,φφφ

〉−κ 〈m,φφφ
〉− δ

Ms

〈
m×mt,φφφ

〉−γ (1 + δ2
) 〈

m×∇m,∇φφφ〉]dxdt = 0.

In the remainder of this section, we verify existence of weak solutions of (5.1),
(1.6)–(1.7), by using a practical finite-element based scheme.

Scheme B: Let κ ∈ C
(
ΩT

)
and M0 ∈ Vh. For j = 0, 1, 2, . . . , J − 1 find

Mj+1 ∈ Vh such that for all ΦΦΦ ∈ Vh there holds

(
dtMj+1,ΦΦΦ

)
h
−
(
κj+1Mj+1/2,ΦΦΦ

)
h
− δ

(
Mj

M
j+1/2
s

× dtMj+1,ΦΦΦ
)
h

= −γ(1 + δ2)
(
Mj+1/2 × Δ̃hMj+1/2,ΦΦΦ

)
h
.

Remark 5.1. 1. The linear second term in Scheme B is motivated from the identity

Mj × dtMj+1 =
(
Mj+1/2 − k

2
dtMj+1

)
× dtMj+1 = Mj+1/2 × dtMj+1.

2. As is detailed in [6] for the case Ms ≡ const, solutions to Scheme B satisfy a
perturbed version of a discretization of (3.1), which is due to the competition of local
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and nonlocal aspects in fully discrete finite-element based discretizations of (3.1) and
(5.1), respectively. First, we verify the existence of solutions to Scheme B.

Lemma 5.1. Let T > 0, κ ∈ C(ΩT ), J + 1 = [T/k], and M0 ∈ Vh be given.
Then, for a sufficiently small k ≤ k0(T ), there exists

{
Mj+1

}J
j=0
⊂ Vh, which solves

Scheme B.
Proof. Let Mj ∈ Vh be given. We define a continuous functional F : Vh → Vh

by setting for W ∈ Vh

F(W) =
2
k

{
W −Mj

}−IIIh
[
κj+1W +

2δ

kM
j+1/2
s

W

×
[
W−Mj

]
− γ(1 + δ2)W× Δ̃hW

]
.

For k−1 > maxΩT κ, and all W ∈ Vh such that (1 − kmaxΩT κ)‖wh‖h ≥ ‖Mj‖, we
have (

F(W),W
)
h

=
2
k

(
‖W‖2h − (Mj ,W)h

)
−
(
κ(tj+1, ·)W,W

)
h

≥ 2
k
‖W‖h

(
(1− kmax

ΩT

κ)‖W‖h − ‖Mj‖h
)

≥ 0.

Hence, Brouwer’s fixed point theorem (see also Evans [17, p. 493]) implies the existence
of W∗ ∈ Vh such that F(W∗) = 0. Then, Mj+1 := 2W∗ −Mj solves (5.3).

We study stability properties of discrete solutions from Scheme B. This is estab-
lished in the next lemmas.

Lemma 5.2. Let the assumptions of Lemma 5.1 be fulfilled, and κ ∈ C2(ΩT ).
Then

(i) max
z∈Nh

max
0≤j≤J+1

|Mj(z)|2 + max
z∈Nh

max
1≤j≤J+1

∣∣dt|Mj(z)|2∣∣ ≤ C,
(ii)

∥∥∇Mj+1
∥∥2 + k

J∑
j=0

δ

1 + δ2
∥∥dtMj+1

∥∥2

h
≤ C,

(iii) k

J∑
j=0

∥∥Mj+1/2 × Δ̃hMj+1/2
∥∥2

h
≤ C,

where C ≡ C(tJ , γ, δ,Ms).
Proof. To verify assertion (i), choose ΦΦΦ = Mj+1/2(z)ϕz for Scheme B, and observe

Remark 5.1 to find

dt
∣∣Mj+1(z)

∣∣2 = 2κ(tj+1, z)
∣∣Mj+1/2(z)

∣∣2(5.3)

≤ C
(∣∣Mj+1(z)

∣∣2 + |Mj(z)|2
)
.

Summation of (5.3) over j followed by an application of the discrete version of Gron-
wall’s lemma yields to

max
z∈Nh

max
0≤j≤J+1

|Mj(z)|2 ≤ C.

The rest of assertion (i) now follows from the last inequality and (5.3).
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In order to verify (ii), we first choose ΦΦΦ = −Δ̃hMj+1/2. We obtain

− (
κ(tj+1, ·)Mj+1/2,−Δ̃hMj+1/2

)
h

= −
(
IIIh

[
κ(tj+1, ·)Mj+1/2

]
, Δ̃hMj+1/2

)
h
− I

≥ −C ‖κ(tj+1, ·)‖C(Ω)

∥∥∇Mj+1/2
∥∥2

−
∣∣∣(Mj+1/2 ⊗∇κ(tj+1, ·),∇Mj+1/2

)∣∣∣− I + II,

with error terms I, II, which can be controlled by standard interpolation estimates,
using ∇2Mj+1/2

∣∣
K

= 0, for all K ∈ Th,

I :=
([

Id−IIIh
](
κ(tj+1, ·)Mj+1/2

)
, Δ̃hMj+1/2

)
h

≤ Ch2‖κ(tj+1, ·)‖C2(Ω)

∥∥Mj+1/2
∥∥
W 1,2(Ω)

∥∥ΔhMj+1/2
∥∥,

II :=
(
∇[Id−IIIh](κ(tj+1, ·)Mj+1/2

)
,∇Mj+1/2

)
≤ Ch‖κ(tj+1, ·)‖C2(Ω)

∥∥Mj+1/2
∥∥2

W 1,2(Ω)
.

Putting things together, by inverse estimate we find for some C ≡ C(κ, γ, δ) > 0,

(5.4)
1
2
dt
∥∥∇Mj+1

∥∥2 ≤ C(1+h)
∥∥∇Mj+1

∥∥2− δ
(

Mj

M
j+1/2
s

× dtMj+1, Δ̃hMj+1/2

)
h

.

Choosing ΦΦΦ = IIIh
[
dtM

j+1

M
j+1/2
s

]
in Scheme B yields

δ

γ(1 + δ2)

∥∥∥∥∥∥
dtMj+1√
M

j+1/2
s

∥∥∥∥∥∥
2

h

=
δ

γ(1 + δ2)

(
κ(tj+1, ·)M

j+1/2

M
j+1/2
s

, dtMj+1

)
h

− δ
(

Mj+1/2

M
j+1/2
s

× Δ̃hMj+1/2, dtMj+1

)
h

.

Now, adding (5.4) to this relation, thanks to Remark 5.1 and Young’s inequality, we
find

dt
∥∥∇Mj+1

∥∥2 +
δ

γ(1 + δ2)

∥∥∥∥∥∥
dtMj+1√
M

j+1/2
s

∥∥∥∥∥∥
2

h

≤ C(1 + h)
(
1 +

∥∥∇Mj+1
∥∥2
)
.

We employ discrete Gronwall’s inequality, and assertion (ii) follows. Assertion (iii) is
now an immediate consequence from Scheme B.

Note that (5.3) is the discrete version of property (1.8) for solutions of Scheme A
at every node z ∈ Nh; hence, we can only expect that |Mj(z)|2 ≈ M2

s (tj , z), for all
1 ≤ j ≤ J , and all z ∈ Nh.

Definition 5.2. For ( t,x ) ∈ [tj , tj+1)× Ω we define

MMMk,h(t,x) :=
t− tj
k

Mj+1(x) +
tj+1 − t

k
Mj(x) = Mj(x) + (t− tj)dtMj+1(x),

MMM−k,h(t,x) := Mj(x), MMM+
k,h(t,x) := Mj+1(x), MMMk,h(t,x) := Mj+1/2(x).

For almost every T ′ > 0, assertion (ii) of Lemma 5.2 may be rewritten as

(5.5) ‖∇MMM+
k,h(T

′, ·)‖2L2 +
δ

1 + δ2

∫ T ′

0

‖(MMMk,h)t(s, ·)‖2h dt ≤ C.
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This bound yields the existence of some m ∈ W 1,2(ΩT ,R3), which is the weak limit
(as k, h→ 0) of a subsequence {Mk,h} such that

MMMk,h ⇀ m in W 1,2
(
ΩT ,R3

)
,

∇MMM+
k,h,∇MMM+

k,h,∇MMMk,h ⇀ ∇m in L2
(
ΩT ,R3

)
,(5.6)

MMM−k,h,MMM+
k,h,MMM→m in L2

(
ΩT ,R3

)
,

where we use the Aubin–Lions compactness result to obtain (5.6)3. Dropping the
index {k, h} on MMMk,h, Scheme B may be rewritten in the following form: taking
ΦΦΦ(t, ·) := IIIhφφφ(t, ·) for φφφ ∈ C∞(ΩT ,R3) there holds

∫ T

0

[
(MMMt,ΦΦΦ)h −

(
κ+MMM,ΦΦΦ

)
h
− δ

(
MMM− ×MMMt

Ms

,ΦΦΦ
)
h

(5.7)

+ γ
(
1 + δ2

) (MMM× Δ̃hMMM,ΦΦΦ
)
h

]
dt = 0.

Theorem 5.1. Suppose that the assumptions of Lemma 5.2 are valid, and

M0 →m0 in W 1,2(Ω,R3), and |M0(z)| →Ms(0, z) ∀ z ∈ Nh (h→ 0).

For k, h→ 0 there exists m ∈ W 1,2(ΩT ,R3) such that iterates
{MMMk,h

}
of Scheme B

subconverge to m in W 1,2(ΩT ,R3), and m is a weak solution to (5.1), (1.6)–(1.7).
Remark 5.2. It is not known if iterates of Scheme B converge at optimal rates to

(locally existing) strong solutions of (1.5)–(1.7): this shortcoming reflects the known,
but seemingly confusing situation even in the simpler case Ms = const in [6, 7], where
(a simplified version of) Scheme B was developed to construct weak solutions in the
limit, but where convergence with rates in the presence of existing strong solutions is
still an open problem.

Proof. Step 1. Verification of (i), (iii) of Definition 5.1. Effects of reduced inte-
gration need to be controlled by using (2.3): For almost all t ∈ (0, T ), we have∣∣(MMMt,ΦΦΦ)− (MMMt,ΦΦΦ)h

∣∣ ≤ Ch ‖MMMt‖L2(Ω)‖∇ΦΦΦ‖L2(Ω).

This bound, and (5.5), together with standard Lagrange interpolation results yields
to

(5.8)
∫ T

0

(MMMt,ΦΦΦ)h dt→
∫ T

0

(mt,φφφ) dt ( k, h→ 0 ).

In a similar fashion, we obtain

(5.9)
∫ T

0

(
κ+MMM,ΦΦΦ

)
h

dt→
∫ T

0

(κm,φφφ) dt ( k, h→ 0 ).

The convergence

(5.10)
∫ T

0

(
MMM
M s

×MMMt,ΦΦΦ

)
h

dt→
∫ T

0

(
m
Ms
×mt,φφφ

)
dt (k, h→ 0 )

again uses (2.3), (5.5), and Lemma (5.2), (i) to control effects due to reduced integra-
tion, and (5.6)3 together with (5.6)2.
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The last term in (5.7) requires a more detailed study. We write

−
(
MMM× Δ̃MMM,ΦΦΦ

)
h

=
(
MMM×ΦΦΦ, Δ̃MMM

)
h

=
(
[Id−IIIh]

(MMM×ΦΦΦ
)
, Δ̃hMMM

)
h

+
(∇ [Id−IIIh]

(MMM×ΦΦΦ
)
,∇MMM)− (∇ [MMM×ΦΦΦ

]
,∇MMM)

=: I + II − III.

Control of I uses the bound ‖Δ̃hΨΨΨ‖ ≤ Ch−1‖∇ΨΨΨ‖L2 , and estimates of nodal interpo-
lation,

I ≤ Ch2h−1
∑
K∈T

∥∥D2
(MMM×ΦΦΦ

) ∥∥
L2(K)

∥∥∇MMM∥∥
L2(K)

≤ Ch ∥∥∇MMM∥∥‖ΦΦΦ‖C2

∥∥∇MMM∥∥.
Similarly, we obtain

II ≤ Ch
∑
K∈T

∥∥D2
(MMM×ΦΦΦ

) ∥∥
L2(K)

∥∥∇MMM∥∥
L2(K)

≤ Ch ∥∥∇M∥∥‖ΦΦΦ‖C2

∥∥∇MMM∥∥.
For the third term, we use the vector identity

〈∇a,∇[a × b]
〉

=
〈∇a, a × ∇b

〉
, for

a,b ∈ W 1,2(Ω,R3) to verify

III =
(∇ [MMM×ΦΦΦ

]
,∇MMM)

=
(MMM×∇ΦΦΦ,∇MMM)

.

Putting things together then yields

(5.11)
∫ T

0

(MMM× Δ̃hMMM,ΦΦΦ
)
h

ds→ −
∫ T

0

(
m×∇φφφ,∇m

)
dt

= −
∫ T

0

(∇[m× φφφ],∇φφφ) ds ( k, h→ 0 ).

We may now insert (5.8)–(5.11) into (5.7) to validate (ii) of Definition 5.1 for m :
ΩT → R

3.
Step 2. Verification of (ii) of Definition 5.1. The function |m| solves

(5.12)
d

dt
|m|2 = 2κ |m|2 a.e. in ΩT .

Its verification is split into two parts:

A) Verification of (5.12) for z ∈ Nh. For all t ∈ [tm−1, tm), there hold

|MMMk,h(t, z)|2 = |MMM−k,h(t, z)|2 + 2(t− tm−1)κ+(t, z)
∣∣MMMk,h(t, z)

∣∣2 ∀ z ∈ Nh,(5.13)

|MMMk,h(t,x)|2 =

∣∣∣∣∣∣
∑

zi∈Nh∩K
MMMk,h(t, zi)ϕzi(x)

∣∣∣∣∣∣
2

∀x ∈ K.(5.14)

For every z ∈ Nh, consider {|MMMk,h(·, z)|2}k. Let 0 ≤ s ≤ t ≤ T such that t ∈
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[tm−1, tm], and s ∈ [tj−1, tj ], for some tj ≤ tm. Then

|MMMk,h(t, z)|2 − |MMMk,h(s, z)|2 = |MMMk,h(t, z)|2 − |Mm−1(z)|2

+
m−1∑
�=j

{∣∣M�(z)
∣∣2 − ∣∣M�−1(z)

∣∣2}+
∣∣Mj−1(z)

∣∣2 − ∣∣MMMk,h(s, z)
∣∣2

= 2(t− tm−1)
(
κ
∣∣
[tm−1,tm)

)+

(z)
∣∣Mk,h(t, z)

∣∣2 + 2k
k−1∑
�=j

κ(t�, z)
∣∣M�−1/2(z)

∣∣2(5.15)

+ 2(tj−1 − s)
(
κ
∣∣
[tj−1,tj)

)+

(z)
∣∣Mk,h(s, z)

∣∣2,
and uniform (Lipschitz-)equicontinuity of {|MMMk,h(·, z)|2}k, for every z ∈ Nh then
follows from the computation∥∥|MMMk,h(t, z)|2 − |MMMk,h(s, z)|2

∥∥
C
(
[0,T ]

) ≤ C{(t− tm−1) + (tm−1 − tj) + (tj − s)
}

≤ C|t− s| ∀ z ∈ Nh.(5.16)

By the Arzela–Ascoli theorem, for every z ∈ Nh there exist a subsequence {|MMMk,h(·, z)|2}k,
and χ2(·, z) ∈ C([0, T ]

)
, such that for k → 0,

max
z∈Nh

max
t∈[0,T ]

∣∣∣|MMMk,h(t, z)|2 − χ2(t, z)
∣∣∣→ 0.

We need to verify that t �→ χ2(t, z) solves (1.8), for all z ∈ Nh. Let t ∈ [tm−1, tm).
By construction, there holds

|MMMk,h(t, z)|2 =
∣∣M0(z)

∣∣2 + 2
∫ t

tm−1

{
κ+(s, z)

∣∣Mm−1/2(z)
∣∣2 − κ(s, z)|MMMk,h(s, z)|2

}
ds

+ 2
m−1∑
�=1

∫ t�

t�−1

{
κ+(s, z)

∣∣Ml−1/2(z)
∣∣2 − κ(s, z)|MMMk,h(s, z)|2

}
ds(5.17)

+ 2
∫ t

0

κ(s, z)|MMMk,h(s, z)|2 ds.

By uniform equicontinuity of {|MMMk,h(·, z)|2}k, Lipschitz continuity of t �→ κ(t, z), for
every z ∈ Nh, and parallelogram identity together with the bound of Lemma 5.1, (iii)
to conclude for all ε > 0, and sufficiently small k = k(ε),

m∑
�=1

∫ t�

t�−1

∣∣∣κ+(s, z)
∣∣M�−1/2(z)

∣∣2 − κ(s, z)|MMMk,h(s, z)|2
∣∣∣ds ≤ ε.

Together with uniform convergence of |MMMk,h(·, z)|2 → χ2(·, z) (k → 0) on [0, T ], (1.8)
holds for the limit χ2(·, z), for every z ∈ Nh.

B) Verification of (5.12) for almost all ( t,x ) ∈ ΩT . Let x ∈ K = conv
(
z1, . . . , z4

)
,

and fix one z∗ = mini{|zi − x|}. There exist ξξξ∗ ≡ ξξξ∗(x, z∗) ∈ S
2, and 0 ≤ h∗(x, z∗) <

h, such that MMMk,h(t,x) = MMMk,h(t, z∗) + h∗∇MMMk,h(t, ·)ξξξ∗ owing ∇MMMk,h(t, ·)
∣∣
K

=
const., and
(5.18)
|MMMk,h(t,x)|2 = |MMMk,h(t, z∗)|2+2h∗

〈
MMMk,h(t, z∗),∇MMMk,h(t, ·)ξξξ∗

〉
+h2
∗|∇MMMk,h(t, ·)ξξξ∗|2.
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For the leading term on the right-hand side, we have (5.13). Therefore, we modify ar-
gument (5.17) in the way that instead of adding and subtracting

∫ t
0
κ(s, z)|MMMk,h(s, z)|2

ds on the right-hand side, we choose ± ∫ t
0
κ(s,x)|MMMk,h(s,x)|2 ds. For all x ∈ Ω, there

holds

|MMMk,h(t,x)|2 − |M0(x)|2 − 2
∫ t

0

κ(s,x)|MMMk,h(s,x)|2 ds

=
[|M0(z∗)|2 − |M0(x)|2]+ 2

∫ t

tm−1

{
κ+(s, z)

[|MMMk,h(s, z)|2

− |MMMk,h(s,x)|2]− [
κ(s,x)− κ+(s, z)

]|MMMk,h(s,x)|2
}

ds

+ 2
m−1∑
�=1

∫ t�

t�−1

{
κ+(s, z)|MMMk,h(s, z)|2 − κ(s,x)|MMMk,h(s,x)|2

}
ds(5.19)

+ 2h∗
〈MMMk,h(t, z∗),∇MMMk,h(t, ·)ξξξ∗

〉
+ h2
∗|∇MMMk,h(t, ·)ξξξ∗|2

≤ Ch∗
[
‖∇M0‖L∞ max

zi∈Nh∩K
|M0(zi)|+ ‖κ‖L∞(ΩT )‖MMMk,h‖L∞(ΩT )

∫ t

tm−1

|∇MMMk,h(s, ·)| ds
]

+ (k + h)‖κ‖W 1,∞(ΩT )‖MMMk,h‖2L∞(ΩT ) + Ck‖MMMk,h‖L∞(ΩT )∫ t

tm−1

|∂tMMMk,h(s,x)| ds

+ Ch‖MMMk,h‖L∞(ΩT )‖∇MMMk,h(t, ·)‖L∞(Ω) + h2‖∇MMMk,h(t, ·)‖2L∞(Ω),

where we use binomial formula, differentiability, and boundedness of κ : ΩT → R, the
estimate

∥∥MMM+
k,h −MMMk,h

∥∥+
∥∥MMMk,h −MMMk,h

∥∥ ≤ 2k‖∂tMMMk,h‖,

and Lemma 5.2. Integration over ΩT of (5.19) then leads to

∫
ΩT

∣∣∣∣|MMMk,h(s,x)|2 − |M0(x)|2 − 2
∫ s

0

κ(s̃,x)|MMMk,h(s̃,x)|2 ds̃
∣∣∣∣ dxds→ 0 (k, h→ 0).

Because of binomial formula and (5.6)2, we may pass to limits in every term, which
verifies (1.8) almost everywhere in ΩT for m : ΩT → R

3.

6. Solution of the nonlinear system in Scheme B. We use a simple fixed-
point iterative algorithm to solve the nonlinear system in each step of Scheme B.
Similar fixed-point algorithms were employed in the context of the LLG and Maxwell-
LLG equations; see [5, 6]. We solve the nonlinear system for Wh := Mj+1/2

h . The time
derivative dtm

j+1
h is replaced by 2

k (Wh −Mj
h). After linearization of the nonlinear

term (Wh × Δ̃hWh,ΦΦΦ)h and using the identity Mj
h × dtMj+1

h = − 2
kM

j+1/2
h ×Mj

h,
we obtain the following algorithm.
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Algorithm 6.1. Set W0
h := Mj

h and � := 0.
(i) Compute W�+1

h ∈ Vh such that for all ΦΦΦ ∈ Vh there holds

2
k

(
W�+1

h ,ΦΦΦ
)
h
− (

κj+1W�+1
h ,ΦΦΦ

)
h
− 2δ

k

(
Mj

h

M
j+1/2
s

×W�+1
h ,ΦΦΦ

)
h

+ γ(1 + δ2)
(
W�+1

h × Δ̃hW�
h,ΦΦΦ

)
h

=
2
k

(
Mj

h,ΦΦΦ
)
h
.

(6.1)

(ii) For fixed ε > 0, stop and set Mj+1
h := 2W�+1

h −Mj
h, once

(6.2)
∥∥W�+1

h −W�
h

∥∥
h
≤ ε.

(iii) Set � := �+ 1 and go to (i).
We give a condition, which is sufficient for convergence for every 1 ≤ j ≤ J .
Lemma 6.1. Suppose that ‖Mj

h‖L∞ ≤ C0. For all � ≥ 0 there exists a unique
solution to (6.1). Further, there holds

(6.3)
∥∥W�+1

h −W�
h

∥∥
h
≤ Θ

∥∥W�
h −W�−1

h

∥∥
h
,

with Θ < 1 provided that k < (2−k‖κj+1‖L∞)
γ(1+δ2)C0C

h2 is sufficiently small, where C > 0 only
depends on the geometry of the mesh. For given Mj

h ∈ Vh such that |Mj
h(z)| =

Ms(tj , z) for all z ∈ Nh, by Banach fixed point theorem, the contraction property
(6.3) then implies the existence of a unique Mj+1 ∈ Vh, which solves Scheme B.

Proof. In order to prove the existence of W�+1
h ∈ Vh for l ≥ 0 it suffices to show

that the bilinear form a : Vh × Vh → R defined by the left-hand side of (6.1) is
positive definite. In order to do so, we set ΦΦΦ = W�+1

h in (6.1), and use the properties
of κ to obtain for k < 2/‖κj+1‖L∞ ,

a
(
W�+1

h ,W�+1
h

) ≥ (
2
k
− ‖κj+1‖L∞

)∥∥W�+1
h

∥∥2

h
> 0.

Next, we choose ΦΦΦ = W�+1
h (z)ϕz in (6.1) and get (for sufficiently small k)

(6.4)
∣∣W�+1

h (z)
∣∣ ≤ 2

(2 − k‖κ‖L∞)

∣∣Mj
h(z)

∣∣ (� ≥ 0).

Finally, we subtract two subsequent iterations of (6.1), set ΦΦΦ = e�+1
h := W�+1

h −
W�

h, and use (6.4) together with ‖Δ̃he�h‖L2 ≤ Ch−2‖e�h‖h to conclude(
2−k

∥∥κj+1
∥∥

L∞
k

)∥∥e�+1
h

∥∥2

h
≤ γ(1 + δ2)

(
W�+1

h × Δ̃he�h, e
�+1
h

)
h

≤ γ(1 + δ2)Ch−2
∥∥W�+1

h

∥∥
L∞

∥∥e�h∥∥h∥∥e�+1
h

∥∥
h

≤ γ(1 + δ2)C0Ch
−2
∥∥e�h∥∥h∥∥e�+1

h

∥∥
h
;

i.e., the algorithm converges for k such that γ(1+δ2)C0C
(2−k‖κj+1‖L∞ )

k
h2 < 1.

7. Computational experiments. We study temperature effects on the discrete
finite-time blow-up problem suggested in [6]. Our computational code was built on
the finite element package ALBERT [24].
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Fig. 2. Detail of the magnetization near the blow-up time (left). Ms ≡ 1: Plot of tj �→ E(Mj
h),

and tj �→ ‖∇Mj
h‖L∞ for Schemes A,B (h = 1

16
, h = 1

32
, h = 1

64
) (right).

For Ω = (0, 1)2, let m0 : Ω→ S
2 be defined by

m0(x) =
{

(0, 0,−Ms(x)) for |x∗| ≤ 1/2
Ms(x)

(
2x∗A,A2 − |x∗|2) / (A2 + |x∗|2) for |x∗| ≥ 1/2

with x∗ = (x1 − 0.5, x2 − 0.5), x = (x1, x2) ∈ Ω, and A = (1 − 2|x∗|)4/4. We set
M0

h = Ihm0. The above choice with Ms ≡ 1 leads to discrete finite-time blow-up of
the solution with singularity at x = (0.5, 0.5) as reported in [6]. Shortly before the
blow-up takes part, the magnetization vector at x = (0.5, 0.5) points in the (0, 0, 1)
direction, with all the surrounding vectors pointing antiparallel, i.e., in the (0, 0,−1)
direction; see Figure 2 (left) for detail of the magnetization at x = (0.5, 0.5) near the
blow-up time. For comparison, we display the evolution of the discrete energy, and
‖∇Mh‖L∞ in Figure 2 (right), respectively, for different values of h.

The computational domain Ω was partitioned into uniform squares with side h,
each square subdivided into four equal triangles.

For the evolution of the saturation magnetization Ms we adopt the law (1.4) with
β = 0.5, and the function κ given in (1.11). Further we set α = δ = γ = 1, τC = 1 in
all our computations.

For Scheme B, we choose the time step using the following formula k = 0.0256 h2.
Given the mesh parameter h we set ε = 4 × 10−12 h2 in (6.2). With the former
choice of the parameter ε the fixed-point iterations in (6.1) always converged after
at most 14 iterations with average iteration count of about 5. We were able to
use time steps independent of h with the projection scheme (Scheme A) (cf. [4]).
The presented results for the projection scheme are computed with k = 10−4 for
h = 1/16, 1/32. For h = 1/64, in order to obtain results that are in better agreement
with the corresponding results computed by the Scheme B, we take k = 2.5 × 10−5

for the projection scheme.
Example 7.1. The first example demonstrates the effects of constant in time,

varying in space temperature τ ≡ τ(x). The temperature is defined as

τ(x) = 0.99 eB |x
∗|2 .

We take B = −25. The saturation magnetization Ms(x) is now space dependent with
values in the interval [0.1, 1].

The discrete energy and tj �→ ‖∇Mj
h‖L∞ are displayed for both Schemes A and

B, in Figure 3 (left) and Figure 3 (right), respectively. The discrete energy decreases
monotonically for both methods.
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Fig. 3. Example 7.1: Plot of tj �→ E(Mj
h) for Schemes A,B (h = 1
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) (left). Example
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) (right).

Fig. 4. Example 7.1: Magnetization at times t = 0, 0.0068, 0.033, 0.073, 0.076, 0.1 (from left to
right, from top to bottom).

Snapshots of the magnetization at different time levels computed by the Scheme A
can be found in Figure 4; the vectors are colored according to the modulus of the
magnetization.

Note that the constraint |Mj
h(z)| = Ms(z) for Mj

h computed by Scheme B was
satisfied up to the error of the iterative algebraic solver for all nodes z ∈ Nh.

Example 7.2. We study the influence of a space-time varying Ms(t,x) on the
evolution of the blow-up example. The temperature profile is defined as

τ(t,x) =

{
0.99 eB |x

∗|2eA1 (t−tmax)2 t < tmax,

0.99 eB |x
∗|2eA2 (t−tmax)2 t > tmax,

with B = −25, A1 = −100000, A2 = −10000, and tmax = 0.02. The temperature
attains its maximum at time t = tmax.

The results for both Schemes A and B are displayed in Figure 5 (left) and (right),
respectively. In the case of time varying Ms, the monotonic decrease of the discrete
energy is not to be expected as can be seen from the graphs. The results are similar
for both methods. The effects of the temperature on the magnetization cause a slight
delay of the blow-up for h = 1/16, 1/32, when compared to Ms ≡ 1 (Figure 2 (right)).
The difference is quite significant for h = 1/64, when the blow-up occurs earlier than
in the case of constant Ms.
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Fig. 6. Example 7.2: Magnetization at times t = 0, 0.0135, 0.02, 0.0345, 0.0356, 0.05 (from left
to right, from top to bottom).
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Fig. 7. Example 7.2: Plot of tj �→ maxz∈Nh
||Mj

h(z)| − Ms(tj , z)| for Scheme B (h = 1
16

, h =
1
32

, h = 1
64

) (left). Example 7.3: The evolution of Mavg
y with and without temperature effects (right).

Snapshots of the magnetization at different time levels computed by the Scheme A
can be found in Figure 6; the vectors are colored according to the modulus of the
magnetization.

In the case of time-varying Ms, Scheme B no longer satisfies the constraint
|Mj

h(z)| = Ms(tj , z). This is because of the time integration error due to the dis-
cretization of the function κ in time and the nonconsistency of (5.3) with (1.10). In
Figure 7 (left) we depict the deviation in the magnitude of the magnetization from
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the prescribed values; i.e., maxz∈Nh
||Mj

h(z)| −Ms(tj , z)|. We observe that the error
decreases with decreasing time step.

Example 7.3. The following example is to demonstrate the combined effects of a
constant applied magnetic field and temperature on the evolution of the magnetiza-
tion; i.e., we consider equation (1.1) with heff = happ + Δm.

Assume that the temperature solves the linear heat equation,

(7.1)
τt −KΔτ = f in Ω,

∂nτ = 0 on ∂ΩT ,
τ(0,x) = τ0(x),

where f ≡ f(t,x) is a prescribed function to represent the heating source (e.g., a
laser beam) and K > 0 is a constant, which depends on the thermal conductivity, the
density, and the heat capacity of the material. We take the initial condition τ0 ≡ 0,
α ≡ 1, and f as follows:

f(t,x) =

⎧⎨
⎩
{

1 |x∗| < 0.5,
0, elsewhere, t ≤ 0.04

0 t > 0.04.

After we heat the domain we apply for short time a constant magnetic field in the
direction of the y-axes. This is represented by the constant vector field happ which is
defined as

happ(t) =
{

(0, 10, 0) for 0.04 ≤ t ≤ 0.06,
(0, 0, 0) for t < 0.04 or t > 0.06.

We compute the temperature from (7.1) by using backward Euler discretization
in time, and standard H1-conforming linear finite elements in space. We denote the
computed temperature at time tj by τ jh(·) ≈ τ(tj , ·).

This example was computed using Scheme B, since the projection scheme involves
to evaluate ΔMs, which is not directly available when solving (7.1) by linear finite
elements. The extension of Scheme B to the case heff = happ+Δm is straightforward
since happ is a constant vector field. The coefficient κj+1 in Scheme B was computed
in the following way:

κj+1 = −β
k

(
τ j+1
h − τ jh
τC − τ j+1

h

)
,

i.e., we use
(
τh
)
t
(tj+1, ·) ≈ τ j+1

h −τ j
h

k .
We study the influence of the applied magnetic field h on the evolution of the

magnetization. For this purpose we define the function

(7.2) Mavg
y =

1
#Nh

∑
z∈Nn

[Mh(z)]y
|Mh(z)| ,

with Mh = ([Mh]x, [Mh]y, [Mh]z). The quantity Mavg
y ∈ [−Ms,Ms] represents the

“relative alignment” of the magnetization in the direction of the applied field; i.e., the
greater the effect of the applied field on the magnetization is, the greater is the value
of Mavg

y .
We display the time evolution of Mavg

y in Figure 7 (right) for the problem with
temperature effects, and for Ms ≡ 1. The results indicate that the applied magnetic
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Fig. 8. Example 7.4: The evolution of Mavg
y with and without temperature effects.

field has greater effects on the evolution of the magnetization when temperature is
taken into account.

Example 7.4. The last example illustrates the effect of temperature on the mag-
netization switching by a constant applied field in materials with high anisotropy. We
take

heff = K(m · p)p + happ + Δm,

where K is the anisotropy constant and p = e⊥ is a unit vector of anisotropy direction
(with e ∈ S

2 the easy axis). The temperature is uniform in space and only varies in
time as

τ(t) =
{

0.9999 e−10000 (t−0.04)2 t < 0.04,
0.9999 t > 0.04.

We take K = −1000 and p = (1, 0, 0). The choice of K < 0 results in an in-plane
anisotropy; i.e., at the steady state magnetization lies in the plane perpendicular to
the vector p, in the present case the yz-plane. The magnetization is initially aligned
in the y-direction, i.e.,

m0 = (0, 1, 0).

At time t = 0.04, after the temperature attains its maximum, a constant magnetic
field is applied for a period of time, in order to switch the magnetization to the
opposite direction. This is modeled by the following choice of happ:

happ(t) =
{

(20,−20, 0) 0.04 < t < 0.3,
(0, 0, 0) elsewhere.

The example was computed using the Scheme B. The fixed-point algorithm (6.1)
is adopted to include the additional anisotropy term; this is done by simply adding
the linearized term γ(1 + δ2)Wl+1

h × [
K(Wl

h · p)p
]

to the left-hand side of (6.1).
In Figure 8 we display the graphs of the computed evolutions of Mavg

y from
(7.2) for the case with temperature effects and with constant Ms = 1. We observe
that the applied field happ has no effect on the magnetization for the problem with
constantMs. On the other hand, when the effects of the temperature are included, the
magnetization is reversed to the (0,−1, 0) direction. The computed results support
the physical observations from magnetic recording applications that lower strength of
the magnetic field is needed for writing if local heating is employed. The practical
need for lower writing fields leads to potential improvements in the storage density,
faster writing times, and higher reliability of magnetic storage; cf. [21].
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April and July 2007, respectively. The hospitality of the hosting institutes is gratefully
acknowledged. L’.B. was supported by the EPSRC grant EP/C548973/1 and M.S. was
supported by the BOF/GOA-project no. 01G00607, Ghent University, Belgium.

REFERENCES

[1] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, Oxford,
1996.

[2] F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equation: Existence
and nonuniqueness, Nonlinear Anal., Theory, Meth. Appl., 18 (1992), pp. 1071–1084.

[3] F. Alouges and P. Jaisson, Convergence of a finite elements discretization for the Landau-
Lifshitz equations, Math. Models Methods Appl. Sci., 16 (2006), pp. 299–316.
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LOCAL ANISOTROPIC INTERPOLATION ERROR ESTIMATES
BASED ON DIRECTIONAL DERIVATIVES ALONG EDGES∗
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Abstract. We present new local anisotropic error estimates for the Lagrangian finite element
interpolation. The bounds apply to affine equivalent elements and use information from directional
derivatives of the function to interpolate along a set of adjacent edges. These new bounds do not
require any geometric limitation but may vary, in some cases, with the node ordering. Several existing
results are recovered from the new bounds. Examples compare the asymptotic behavior of the new
and existing bounds when the diameter of the element goes to zero. For some elements with small or
large angles, our new bound exhibits the same asymptotic behavior as the norm of the interpolation
error while existing results do not have the correct asymptotic behavior.

Key words. affine equivalent elements, anisotropic estimates, finite element interpolation error,
Lagrange interpolation
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1. Introduction. Interpolation operators, which associate a function v with a
function in the finite element space, are key components for the analysis of the finite
element method. In particular, measuring the interpolation error is a crucial step to
prove the convergence of the finite element method.

For nodal Lagrangian finite elements, the first bounds of the interpolation error
appeared in the 1970s. These early estimates focused on bounding seminorms of the
interpolation error over one element K with shape and size characteristics of K and
with the norm of a Fréchet derivative for the function v. Examples are given by
Babuška and Aziz [2], Ciarlet [8], Jamet [14], Zlámal [18], and in the references cited
therein. Such bounds are called isotropic as they treat equally the partial derivatives
of v.

However, engineering applications often generate solutions with different scales
of variations along different directions. For these problems, it is important to derive
bounds, called anisotropic bounds, which take into account these variations. Early
works studied the relation between the error when approximating a quadratic function
by a linear polynomial and the geometric characteristics of a simplex (see, for example,
Nadler [15, 16] and Rippa [17]). For the nodal Lagrangian linear interpolation, Berzins
[4] derived an exact expression for the L2-norm of the linear interpolation error on
a tetrahedron in terms of directional derivatives along the edges. Bank and Smith
[3] studied the W 1,2 seminorm of the linear interpolation error on a triangle. For
convex quadratic functions, D’Azevedo and Simpson [9] and Chen [7] derived similar
expressions for, respectively, the L∞-norm on a triangle and the Lp-norm on a simplex.

For an arbitrary function v, Apel [1] studied local anisotropic interpolation error
estimates that treat distinctly partial derivatives of v along coordinate directions.
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Unfortunately, his results require a priori geometric limitations on the element: a
limitation on the maximum angle and a coordinate system condition. For triangles,
this coordinate system condition limits the angle between the longest side and the
x1-axis. Chen, Sun, and Xu [6] presented optimal linear interpolation error estimates
in Lp-norm for simplicial meshes that satisfy a geometric assumption; i.e., they are
quasi-uniform under a metric based on the Hessian of v. Formaggia and Perotto [10],
Georgoulis, Hall, and Houston [12], and Huang [13] presented local anisotropic bounds
that do not require any geometric limitation. However, for right-angled triangles with
a small angle or for rectangles with a large aspect ratio, their estimates do not have
the correct asymptotic behavior when the element diameter goes to zero.

Therefore, the goal of this paper is to present new local anisotropic bounds that
do not require any geometric limitation and to assess their asymptotic behavior when
the diameter of the element goes to zero. We develop our results for affine equivalent
elements and for Lagrangian finite elements. Section 2 describes the notations used in
this paper. Section 3 presents the new bounds and their proof. Finally, in section 4,
we compare the new estimates with existing results and we assess the asymptotic
behavior of these bounds when the diameter of the element goes to zero.

2. Notation. Throughout this paper, we adopt the following notations.
• R is the set of real numbers.
• d = 2 or 3 denotes the space dimension.
• (x1, . . . , xd) denotes a global Cartesian coordinate system and the vectors

(e1, . . . , ed) are the associated unit basis vectors.
• x the vector position in R

d.
• For each integer k ≥ 0, Pk is the space of polynomials of degree smaller than
k in (x1, . . . , xd). Qk is the space of all polynomials of degree smaller than k
with respect to each one of the d variables (x1, . . . , xd).
• For any integer m > 0, α = (α1, . . . , αm) is a multi-index where each index
αi belongs to {1, 2, . . . , d}. Im is the set of multi-indices {1, 2, . . . , d}m.
• For any smooth function v defined in a domain Ω ⊂ R

d, Dv denotes the
first Fréchet derivative and Dmv the Fréchet derivative of order m. Dmv ·
(w1, . . . ,wm) is the partial derivative of order m in the direction of the m
vectors w1, . . . ,wm and, at a point x ∈ Ω, its value is denoted Dmv(x) ·
(w1, . . . ,wm).
• For 1 ≤ p <∞, Lp(Ω) is the Sobolev space of real functions whose p-power is

integrable over Ω. Each space Lp(Ω) is endowed with the usual norm, denoted
‖v‖0,p,Ω. L∞(Ω) is the Sobolev space of essentially bounded real functions.
We denote by ‖v‖0,∞,Ω the usual norm in L∞(Ω).
• For m > 0 and 1 ≤ p ≤ ∞, the spaces Wm,p(Ω) contain functions whose weak

derivatives up to order m are in Lp(Ω). Each space Wm,p(Ω) is endowed with
the norm ‖v‖m,p,Ω defined by

⎛
⎝∫

Ω

|v(x)|p +
m∑
j=1

∑
α∈Ij

∣∣Djv(x) · (eα1 , . . . , eαj )
∣∣p dx

⎞
⎠

1
p

for 1 ≤ p ≤ ∞

and, when p =∞,

max
(

sup
x∈Ω
|v(x)| , max

1≤j≤m
max
α∈Ij

sup
x∈Ω

∣∣Djv(x) · (eα1 , . . . , eαj )
∣∣) .
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• For m > 0, we will also use the seminorm |v|m,p,Ω defined by

( ∑
α∈Im

∫
Ω

|Dmv(x) · (eα1 , . . . , eαm)|p dx
)1/p

for 1 ≤ p <∞

and, when p =∞,

max
α∈Im

sup
x∈Ω

|Dmv(x) · (eα1 , . . . , eαm)| .

• The letter C is used to denote a generic positive constant.
We consider the element K̂ to be either

• the unit right triangle:
{
(x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1

}
,

• the unit square:
{
(x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1
}

,
• the unit right tetrahedron:{

(x1, x2, x3) ∈ R
3 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1, 0 ≤ x3 ≤ 1− x1 − x2

}
,

• the unit cube:
{
(x1, x2, x3) ∈ R

3 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1
}

.
We introduce now the Lagrangian finite element (K̂, P̂, N̂ ) such that

P̂ =
{

Pk when K̂ is a simplex
Qk when K̂ is a square or a cube

N̂ =
{
N̂i,K̂ , 1 ≤ i ≤ n | N̂i,K̂(v̂) = v̂(x̂i)

}
,

where (x̂i)1≤i≤n is the classical set of nodes for K̂. k defines the polynomial degree of
the shape functions (φ̂i,K̂)1≤i≤n. For any smooth function v̂ defined on K̂, its nodal
interpolant is defined by

(2.1) Π̂v̂ =
n∑
i=1

N̂i,K̂(v̂)φ̂i,K̂ .

Given an invertible matrix A of size d and a vector a of length d, we define the
affine-equivalent Lagrangian finite element (K,P ,N ), where the element K satisfies

(2.2) K =
{
x ∈ R

d | x = Ax̂ + a, ∀ x̂ ∈ K̂
}
.

Following the classical approach (see, for example, Ciarlet [8, section 2.3]), we intro-
duce, for any smooth function v defined on K, its nodal interpolant

(2.3) Πv =
n∑
i=1

Ni,K(v)φi,K .

In the remainder of this document, any smooth function v defined on K is associated
with a smooth function v̂ on K̂, such that

v̂ (x̂) = v (Ax̂ + a) .

3. New local anisotropic bounds. In this section, we derive the new local
anisotropic bounds on one element. On an affine-equivalent element K, let (bj)1≤j≤d
denote a basis of R

d composed of adjacent edge vectors of K. Several choices of basis
are available. For instance, each vertex of a simplex is associated to a different basis.
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A different ordering of edges results also in a different basis. For our new results, a
different basis may result in a different anisotropic bound. So we will comment on
the behavior of the upper bound when using different choices of adjacent edges.

First, the result on the Lq-norm of the interpolation error is stated. Its proof is
given in section 3.1.

Theorem 3.1. Let v be a function on K belonging to W l,p(K). The integral
index l and the real numbers p and q satisfy

(3.1) 1 ≤ p, q ≤ ∞, 0 ≤ l ≤ k + 1.

We assume that the continuous embeddings hold

(3.2) W l,p(K) ↪→ C(K) and W l,p(K) ↪→ Lq(K)

Let Π be the nodal interpolation (2.3) to the finite element space with polynomials of
degree k. Under these assumptions, the following anisotropic bounds hold. When p is
finite, we have

(3.3) ‖v −Πv‖0,q,K ≤ C |K|
1
q− 1

p

⎡
⎣∑
β∈Il

∫
K

∣∣Dlv(x) · (bβ1 , . . . ,bβl
)
∣∣p dx

⎤
⎦

1
p

.

When p =∞, we have

(3.4) ‖v −Πv‖0,q,K ≤ C |K|
1
q max
β∈Il

[
sup
x∈K

∣∣Dlv(x) · (bβ1 , . . . ,bβl
)
∣∣] .

The constants C depend only on K̂, l, p, q, and d.
The final bound is a simple reformulation of existing results from Ciarlet [8],

Apel [1], Formaggia and Perotto [11], and Huang [13]. However, this formulation
highlights the importance of directional derivatives along edges of the element. The
constraint (3.2) is classical when working with the Lagrangian interpolation operator
(see Ciarlet [8, Theorem 3.1.5] or Apel [1, section 2.1.1]). Besides the affine-equivalent
assumption on K, this theorem does not require further geometric assumption on K.
When using different choices of adjacent edges, the resulting upper bounds have the
same asymptotic behavior when the diameter of K goes to zero.

Then, norms of partial derivatives of the interpolation error are bounded. The
result is proved in section 3.2.

Theorem 3.2. Let m > 0 and α be in Im. Let v be a continuous function
belonging to W l,p(K), where 1 ≤ p ≤ ∞ and 1 ≤ l ≤ k+ 1. Let 1 ≤ q ≤ ∞, such that
W l−m,p(K) has a continuous embedding into Lq(K) and the following constraints are
satisfied:

l > m when α ∈ {{1}m, {2}m} when K ⊂ R
2(3.5a) {

l > m when α ∈ {{1, 2}m, {1, 3}m, {2, 3}m}
p > 2 when m = l − 1 and α ∈ {{1}m, {2}m, {3}m} when K ⊂ R

3.(3.5b)

Let Π be the nodal interpolation (2.3) to the finite element space with polynomials of
degree k. Let B denote the matrix whose columns are the edge vectors (bj)1≤j≤d. The
entries of matrix B−1 are denoted B(−1)

i,j .
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Under these assumptions, the following anisotropic bounds hold. When p is finite,
we have

(3.6) ‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K

≤ C |K| 1q− 1
p

⎧⎪⎨
⎪⎩

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

⎡
⎣ ∑
β∈Il−m

∫
K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

.

When p =∞, we have

(3.7) ‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K

≤ C |K| 1q
⎧⎨
⎩

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

max
β∈Il−m

[
sup
x∈K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣]q

⎫⎬
⎭

1
q

.

The constants C depend only on K̂, l, m, p, q, and d.
Besides the affine-equivalent assumption on K, Theorem 3.2 does not require

further geometric assumption on K. The constraints (3.5) are explained in the proof.
When choosing a different ordering of the adjacent edges, the resulting upper bounds
will be unchanged. When using different choices of adjacent edges or different node
numbering, the resulting upper bounds may have different asymptotic behaviors when
the diameter of K goes to zero. Such an example will be presented in section 4.

3.1. Proof of Theorem 3.1. We give the proof when p and q are finite. The
other cases are proved in a similar fashion. The proof technique is classical and
consists of deriving estimates on K̂ and of applying an affine coordinate transformation
between K and K̂. First, we recall bounds on K̂ in the following lemma.

Lemma 3.3. Let v̂ be a function on K̂ belonging to W l,p(K̂). The integral index
l and the real numbers p and q satisfy

(3.8) 1 ≤ p, q ≤ ∞, 0 ≤ l ≤ k + 1.

We assume that the continuous embeddings hold

(3.9) W l,p
(
K̂
)
↪→ C(K̂)

and W l,p
(
K̂

)
↪→ Lq

(
K̂

)
.

Then the following bound holds:

(3.10)
∥∥∥v̂ − Π̂v̂

∥∥∥
0,q,K̂

≤ C |v̂|l,p,K̂ ,

where the constant C depends only on l, p, q, and K̂.
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The proof for this lemma is given in Ciarlet [8, section 3.1] and Apel [1, Chapter 2].
We recall that the element K̂ is either the unit right triangle, the unit square, the
unit right tetrahedron, or the unit cube. The constraints (3.2) are equivalent to the
constraints (3.9). B denotes the matrix whose columns are the edge vectors (bj)1≤j≤d.
B is the Jacobian matrix of an affine map between K̂ and K.

When q is finite, we have

‖v −Πv‖0,q,K =
(∫

K

|(v −Πv)(x)|q dx
) 1

q

=
(∫

K̂

∣∣∣(v̂ − Π̂v̂
)

(x̂)
∣∣∣q |detB|dx̂

) 1
q

≤ C |detB| 1q
⎛
⎝∑
β∈Il

∫
K̂

∣∣Dlv̂(x̂) · (eβ1 , . . . , eβl
)
∣∣p dx̂

⎞
⎠

1
p

,

where we have used the result of Lemma 3.3. Using the differentiation rule for com-
position of functions (see Ciarlet [8, p. 118]), we note that

Dlv̂(x̂) · (eβ1 , . . . , eβl
) = Dlv(x) · (bβ1 , . . . ,bβl

).

Consequently, we obtain

‖v −Πv‖0,q,K̂ ≤ C |detB| 1q
⎛
⎝∑
β∈Il

∫
K

∣∣Dlv(x) · (bβ1 , . . . ,bβl
)
∣∣p ∣∣detB−1

∣∣ dx
⎞
⎠

1
p

,

and conclude by using the relation

|detB| = |K| /|K̂|.
3.2. Proof of Theorem 3.2. We give the proof when p and q are finite.

The other cases are proved in a similar fashion. As previously, we start with lo-
cal anisotropic bounds on K̂ and, then, apply an affine coordinate transformation
between K and K̂.

Lemma 3.4. Let α be in Im and v̂ be a continuous function on K̂ satisfying
Dmv̂ · (eα1 , . . . , eαm) ∈W l−m,p(K̂). The indices l, m, and p satisfy

(3.11) 1 ≤ p ≤ ∞, l,m ∈ N, 0 < m ≤ l ≤ k + 1,

and the constraints defined by

l > m when α ∈ {{1}m, {2}m} when K̂ ⊂ R
2(3.12a) {

l > m when α ∈ {{1, 2}m, {1, 3}m, {2, 3}m}
p > 2 when m = l− 1 and α ∈ {{1}m, {2}m, {3}m} when K̂ ⊂ R

3.(3.12b)

For 1 ≤ q ≤ ∞, such that W l−m,p(K̂) has a continuous embedding into Lq(K̂), the
following bound holds:

(3.13)
∥∥∥Dm(v̂ − Π̂v̂) · (eα1 , . . . , eαm)

∥∥∥
0,q,K̂

≤ C |Dmv̂ · (eα1 , . . . , eαm)|l−m,p,K̂ ,

where the constant C depends only on l, m, p, q, and K̂.
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These bounds were proved by Apel [1] (see Lemmas 2.4, 2.6, 2.10, and 2.18,
respectively, for triangles, tetrahedra, quadrilaterals, and hexahedrals). We emphasize
that these bounds are on K̂ and that K̂ is either the unit right triangle, the unit square,
the unit right tetrahedron, or the unit cube. In his book, Apel comments about the
necessity of the constraints (3.12) to derive anisotropic bounds on K̂. The constraints
(3.5) match the constraints (3.12).

We represent the vectors ej in the basis of edge vectors (bi)1≤i≤d,

ej =
d∑
i=1

B
(−1)
i,j bi,

where the coefficients B(−1)
i,j are the entries of matrix B−1.

When q is finite, we have

‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K

=

⎛
⎝∫

K

∣∣∣∣∣∣
d∑

j1,...,jm=1

B
(−1)
j1,α1

· · ·B(−1)
jm,αm

Dm(v −Πv)(x) · (bj1 , . . . ,bjm)

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

.

We recall the generalized mean inequality for a set of real positive numbers (ai)1≤i≤N :(
N∑
i=1

ai

)q

≤ N q−1

(
N∑
i=1

aqi

)
.

Consequently, there exists a constant C = d
m(q−1)

q such that

‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K

≤ C
⎛
⎝ d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q ∫
K

|Dm(v −Πv)(x) · (bj1 , . . . ,bjm)|q dx
⎞
⎠

1
q

.

The differentiation rule for composition of functions gives

Dm(v −Πv)(x) · (bj1 , . . . ,bjm) = Dm(v̂ − Π̂v̂)(x̂) · (ej1 , . . . , ejm).

Using a change of variables, we obtain

‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K ≤ C |detB| 1q⎛
⎝ d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q ∫
K

∣∣∣Dm(v̂ − Π̂v̂)(x̂) · (ej1 , . . . , ejm)
∣∣∣q dx

⎞
⎠

1
q

.

The result of Lemma 3.4 now implies

‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K ≤ C |detB| 1q⎛
⎝ d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q |Dmv̂ · (ej1 , . . . , ejm)|q
l−m,p,K̂

⎞
⎠

1
q

.
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The seminorm,

|Dmv̂ · (ej1 , . . . , ejm)|q
l−m,p,K̂

=

⎛
⎝ ∑
β∈Il−m

∫
K̂

∣∣Dmv̂(x̂) · (ej1 , . . . , ejm , eβ1 , . . . , eβl−m
)
∣∣p dx̂

⎞
⎠

q
p

,

becomes, after a change of variables,

|Dmv̂ · (ej1 , . . . , ejm)|q
l−m,p,K̂

= |detB|− q
p

⎛
⎝ ∑
β∈Il−m

∫
K

∣∣Dmv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎞
⎠

q
p

.

We conclude as previously

‖Dm(v −Πv) · (eα1 , . . . , eαm)‖0,q,K

≤ C |K| 1q− 1
p

⎧⎪⎨
⎪⎩

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

⎡
⎣ ∑
β∈Il−m

∫
K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

.

Lemma 3.4 was proved only when K̂ is the unit right triangle, the unit square, the
unit right tetrahedron, or the unit cube. We were not able to generalize Lemma 3.4 to
the unit equilateral triangle or the unit equilateral tetrahedron. As the unit right tri-
angle and tetrahedron are not invariant with respect to node numbering, the resulting
bound on the affine-equivalent element K may vary with respect to node numbering.
Further work would be required to guarantee such an invariance on simplices or to
characterize the basis (bj)1≤j≤d giving the sharpest upper bound.

3.3. Expression for particular cases. In this section, we write the new esti-
mates for the Wm,q seminorm and for square integrable functions. In particular, we
present the expression for the L2-norm and for the W 1,2 seminorm.

Expression for the Wm,q seminorm. We bound the Wm,q seminorm by combining
the results of Theorem 3.2 for all the partial derivatives of order m.

Corollary 3.5. Let v be a continuous function belonging to W l,p(K), where
1 ≤ p ≤ ∞ and 1 ≤ l ≤ k + 1. Let 0 < m < l and 1 ≤ q ≤ ∞, such that W l−m,p(K)
has a continuous embedding into Lq(K) and the following constraints are satisfied:

p > 2 if l = 1 when K ⊂ R
2,(3.14a)

p > 2 if m = l − 1 when K ⊂ R
3.(3.14b)
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Under these assumptions, the following anisotropic bounds hold. When p is finite, we
have

(3.15) |v −Πv|m,q,K ≤ C |K|
1
q− 1

p

⎧⎪⎨
⎪⎩

∑
α∈Im

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

⎡
⎣ ∑
β∈Il−m

∫
K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

.

When p =∞, we have

(3.16) |v −Πv|m,q,K ≤ C |K|
1
q

⎧⎨
⎩

∑
α∈Im

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

max
β∈Il−m

[
sup
x∈K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣]q

⎫⎬
⎭

1
q

.

The constants C depend only on K̂, l, m, p, q, and d.
The proof consists of summing the bounds (3.6) for all the multi-indices α be-

longing to Im and of combining all the associated constraints (3.5).
Expression for the L2-norm in R

2. For the L2-norm, we set m = 0, p = q = 2,
and l = 2. We have for any continuous function v belonging to W 2,2(K):

(3.17) ‖v −Πv‖20,2,K ≤ C
(∫

K

∣∣D2v(x) · (b1,b1)
∣∣2 dx +

∫
K

∣∣D2v(x) · (b2,b2)
∣∣2 dx

+ 2
∫
K

∣∣D2v(x) · (b1,b2)
∣∣2 dx) .

In matrix notation, the bound becomes

‖v −Πv‖20,2,K ≤ C
∫
K

∥∥BTD2v(x)B
∥∥2

F
dx,

where D2v(x) denotes the Hessian matrix for v and ‖·‖F is the Frobenius norm. We
note that the formula in matrix notation also holds in R

3. This anisotropic bound
is well known and appeared, for instance, in the case of simplices, in Formaggia and
Perotto [11] and in Huang [13].

Expression for the W 1,2 seminorm in R
2. For the W 1,2 seminorm, we set m = 1,

p = q = 2, and l = 2. For any continuous function v in W 2,2(K), we have

|v −Πv|21,2,K
≤ C

[(∣∣∣B(−1)
1,1

∣∣∣2 +
∣∣∣B(−1)

1,2

∣∣∣2)(∫
K

∣∣D2v(x) · (b1,b1)
∣∣2 dx +

∫
K

∣∣D2v(x) · (b1,b2)
∣∣2 dx)

+
(∣∣∣B(−1)

2,1

∣∣∣2 +
∣∣∣B(−1)

2,2

∣∣∣2) (∫
K

∣∣D2v(x) · (b2,b1)
∣∣2 dx +

∫
K

∣∣D2v(x) · (b2,b2)
∣∣2 dx)]

.
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In matrix notation, the bound becomes

(3.18) |v −Πv|21,2,K ≤ C
∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx,

where
∥∥B−1(1, :)

∥∥
2

is the 2-norm for the first row vector of B−1.

4. Applications. In this section, the new bounds are compared to existing re-
sults. First, we derive existing results as upper bounds of our new bounds. This
derivation indicates that our new bounds are, at worst, equivalent to existing results.
Then, for some elements with small or large angles, we compare the asymptotic be-
havior of the new bounds with the behavior of the existing results, when the diameter
of the element goes to zero. For these simple cases, our new bound exhibits the same
asymptotic behavior as the norm of the interpolation error while existing results do
not have the correct asymptotic behavior. This difference indicates that our new
bounds are not equivalent to existing results and, in some cases, the new bounds are
strictly sharper than the existing results of Ciarlet [8], Formaggia and Perotto [10],
Georgoulis et al. [12], and Huang [13].

4.1. Recovering existing results. In this section, we recover, from Theorem
3.2, local bounds on K derived by Jamet [14], Formaggia and Perotto [11], and Apel
[1].

Result of Jamet [14] on triangles. For triangular elements, Jamet proved

(4.1) |v −Πv|m,p,K ≤ C
hk+1−m

(cos θ)m
|v|k+1,p,K ,

where h is the diameter of K and θ is half the largest angle of triangle K. We will
show that we can recover Jamet’s result from (3.15).

First we recall the decomposition of ej :

ej =
2∑
i=1

B
(−1)
i,j bi =

2∑
i=1

B
(−1)
i,j ‖bi‖2

bi
‖bi‖2

.

Using Lemma 2.4 of Jamet [14], we have

(4.2)
2∑
j=1

∣∣∣B(−1)
j,i

∣∣∣ ‖bj‖2 ≤ 1
cos θ

.

We recall also

(4.3) max
1≤i≤2

‖bi‖2 ≤ ‖B‖F ≤ C
h

ρ̂
,

where ρ̂ is the inner radius for the reference element K̂. For a finite value of p = q
and for l = k + 1, we describe how to recover Jamet’s result from (3.15):

|v −Πv|m,p,K ≤ C
⎡
⎣ ∑
α∈Im

2∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣p · · · ∣∣∣B(−1)
jm,αm

∣∣∣p

∑
β∈Ik+1−m

∫
K

∣∣Dk+1v(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβk+1−m
)
∣∣p dx

⎤
⎦

1
p

.
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We now incorporate (4.3) and normalize the edge vectors:

|v −Πv|m,p,K ≤ C
hk+1−m

ρ̂k+1−m

⎡
⎣ ∑
α∈Im

2∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣p ‖bj1‖p2 · · · ∣∣∣B(−1)
jm,αm

∣∣∣p ‖bjm‖p2
∑

β∈Ik+1−m

∫
K

∣∣∣∣∣Dk+1v(x) ·
(

bj1
‖bj1‖2

, . . . ,
bjm
‖bjm‖2

,
bβ1

‖bβ1‖2
, . . . ,

bβk+1−m∥∥bβk+1−m

∥∥
2

)∣∣∣∣∣
p

dx

⎤
⎦

1
p

.

We can bound the integral term by C |v|pk+1,p,K :

|v −Πv|m,p,K ≤ C
hk+1−m

ρ̂k+1−m |v|k+1,p,K⎡
⎣ ∑
α∈Im

2∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣p ‖bj1‖p2 · · · ∣∣∣B(−1)
jm,αm

∣∣∣p ‖bjm‖p2
⎤
⎦

1
p

.

With the result (4.2), we conclude

|v −Πv|m,p,K ≤ C
⎡
⎣ ∑
α∈Im

2∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣p · · · ∣∣∣B(−1)
jm,αm

∣∣∣p

∑
β∈Ik+1−m

∫
K

∣∣Dk+1v(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβk+1−m
)
∣∣p dx

⎤
⎦

1
p

≤ C

(cos θ)m
hk+1−m

ρ̂k+1−m |v|k+1,p,K ,

where the constants C depend only on K̂, k, m, and p. This bound is isotropic as it
does not distinguish the partial derivatives of v.

Bound of Formaggia and Perotto [11, Lemma 2] for smooth functions in R
2. For

smooth functions (v ∈ W 2,2(K)), their result bounds the W 1,2 seminorm of the error
for piecewise linear elements on triangles. For piecewise linear interpolation in R

2,
our result writes as follows:

(4.4) |v −Πv|21,2,K ≤ C

∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx.

We have∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

≤ ∥∥B−1
∥∥2

F

∥∥BTD2v(x)B
∥∥2

F
.

For any 2× 2 matrix B,

(4.5)
∥∥B−1

∥∥2

F
≤ 2

∥∥B−1
∥∥2

2
.

Consequently, we obtain

|v −Πv|21,2,K ≤ C
∥∥B−1

∥∥2

2

∫
K

∥∥BTD2v(x)B
∥∥2

F
dx.
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We introduce the singular decomposition of B = RΣPT where R and P are orthogo-
nal matrices associated with the left and right singular vectors. Σ is a diagonal matrix
containing the singular values. The column vectors of R and P are written

R = [r1, r2] and P = [p1,p2].

We remark that Bri = σipi.
The Frobenius norm being invariant by rotation, we now write

|v −Πv|21,2,K ≤ C
∥∥B−1

∥∥2

2

∫
K

∥∥ΣRTD2v(x)RΣ
∥∥2

F
dx,

which is exactly the estimate of Formaggia and Perotto [11, Lemma 2]. This derivation
shows also that we have

|v −Πv|21,2,K ≤ C
∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

≤ C ∥∥B−1
∥∥2

2

∫
K

∥∥ΣRTD2v(x)RΣ
∥∥2

F
dx.

Georgoulis et al. [12] proved recently an extension for the result of Formaggia
and Perotto to quadrilaterals in the Wm,2 spaces. We will show in the following
section that these bounds do not have the correct asymptotic behavior when K is a
right-angled triangle with a small angle or a rectangle with large aspect ratio and the
diameter of K goes to zero.

Bounds of Apel [1, Theorem 2.1] on a triangle. Without any loss of generality, we
restrict the derivation to a triangle K and finite values for p and q. We denote by h1

the length of the longest edge and by h2 = |detB| /h1 the thickness. We assume that
the element K satisfies a maximal angle condition; i.e., all the interior angles of K
are uniformly bounded by a constant θ∗ < π, and a coordinate system condition; i.e.,
the angle γ between the longest edge and the x1-axis is bounded by |sin γ| ≤ Ch2/h1.
Under these assumptions, Apel [1, Lemma 2.5] proved that

(4.6) |Bi,j | ≤ Cmin(hi, hj) and
∣∣∣B(−1)

i,j

∣∣∣ ≤ C min
(
h−1
i , h−1

j

)
,

where the constants C do not depend on K.
The new bound of Theorem 3.2 writes as follows:

|v −Πv|m,q,K ≤ C |detB| 1q− 1
p

⎧⎪⎨
⎪⎩

∑
α∈Im

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

⎡
⎣ ∑
β∈Il−m

∫
K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

.

Using (4.6), we have

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q ≤ C
(

m∏
i=1

h−1
ji

)q

.
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When we represent an edge vector bji in the basis of (ek)1≤k≤d, we have

Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)

=
d∑

k1,...,km=1

Bk1,j1 · · ·Bkm,jmD
lv(x) · (ek1 , . . . , ekm ,bβ1 , . . . ,bβl−m

)

and, consequently,
∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m

)
∣∣

≤ C
(

m∏
i=1

hji

)
d∑

k1,...,km=1

∣∣Dlv(x) · (ek1 , . . . , ekm ,bβ1 , . . . ,bβl−m
)
∣∣ .

As v is a smooth function, we can change the order of derivatives in the right-hand
side to obtain∫

K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

≤ C
(

m∏
i=1

hji

)∣∣Dl−mv · (bβ1 , . . . ,bβl−m
)
∣∣p
m,p,K

.

The bound on the seminorm becomes now

|v −Πv|m,q,K ≤ C |detB| 1q− 1
p

⎡
⎣ ∑
β∈Il−m

∣∣Dl−mv · (bβ1 , . . . ,bβl−m
)
∣∣p
m,p,K

⎤
⎦

1
p

.

Therefore, we obtain

(4.7) |v −Πv|m,q,K

≤ C |detB| 1q− 1
p

⎡
⎣ ∑
s∈Il−m

(
l−m∏
i=1

hpsi

) ∣∣Dl−mv · (es1 , . . . , esl−m
)
∣∣p
m,p,K

⎤
⎦

1
p

,

which corresponds to the estimate of Apel [1, Theorem 2.1]. This derivation shows
that, when assuming the maximal angle condition and the coordinate system condition
on K, we have

|v −Πv|m,q,K ≤ C |detB| 1q− 1
p

⎧⎪⎨
⎪⎩

∑
α∈Im

d∑
j1,...,jm=1

∣∣∣B(−1)
j1,α1

∣∣∣q · · · ∣∣∣B(−1)
jm,αm

∣∣∣q

⎡
⎣ ∑
β∈Il−m

∫
K

∣∣Dlv(x) · (bj1 , . . . ,bjm ,bβ1 , . . . ,bβl−m
)
∣∣p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

≤ C |detB| 1q− 1
p

⎡
⎣ ∑
s∈Il−m

(
l−m∏
i=1

hpsi

) ∣∣Dl−mv · (es1 , . . . , esl−m
)
∣∣p
m,p,K

⎤
⎦

1
p

.
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The estimates of Apel [1, Theorem 2.1] and of Theorem 3.2 start from the same
bound on the element K̂. We recall that the bounds on K̂ in Lemma 3.4 do not require
further geometric assumption. After exploiting the affine transformation between K
and K̂, the estimates of Apel and of Theorem 3.2 differ on the physical element
K. Apel uses, in the right-hand side, partial derivatives along the coordinate axis
direction. To bound the affine transformations from K to K̂ and from K̂ to K
with (4.6), Apel requires geometric limitations on the element K: a maximum angle
condition and a coordinate system condition. On the other hand, the bounds in this
paper emphasize directional derivatives of the function along adjacent edges. They
do not require further geometric assumption on K. These new bounds use element-
related directions which are more appropriate for mesh adaptation techniques.

4.2. Behavior with small and large angles. In this section, we study the
behavior of our bounds when small or large angles are present. We focus on elements
in R

2, but the comments hold also for elements in R
3.

4.2.1. Right-angled triangle with a small angle. Let us consider the trian-
gle

K =
{
(x1, x2) ∈ R

2 | 0 < x1 < h and 0 < x2 < hβ−1(h− x1)
}
,

where h is a real positive number, smaller than 1, that will converge to 0. β is a real
positive number greater than 1. This triangle exhibits a small angle at the node (h, 0)
and two angles close to π/2 at the other nodes. We choose the matrix B for the affine
map to be

B =
[
h 0
0 hβ

]
.

Suppose we want to approximate the function v(x1, x2) = x2
1. The nodal interpolant

with P1 functions is Πv(x1, x2) = hx1. The W 1,2 seminorm of the interpolation error
satisfies

(4.8) |v −Πv|1,2,K =
(∫

K

|∇v −∇Πv|2
)1/2

=
1√
6
h

3+β
2 .

As the function v depends only on the variable x1, we have

BTD2vB =
[

2h2 0
0 0

]
.

So the upper bound for the W 1,2 seminorm becomes

(∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=
√

2h
3+β
2 ,

which has the correct asymptotic behavior when h goes to zero.
Ciarlet [8, Theorem 3.1.2], Formaggia and Perotto [10, Proposition 2.1], and

Huang [13, Lemma 2.1] use, as a starting point for their estimates, the following
isotropic bound:

(4.9) |v −Πv|1,2,K ≤ C
√

detB
∥∥B−1

∥∥
2

∣∣∣v̂ − Π̂v̂
∣∣∣
1,2,K̂

.
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We will show that this bound does not have the correct asymptotic behavior when
the diameter of K goes to zero. On the reference triangle, we have

v̂(x̂1, x̂2) = h2x̂2
1 and

∣∣∣v̂ − Π̂v̂
∣∣∣
1,2,K̂

=
h2

√
6
.

So the bound (4.9) becomes

√
detB

∥∥B−1
∥∥

2

∣∣∣v̂ − Π̂v̂
∣∣∣
1,2,K̂

= h
1+β
2 h−β

h2

√
6

=
1√
6
h

5−β
2 .

The upper bound (4.9) is not sharp because of the term
∥∥B−1

∥∥
2
. The isotropic

estimate (4.9) can even explode to infinity when β > 5 while the interpolation error
converges to zero. As the asymptotic behavior of (4.9) is not correct, the derived
bounds of Ciarlet [8], Formaggia and Perotto [10], and Huang [13] will not have the
correct asymptotic behavior. For this particular element and this choice of basis
(bj)1≤j≤d, our new bound is sharper than the three existing results of Ciarlet [8],
Formaggia and Perotto [10], and Huang [13].

Effect of node numbering. For this triangle, we can define three different matrices
B when we assume that the edges b1 and b2 are ordered counter-clockwise. We will
assess the effect of these different matrices on the upper bound for |v −Πv|1,2,K .

If we choose the matrix B to be

B =
[
h 0
0 hβ

]
,

the previous analysis shows that the upper bound has the correct asymptotic behavior.
When the matrix B is

B =
[

0 h
−hβ −hβ

]
,

the same conclusion holds. However, when we choose

B =
[ −h −h
hβ 0

]
,

the upper bound becomes

(∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=
√

4h3+β + 8h5−β,

which does not have the correct asymptotic behavior when h goes to zero. This ex-
ample illustrates that the bound (3.6) is not invariant with the numbering of vertices.
We expect that the same conclusion holds for tetrahedra. Finally, we note that the
upper bound (4.9) gives in all three cases the wrong asymptotic behavior when h goes
to zero.

4.2.2. Rectangle with a large aspect ratio. Let us consider the rectangle

K =
{
(x1, x2) ∈ R

2 | 0 < x1 < h and 0 < x2 < hβ
}
,
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where h is a real positive number, smaller than 1, that will converge to 0. β is a real
positive number greater than 1. We choose the matrix B for the affine map to be

B =
[
h 0
0 hβ

]
.

We want to approximate the function v(x1, x2) = x2
1. The nodal interpolant with Q1

functions is Πv(x1, x2) = hx1. The W 1,2 seminorm of the interpolation error satisfies

(4.10) |v −Πv|1,2,K =
(∫

K

|∇v −∇Πv|2
)1/2

=
1√
3
h

3+β
2 .

We remark that

|v|2,2,K = 2h
1+β
2 and |v −Πv|1,2,K =

h

2
√

3
|v|2,2,K .

Similarly to section 4.2.1, we can show that the upper bound for the W 1,2 seminorm
is (∫

K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

= 2h
3+β
2 ,

which has the correct asymptotic behavior when h goes to zero. However, the isotropic
bound (4.9) satisfies

√
detB

∥∥B−1
∥∥

2

∣∣∣v̂ − Π̂v̂
∣∣∣
1,2,K̂

= h
1+β
2 h−β

h2

√
6

=
1√
6
h

5−β
2 ,

which does not exhibit the correct asymptotic behavior when h goes to zero. For
rectangular elements, Georgoulis et al. [12] and Huang [13] use the isotropic bound
(4.9) as a starting point for their estimates. As the asymptotic behavior of (4.9) is not
correct, the derived bounds of Georgoulis et al. [12] and Huang [13] will not have the
correct asymptotic behavior. For this particular element, our new bound is sharper
than the existing results of Georgoulis et al. [12] and Huang [13]. Mesh adaptation
techniques based on (4.9) or on derived bounds could result in overmeshing.

Effect of node numbering. For this rectangle, we can define four different matrices
B when we assume that the edges b1 and b2 are ordered counter-clockwise. Here,
the upper bound for |v −Πv|1,2,K remains unchanged for all the matrices. Indeed,
for a rectangle or a parallelogram, the edge directions remain the same. In the upper
bounds, making different choices of adjacent edges result in permuting the same terms,
which will not change the asymptotic behavior of the upper bound. The same remark
holds for parallelepipeds. Finally, we note that the upper bound (4.9) gives in all four
cases the wrong asymptotic behavior when h goes to zero.

4.2.3. Rotating triangle with a large angle. We consider a rotating triangle
Kα with vertices (− cosα/2,− sinα/2), (cosα/2, sinα/2), and (−h sinα, h cosα). h
is a real positive number that will go to 0. This triangle exhibits a large angle at the
third vertex (−h sinα, h cosα). We choose the matrix B for the affine map to be

B =
[

cosα −h sinα+ cosα
2

sinα h cosα+ sinα
2

]
.
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The shape functions are

φ1,Kα(x1, x2) =
1
2
−

(
cosα− sinα

2h

)
x1 −

(
sinα+

cosα
2h

)
x2,

φ2,Kα(x1, x2) =
1
2

+
(

cosα+
sinα
2h

)
x1 +

(
sinα− cosα

2h

)
x2,

φ3,Kα(x1, x2) = − sinα
h

x1 +
cosα
h

x2.

We want to approximate the function v(x1, x2) = x2
1. The nodal interpolant with

P1 functions is

Πv(x1, x2) =
1
4

cos2 α[φ1,Kα(x1, x2) + φ2,Kα(x1, x2)] + h2 sin2 αφ3,Kα(x1, x2),

Πv(x1, x2) =
1
4

cos2 α− x1

(
h sin3 α− cos2 α sinα

4h

)
+ x2

(
h cosα sin2 α− cos3 α

4h

)
.

We have the following integrals:

∫
Kα

[
∂

∂x1
(v −Πv)

]2

= h3

(
1
3

sin2 α− 2
3

sin4 α+
1
2

sin6 α

)

+
h

12
(
cos2 α+ 2 cos2 α sin2 α− 3 cos2 α sin4 α

)
+

cos4 α sin2 α

32h

and ∫
Kα

[
∂

∂x2
(v −Πv)

]2

=
cos6 α
32h

− h

4
cos4 α sin2 α+

h3

2
cos2 α sin4 α.

For α = 0, the W 1,2 seminorm of the interpolation error is

|v −Πv|1,2,K0
=

√
h

12
+

1
32h

.

The interpolation error becomes unbounded when h goes to zero. This example was
introduced by Babuška and Aziz [2] to justify that all interior angles of a triangle
should be bounded away from π. The upper bound (3.18) becomes

(∫
K0

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=

√
5h
2

+
5
4h
,

which has the correct asymptotic behavior when h goes to zero. We can also bound
separately the partial derivative in x1

∫
K0

[
∂

∂x1
(v −Πv)

]2

≤ C

∫
K0

∥∥∥∥∥∥
⎡
⎣

∣∣∣B(−1)
1,1

∣∣∣ 0

0
∣∣∣B(−1)

2,1

∣∣∣
⎤
⎦BTD2vB

∥∥∥∥∥∥
2

F

=
5Ch

2
,

which has the correct asymptotic behavior. The upper bound for the partial derivative
in x2 has also the correct asymptotic behavior.



592 U. HETMANIUK AND P. KNUPP

For α = π/2, the W 1,2 seminorm of the interpolation error is

|v −Πv|1,2,Kπ/2
=

√
h3

6
.

Here the interpolation error converges to 0 when h goes to zero even though a large
angle is present in the triangle Kπ/2. This example illustrates the importance of
the element orientation with respect to the function v. When studying the linear
interpolation error for quadratic functions, Cao [5] highlighted also the importance of
the element orientation with respect to the function when a large angle is present in
the triangle.

The upper bound (3.18) becomes

(∫
Kπ/2

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=
√

2h
3
2 ,

which has the correct asymptotic behavior when h goes to zero. We can also bound
separately the partial derivatives in x1

∫
Kπ/2

[
∂

∂x1
(v −Πv)

]2

≤ C

∫
Kπ/2

∥∥∥∥∥∥
⎡
⎣

∣∣∣B(−1)
1,1

∣∣∣ 0

0
∣∣∣B(−1)

2,1

∣∣∣
⎤
⎦BTD2vB

∥∥∥∥∥∥
2

F

= 2Ch3,

and in x2

∫
Kπ/2

[
∂

∂x2
(v −Πv)

]2

≤ C

∫
Kπ/2

∥∥∥∥∥∥
⎡
⎣

∣∣∣B(−1)
1,2

∣∣∣ 0

0
∣∣∣B(−1)

2,2

∣∣∣
⎤
⎦BTD2vB

∥∥∥∥∥∥
2

F

= 0.

Both upper bounds have the correct asymptotic behavior when h goes to zero.
Effect of node numbering. For this example, we can define three different matrices

B when we assume that the edges b1 and b2 are ordered counter-clockwise.
When α is 0 and if we choose the matrix B to be

B =
[

1 1
2

0 h

]
or B =

[ − 1
2 −1
h 0

]
,

the upper bound remains unchanged and it has the correct asymptotic behavior.
When α = 0 and the matrix B is

B =
[ − 1

2
1
2−h −h

]
,

the upper bound becomes

(∫
K0

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=

√
h

2
+

1
8h
,

which still has the correct asymptotic behavior when h goes to zero.
The same conclusion holds when α = π/2. For this example, the bound (3.18)

keeps the same asymptotic behavior.
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Fig. 4.1. Behavior of upper bound (3.18) for different heights.

Effect of α. Finally, in Figure 4.1, we present the behavior of the upper bound
(3.18) as a function of α for several heights h. The upper bound increases when h
goes to zero except when α is equal to π/2 and 3π/2. This final example shows that
the upper bound (3.18) reproduces the correct asymptotic behavior for every angle α.
Therefore, the validity of (3.18) is not subject to a limitation on the angle between
the largest edge and the x1-axis.

4.2.4. Parallelogram with two large angles. Let us consider the parallelo-
gram

K =
{

(x1, x2) ∈ R
2 | − 1

2
< x1 <

1
2

and |x2| < h(1− 2 |x1|)
}
,

where h is a real positive number, smaller than 1, that will converge to 0. This
parallelogram exhibits two large angles at the nodes (0,−h) and (0, h) and two small
angles at the other vertices. We choose the matrix B for the affine map to be

B =
[

1
2 − 1

2
h h

]
.

We want to approximate the function v(x1, x2) = x2
1. The nodal interpolant with

Q1 functions is

Πv(x1, x2) =
1
4

[
2x2

1 −
x2

2

2h2
+

1
2

]
.

The W 1,2 seminorm of the interpolation error satisfies

(4.12) |v −Πv|1,2,K =
(∫

K

|∇v −∇Πv|2
)1/2

=

√
h

24
+

1
96h

.

The upper bound for the W 1,2 seminorm is(∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=

√
h+

1
4h
,

which has the correct asymptotic behavior when h goes to zero.
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We want to approximate the function v(x1, x2) = x2
2. The nodal interpolant with

Q1 functions is

Πv(x1, x2) = h2

[
−2x2

1 +
x2

2

2h2
+

1
2

]
.

The W 1,2 seminorm of the interpolation error satisfies

(4.13) |v −Πv|1,2,K =
(∫

K

|∇v −∇Πv|2
)1/2

=

√
2h5

3
+
h3

6
.

The upper bound for the W 1,2 seminorm is

(∫
K

∥∥∥∥
[ ∥∥B−1(1, :)

∥∥
2

0
0

∥∥B−1(2, :)
∥∥

2

]
BTD2v(x)B

∥∥∥∥
2

F

dx

) 1
2

=
√

4h3 + 16h5,

which has also the correct asymptotic behavior when h goes to zero.
When two large angles are present in a parallelogram, this example illustrates the

importance of the element orientation with respect to the function v. In both cases,
the upper bound (3.18) has the correct asymptotic behavior.

5. Conclusion. We have presented new anisotropic error estimates for the La-
grangian finite element interpolation on affine equivalent elements. The bounds use
information from the directional derivatives of the function to interpolate along adja-
cent edges. Besides the affine equivalent assumption on K, these local estimates do
not require further geometric assumption. For simplices, the asymptotic behavior of
the bounds, when the diameter of the element goes to zero, may vary with the choice
of node ordering. However, for parallelograms and parallelepipeds, the asymptotic
behavior does not vary with the choice of node ordering. Finally, we showed that
existing results can be derived from our new bounds. For some simple cases, the new
bounds are sharper than some existing results.
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Abstract. An accuracy-enhancing postprocessing technique for finite-element discretizations
of the Navier–Stokes equations is analyzed. The technique had been previously analyzed only for
semidiscretizations, and fully discrete methods are addressed in the present paper. We show that
the increased spatial accuracy of the postprocessing procedure is not affected by the errors arising
from any convergent time-stepping procedure. Further refined bounds are obtained when the time-
stepping procedure is either the backward Euler method or the two-step backward differentiation
formula.
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1. Introduction. The purpose of the present paper is to study a postprocessing
technique for fully discrete mixed finite-element (MFE) methods for the incompress-
ible Navier–Stokes equations

ut −Δu+ (u · ∇)u+∇p = f,(1.1)
div(u) = 0,(1.2)

in a bounded domain Ω ⊂ R
d (d = 2, 3) with smooth boundary subject to homoge-

neous Dirichlet boundary conditions u = 0 on ∂Ω. In (1.1), u is the velocity field, p
the pressure, and f a given force field. We assume that the fluid density and viscosity
have been normalized by an adequate change of scale in space and time.

For semidiscrete MFE methods the postprocessing technique has been studied
in [2, 3, 18] and is as follows. In order to approximate the solution u and p corre-
sponding to a given initial condition

u(·, 0) = u0,(1.3)

at a time t ∈ (0, T ], T > 0, consider first standard MFE approximations uh and ph to
the velocity and pressure, respectively, solutions at time t ∈ (0, T ] of the corresponding
discretization of (1.1)–(1.3). Then compute MFE approximations ũh and p̃h to the
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solution ũ and p̃ of the following Stokes problem,

−Δũ+∇p̃ = f − d

dt
uh − (uh · ∇)uh in Ω,(1.4)

div (ũ)=0 in Ω,(1.5)
ũ = 0 on ∂Ω.(1.6)

The MFE on this postprocessing step can be either the same MFE over a finer grid
or a higher-order MFE over the same grid. In [2, 18] it is shown that if the er-
rors in the velocity (in the H1 norm) and the pressure of the standard MFE ap-
proximations uh and ph are O(t−(r−2)/2hr−1), r = 2, 3, 4, for t ∈ (0, T ], then those
of the postprocessed approximations ũh and p̃h are O(t−(r−1)/2hr |log(h)|), that is,
an O(h |log(h)|) improvement with respect the standard MFE error bound) (see pre-
cise statement on Theorem 2.2 below), and if r ≥ 3 (finite elements of degree at least
two), the O(h |log(h)|) improvement is also obtained in the L2 norm of the velocity.

In practice, however, the finite-element approximations uh and ph can rarely
be computed exactly, and one has to compute approximations U (n)

h ≈ uh(tn) and
P

(n)
h ≈ ph(tn) at some time levels 0 = t0 < t1 · · · < tN = T , by means of a time

integrator. Consequently, instead of the postprocessed approximations ũh(tn) and
p̃h(tn), one obtains Ũ (n)

h and P̃
(n)
h as solutions of a system similar to (1.4)–(1.6)

but with uh on the right-hand side of (1.4) replaced by U (n)
h and u̇h replaced by an

appropriate approximation d∗tU
(n)
h .

In the present paper we analyze the errors u(tn) − Ũ (n)
h and p(tn) − P̃ (n)

h . We
show that, if any convergent time stepping procedure is used to integrate the standard
MFE approximation, then the error of the fully discrete postprocessed approximation,
u(tn) − Ũ

(n)
h , is that of the semidiscrete postprocessed approximation u(tn) − ũh

plus a term ẽn whose norm is proportional to that of the time-discretization error
en = uh(tn) − U (n)

h of the MFE method, and, furthermore, we show ẽn = en plus
higher-order terms for two particular time integration methods, the backward Euler
method and the two-step backward differentiation formula (BDF) [9] (see also [25,
section III.1]). We remark that the fact that ẽn is asymptotically equivalent to en
has proved its relevance when developing a posteriori error estimators for dissipative
problems [17] (see also [15, 16]). To prove ẽn ≈ en we perform first a careful error
analysis of the backward Euler method and the two-step BDF. This allows us to
obtain error estimates for the pressure that improve by a factor of the time step k
those in the literature [10, 34].

It must be noticed that the backward Euler method and the two-step BDF are
the only G-stable methods (see, e.g., [26, section V.6]) in the BDF family of methods.
G-stability makes it easier the use of energy methods in the analysis, and this has
proved crucial in obtaining our error bounds. At present we ignore if error bounds
similar to that obtained in the present paper can be obtained without resource to
energy methods, so that error bounds for higher-order methods in the BDF family of
methods can be proved.

The analysis of fully discrete postprocessed methods may be less trivial than it
may seem at first sight, since although many results for postprocessed semidiscrete
methods can be found in the literature (see next paragraph) as well as numerical
experiments (carried out with fully discrete methods) showing an increase in accuracy
similar to that theoretically predicted in semidiscrete methods [3, 11, 14, 12, 20, 22],
the only analysis of postprocessed fully discrete methods is that by Yan [44]. There,
for a semilinear parabolic equation of the type ut−Δu = F (u), Δ being the Laplacian
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operator and F a smooth and bounded function, the postprocess of a finite-element
(FE) approximation when integrated in time with the backward Euler method with
fixed stepsize k is analyzed (higher-order time-stepping methods are also considered,
but only for linear homogeneous parabolic equations). Error estimates are obtained
where an O(k(1 + h2)) term is added to the bounds previously obtained for the
postprocessed semidiscrete approximation. It must be remarked, though, that in [44]
no attempt is made to analyze methods for equations with convective terms. In fact,
in [44], it is stated that “It is not quite clear how it is possible to generalize our
method to deal with a nonlinear convection term”. This is precisely what we do in
the present paper.

The postprocess technique considered here was first developed for spectral meth-
ods in [20, 21]. Later it was extended to methods based on Chebyshev and Leg-
endre polynomials [11], spectral element methods [12, 13], and finite element meth-
ods [22, 14]. In these works, numerical experiments show that, if the postprocessed
approximation is computed at the final time T , the postprocessed method is com-
putationally more efficient than the method to which it is applied. Similar results
are obtained in the numerical experiments in [2, 3] for MFE methods. Due to this
better practical performance, the postprocessing technique has been applied to the
study of nonlinear shell vibrations [37], as well as to stochastic differential parabolic
equations [38]. Also, it has been effectively applied to reduce the order of practical
engineering problems modeled by nonlinear differential systems [42, 43].

The postprocess technique can be seen as a two-level method, where the postpro-
cessed (or fine-mesh) approximations ũh and p̃h are an improvement of the previously
computed (coarse mesh) approximations uh and ph. Recent research on two-level
finite-element methods for the transient Navier–Stokes equations can be found in
[23, 27, 28, 40] (see also [30, 29, 36, 39] for spectral discretizations), where the fully
nonlinear problem is dealt with on the coarse mesh, and a linear problem is solved on
the fine mesh.

The rest of the paper is as follows. In section 2 we introduce some standard
material and the methods to be studied. In section 3 we analyze the fully discrete
postprocessed method. In section 4 we prove some technical results and, finally, sec-
tion 5 is devoted to analyze the time discretization errors of the MFE approximation
when integrated with the backward Euler method or the two-step BDF.

2. Preliminaries and notations.

2.1. The continuous solution. We will assume that Ω is a bounded domain
in R

d, d = 2, 3, of class Cm, for m ≥ 2, and we consider the Hilbert spaces

H =
{
u ∈ L2(Ω)d | div(u) = 0, u · n|∂Ω = 0

}
,

V =
{
u ∈ H1

0 (Ω)d | div(u) = 0
}
,

endowed with the inner product of L2(Ω)d and H1
0 (Ω)d, respectively. For l ≥ 0 integer

and 1 ≤ q ≤ ∞, we consider the standard Sobolev spaces, W l,q(Ω)d, of functions with
derivatives up to order l in Lq(Ω), and H l(Ω)d = W l,2(Ω)d. We will denote by ‖ · ‖l
the norm in H l(Ω)d, and ‖ ·‖−l will represent the norm of its dual space. We consider
also the quotient spaces H l(Ω)/R with norm ‖p‖Hl/R = inf{‖p+ c‖l | c ∈ R}.

Let Π : L2(Ω)d −→ H be the L2(Ω)d projection onto H . We denote by A the
Stokes operator on Ω:

A : D(A) ⊂ H −→ H, A = −ΠΔ, D(A) = H2(Ω)d ∩ V.
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Applying Leray’s projector to (1.1), the equations can be written in the form

ut +Au+B(u, u) = Πf in Ω,

where B(u, v) = Π(u · ∇)v for u, v in H1
0 (Ω)d.

We shall use the trilinear form b(·, ·, ·) defined by

b(u, v, w) = (F (u, v), w) ∀u, v, w ∈ H1
0 (Ω)d,

where

F (u, v) = (u · ∇)v +
1
2
(∇ · u)v ∀u, v ∈ H1

0 (Ω)d.

It is straightforward to verify that b enjoys the skew-symmetry property

(2.1) b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ H1
0 (Ω)d.

Let us observe that B(u, v) = ΠF (u, v) for u ∈ V, v ∈ H1
0 (Ω)d.

We shall assume that u is a strong solution up to time t = T , so that

(2.2) ‖u(t)‖1 ≤M1, ‖u(t)‖2 ≤M2, 0 ≤ t ≤ T,
for some constants M1 and M2. We shall also assume that there exists another
constant M̃2 such that

(2.3) ‖f‖1 + ‖ft‖1 + ‖ftt‖1 ≤ M̃2, 0 ≤ t ≤ T.
Let us observe, however, that if for k ≥ 2

sup
0≤t≤T

∥∥∂�k/2�t f
∥∥
k−1−2�k/2� +

�(k−2)/2�∑
j=0

sup
0≤t≤T

∥∥∂jt f∥∥k−2j−2
< +∞,

and if Ω is of class Ck, then, according to Theorems 2.4 and 2.5 in [32], there exist
positive constants Mk and Kk such that the following bounds hold:

‖u(t)‖k + ‖ut(t)‖k−2 + ‖p(t)‖Hk−1/R ≤Mkτ(t)1−k/2,(2.4)∫ t

0

σk−3(s)
(‖u(s)‖2k + ‖us(s)‖2k−2 + ‖p(s)‖2Hk−1/R

+ ‖ps(s)‖2Hk−3/R

)
ds ≤ K2

k,(2.5)

where τ(t) = min(t, 1) and σn = e−α(t−s)τn(s) for some α > 0. Observe that for
t ≤ T < ∞, we can take τ(t) = t and σn(s) = sn. For simplicity, we will take these
values of τ and σn.

We note that although the results in the present paper require only (2.2) and (2.3)
to hold, those in [18] that we summarize in section 2.3 require that for r = 3, 4, (2.4)–
(2.5) hold for k = r + 2.

2.2. The spatial discretization. Let Th = (τhi , φ
h
i )i∈Ih

, h > 0 be a family of
partitions of suitable domains Ωh, where h is the maximum diameter of the elements
τhi ∈ Th, and φhi are the mappings of the reference simplex τ0 onto τhi . We restrict
ourselves to quasi-uniform and regular meshes Th.

Let r ≥ 3, we consider the finite-element spaces

Sh,r =
{
χh ∈ C

(
Ωh
) |χh|τh

i
◦ φhi ∈ P r−1(τ0)

}
⊂ H1(Ωh), S0

h,r = Sh,r ∩H1
0 (Ωh),
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where P r−1(τ0) denotes the space of polynomials of degree at most r− 1 on τ0. Since
we are assuming that the meshes are quasi-uniform, the following inverse inequality
holds for each vh ∈ (S0

h,r)
d (see, e.g., [7, Theorem 3.2.6])

‖vh‖Wm,q(τ)d ≤ Chl−m−d
(

1
q′ − 1

q

)
‖vh‖W l,q′ (τ)d ,(2.6)

where 0 ≤ l ≤ m ≤ 1, 1 ≤ q′ ≤ q ≤ ∞, and τ is an element in the partition Th.
We shall denote by (Xh,r, Qh,r−1) the so-called Hood–Taylor element [5, 35], when

r ≥ 3, where

Xh,r =
(
S0
h,r

)d
, Qh,r−1 = Sh,r−1 ∩ L2(Ωh)/R, r ≥ 3,

and the so-called mini-element [6] when r = 2, where Qh,1 = Sh,2 ∩ L2(Ωh)/R, and
Xh,2 = (S0

h,2)
d ⊕ Bh. Here, Bh is spanned by the bubble functions bτ , τ ∈ Th,

defined by bτ (x) = (d + 1)d+1λ1(x) · · · λd+1(x), if x ∈ τ and 0 elsewhere, where
λ1(x), . . . , λd+1(x) denote the barycentric coordinates of x. For these elements a
uniform inf-sup condition is satisfied (see [5]), that is, there exists a constant β > 0
independent of the mesh grid size h such that

(2.7) inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)
‖vh‖1‖qh‖L2/R

≥ β.

The approximate velocity belongs to the discretely divergence-free space

Vh,r = Xh,r ∩
{
χh ∈ H1

0 (Ωh)d | (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1

}
,

which is not a subspace of V . We shall frequently write Vh instead of Vh,r whenever
the value of r plays no particular role.

Let Πh : L2(Ω)d −→ Vh,r be the discrete Leray’s projection defined by

(Πhu, χh) = (u, χh) ∀χh ∈ Vh,r.

We will use the following well-known bounds

(2.8) ‖(I −Πh)u‖j ≤ Chl−j‖u‖l, 1 ≤ l ≤ 2, j = 0, 1.

We will denote by Ah : Vh → Vh the discrete Stokes operator defined by

(∇vh,∇φh) = (Ahvh, φh) =
(
A

1/2
h vh, A

1/2
h φh

)
∀vh, φh ∈ Vh.

Let (u, p) ∈ (H2(Ω)d ∩ V )× (H1(Ω)/R) be the solution of a Stokes problem with
right-hand side g, we will denote by sh = Sh(u) ∈ Vh the so-called Stokes projection
(see [33]) defined as the velocity component of solution of the following Stokes problem:
find (sh, qh) ∈ (Xh,r, Qh,r−1) such that

(∇sh,∇φh) + (∇qh, φh) = (g, φh) ∀φh ∈ Xh,r,(2.9)
(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1.(2.10)

Obviously, sh = Sh(u). The following bound holds for 2 ≤ l ≤ r:

(2.11) ‖u− sh‖0 + h‖u− sh‖1 ≤ Chl
(‖u‖l + ‖p‖Hl−1/R

)
.
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The proof of (2.11) for Ω = Ωh can be found in [33]. For the general case, Ωh must
be such that the value of δ(h) = maxx∈∂Ωh

dist(x, ∂Ω) satisfies

(2.12) δ(h) = O
(
h2(r−1)

)
.

This can be achieved if, for example, ∂Ω is piecewise of class C2(r−1), and superpara-
metric approximation at the boundary is used [1]. Under the same conditions, the
bound for the pressure is [24]

(2.13) ‖p− qh‖L2/R ≤ Cβhl−1
(‖u‖l + ‖p‖Hl−1/R

)
,

where the constant Cβ depends on the constant β in the inf-sup condition (2.7).
In the sequel we will apply the above estimates to the particular case in which

(u, p) is the solution of the Navier–Stokes problem (1.1)–(1.3). In that case sh is
the discrete velocity in problem (2.9)–(2.10) with g = f − ut − (u · ∇u). Note that
the temporal variable t appears here merely as a parameter and then, taking the
time derivative, the error bounds (2.11) and (2.13) can also be applied to the time
derivative of sh changing u, p by ut, pt, respectively.

Since we are assuming that Ω is of class Cm and m ≥ 2, from (2.11) and standard
bounds for the Stokes problem [1, 19], we deduce that

(2.14)
∥∥(A−1Π−A−1

h Πh

)
f
∥∥
j
≤ Ch2−j‖f‖0 ∀f ∈ L2(Ω)d, j = 0, 1.

In our analysis we shall frequently use the following relation, which is a conse-
quence of (2.14) and the fact that any fh ∈ Vh vanishes on ∂Ω. For some c ≥ 1,

(2.15)
1
c

∥∥∥As/2h fh

∥∥∥
0
≤ ‖fh‖s ≤ c

∥∥∥As/2h fh

∥∥∥
0
∀fh ∈ Vh, s = 1,−1.

Finally, we will use the following inequalities whose proof can be obtained applying
[32, Lemma 4.4]

‖vh‖∞ ≤ C‖Ahvh‖0 ∀vh ∈ Vh,(2.16)

‖∇vh‖L3 ≤ C‖∇vh‖1/20 ‖Ahvh‖1/20 ∀vh ∈ Vh.(2.17)

We consider the finite-element approximation (uh, ph) to (u, p), solution of (1.1)–
(1.3). That is, given uh(0) = Πhu0, we compute uh(t) ∈ Xh,r and ph(t) ∈ Qh,r−1,
t ∈ (0, T ], satisfying

(u̇h, φh) + (∇uh,∇φh) + b(uh, uh, φh) + (∇ph, φh) = (f, φh) ∀φh ∈ Xh,r,(2.18)
(∇ · uh, ψh) = 0 ∀ψh ∈ Qh,r−1.(2.19)

For convenience, we rewrite this problem in the following way,

(2.20) u̇h +Ahuh +Bh(uh, uh) = Πhf, uh(0) = Πhu0,

where Bh(u, v) = ΠhF (u, v).
For r = 2, 3, 4, 5, provided that (2.11)–(2.13) hold for l ≤ r, and (2.4)–(2.5) hold

for k = r, then we have

(2.21) ‖u(t)− uh(t)‖0 + h‖u(t)− uh(t)‖1 ≤ C hr

t(r−2)/2
, 0 ≤ t ≤ T,
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(see, e.g., [18, 32, 33]), and also,

(2.22) ‖p(t)− ph(t)‖L2/R ≤ C hr−1

t(r′−2)/2
, 0 ≤ t ≤ T,

where r′ = r if r ≤ 4 and r′ = r + 1 if r = 5. Results in [18] hold for h sufficiently
small. In the rest of the paper we assume h to be small enough for (2.21)–(2.22) to
hold.

Observe that from (2.21) and (2.2) it follows that ‖uh(t)‖1 is bounded for 0 ≤
t ≤ T . However, further bounds for uh(t) will be needed in the present paper, so we
recall the following result, which, since we are considering finite times 0 < T < +∞,
it is a rewriting of [34, Proposition 3.2].

Proposition 2.1. Let the forcing term f in (1.1) satisfy (2.3). Then, there exists
a constant M̃3 > 0, depending only on M̃2, ‖Ahuh(0)‖0 and sup0≤t≤T ‖uh(t)‖1, such
that the following bounds hold for 0 ≤ t ≤ T :

F0,2(t) ≡ ‖Ahuh(t)‖20 ≤ M̃2
3 ,(2.23)

F1,r(t) ≡ tr‖Ar/2h u̇h(t)‖20 ≤ M̃2
3 , r = 0, 1, 2,(2.24)

F2,r(t) ≡ tr+2‖Ar/2h üh(t)‖20 ≤ M̃2
3 , r = −1, 0, 1,(2.25)

I1,r(t) ≡
∫ t

0

sr−1‖Ar/2h u̇h(s)‖20 ds ≤ M̃2
3 , r = 1, 2,(2.26)

I2,r(t) ≡
∫ t

0

sr+1‖Ar/2h üh(s)‖20 ds ≤ M̃2
3 , r = −1, 0, 1.(2.27)

2.3. The postprocessed method. This method obtains for any t ∈ (0, T ]
an improved approximation by solving the following discrete Stokes problem: find
(ũh(t), p̃h(t)) ∈ (X̃, Q̃) satisfying(

∇ũh(t),∇φ̃
)

+
(
∇p̃h(t), φ̃

)
=
(
f, φ̃
)
− b

(
uh(t), uh(t), φ̃

)
(2.28)

−
(
u̇h(t), φ̃

)
∀ φ̃ ∈ X̃,(

∇ · ũh(t), ψ̃
)

= 0 ∀ ψ̃ ∈ Q̃,(2.29)

where (X̃, Q̃) is either:
(a) The same-order MFE over a finer grid. That is, for h′ < h, we choose

(X̃, Q̃) = (Xh′,r, Qh′,r−1).
(b) A higher-order MFE over the same grid. In this case we choose (X̃, Q̃) =

(Xh,r+1, Qh,r).
In both cases, we will denote by Ṽ the corresponding discretely divergence-free space
that can be either Ṽ = Vh′,r or Ṽ = Vh,r+1 depending on the selection of the postpro-
cessing space. The discrete orthogonal projection into Ṽ will be denoted by Π̃h, and
we will represent by Ãh the discrete Stokes operator acting on functions in Ṽ . Notice
then that from (2.28) it follows that ũh(t) ∈ Ṽ and it satisfies

(2.30) Ãhũh(t) = Π̃h

(
f − F (uh(t), uh(t))− u̇h(t)

)
.

In [18] the following result is proved.
Theorem 2.2. Let (u, p) be the solution of (1.1)–(1.3) and for r = 3, 4, let (2.4)–

(2.5) hold with k = r + 2 and let (2.11) hold for 2 ≤ l ≤ r. Then, there exists a
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positive constant C such that the postprocessed MFE approximation to u, ũh satisfies
the following bounds for r = 3, 4 and t ∈ (0, T ]:

(i) if the postprocessing element is (X̃, Q̃) = (Xh′,r, Qh′,r−1), then

‖u(t)− ũh(t)‖j ≤ C

t(r−2)/2
(h′)r−j +

C

t(r−1)/2
hr+1−j| log (h)|, j = 0, 1,(2.31)

‖p(t)− p̃h(t)‖L2/R ≤ C

t(r−2)/2
(h′)r−1 +

C

t(r−1)/2
hr| log (h)|,(2.32)

(ii) if the postprocessing element is (X̃, Q̃) = (Xh,r+1, Qh,r), then

‖u(t)− ũh(t)‖j ≤ C

t(r−1)/2
hr+1−j| log (h)|, j = 0, 1,(2.33)

‖p(t)− p̃h(t)‖L2/R ≤ C

t(r−1)/2
hr| log (h)|.(2.34)

Since the constant C depends on the type of element used, the result is stated
for a particular kind of MFE methods, but it applies to any kind of MFE method
satisfying the LBB condition (2.7), the approximation properties (2.11)–(2.13), as
well as negative norm estimates, that is,

‖u− sh‖−m ≤ Chl+min (m,r−2)(‖u‖l + ‖p‖Hl−1/R)

for m = 1, 2 and 1 ≤ l ≤ r. For these negative norm estimates to hold, it is necessary
on the one hand that Ω is of class C2+m, and, on the other hand, that Xh,r ⊂ H1

0 (Ω)d,
so that Xh,r consists of continuous functions vanishing on ∂Ω (i.e., discontinuous
elements are excluded).

As pointed out in [18, Remark 4.2], with a much simpler analysis than that needed
to prove Theorem 2.2, together with results in [2], the previous result applies to the
so-called mini element (r = 2) but excluding the case j = 0 (L2 errors) in (2.31)
and (2.33).

3. Analysis of fully discrete postprocessed methods.

3.1. The general case. As mentioned in the Introduction, in practice, it is
hardly ever possible to compute the MFE approximation exactly, and, instead, some
time-stepping procedure must be used to approximate the solution of (2.18)–(2.19).
Hence, for some time levels 0 = t0 < t1 < · · · < tN = T , approximations U (n)

h ≈
uh(tn) and P

(n)
h ≈ ph(tn) are obtained. Then, given an approximation d∗tU

(n)
h to

u̇h(tn), the fully discrete postprocessed approximation (Ũ (n)
h , P̃

(n)
h ) is obtained as the

solution of the following Stokes problem:

(
∇Ũ (n)

h ,∇φ̃
)

+
(
∇P̃ (n)

h , φ̃
)

=
(
f, φ̃

)
− b

(
U

(n)
h , U

(n)
h , φ̃

)
−
(
d∗tU

(n)
h , φ̃

)
∀ φ̃ ∈ X̃,

(3.1)

(
∇ · Ũ (n)

h , ψ̃
)

= 0 ∀ ψ̃ ∈ Q̃,(3.2)

where (X̃, Q̃) is as in (2.28)–(2.29). Notice then that Ũ (n)
h ∈ Ṽ and it satisfies

(3.3) ÃhŨ
(n)
h = Π̃h

(
f − F

(
U

(n)
h , U

(n)
h

)
− d∗tU (n)

h

)
.
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For reasons already analyzed in [17] and confirmed in the arguments that follow, we
propose

(3.4) d∗tU
(n)
h = Πhf −AhU (n)

h −Bh
(
U

(n)
h , U

(n)
h

)
as an adequate approximation to the time derivative u̇h(tn), which is very convenient
from the practical point of view.

We decompose the errors u(t)− Ũ (n)
h and p(t)− P̃ (n)

h as follows,

u(t)− Ũ (n)
h = (u(t)− ũh(tn)) + ẽn,(3.5)

p(tn)− P̃ (n)
h = (p(tn)− p̃h(tn)) + π̃n,(3.6)

where ẽn = ũh(tn)− Ũ (n)
h and π̃n = p̃h(tn)− P̃n are the temporal errors of the fully

discrete postprocessed approximation (Ũ (n)
h , P̃

(n)
h ). The first terms on the right-hand

sides of (3.5)–(3.6) are the errors of the (semidiscrete) postprocessed approximation
whose size is estimated in Theorem 2.2. In the present section we analyze the time
discretization errors ẽn and π̃n.

To estimate the size of ẽn and π̃n, we bound them in terms of

en = uh(tn)− U (n)
h ,

the temporal error of the MFE approximation. We do this for any time-stepping
procedure satisfying the following assumption

(3.7) lim
k→0

max
0≤n≤N

‖en‖0 = 0, and lim sup
k→0

max
0≤n≤N

‖en‖1 = O(1),

where k = max{tn− tn−1 | 1 ≤ n ≤ N}. Bounds for ‖en‖0 and ‖en‖1 of size O(k2/tn)
and O(k/t1/2n ), respectively, have been proven for the Crank–Nicolson method in [34]
(see also [41]). The arguments in [10] can be adapted to show that, for the two-step
BDF, ‖en‖j ≤ Ck2−j/2/tn, for 2 ≤ n ≤ N , j = 0, 1 (although in section 5 we shall
obtain sharper bounds of ‖en‖1). For problems in two spatial dimensions, bounds for
a variety of methods can be found in the literature (see a summary in [31]).

In the arguments in the present section we use the following inequalities [34, (3.7)]
which hold for all vh, wh ∈ Vh and φ ∈ H1

0 (Ω)d:

|b(vh, vh, φ)| ≤ c‖vh‖3/21 ‖Ahvh‖1/20 ‖φ‖0,(3.8)
|b(vh, wh, φ)|+ |b(wh, vh, φ)| ≤ c‖vh‖1‖Ahwh‖0‖φ‖0,(3.9)
|b(vh, wh, φ)|+ |b(wh, vh, φ)| ≤ ‖vh‖1‖wh‖1‖φ‖1.(3.10)

Proposition 3.1. Let (2.11) hold for l = 2. Then, there exists a positive constant
C = C(max0≤t≤T ‖Ahuh(t)‖0) such that

‖ẽn − en‖j ≤ Ch2−j(‖en‖1 + ‖en‖31 + ‖Ahen‖0
)
, j = 0, 1, 1 ≤ n ≤ N,(3.11)

‖π̃n‖L2(Ω)/R ≤ C
(‖ẽn‖1 + ‖en‖1 + ‖en‖21

)
, 1 ≤ n ≤ N.(3.12)

Proof. From (3.4) and (2.20) it follows that

(3.13) u̇h(tn)− d∗tU (n)
h = −Ahen + Πh

(
F
(
U

(n)
h , U

(n)
h

)
− F (uh(tn), uh(tn))

)
,
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so that subtracting (3.3) from (2.30) and multiplying by Ã−1
h we get

(3.14) ẽn = −Ã−1
h Π̃h(I −Πh)g + Ã−1

h Π̃hAhen,

where g = F (uh(tn), uh(tn))− F (U (n)
h , U

(n)
h ). By writing

Ã−1
h Π̃hAhen = en +

(
Ã−1
h Π̃h −A−1

h

)
Ahen,

and applying (2.14) we get

(3.15) ‖ẽn − en‖j ≤
∥∥∥Ã−1

h Π̃h(I −Πh)g
∥∥∥
j
+ Ch2−j‖Ahen‖0, j = 0, 1.

Similarly, for g we write

(3.16) Ã−1
h Π̃h(I −Πh)g =

(
Ã−1
h Π̃h −A−1Π

)
(I −Πh)g + A−1Π(I −Πh)g.

In order to bound the first term on the right-hand side above we first apply (2.14),
and then we observe that ‖(I − Πh)g‖0 ≤ ‖g‖0. For the second term on the right-
hand side of (3.16), we may use a simple duality argument and (2.8), so that we have
‖Ã−1

h Π̃h(I −Πh)g‖j ≤ Ch2−j‖g‖0. Now, by writing g as

(3.17) g = F (en, uh(tn)) + F (uh(tn), en)− F (en, en),

a duality argument and (3.8)–(3.9) show that∥∥∥Ã−1
h Π̃h(I −Πh)g

∥∥∥
j
≤ Ch2−j

(
‖Ahuh(tn)‖0‖en‖1 + ‖en‖3/21 ‖Ahen‖1/20

)
.

Applying Hölder’s inequality to the last term on the right-hand side above, the bound
(3.11) follows from (3.14) and (3.15).

For the pressure, subtracting (3.1) from (2.28) and recalling (3.13) we have(
π̃n,∇ · φ̃

)
=
(
∇ẽn,∇φ̃

)
+
(
g, φ̃
)

+
(
u̇h − d∗tU (n)

h , φ̃
)
,

for all φ̃ ∈ X̃, where g is as in (3.17). Then, thanks to the inf-sup condition (2.7), we
have

‖π̃n‖L2(Ω)/R ≤ C
(
‖ẽn‖1 + sup

φ̃∈X̃

|(g, φ̃)|
‖φ̃‖1

+
∥∥∥u̇h(tn)− d∗tU (n)

h

∥∥∥
−1

)
.

Taking into account the expression of g in (3.17) and applying (3.10) it follows that

‖π̃n‖L2(Ω)/R ≤ C
(
‖ẽn‖1 + ‖en‖1(‖uh(tn)‖1 + ‖en‖1) + ‖u̇h − d∗tU (n)

h ‖−1

)
,

so that (3.12) follows by applying Lemma 3.2 below, (2.15), and using the fact that
‖uh(tn)‖1 ≤ C‖Ahuh(tn)‖0.

Lemma 3.2. Under the hypotheses of Proposition 3.1, there exists a constant C =
C(max0≤t≤T ‖uh(t)‖1) > 0 such that the following bound holds for 1 ≤ n ≤ N :

(3.18)
∥∥∥u̇h − d∗tU (n)

h

∥∥∥
−1
≤ C

∥∥∥A1/2
h en

∥∥∥
0

(
1 + ‖A1/2

h en‖0
)
.
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Proof. Since u̇h − d∗tU (n)
h ∈ Vh, we have∥∥∥u̇h − d∗tU (n)

h

∥∥∥
−1
≤ C

∥∥∥A−1/2
h

(
u̇h − d∗tU (n)

h

)∥∥∥
0
,

due to (2.15). Thus, in view of (3.13), the lemma is proved if for

g = F (uh(tn), uh(tn))− F
(
U

(n)
h , U

(n)
h

)
,

we show that ‖A−1/2
h Πhg‖0 can be bounded by the right-hand side of (3.18). If we

write g as in (3.17), a simple duality argument, (3.10), and the equivalence (2.15)
show that, indeed, ∥∥∥A−1/2

h Πhg
∥∥∥

0
≤ C‖en‖1

(‖uh(tn)‖1 + ‖en‖1
)
.

Since according to (2.15), ‖en‖1 and ‖A1/2
h en‖0 are equivalent, then the result

follows.
Since we are assuming that the meshes are quasiuniform and, hence, both (2.6)

and (2.15) hold, we have Ch2−j‖Ahen‖0 ≤ C‖en‖j and Ch‖en‖1 ≤ C‖en‖0. Thus,
from (3.11)–(3.12) and (3.7) the following result follows.

Theorem 3.3. Let (2.11) hold for l = 2 and let (2.3) hold. Then there exists a
positive constant C depending on max{F2,0(t) | 0 ≤ t ≤ T }, such that if the errors
en = uh(tn) − U

(n)
h , 1 ≤ n ≤ N of any approximation U

(n)
h ≈ uh(tn) for 0 =

t0 < · · · < tN satisfy (3.7), then the (fully discrete) postprocessed approximations
(Ũ (n)

h , P̃
(n)
h ) solution of (3.1)–(3.2) satisfy∥∥∥ũh(tn)− Ũ (n)

h

∥∥∥
j
≤ C

∥∥∥uh(tn)− U (n)
h

∥∥∥
j
, 1 ≤ n ≤ N, j = 0, 1,(3.19) ∥∥∥p̃h(tn)− P̃ (n)

h

∥∥∥
L2(Ω)/R

≤ C
∥∥∥uh(tn)− U (n)

h

∥∥∥
1
, 1 ≤ n ≤ N,(3.20)

for k sufficiently small, where (ũh(tn), p̃h(tn)) is the (semidiscrete) postprocessed ap-
proximation defined in (2.28)–(2.29).

3.2. The case of the BDF. Better estimates than (3.19) can be obtained when
‖Ahen‖0 can be shown to decay with k at the same rate as ‖en‖0. As mentioned in the
introduction this will be shown to be the case of two (fixed time-step) time integration
procedures in section 5: the backward Euler method and the two-step BDF [9] (see
also [25, section III.1]). We describe them now.

For N ≥ 2 integer, we fix k = Δt = T/N , and we denote tn = nk, n = 0, 1, . . . , N .
For a sequence (yn)Nn=0 we denote

Dyn = yn − yn−1, n = 1, 2 . . . , N.

Given U
(0)
h = uh(0), a sequence (U (n)

h , P
(n)
h ) of approximations to (uh(tn), ph(tn)),

n = 1, . . .N , is obtained by means of the following recurrence relation:(
dtU

(n)
h , φh

)
+
(
∇U (n)

h ,∇φh
)

(3.21)

+ b
(
U

(n)
h , U

(n)
h , φh

)
−
(
P

(n)
h ,∇ · φh

)
= (f, φh) ∀φh ∈ Xh,r,(

∇ · U (n)
h , ψh

)
= 0, ∀ψh ∈ Qh,r−1,(3.22)
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where dt = k−1D in the case of the backward Euler method and dt = k−1(D + 1
2D

2)
for the two-step BDF. In this last case, a second starting value U (1)

h is needed. In
the present paper, we will always assume that U (1)

h is obtained by one step of the
backward Euler method. Also, for both the backward Euler and the two-step BDF,
we assume that U (0)

h = uh(0), which is usually the case in practical situations.
In order to cope for the minor differences between the two methods, we set

(3.23) l0 =
{

1, for the backward Euler method,
2, for the two-step BDF.

Under these conditions, we show in Lemma 5.2 and Theorems 5.4 and 5.7 in
section 5 that the errors en of these two time integration procedures satisfy that

(3.24) ‖en‖0 + tn‖Ahen‖0 ≤ Cl0
kl0

tn
l0−1

, 1 ≤ n ≤ N,

for a certain constants C1 and C2. These are, respectively, the terms between paren-
theses in (5.23) and (5.33) below, which as Proposition 2.1 above and Lemma 4.3
below show, can be bounded for T > 0 fixed. Thus, from Proposition 3.1 and (3.24)
the following result follows readily.

Theorem 3.4. Under the hypotheses of Proposition 3.1, let the approximations
U

(n)
h , n = 1, . . . , N be obtained by either the backward Euler method or the two-step

BDF under the conditions stated above. Then, there exist positive constants C′l =
C(Cl), for l = 1, 2, and k′, such that for k < k′ the temporal errors ẽn of the fully
discrete postprocessed approximation satisfy that ẽn = en + rn, and

‖rn‖j ≤ C′l0h2−j k
l0

tl0n
, j = 0, 1, 1 ≤ n ≤ N.

We remark that a consequence of the above result is that for these two methods
the temporal errors of the postprocessed and MFE approximations are asymptotically
the same as h → 0. This allows to use the difference γ(n)

h = Ũ
(n)
h − U (n)

h as an a
posteriori error estimator of the spatial error of the MFE approximation, since, as
shown in [15, 16, 17], its size is that of u(t)−uh(t) so long as the spatial and temporal
errors are not too unbalanced.

We also remark that at a price of lengthening the already long and elaborate
analysis in the present paper, variable stepsizes could have been considered following
ideas in [4], but, for the sake of simplicity we consider only fixed stepsize in the analysis
that follows.

4. Technical results.

4.1. Inequalities for the nonlinear term. We now obtain several estimates
for the quadratic form Bh(v, w) = ΠhF (u, v) that will be frequently used in our
analysis. We start by proving an auxiliary result.

Lemma 4.1. Let (2.11) hold for l = 2, Then, the following bound holds for any
fh, gh, and ψh in Vh:

(4.1) |b(fh, gh, ψh)|+ |b(gh, fh, ψh)| ≤ C‖Ahfh‖0‖A−1/2
h gh‖0‖Ahψh‖0.

Proof. To prove this bound we will use the following identity,

I = A−1ΠAh +
(
A−1
h −A−1Π

)
Ah.
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It will be applied to either fh or ψh whenever any of their derivatives appears in the
expressions of b(fh, gh, ψh) and b(gh, fh, ψh). We deal first with the second term on
the left-hand side of (4.1). Integrating by parts we may write

b(gh, fh, ψh) =
1
2
((gh · ∇)fh, ψh)− 1

2
((gh · ∇)ψh, fh)

=
1
2
((gh · ∇)A−1ΠAhfh, ψh)− 1

2
((gh · ∇)A−1ΠAhψh, fh)

+
1
2
((gh · ∇)

(
A−1
h −A−1Π)Ahfh, ψh

)
− 1

2
(
(gh · ∇)

(
A−1
h −A−1Π

)
Ahψh, fh

)
.

Using (2.14) with j = 1 and (2.16), the last two terms on the right-hand side above
can be bounded by

Ch
(‖Ahfh‖0‖ψh‖∞ + ‖Ahψh‖0‖fh‖∞

)‖gh‖0 ≤ Ch‖Ahfh‖0‖Ahψh‖0‖gh‖0.
By writing ‖gh‖0 ≤ ‖A1/2

h ‖0‖A−1/2
h gh‖0 ≤ Ch−1‖A−1/2

h gh‖0, we thus have

|bh(gh, fh, ψh)| ≤ 1
2

∣∣((gh · ∇)A−1ΠAhfh, ψh
)∣∣+ 1

2

∣∣((gh · ∇)A−1ΠAhψh, fh
)∣∣

+ C‖Ahfh‖0‖Ahψh‖0
∥∥∥A−1/2

h gh

∥∥∥
0
.

(4.2)

Now, applying Hölder’s inequality it easily follows that∣∣((gh · ∇)A−1Πfh, ψh
)∣∣ ≤

C‖gh‖−1

(∥∥A−1ΠAhfh
∥∥

2
‖ψh‖∞ +

∥∥∇A−1ΠAhfh
∥∥
L6 ‖∇ψh‖L3

)
,

so that, applying (2.16)–(2.17) and regularity estimates for the Stokes problem, and
standard Sobolev’s inequalities we have

(4.3)
∣∣((gh · ∇)A−1Πfh, ψh

)∣∣ ≤ C‖gh‖−1‖Ahfh‖0‖Ahψh‖0.
Also, arguing similarly, |((gh · ∇)A−1ΠAhψh, fh)| ≤ C‖gh‖−1‖Ahfh‖0‖Ahψh‖0, so
that from (4.2) and (4.3) it follows that

|b(gh, fh, ψh)| ≤ C
(
‖gh‖−1 +

∥∥∥A−1/2
h gh

∥∥∥
0

)
‖Ahfh‖0‖Ahψh‖0.

Now, recalling the equivalence (2.15) we have

(4.4) |b(gh, fh, ψh)| ≤ C
∥∥∥A−1/2

h gh

∥∥∥
0
‖Ahfh‖0‖Ahψh‖0.

For the second term on the left-hand side of (4.1), thanks to (2.1) we may write

|b(fh, gh, ψh)| ≤
∣∣((fh · ∇)A−1ΠAhψh, gh

)∣∣+ ∣∣((∇ · A−1ΠAhfh
)
ψh, gh

)∣∣
+
∣∣((fh · ∇)

(
A−1
h −A−1Π

)
Ahψh, gh

)∣∣
+
∣∣((∇ · (A−1

h −A−1Π
)
Ahfh

)
ψh, gh

)∣∣ ,
so that

|b(fh, gh, ψh)| ≤
(∥∥(fh · ∇)A−1ΠAhψh

∥∥
1
+
∥∥(∇ · A−1ΠAhfh

)
ψh
∥∥

1

) ‖gh‖−1

+ Ch‖Ahfh‖0‖Ahψh‖0‖gh‖0.
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Then, recalling that ‖gh‖0 ≤ Ch−1‖A−1/2
h gh‖0 and (2.15), arguments like those used

from (4.2) to (4.4) also show that

|bh(fh, gh, ψh)| ≤ C‖A−1/2
h gh‖0‖Ahfh‖0‖Ahψh‖0,

so that, in view of (4.4), the proof of (4.1) is finished.
Lemma 4.2. Under the conditions of Lemma 4.1, there exists a constant C > 0

such that the following bounds hold for vh, wh ∈ Vh

(4.5)
∥∥∥Aj/2h Bh(vh, wh)

∥∥∥
0

+
∥∥∥Aj/2h Bh(wh, vh)

∥∥∥
0
≤ C

∥∥∥A(j+1)/2
h vh

∥∥∥
0
‖Ahwh‖0,

for j = −2,−1, 0, 1, and

‖Bh(vh, vh)‖0 ≤ C‖vh‖3/21 ‖Ahvh‖1/20 ,(4.6)
‖A−1

h Bh(vh, vh)‖0 ≤ C‖vh‖0‖vh‖1.(4.7)

Proof. The cases j = −1, 0 in (4.5) as well as (4.6) are easily deduced from the
fact that for every vh ∈ Vh, ‖A1/2

h vh‖0 = ‖∇vh‖0, (2.16), and from standard bounds
(e.g., (3.8), [34, (3.7)]) .

If we denote fh = wh, gh = vh, and, for φh ∈ Vh ψh = A−1
h φh, case j = −2

in (4.5) is a direct consequence of standard duality arguments and (4.1). Also, arguing
by duality the bound (4.7) is a straightforward consequence of well-known bounds for
the trilinear form b (e.g., [34, (3.7)]).

Finally, for the case j = 1 in (4.5), we argue by duality. For φh ∈ Vh, thanks
to (2.1), we have

b
(
vh, wh, A

1/2
h φh

)
+ b
(
wh, vh, A

1/2
h φh

)
= −b

(
vh, A

1/2
h φh, wh

)
− b
(
wh, A

1/2
h φh, vh

)
,

so that, by denoting gh = A
1/2
h φh, the case j = 1 in (4.5) is a direct consequence of

(4.1).

4.2. Further a priori estimates for the finite-element solution. We main-
tain the notation tacitly introduced in Proposition 2.1,

Fl,r = tr+2(l−1)

∥∥∥∥Ar/2h

dl

dsl
uh(t)

∥∥∥∥
2

0

, and Il,r =
∫ t

0

sr+2l−3

∥∥∥∥Ar/2h

dl

dsl
uh(t)

∥∥∥∥
2

0

ds.

Lemma 4.3. Under the conditions of Proposition 2.1, there exists a positive
constant M̃4 such that for 0 ≤ t ≤ T the following bounds hold:

F2,−2(t) =
∥∥A−1

h üh(t)
∥∥

0
≤ M̃4,(4.8)

I3,−3(t) =
∫ t

0

∥∥∥A−3/2
h

...
uh(s)

∥∥∥2

0
ds ≤ M̃4,(4.9)

I2,2(t) =
∫ t

0

s3 ‖Ahüh(s)‖20 ds ≤ M̃4,(4.10)

I3,−1(t) =
∫ t

0

s2
∥∥∥A−1/2

h

...
uh(s)

∥∥∥2

0
ds ≤ M̃4,(4.11)

I3,1(t) + F2,2(t) =
∫ t

0

s4
∥∥∥A1/2

h

...
uh(s)

∥∥∥2

0
ds+ t4 ‖Ahüh(t)‖20 ≤ M̃4.(4.12)
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Proof. Taking derivatives with respect to t in (2.20) and multiplying by A−1
h we

have

A−1
h üh = A−1

h Πhft − u̇h −A−1
h

(
Bh(u̇h, uh) +Bh(uh, u̇h)

)
.

Applying Lemma 4.2 we have∥∥A−1
h (Bh(u̇h, uh) +Bh(uh, u̇h))

∥∥
0
≤ C‖Ahuh‖0

∥∥∥A−1/2
h u̇h

∥∥∥
0
≤ C‖Ahuh‖0‖u̇h‖0,

so that (4.8) follows from (2.3), (2.23), and (2.24) with r = 0.
We now prove (4.9). Taking derivatives twice with respect to t in (2.20) and

multiplying by A−3/2
h we have

(4.13) A
−3/2
h

...
uh = A

−3/2
h Πhftt −A−1/2

h üh −A−3/2
h

d2

dt2
Bh(uh, uh).

Taking into account that for vh ∈ Vh, we have ‖A−3/2
h vh‖0 ≤ C‖A−1

h vh‖0, and that

(4.14)
d2

dt2
Bh(uh, uh) = Bh(üh, uh) + 2Bh(u̇h, u̇h) +Bh(uh, üh),

then, applying the bound (4.5) for j = −2 with vh = üh, and wh = uh, on the one
hand, and, on the other, (4.7) with vh = u̇h, it follows∥∥∥∥A−3/2

h

d2

dt2
Bh(uh, uh)

∥∥∥∥
0

≤ C‖Ahuh‖0
∥∥∥A−1/2

h üh

∥∥∥
0

+ ‖u̇h‖0‖u̇h‖1,

so that the bound (4.9) follows from (4.13), (2.3), and the fact that A−3/2
h is bounded

independently of h, together with (2.23), (2.24) with r = 0, (2.26) with r = 1,
and (2.27) with r = −1.

We now prove (4.10). Taking derivatives twice with respect to t in (2.18) and
then setting φ = t3Ahüh, we have

1
2
t3
d

dt

∥∥∥A1/2
h üh

∥∥∥2

0
+ t3‖Ahüh‖20 = t3

(
ftt − d2

dt2
Bh(uh, uh), Ahüh

)
.

Since |(ftt− d2

dt2Bh(uh, uh), Ahüh)| ≤ ‖ftt‖20+‖ d2dt2Bh(uh, uh)‖20+ 1
2‖Ahüh‖20, it follows

that

d

dt

(
t3‖A1/2

h üh‖20
)

+ t3‖Ahüh‖20 ≤ 2t3‖ftt‖20
∥∥∥∥ d2

dt2
Bh(uh, uh)

∥∥∥∥
2

0

+ 3t2
∥∥∥A1/2

h üh

∥∥∥2

0
.

(4.15)

Now recall (4.14) and apply (4.5) with vh = üh, and wh = uh, on the one hand, and,
on the other, (4.6) with vh = u̇h to get∥∥∥∥ d2

dt2
Bh(uh, uh)

∥∥∥∥
0

≤ C
(
‖Ahu‖0

∥∥∥A1/2
h ü

∥∥∥
0

+
∥∥∥A1/2

h u̇
∥∥∥3/2

0
‖Ahu̇‖1/20

)
,

so that, in view of (2.23)–(2.25) it follows that

(4.16) t3
∥∥∥∥ d2

dt2
Bh(uh, uh)

∥∥∥∥
2

0

≤ C
(
1 + t1/2

)
M̃4

3 .
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Integrating with respect to t in (4.15) and taking into account (2.3), (2.25) with r = 1,
and (4.16), the bound (4.10) follows.

To prove (4.12), we take derivatives twice with respect to t in (2.18) and then we
set φ = t4Ah

...
uh, so that

t4
∥∥∥A1/2

h

...
uh

∥∥∥2

0
+

1
2
t4
d

dt
‖Ahüh‖20 = t4

(
ftt − d2

dt2
Bh(uh, uh), Ah

...
uh

)
,

and, since ‖A1/2
h Πhftt‖0 ≤ C‖ftt‖1,

t4
∥∥∥A1/2

h

...
uh

∥∥∥2

0
+
d

dt

(
t4‖Ahüh‖20

) ≤4t3‖Ahüh‖20

+ 2t4
(
C2‖ftt‖21 +

∥∥∥∥A1/2
h

d2

dt2
Bh(uh, uh)

∥∥∥∥
2

0

)
.

(4.17)

Applying (4.5) to bound the third term on the right-hand side above we have

t4
∥∥∥∥A1/2

h

d2

dt2
Bh(uh, uh)

∥∥∥∥
2

0

≤ Ct4 (‖Ahuh‖20‖Ahüh‖20 + ‖Ahu̇h‖40
)

≤ CtK̃
(
1 + M̃2

4

) (
t3‖Ahüh‖20 + t‖Ahu̇h‖20

)
,

(4.18)

the last inequality being a consequence of (2.23) and (2.24) with r = 2. Thus, inte-
grating with respect to t in (4.17) and applying (2.3), (2.26) with r = 2, (4.18), and
(4.10), the bound (4.12) follows.

Finally, since standard spectral theory of positive self-adjoint operators shows
that ‖A−1/2

h

...
uh‖20 ≤ ‖A−3/2

h

...
uh‖0‖A1/2

h

...
uh‖0, by applying Hölder’s inequality the

bound (4.11) follows from (4.9) and (4.12).

5. Error estimates. In this section we obtain error estimates for the temporal
errors en of the two BDF described in section 3.2, the backward Euler method and
the two-step formula (3.21)–(3.22), for which, an equivalent formulation is

(5.1) dtU
(n)
h = −AhU (n)

h −Bh
(
U

(n)
h , U

(n)
h

)
+ Πhf(tn), l0 ≤ n ≤ N.

We remark that although higher regularity was required in section 2.3, in what
follows it is only required that Ω is of class C2 and that (2.11)–(2.13) hold for l = 2.

A simple calculation shows that for a sequence (yn)Nn=0 in Vh,

(5.2)
n∑
j=l

(yj , Dyj) =
1
2
‖yn‖20 −

1
2
‖yl−1‖20 +

1
2

n∑
j=l

‖Dyj‖20, 1 ≤ l ≤ n ≤ N,

and, for 2 ≤ l ≤ n ≤ N , (see, e.g., [10, (2.4b)])

n∑
j=l

(
yj,

(
D +

1
2
D2

)
yj

)
=

1
4
‖yn‖20 +

1
4
‖yn +Dyn‖20 +

1
4

n∑
j=l

‖D2yj‖2

− 1
4
‖yl−1‖20 −

1
4
‖yl−1 +Dyl−1‖20.

(5.3)
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As mentioned in section 3.2, we shall assume that e0 = 0 although in some of the
previous lemmas this condition will not be required. It must be noticed that e0 = 0
is not a serious restriction, since, on the one hand, it is usually satisfied in practice,
and, on the other hand, were it not satisfied, there are standard ways to show that
the effect of e0 �= 0 decays exponentially with time.

The finite-element approximation uh to the velocity satisfies

(5.4) dtuh(tn) +Ahuh(tn) +Bh(uh(tn), uh(tn))−Πhf(tn) = τn,

where

(5.5) τn = dtuh(tn)− u̇h(tn) =
1
k

∫ tn

tn−1

(t− tn−1)üh(t) dt, n = 1, 2, . . . , N,

for the backward Euler method, and, for the two-step BDF,

(5.6) τn =
1
k

∫ tn

tn−2

(
2(t− tn−1)+ − 1

2
(t− tn−2)

)
üh(t) dt,

where for x ∈ R, x+ = max(x, 0), and, also,

(5.7) τn =
1
2k

∫ tn

tn−2

(
2(t− tn−1)+

2 − 1
2
(t− tn−2)2

)
d3

dt3
uh(t) dt.

Subtracting (5.1) from (5.4), we obtain that the temporal error en satisfies

(5.8) dten +Ahen +Bh(en, uh(tn)) +B
(
U

(n)
h , en

)
= τn, n = 2, 3, . . . , N.

We shall now prove a result valid for both the backward Euler method and the
two-step BDF.

Lemma 5.1. Fix T > 0 and M > 0. Then, there exist positive constants k0

and C, such that for any for k ≤ k0 with Nk = T , and any four sequences (Yn)Nn=0,
(Vn)Nn=0, (Wn)Nn=0, and (gn)Nn=0 in Vh satisfying

(5.9) max (‖AhVn‖, ‖AhWn‖) ≤M, n = 0, 1, . . . , N,

and

(5.10) dtYi +AhYi +Bh(Yi, Vi) +Bh(Wi, Yi) = gi, i = l0, . . . , N,

where l0 is the value defined in (3.23), the following bound holds for n = l0, . . . , N ,
and j = −2,−1, 0, 1, 2.

∥∥∥Aj/2h Yn

∥∥∥2

0
+ k

n∑
i=l0

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0

≤ C2

(∥∥∥Aj/2h Y0

∥∥∥2

0
+ (l0 − 1)

∥∥∥Aj/2h Y1

∥∥∥2

0
+ k

n∑
i=l0

∥∥∥A(j−1)/2
h gi

∥∥∥2

0

)
.

(5.11)

When j = 0, condition (5.9) can be relaxed to ‖AhVn‖ ≤M , for n = 0, 1 . . . , N .
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Proof. Take inner product with AjYi in (5.10) so that we have

(5.12)(
dtA

j/2
h Yi, A

j/2
h Yi

)
+
∥∥∥A(j+1)/2

h Yi

∥∥∥2

0
≤
∣∣∣(Zi, AjhYi)∣∣∣+ ∣∣∣(A(j−1)/2

h gi, A
(j+1)/2
h Yi

)∣∣∣ ,
where

(5.13) Zi = B(Yi, Vi) +B(Wi, Yi).

Applying Hölder’s inequality to the last term on the right-hand side of (5.12) and
rearranging terms we have

(5.14)
(
dtA

j/2
h Yi, A

j/2
h Yi

)
+

1
2

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0
≤
∣∣∣(Zi, AjhYi)∣∣∣+ 1

2

∥∥∥A(j−1)/2
h gi

∥∥∥2

0
.

For j > −2, we write (Zi, A
j
hYi) = (A(j−1)/2

h Zi, A
(j+1)/2
h Yi), so that applying Hölder’s

inequality and Lemma 4.2 with Vi and Wi taking the role of vh and wh in (4.5), and
recalling (5.9) we have∣∣∣(Zi, AjhYi)∣∣∣ ≤ ∥∥∥A(j−1)/2

h Zi

∥∥∥2

0
+

1
4

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0

≤ C2M2
∥∥∥Aj/2h Yi

∥∥∥2

0
+

1
4

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0
.

(5.15)

Notice that when j = 0, due to the skew-symmetry property (2.1) of the trilinear
form b we have |(Zi, Yi)| = |b(Yi, Vi, Yi)|, so that only ‖AhVi‖0 ≤ M is necessary for
(5.15) to hold; that is, no condition on AhWi is required. For j = 2, on the other
hand, we write (Zi, A

j
hYi) = (Aj/2h Zi, A

j/2
h Yi), so that arguing similarly we have∣∣(Zi, A−2

h Yi
)∣∣ ≤ ∥∥A−1

h Zi
∥∥

0

∥∥A−1
h Yi

∥∥
0
≤ CM

∥∥∥A−1/2
h Yi

∥∥∥
0

∥∥A−1
h Yi

∥∥
0

≤ C2M2
∥∥A−1

h Yi
∥∥2

0
+

1
4

∥∥∥A−1/2
h Yi

∥∥∥2

0
.

(5.16)

In all cases, then, from (5.14) it follows that for an appropriate constant C0 > 0(
dtA

j/2
h Yi, A

j/2
h Yi

)
+

1
4

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0
≤ C2

0M
2
∥∥∥Aj/2h Yi

∥∥∥2

0
+

1
2

∥∥∥A(j−1)/2
h gi

∥∥∥2

0
,

so that multiplying this inequality by k and summing from l0 to n, and recalling (5.2–
5.3), after some rearrangements we can write

1
2l0

∥∥∥Aj/2h Yn

∥∥∥2

0
+
k

4

n∑
i=l0

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0

≤ 1
2l0

(∥∥∥Aj/2h Yl0−1

∥∥∥2

0
+ (l0 − 1)

∥∥∥Aj/2h (Yl0−1 +DYl0−1)
∥∥∥2

0

)

+ C2
0M

2k

n∑
i=l0

∥∥∥Aj/2h Yi

∥∥∥2

0
+
k

2

n∑
i=l0

∥∥∥A(j−1)/2
h gi

∥∥∥2

0
.

(5.17)

A simple calculation shows that∥∥∥Aj/2h Y1

∥∥∥2

0
+
∥∥∥Aj/2h (Y1 +DY1)

∥∥∥2

0
≤ 7

∥∥∥Aj/2h Y1

∥∥∥2

0
+ 3

∥∥∥Aj/2h Y0

∥∥∥2

0
,
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so that multiplying by 2l0 in (5.17) and taking into account that 2l0/4 ≤ 1, for an
appropriate constant C′ we may write∥∥∥Aj/2h Yn

∥∥∥2

0
+ k

n∑
i=l0

∥∥∥A(j+1)/2
h Yi

∥∥∥2

0
≤ 2l0C2

0M
2k

n∑
i=l0

∥∥∥Aj/2h Yi

∥∥∥2

0

+ C′
(∥∥∥Aj/2h Y0

∥∥∥2

0
+ (l0 − 1)

∥∥∥Aj/2h Y1

∥∥∥2

0
+ k

n∑
i=l0

∥∥∥A(j−1)/2
h gi

∥∥∥2

0

)
.

Now, for k sufficiently small so that 2l0C2
0M

2k < 1/2, applying a standard discrete
Gronwall lemma (e.g., [34, Lemma 5.1]) we have that (5.11) holds, with C2 being
C′ exp(4l0C2

0M
2T ).

Lemma 5.2. Let (2.11) hold for l = 2. Then, there exist positive constants k0

and c1 such that the errors en satisfy the following bound for 1 ≤ n ≤ N , k ≤ k0:

(5.18) En ≡ ‖en‖20 + k

n∑
i=l0

∥∥∥A1/2
h ei

∥∥∥2

0
≤ c21

(‖e0‖20 + (l0 − 1)‖e1‖20 + k2I2,−1(tn)
)
.

Proof. We apply Lemma 5.1 to (5.8) in the case where j = 0 and Yi = ei,
Vi = uh(ti), and Wi = U

(i)
h . Observe that since we are in the case j = 0, only one of

the two sequences (Ahuh(ti))Ni=0, (AhU
(i)
h )Ni=0 has to be bounded, and, in the present

case, the first one is bounded according to (2.23). Thus, we have

(5.19) ‖en‖20 + k
n∑
i=l0

∥∥∥A1/2
h ei

∥∥∥2

0
≤ C2

(
‖e0‖20 + (l0 − 1)‖e1‖20 + k

n∑
i=1

∥∥∥A−1/2
h τj

∥∥∥2

0

)
.

Now, applying Hölder’s inequality to the right-hand side of (5.5) we have

k
∥∥∥A−1/2

h τj

∥∥∥2

0
≤ 1
k

∫ tj

tj−1

(t− tj−1)2dt
∫ tj

tj−1

∥∥∥A−1/2
h üh(t)

∥∥∥2

0
dt

=
k2

3

∫ tj

tj−1

∥∥∥A−1/2
h üh(t)

∥∥∥2

0
dt.

Similarly, for the two-step BDF, applying Hölder’s inequality to the right-hand side
of (5.6) we have

k
∥∥∥A−1/2

h τn

∥∥∥2

0
≤ 1

4k

∫ tn

tn−2

(4(t− tn−1)+ − (t− tn−2))2 dt
∫ tn

tn−2

∥∥∥A−1/2
h üh(t)

∥∥∥2

0
dt

≤ 5
3
k2

∫ tn

tn−2

∥∥∥A−1/2
h üh(t)

∥∥∥2

0
dt.

Thus, the statement of the lemma follows from (5.19).
The previous result allows us to deduce a bound for ‖Aheh‖0 in the following

lemma. The values of I2,−1, I2,0 are those of Proposition 2.1.
Lemma 5.3. Under the conditions of Lemma 5.2, there exist positive constants k̃0

and c̃0 such that if e0 = 0 and, in the case of the two-step BDF, also U (1)
h is given by

the backward Euler method, the following bound holds for k ≤ k̃0 and n = 1, 2, . . . , N :

(5.20) ‖Ahen‖0 ≤ c̃0Jn,
where Jn = (I2,−1(tn) + I2,0(tn))1/2.
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Proof. If e0 = 0, from (5.18) for the Euler method (for which l0 = 1) it follows
that

(5.21) ‖en‖0 ≤ c′k(I2,−1(tn))1/2 ≤ c′kJn, n = 1, 2 . . . , N

for c′ = c1. In the case of the two-step BDF, if U (1)
h is obtained by the backward

Euler method, if we allow for a larger value of c′, it is clear that (5.21) also holds.
Furthermore, it is immediate to check that ‖dten‖0 ≤ 2l0k−1 max0≤i≤l0 ‖en‖0, so

that, in view of (5.21), from (5.8) it follows that

‖Ahen‖0 ≤ c′′Jn +
∥∥∥Bh(en, uh(tn)) +B

(
U

(n)
h , en

)∥∥∥
0

+ ‖τn‖0,

for some constant c′′ > 0. For the Euler method, recalling the expression of τn in (5.5)
we can write

‖τn‖20 =

∥∥∥∥∥1
k

∫ tn

tn−1

(t− tn−1)üh dt

∥∥∥∥∥
2

0

≤ 1
k2

∫ tn

tn−1

(t− tn−1)2

t
dt
∫ tn

tn−1

t‖üh‖20 dt.

A simple calculation shows that the first factor on the right-hand side above can be
bounded by k/tn ≤ 1 for n = 1, 2, . . . , N . Furthermore, a similar bound can be also
obtained in the case of the two-step BDF. Thus, we have

‖Ahen‖0 ≤ c′′′Jn +
∥∥∥Bh(en, uh(tn)) +B

(
U

(n)
h , en

)∥∥∥
0
,

for an appropriate constant c′′′ > 0. Finally,∥∥∥Bh(en, uh(tn)) +B
(
U

(n)
h , en

)∥∥∥
0

= ‖Bh(en, uh(tn)) +B(uh(tn), en)−Bh(en, en)‖0.

Applying (4.5) and (4.6) we get

‖Ahen‖0 ≤ c′′′Jn + C
∥∥∥A1/2

h en

∥∥∥
0
‖Ahuh‖0 + C

∥∥∥A1/2
h en

∥∥∥3/2

0
‖Ahen‖1/20 ,

and, thus,

1
2
‖Ahen‖0 ≤ c′′′Jn + C

∥∥∥A1/2
h en

∥∥∥
0
‖Ahuh‖0 +

1
2
C2
∥∥∥A1/2

h en

∥∥∥3

0
.

Since ‖Ahuh‖0 is bounded (recall Proposition 2.1) and, arguing as in (5.21), we have
‖A1/2

h en‖0 ≤ c1(kI2,−1(tn))1/2, the bound (5.20) follows for k sufficiently small.
Remark 5.1. Observe that from the previous lemma and Proposition 2.1 it follows

that ‖AhU (n)
h ‖0 ≤ cM̃3 where c = 1 + c̃0

√
2. Thus, as long as e0 = 0 and, in case of

the two-step BDF, also U (1)
h is given by the Euler method, we may apply Lemma 5.1

for j �= 0, with Vn and Wn replaced by uh(tn) and U (n)
h , respectively.

We now study the errors Ahtnen. We deal first with the backward Euler method.
Observe that D(tnen) = tnDen+ken−1, so that multiplying by tn in (5.8), after some
rearrangements we get

(5.22) dt(tnen) +Ah(tnen) +Bh(tnen, uh) +Bh

(
U

(n)
h , tnen

)
= en−1 + tnτn.

We have the following result.
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Theorem 5.4. Let (2.11) hold for l = 2. Then, there exist positive constants k2

and c2 such that for k ≤ k2, if e0 = 0 the errors εn = tnen satisfy

(5.23)

(
‖Ahεn‖20 + k

n∑
i=1

∥∥∥A3/2
h εi

∥∥∥2

0

)1/2

≤ c2k(I2,−1(tn)+I2,1(tn))1/2, 1 ≤ n ≤ N.

Proof. Applying Lemma 5.1 with j = 2 to (5.22) we have

‖Ahεn‖20 + k
n∑
i=1

∥∥∥A3/2
h εi

∥∥∥2

0
≤ c

(
k
n−1∑
i=1

∥∥∥A1/2
h ei

∥∥∥2

0
+ k

n∑
i=1

∥∥∥tiA1/2
h τi

∥∥∥2

0

)
.

The first term on the right-hand side above is bounded Lemma 5.2 by c21k2I2,−1(tn).
For the second one we notice that

k
∥∥∥tiA1/2

h τi

∥∥∥2

0
= k

∥∥∥∥∥ tik
∫ ti

ti−1

t− ti−1

t
tA

1/2
h üh(t) dt

∥∥∥∥∥
2

0

,

so that, for i ≥ 2 since ti/t ≤ ti/ti−1 ≤ 2, if t ∈ (ti−1, ti), we may bound k‖tjA1/2
h τj‖20

by

4
k

∫ ti

ti−1

(t− ti−1)2 dt
∫ ti

ti−1

t2
∥∥∥A1/2

h üh(t)
∥∥∥2

0
dt ≤ 4k2

3

∫ ti

ti−1

t2
∥∥∥A1/2

h üh(t)
∥∥∥2

0
dt,

and, for i = 1, since t1/k = 1, and (t− t0)/t = 1, we may bound k‖tiA1/2
h τi‖20 by

k

∫ ti

ti−1

dt
∫ ti

ti−1

t2
∥∥∥A1/2

h üh(t)
∥∥∥2

0
dt ≤ k2

∫ ti

ti−1

t2
∥∥∥A1/2

h üh(t)
∥∥∥2

0
dt.

Thus, (5.23) follows.
Lemma 5.5. Under the conditions of Lemma 5.2, there exist positive constants

k′0 and c′1 such that for k ≤ k′0, if e0 = 0, in the backward Euler method e1 satisfies

(5.24)
∥∥A−1

h e1
∥∥2

0
+ k

∥∥∥A−1/2
h e1

∥∥∥2

0
≤ c′1k4G1,

where G1 = max0≤s≤k F2,−2(s).
Proof. We take inner product with 2kA−2

h e1 in (5.8) for n = 1, and recalling (5.2)
and taking into account that e0 = 0, after some rearrangements we have

(5.25)
∥∥A−1

h e1
∥∥2

0
+ 2k

∥∥∥A−1/2
h e1

∥∥∥2

0
≤ 2k

∣∣(Z1, A
−2
h e1

)∣∣+ 2k
∣∣(A−1

h τ1, A
−1
h e1

)∣∣ ,
where Z1 is as in (5.13) but with Y1, V1, and W1 replaced by e1, uh(t1), and U

(1)
h ,

respectively. Thus, arguing as in (5.16)

(
1− 2kC2M̃2

3

) ∥∥A−1
h e1

∥∥2

0
+

3
2
k
∥∥∥A−1/2

h e1

∥∥∥2

0
≤ 2k

∣∣(A−1
h τ1, A

−1
h e1

)∣∣ ,
so that taking into account that

2k
∣∣(A−1

h e1, A
−1
h τ1

)∣∣ ≤ ∥∥A−1
h e1

∥∥2

0
/2 + k2

∥∥A−1
h τ1

∥∥2

0
,
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from (5.25) it follows that

(5.26)
(

1
2
− 2kC2M̃2

3

)∥∥A−1
h e1

∥∥2
+

3
2
k
∥∥∥A−1/2

h e1

∥∥∥2

0
≤ k2

∥∥A−1
h τ1

∥∥2

0
.

Recalling the expression of τn in (5.5) we can write

∥∥A−1
h τ1

∥∥2

0
≤ max

0≤t≤t1

∥∥A−1
h üh(t)

∥∥2

0

(
1
k

∫ k

0

t dt

)2

=
k2

4
max

0≤t≤t1

∥∥A−1
h üh(t)

∥∥2

0
,

we then have that (5.24) follows from (5.26) provided that k is sufficiently small.
Lemma 5.6. Under the conditions of Lemma 5.2, let e0 = 0 and let U (1)

h be given
by the backward Euler method. Then, there exist positive constants k0 and c1 such
that the errors en of the two-step BDF satisfy

(5.27) E′n ≡
∥∥A−1

h en
∥∥2

0
+ k

n∑
j=2

∥∥∥A−1/2
h ej

∥∥∥2

0
≤ c1k4(G1 + I3,−3(tn)), 2 ≤ n ≤ N,

where G1 is given after (5.24).
Proof. In view of the comments in Remark 5.1, we can apply Lemma 5.1 with

j = −2 to (5.8), so that, recalling that e0 = 0, we have

(5.28)
∥∥A−1

h en
∥∥2

+ k

n∑
i=2

∥∥∥A−1/2
h ei

∥∥∥2

0
≤ c

⎛
⎝∥∥A−1

h e1
∥∥2

0
+ k

n∑
j=2

∥∥∥A−3/2
h τj

∥∥∥2

0

⎞
⎠ .

Notice that, as we showed in Lemma 5.5, the first term on the right-hand side above
is bounded by c′1k

4G1. For the second term on the right-hand side of (5.28), in view
of (5.7) a simple calculation shows that

k
∥∥∥A−3/2

h τj

∥∥∥2

0
≤ Ck4

∫ tn

tn−2

∥∥∥∥A−3/2
h

d3uh(s)
ds3

∥∥∥∥
2

0

ds.

Thus, (5.27) follows.
For any two sequences (yn)∞n=0 and (zn)∞n=0, it is easy to check that D(ynzn) =

ynDzn + zn−1Dyn, for n = 1, 2, . . . , and, also,

D2(ynzn) = ynD
2zn + 2DynDzn−1 + zn−2D

2yn.

Thus, for the two-step BDF, multiplying (5.8) by tn and t2n and rearranging terms,
for j = 2, 3, . . . , N , we have

dt(tnen) +Ahtnen +Bh(uh(tn), tnen)

− tnB
(
U

(n)
h , tnen

)
= tnτn + (en−1 +Den−1),

(5.29)

and

(5.30) dt
(
t2nen

)
+Aht

2
nen +Bh

(
t2nen, uh(tn)

)−B (U (n)
h , t2nen

)
= t2nτj + σn−1,

where

(5.31) σn−1 = (tn + tn−1)(en−1 +Den−1) + ken−2.
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Theorem 5.7. Under the conditions of Theorem 5.4, there exist positive con-
stants k1 and c2 such that for k ≤ k1 if e0 = 0 and U

(1)
h be given by the backward

Euler method, the errors εn = tnen and ε′n = t2nen of the two-step BDF satisfy the
following bounds for 2 ≤ n ≤ N :

(5.32) En ≡
(
‖εn‖20 + k

n∑
i=2

∥∥∥A1/2
h εi

∥∥∥2

0

) 1
2

≤ c2k2 (H1 + I(tn))
1
2 ,

(5.33) E ′n ≡
(
‖Ahε′n‖20 + k

n∑
i=2

∥∥∥A3/2
h ε′i

∥∥∥2

0

) 1
2

≤ c2k2
(
H1 + I(tn) + J2

1 + I3,1(tn)
)1/2

,

where J1 is given after (5.20), H1 = I2,−1(t1) + G1, where G1 is given after (5.24),
and I(t) = I3,−1(t) + I3,−3(t).

Proof. To prove (5.32) we apply Lemma 5.1 with j = 0 to (5.29), so that taking
into account that e0 = 0 we have

(5.34)

‖εn‖20+k
n∑
j=2

∥∥∥A1/2
h εj

∥∥∥2

0
≤ c

(
‖ε1‖20 + k

n−1∑
i=1

∥∥∥A−1/2
h (ei +Dei)

∥∥∥2

0
+ k

n∑
i=2

∥∥∥tiA−1/2
h τi

∥∥∥2

0

)
.

Notice that since ei+Dei = 2ei− ei−1, the second term on the right-hand side above
can be bounded by 7k

∑n−1
i=1 ‖A−1/2

h ei‖20, a quantity that has already been bounded
in Lemma 5.6. Also, by writing

tiτi =
ti
2k

∫ ti

ti−2

1
t

(
2(t− ti−1)+

2 − 1
2
(t− ti−2)2

)
t
d3

dt3
uh(t) dt,

and noticing that ti/ti−2 ≤ 3 for i ≥ 3, and t2/k ≤ 2, a straightforward calculation
shows that

(5.35) k
∥∥∥A−1/2

h tiτj

∥∥∥2

0
≤ Ck4

∫ ti

ti−2

t2
∥∥∥A−1/2

h

...
uh(t)

∥∥∥2

0
dt, j = 2, . . . , N.

Finally, noticing that ‖ε1‖20 = k2‖e1‖20 and recalling Lemma 5.2, we have that (5.32)
follows from (5.34) and (5.35).

To prove (5.33) we apply Lemma 5.1 with j = 2 to (5.30) to get

(5.36)

‖Ahε′n‖20 + k

n∑
j=2

∥∥∥A3/2
h ε′j

∥∥∥2

0
≤ c

(
‖Ahε′1‖20 + k

n−1∑
i=1

∥∥∥A1/2
h σi

∥∥∥2

0
+ k

n∑
i=2

∥∥∥t2iA1/2
h τi

∥∥∥2

0

)
.

For the first term on the right-hand side above, in view of Lemma 5.3 we can write

(5.37) ‖Ahε′1‖0 = k2‖Ahe1‖ ≤ k2c̃0J1.

For the second term on the right-hand side of (5.36), we first recall the expression of
σi in (5.31) and then we notice that for i ≥ 1 we have that k ≤ ti, ti+2/ti ≤ 3 and
ti+1/ti ≤ 2, so that, recalling that e0 = 0, for an appropriate constant C > 0 we may
write

(5.38)

k

n−1∑
i=1

∥∥∥A1/2
h σi

∥∥∥2

0
≤ C

(
k
∥∥∥A1/2

h ε1

∥∥∥2

0
+ k

n−1∑
i=2

∥∥∥A1/2
h εi

∥∥∥2

0

)
≤ C

(
k3
∥∥∥A1/2

h e1

∥∥∥2

0
+ E2

n

)
,
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En being the quantity in (5.32). Also, by writing

t2i τi =
t2i
2k

∫ ti

ti−2

1
t2

(
2(t− ti−1)+

2 − 1
2
(t− ti−2)2

)
t2
d3

dt3
uh(t) dt,

and noticing that t2i /t
2
i−2 ≤ 9 for i ≥ 3, and t22/k ≤ 4k, we get

(5.39) k
∥∥∥A1/2

h t2i τi

∥∥∥2

0
≤ Ck4

∫ ti

ti−2

t4
∥∥∥A1/2

h

...
uh(t)

∥∥∥2

0
dt, j = 2, . . . , N.

Thus, (5.33) follows from (5.36), (5.37), (5.38), (5.32), (5.18), and (5.39).
Although not strictly necessary for the analysis of the postprocessed approxima-

tion, for the sake of completeness we include an error bound for the pressure. We
first notice that as a consequence of the LBB condition (2.7) we have that the error
πn = ph(tn)− P (n)

h satisfies

‖πn‖L2(Ω)/R ≤ 1
β

sup
φh∈Xh,r

|(πn,∇ · φh)|
‖φh‖1 .

Furthermore subtracting (3.21) from (2.18), we have

(πn,∇ · φh) =
(
u̇h − dtU (n)

h , φh

)
+ (∇en,∇φh) + b(en, uh, φh) + b

(
U

(n)
h , en, φh

)
for all φh ∈ Xh,r. Using standard bounds for the trilinear form b (e.g., [34, (3.7)]) we
can write

(5.40) ‖πn‖L2(Ω)/R ≤ C
(
‖en‖1 +

∥∥∥u̇h − dtU (n)
h

∥∥∥
−1

)
.

Recalling the expression of d∗tU
(n)
h in (3.4), we see that u̇h − dtU (n)

h = u̇h − d∗tU (n)
h ,

so that applying Lemma 3.2 and taking into account the equivalence (2.15) be-
tween ‖en‖1 and ‖A1/2

h en‖0, we have ‖πn‖L2(Ω)/R ≤ C‖A1/2
h en‖0. Since using stan-

dard spectral theory of positive self-adjoint operators it is straightforward to show
that ‖A1/2

h en‖0 ≤ C‖en‖1/20 ‖Ahen‖1/20 , applying Lemma 5.2 and Theorem 5.4 in the
case of the backward Euler method, and Theorem 5.7 in the case of the two-step BDF,
we conclude the following result.

Theorem 5.8. Under the conditions of Theorem 5.4, there exist positive con-
stants k3 and c4 such that if e0 = 0 and U

(1)
h is obtained by the backward Euler

method, the following bound holds for k < k3 and for n = l0, . . . , N : For the backward
Euler method, ∥∥∥ph(tn)− P (n)

h

∥∥∥
L2(Ω)/R

≤ c4C1/2
1

k

t
1/2
n

,

where C1 = (I2,−1(I2,−1 + I2,1))1/2, and, for the two-step BDF,

∥∥∥ph(tn)− P (n)
h

∥∥∥
L2(Ω)/R

≤ c4C1/2
2

k2

t
3/2
n

,

where C2 is the product of the quantities between parentheses on the right-hand sides
of (5.32) and (5.33).
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A BOUNDED ARTIFICIAL VISCOSITY LARGE EDDY
SIMULATION MODEL∗

JEFF BORGGAARD† , TRAIAN ILIESCU‡ , AND JOHN PAUL ROOP§

Abstract. In this paper, we present a rigorous numerical analysis for a bounded artificial
viscosity model (τ = μδσa(δ‖∇su‖F )∇su) for the numerical simulation of turbulent flows. In
practice, the commonly used Smagorinsky model (τ = (csδ)2‖∇su‖F ∇su) is overly dissipative and
yields unphysical results. To date, several methods for “clipping” the Smagorinsky viscosity have
proven useful in improving the physical characteristics of the simulated flow. However, such heuristic
strategies strongly rely upon a priori knowledge of the flow regime. The bounded artificial viscosity
model relies on a highly nonlinear, but monotone and smooth, semilinear elliptic form for the artificial
viscosity. For this model, we have introduced a variational computational strategy, provided finite
element error convergence estimates, and included several computational examples indicating its
improvement on the overly diffusive Smagorinsky model.
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1. Introduction. Turbulence is central to many important applications. Di-
rect numerical simulation is not feasible for the foreseeable future in many of these
applications. Indeed, Kolmogorov’s 1941 theory (K-41) of homogeneous, isotropic
turbulence predicts that small scales exist down to O(Re−3/4), where Re > 0 is the
Reynolds number. Thus, in order to capture all scales on a mesh, we need a mesh-
size h ∼ Re−3/4 and consequently (in three-dimensional (3D) case) N ∼ Re9/4 mesh
points.

Large eddy simulation (LES) is one of the most successful approaches in the nu-
merical simulation of turbulent flows. LES seeks to calculate the large, energetic
structures (the large eddies) in a turbulent flow. The large structures are defined by
convolving the flow variables with a rapidly decaying spatial filter gδ. To derive equa-
tions for u, the large eddy flow structure, we convolve the Navier–Stokes equations
(NSE) with gδ(x). The resulting system is not closed, since it involves both u and
u. The tensor τ (u,u) = uuT − uuT is often called the subgrid-scale stress (SGS)
tensor. Thus, the closure problem in LES is to model the SGS tensor τ (u,u).

The simplest and most commonly used approach to the closure problem is the
eddy viscosity (EV) model. EV models are motivated by the idea that the global effect
of the SGS stress tensor τ (u,u), in the mean, is to transfer energy from resolved to

∗Received by the editors April 4, 2006; accepted for publication (in revised form) September 10,
2008; published electronically January 16, 2009.

http://www.siam.org/journals/sinum/47-1/65616.html
†Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,

VA 24061 (jborggaard@vt.edu). This author’s research was partially supported by AFOSR grants
F49620-00-1-0299, F49620-03-1-0243, and FA9550-05-1-0449 and NSF grants DMS-0322852 and
DMS-0513542.

‡Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061 (iliescu@vt.edu). This author’s research was partially supported by AFOSR grants F49620-
03-1-0243 and FA9550-05-1-0449 and NSF grants DMS-0209309, DMS-0322852, and DMS-0513542.

§Department of Mathematics, North Carolina A & T University, Greensboro, NC 27411
(jproop@ncat.edu). This author’s research was partially supported by AFOSR grant F49620-00-
1-0299.

622



A BOUNDED ARTIFICIAL VISCOSITY LES MODEL 623

Fig. 1.1. The amount of artificial viscosity introduced by the Smagorinsky and the bounded AV
models against ‖δ∇su‖F .

unresolved scales through inertial interactions [4, 45]:

∇ · τ (u,u) ≈ −∇ · (νT∇su) + terms incorporated into p,

where ∇su is the deformation tensor and νT ≥ 0 is the “turbulent viscosity coeffi-
cient.” The most common EV model is known in LES as the Smagorinsky model [32,
33, 36, 47, 51] in which

νT = νSmag(u, δ) := (csδ)2‖∇su‖F .(1.1)

Although the Smagorinsky model is easy to implement, is stable, and replicates
energy dissipation rates, it is quite inaccurate for many problems. Probably the most
common complaint for the Smagorinsky model (1.1) is that it is too dissipative. The
reason is clearly illustrated in Figure 1.1: for large values of the deformation tensor
∇su, the Smagorinsky model introduces an unbounded amount of artificial viscosity
(AV). This behavior is manifest in practical computations of flows displaying large
velocity deformation tensors, such as wall-bounded flows. For example, in turbulent
channel flows and pipe flows [4], the Smagorinsky model yields unphysical results.

Different approaches have been devised to cope with this limitation: the “clipping
procedure” [2, 8, 20, 31, 52], the van Driest damping [4, 26, 27, 50], the Ri-dependent
Smagorinsky model [11, 15, 38, 44, 46, 48] (where Ri is the Richardson number, the
square of the ratio of the buoyancy frequency, and the vertical shear), the dynamic
SGS model [19], and the Lagrangian dynamic SGS model [39, 41]. All of these ap-
proaches target the same deficiency of the Smagorinsky model—its overly diffusive
character.

In this paper, we consider a bounded AV model for the numerical simulation of
turbulent flows with high velocity deformation tensors. The bounded AV model has a
general form: it can be used to reduce the overly dissipative nature of the Smagorinsky
model without massive a priori knowledge of the flow regime. The bounded AV model
reads

νT = μδσa(δ‖∇su‖F )∇su,(1.2)

where a(·) is a general function whose graph resembles that in Figure 1.1.
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The bounded AV model was proposed in [28] as an alternative to the Smagorinsky
model and yielded improved results for convection-dominated convection-diffusion
problems. In this paper, we analyze and test the bounded AV model (1.2) in the
numerical simulation of incompressible fluid flows.

The paper is organized as follows: In section 2, we discuss the commonly used
EV models. We note the benefits and limitations of heuristic procedures in which a
“clipping” of the Smagorinsky AV is performed and present (1.2) as a viable alter-
native to such strategies. In section 3, we provide the variational setting for which
the NSE with (1.2) is solved and introduce the necessary notation. In section 4, we
present some stability results for the variational solution to NSE with (1.2), which
are generalizations of Leray’s inequality for the usual Navier–Stokes system. In sec-
tion 5, we prove an error estimate for the semidiscrete finite element approximation
of the NSE with (1.2). In section 6, we discuss the Newton approximation scheme as
applied to the NSE with the bounded AV term (1.2). Finally, in section 7, we include
finite element calculations for NSE with (1.2), which both support the theoretical
error estimate of section 5 and show that the bounded AV model (1.2) yields better
results than the Smagorinsky model (1.1) in the numerical simulation of turbulent
flow in a 3D square duct. We provide both sequential computations for an academic
vortex decay problem and parallel computations for a 3D square duct flow, using the
Virginia Tech large eddy simulator (ViTLES).

2. Large eddy simulation. LES is a natural computational idea: when a nu-
merical mesh is so coarse that the problem data and solution fluctuate significantly
inside each mesh cell, it is reasonable to replace the problem data by mesh cell av-
erages of that data and define an approximate solution that represents a mesh cell
average of the true solution. Thus, if δ is the mesh cell width, then we should not
seek to approximate the pointwise fluid velocity u(x, t) but rather some mesh cell
average u(x, t). The simplest such average is given by the convolution of the velocity
u with a rapidly decaying spatial filter gδ(x) such as the sharp cut-off, box (top hat),
Gaussian, or differential filters.

The essential idea of LES is the following: Pick a spatial filter gδ(x) and define
u(x, t) := (gδ ∗ u)(x, t). Derive appropriate equations for u by convolving the NSE
with the spatial filter. Solve the closure problem. Impose accurate boundary condi-
tions for u. Then discretize the resulting continuum model and solve it. Generally,
such an averaging suppresses any fluctuations in u below O(δ) and preserves those on
scales larger than O(δ). In many flows, the portion of the flow that must be modeled
u′ := u− u is small relative to the portion that is calculated u. Models in LES tend
to be both simple and accurate, and the overall computational cost is comparable
to that of computing an (unreliable, underrefined) solution of the NSE on the same
mesh.

For an incompressible fluid, the nondimensionalized form of the NSE is

ut −Re−1Δu+ (u · ∇)u+∇p = f , in Ω× (0, T ),(2.1)
∇ · u = 0, in Ω× (0, T ),(2.2)

u = 0, on ∂Ω× (0, T ),(2.3)

where Ω ⊂ R
d, d = 2, 3 is the flow domain, T is the final time, u is the velocity, p is

the pressure, and Re := U L/ν is the Reynolds number, defined as the ratio between
the product of a characteristic length-scale L and a characteristic velocity U , and the
kinematic viscosity ν.
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To derive equations for u, we convolve the NSE with the chosen filter function
gδ(x). Using the fact that (for constant δ > 0 and in the absence of boundaries)
filtering commutes with differentiation gives the space-filtered NSE:

ut −Re−1Δu+∇ · (uuT ) +∇p =−∇ · τ (u,u) + f in Ω× (0, T ),(2.4)
∇ · u = 0 in Ω× (0, T ).(2.5)

This system is not closed, since it involves both u and u. The tensor τ (u,u) =
uuT − uuT or τij(u,u) = ui uj − ui uj is often called the SGS tensor. Thus, the
closure problem in LES is to model the SGS tensor τ (u,u), i.e., to specify a tensor
S = S(u,u) to replace τ (u,u) in (2.4).

2.1. Eddy viscosity models. The most popular approach to the closure prob-
lem is the EV model, which is motivated by the idea that the global effect of τ (u,u),
in the mean, is to transfer energy from resolved to unresolved scales through inertial
interactions. EV models are motivated by Kolmogorov’s K-41 theory ([4, 45]), and, in
particular, by the energy cascade. The essence of the energy cascade (see [43]) is that
kinetic energy enters the turbulent flow at the largest scales of motion, and is then
transferred by inviscid processes to smaller and smaller scales, until it is eventually
dissipated through viscous effects. Thus, the action of τ (u,u) is thought of as having
a dissipative effect on the mean flow: the scales uncaptured on the numerical mesh
(above the cutoff wavenumber kc) should dissipate energy from the large scales (below
the cutoff wavenumber kc).

Boussinesq [5] first formulated the EV/Boussinesq hypothesis based upon an
analogy between the interaction of small eddies and the perfectly elastic collision of
molecules (e.g., molecular viscosity or heat): “Turbulent fluctuations are dissipative
in the mean.” The mathematical realization is the model

∇ · τ (u,u) ≈ −∇ · (νT∇su) + terms incorporated into p,

where ∇su := (∇u + ∇uT )/2 is the deformation tensor of u and νT ≥ 0 is the
“turbulent viscosity coefficient.” The modeling problem then reduces to determining
one parameter: the turbulent viscosity coefficient νT (u, δ).

2.2. The Smagorinsky model. The most common EV model is known in LES
as the Smagorinsky model, in which

νT = νSmag(u, δ) := (csδ)2‖∇su‖F ,(2.6)

where δ is the filter radius, cs is the Smagorinsky constant, and ‖σ‖F :=
√∑d

i,j=1 |σij |2
is the Frobenius norm of the tensor σ. This model was studied in [51] as a nonlinear
AV in gas dynamics and in [47] for geophysical flow calculations. A complete math-
ematical theory for partial differential equations involving this term was constructed
by Ladyžhenskaya [32, 33].

The Smagorinsky model (1.1) where cs ∼ 0.17 [36] seems to be a universal answer
in LES. It is easy to implement, stable, and (under “optimistic” assumptions) it
replicates energy dissipation rates. Unfortunately, it can be also quite inaccurate for
many problems.

The most successful form of the Smagorinsky model is the dynamic SGS model
of [19], in which cs is chosen locally in space and time, cs = cs(x, t). An essential
improvement is that the dynamic SGS model introduces backscatter, the inverse trans-
fer of energy from small scales to large scales [27, 4]. A yet improved version of the
dynamic SGS model is the Lagrangian dynamic SGS model of [39, 41].
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2.3. The overly diffusive character of the Smagorinsky model. Whether
simplistic or more involved, all these approaches target the same deficiency of the
Smagorinsky model—its overly diffusive character. This negative feature of the Smag-
orinsky model is clearly illustrated by the schematic in Figure 1.1. Plotting the
amount of AV introduced by the Smagorinsky model against ‖δ∇su‖F , we obtain a
linear profile: Indeed, (1.1) can be rewritten as

νT = νSmag(u, δ) = c2s δ ‖δ∇su‖F ,(2.7)

which yields a linear profile for νT (if δ is held constant). In smooth regions of the flow,
where the deformation tensor is relatively small (‖∇su‖F ≤ O(1/δ)), the Smagorinsky
model will introduce a moderate amount of AV (νT ≤ O(δ)). In those regions of the
flow where the deformation tensor is large (‖∇su‖F ≥ O(1/δ2), for example), the
Smagorinsky model will introduce an unphysical amount of AV (νT ∼ O(1)).

The overly diffusive feature of the Smagorinsky model is manifested in practical
computations of flows displaying a large deformation tensor, such as wall-bounded
flows. Indeed, for turbulent channel flows and pipe flows, because the velocity de-
formation tensor is very large near the solid wall, the Smagorinsky model introduces
an unphysical amount of AV. Similarly, in stratified flows with large shear (and thus
large deformation tensors), the Smagorinsky model introduces an unphysical amount
of AV in the vertical direction.

There have been numerous modifications of the Smagorinsky model, all trying to
attenuate its overly diffusive character. The simplest such approach is the “clipping
procedure”

νT = νclippingSmag (u, δ) := min{νSmag(u, δ), C},(2.8)

where C is a user-defined constant [2, 8, 20, 31, 52].
A more involved approach for wall-bounded flows (such as channel and pipe flows)

is the van Driest damping [4, 26, 27, 50], in which

νT = νVDSmag(u, δ) :=
[(

1− e−y+

25

)]
νSmag(u, δ),(2.9)

where y+ is the nondimensionalized distance to the wall (see Chapter 12 in [4] for
more details). The main improvement over the ad hoc clipping procedure (2.8) is
that the damping function in (2.9) is chosen so that the resulting flow satisfies the
turbulent boundary layer theory [4].

In stratified flows, the Smagorinsky model is used with a damping function in the
vertical direction [11, 15, 38, 44, 46, 48]:

νzT = νRiSmag(u, δ) :=
√

1− Ri

Ric
νSmag(u, δ),(2.10)

where Ri is the Richardson number, the square of the ratio of the buoyancy frequency
and the vertical shear, and Ric is a critical Richardson number (a popular choice is
Ric ∼ 0.25) [40, 44].

2.4. The bounded AV model. In this paper, we consider the bounded AV
model, a general, mathematically sound alternative to the Smagorinsky model. The
bounded AV model reads

νT = μδσa(δ‖∇su‖F )∇su,(2.11)
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where a(·) is a general function whose graph resembles that in Figure 1.1. This new
model, proposed in [28] for convection-diffusion problems, is a clear improvement over
the Smagorinsky model. Indeed, in the flow regions with large velocity deformation
tensors, the bounded AV model introduces a bounded amount of AV, just enough to
spread the solution onto the computational mesh. This is in clear contrast with the
Smagorinsky model, which introduces an unbounded amount of AV, thus being overly
dissipative. The improvement of the bounded AV model over the Smagorinsky model
is clearly supported by the numerical simulation of a turbulent flow in a 3D square
duct in section 7.

Another distinct advantage of the bounded AV model over other modifications
of the Smagorinsky model is that, when appropriately chosen, the bounded AV term
represents a monotonic semilinear operator. This property allows for existence and
uniqueness results for the finite element approximation as well as the error estimates
presented herein. It is important to note that the results of this paper are more
straightforward for the bounded AV model than for the previously mentioned heuristic
AV bounding techniques, as the bounded AV model translates more readily into the
mathematical framework established for the NSE.

The bounded AV model is general. Indeed, the function a(·) in (1.2) is just
required to be bounded and monotonically increasing (see Figure 1.1). Thus, the
bounded AV model clearly includes the ad hoc “clipped” Smagorinsky model (2.8)
as a particular case. Although the bounded AV model does not directly include
the Smagorinsky model with van Driest damping (2.9) (a(·) must be monotonically
increasing) or the Ri-dependent Smagorinsky model (2.10) (a(·) depends on ∇su,
whereas (2.10) depends on ∂u

∂z ), it is certainly related to these two models, targeting
the overly diffusive character of the Smagorinsky model. Note that while models (2.9)
and (2.10) are tailored for specific flows (wall-bounded and stratified, respectively),
the bounded AV model is not restricted to any particular type of flow. Of course,
the function a(·) should be optimized for each particular flow setting in which the
bounded AV model is used. To this end, extensive a priori and a posteriori testing [4]
should be carried out for each such flow setting.

It was shown in [28] that the bounded AV model yields a clear improvement
over the Smagorinsky model in the numerical simulation of convection-dominated
convection-diffusion problems with sharp transition layers. In this paper, we show
that the bounded AV model is a dramatic improvement over the Smagorinsky model
in the numerical simulation of a turbulent flow in a 3D square duct.

There are numerous challenges in the numerical analysis of LES, where the study
of classic topics such as consistency, stability, and convergence of the LES discretiza-
tion are still at an initial stage. Only the first few steps along these lines have been
made, some of which are presented in the exquisite monograph of John [30]. A thor-
ough numerical analysis for the finite element implementation of the Smagorinsky
model has been presented in [12, 13]. Further studies have been presented in [29, 34].

In this paper, we present a rigorous numerical analysis for the finite element
implementation of the bounded AV model:

wt −Re−1Δw −∇ · (μδσa(δ‖∇sw‖F )∇sw)
+ (w · ∇)w −∇q = f in Ω× (0, T ),(2.12)

∇ ·w = 0 in Ω× (0, T ),(2.13)
w = 0 on ∂Ω× (0, T ).(2.14)

We also illustrate our error estimates with numerical simulations, using the bounded
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AV model for the 3D square duct turbulent flow and the two-dimensional (2D) vortex
decay problem.

Remark 2.1. The numerical analysis presented herein is concerned with the
numerical error (i.e., w −wh) associated with the bounded AV model, and not the
modeling error (i.e., u−w) associated with the proposed EV model.

3. The variational formulation. In this section, we develop the variational
formulation for (2.12)–(2.14). We will denote the usual Sobolev spaces [1] byWm,p(Ω),
with norms ‖ · ‖Wm,p and seminorms | · |Wm,p , and set Hm(Ω) := Wm,2(Ω) and
Lp(Ω) := W 0,p(Ω). In what follows, we will denote ‖ · ‖ and (·, ·) the norm and inner
product for L2(Ω), and ‖ · ‖m the norm for Hm(Ω). The vector spaces and vector
functions will be indicated by boldface type letters.

Specifically, we use the following function spaces for the variational formulation:

Velocity space : X := H1
0 (Ω) :=

{
v ∈H1(Ω) : v = 0 on ∂Ω

}
,

Pressure space : Q := L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
.

The velocity and pressure spaces X and Q satisfy the inf-sup condition [21]

inf
λ∈Q

sup
v∈X

(λ,∇ · v)
‖λ‖ ‖v‖1 ≥ β > 0.(3.1)

The inf-sup condition (3.1), in turn, implies that the space of weakly divergence-free
functions V :

V := {v ∈X : (λ,∇ · v) = 0, ∀λ ∈ Q}(3.2)

is a well-defined, nontrivial, closed subspace of X [21].
The variational formulation of (2.12)–(2.14) proceeds in the usual manner. Multi-

plying (2.12) and (2.13) by a velocity (v) and pressure (λ) test function, respectively,
integrating over Ω, and integrating by parts (using the fact that v = 0 on ∂Ω), we
obtain

(wt,v) +A(w,v) +B(w,w,v)
+ C(w,w,v) − (q,∇ · v) =

(
f ,v

)
, ∀v ∈X, t ∈ [0, T ],(3.3)

(∇ ·w, λ) = 0, ∀λ ∈ Q, t ∈ [0, T ],(3.4)

where the bilinear form A(·, ·) is defined by

A(w,v) := Re−1 (∇w,∇v)
and the trilinear forms B(·, ·, ·) and C(·, ·, ·) are defined by

B(u,v,w) := μδσ (a(δ‖∇u‖F )∇v,∇w) ,

C(u,v,w) :=
1
2

(u · ∇v,w)− 1
2

(u · ∇w,v) .

It is a simple index calculation to check that, for v ∈ X, w ∈ V, (w · ∇w,v) =
C(w,w,v).

Remark 3.1. Although the bounded AV model (2.12)–(2.14) depends on ∇sw,
for clarity we will replace ∇sw by ∇w. The same numerical analysis can be carried
out with the ∇sw by using Korn’s inequalities, which relate the Lp-norms of the
deformation tensor ∇sw to the same norms of the gradient ∇w for 1 < p < ∞ [16,
29].
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3.1. Finite element spaces. Let Ω ⊂ R
d, (d = 2, 3) be a polygonal domain,

and let Th denote a triangulation of Ω made up of triangles (in R
2) or tetrahedra (in

R
3). Thus, the computational domain is defined by

Ω =
⋃
K, K ∈ Th.

We also assume that for a particular triangulation Th of Ω, there exist positive con-
stants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,
where hK is the diameter of K, ρK is the diameter of the greatest ball (sphere)
included in K, and h = maxK∈Th

hK . Let Pk(A) denote the space of polynomials on
a subdomain A of degree no greater than k. We define the conforming finite element
spaces associated with the velocity and pressure spaces as follows:

Xh :=
{
vh ∈ X ∩ C(Ω)d : vh

∣∣
K
∈ Pk(K), ∀K ∈ Th

}
,(3.5)

Qh :=
{
λh ∈ Q ∩ C(Ω) : λh

∣∣
K
∈ Pl(K), ∀K ∈ Th

}
,(3.6)

where C(Ω) denotes the set of continuous functions on the closure of Ω. Analogous
to the continuous inf-sup condition, the spaces Xh, Qh satisfy the discrete inf-sup
condition [14, 21]

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)
‖λh‖ ‖vh‖1 ≥ β > 0.(3.7)

The discrete inf-sup condition (3.7), in turn, implies that the space of weakly
divergence-free functions Vh

Vh := {vh ∈Xh : (λh,∇ · vh) = 0, ∀λh ∈ Qh}(3.8)

is a well-defined, nontrivial, closed subspace of Xh [14, 21, 22].
We assume that the finite element spaces Xh, Qh satisfy the usual approxima-

tion properties [6, 21]: For (w, λ) ∈ Hk+1(Ω) × H l+1(Ω), there exist interpolants
(Ihw, Ihλ) ∈ Xh ×Qh satisfying [6, 21]

‖w − Ihw‖ ≤ CIhk+1|w|Hk+1 ,(3.9)
‖w − Ihw‖1 ≤ CIhk|w|Hk+1 ,(3.10)
‖λ− Ihλ‖ ≤ CIhl+1|λ|Hl+1 .(3.11)

From [6], we have the following useful results concerning interpolation.
Lemma 3.1. Let {Th} (0 < h ≤ 1) denote a quasi-uniform family of subdivisions

of a polyhedral domain Ω ⊂ R
d . Let (K̂, P,N) be a reference finite element such that

P ⊂ W l,p(K̂) ∩Wm,q(K̂), where 1 ≤ p, q ≤ ∞, and 0 ≤ m ≤ l. For K ∈ Th, let
(K,PK , NK) be the affine equivalent element and

Vh :=
{
v : v is measurable and v

∣∣∣
K
∈ PK , ∀K ∈ Th

}
.

Then there exists C = C(l, p, q) such that

(3.12)

[ ∑
K∈Th

‖v‖p
W l,p(K)

]1/p

≤ Chm−l+min(0, d
p− d

q )
[ ∑
K∈Th

‖v‖qWm,q(K)

]1/q

.
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4. Stability results. In this section, we prove some stability results concerning
the variational problem (3.3)–(3.4), as well as its semidiscrete finite element approxi-
mation. Useful in the following analysis are the following three lemmas.

Lemma 4.1 (monotonicity of B(·, ·, ·) [28]). For u,v ∈X, and the function a(·)
satisfying

0 ≤ a(x) ≤ 1, a′(x) ≥ 0, ∀ x ∈ [0,∞),

we have

B(u,u,u− v)−B(v,v,u− v) ≥ 0.

Proof. Consider the functional I : X → R, defined by

I(U) :=
∫

Ω

A(‖∇U‖F ) dx,

where the function A : [0,∞)→ R is defined by

A(x) :=
∫ x

0

t a(t)dt.

First, note that

dI(U ,V ) =
∫

Ω

A′(‖∇U‖F )
∇U
‖∇U‖F ∇V dx =

∫
Ω

a(‖∇U‖F )∇U∇V dx,

where dI(U ,V ) is the Gâteaux derivative of I at U in the direction of V .
Therefore, setting U1 := δu, U2 := δv, and V := U1 −U2, we have

(4.1) B(u,u,u− v)−B(v,v,u− v) =
μδσ

δ2
(dI(U1,V )− dI(U2,V )) .

However, we can rewrite this expression as

dI(U1,V )− dI(U2,V ) =
∫ 1

0

d

dt
dI(U2 + t(U1 −U2),V ) dt

=
∫ 1

0

d

dt

∫
Ω

a(‖∇(U2 + t(U1 −U2))‖F )∇(U2 + t(U1 −U2))∇V dx dt

=
∫ 1

0

∫
Ω

a′(‖∇(U2 + t(U1 −U2))‖F )
∇(U2 + t(U1 −U2))∇V
‖∇(U2 + t(U1 −U2))∇V ‖F

∇(U2 + t(U1 −U2))∇V dx dt

+
∫ 1

0

∫
Ω

a(‖∇(U2 + t(U1 −U2))‖F )‖∇V ‖2F dx dt.(4.2)

As a(x), a′(x) ≥ 0, it is clear that the expression in (4.2) is nonnegative. Finally,
using (4.1), we obtain the stated result.

Remark 4.1. Notice that Lemma 4.1 states that the bounded AV operatorB(·, ·, ·)
is monotone but not strongly monotone. The Smagorinsky AV operator

BSmag(u,v,w) :=
(
(cs δ)2 ‖∇su‖F ∇sv,∇sw

)
,
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on the other hand, is strongly monotone [13, 29, 34]. Indeed, ∀u,v ∈W1,3(Ω),

BSmag(u,u,u− v)−BSmag(v,v,u− v) ≥ C δ2 ‖∇s(u− v)‖3L3 .

Therefore, the error estimate we prove in Theorem 5.1 for the bounded AV model
assumes higher regularity for the solution w (w ∈ L4(0, T ;W 1,∞(Ω))) than the reg-
ularity for w assumed for the Smagorinsky model [29] (w ∈ L2(0, T ;W 1,∞(Ω))).

Lemma 4.2. For u1,u2,v,w ∈X, and the function a(·) satisfying

0 ≤ a(x) ≤ 1, 0 ≤ a′(x) ≤Ma, ∀ x ∈ [0,∞),

we have

(4.3) |B(u1,v,w)−B(u2,v,w)| ≤Maμδ
σ+1 (‖∇u1 −∇u2‖F ‖∇v‖F , ‖∇w‖F )

and

(4.4) |B(u1,v,w)| ≤Maμδ
σ+1 (‖∇u1‖F ‖∇v‖F , ‖∇w‖F ) .

Proof. Without loss of generality, we assume that ‖∇u1‖F ≥ ‖∇u2‖F . Immedi-
ately, we have

(4.5) |B(u1,v,w)−B(u2,v,w)| = μδσ |([a(δ‖∇u1‖F )− a(δ‖∇u2‖F )]∇v,∇w)| .
Now, by the mean value theorem, there exists ca ∈ [δ‖∇u2‖F , δ‖∇u1‖F ] such that

a(δ‖∇u1‖F )− a(δ‖∇u2‖F ) = a′(ca) δ (‖∇u1‖F − ‖∇u2‖F ).

Combining this with the reverse triangle inequality | |x| − |y| | ≤ |x− y|, we have

(4.6) |a(δ‖∇u1‖F )− a(δ‖∇u2‖F )| ≤ a′(ca) δ ‖∇u1 −∇u2‖F .
Finally, substituting (4.6) into (4.5) and noting that a′(ca) ≤ Ma, we obtain (4.3).
The result (4.4) follows directly.

Remark 4.2. Again, the bounded AV operator B(·, ·, ·) satisfies a weaker inequal-
ity than the Smagorinsky AV operator BSmag(·, ·, ·) [13, 29, 34].

Lemma 4.3 (Leray’s inequality for the bounded AV model). A solution of (3.3)–
(3.4) satisfies

1
2
‖w(t)‖2 +

∫ t

0

Re−1‖∇w‖2 ds ≤ 1
2
‖w(0)‖2 +

∫ t

0

(f ,w) ds ∀ t ∈ [0, T ].

Proof. The stated result follows by setting v = w and λ = q in (3.3) and (3.4),
noting that

B(w,w,w) ≥ 0, C(w,w,w) = 0,

and integrating from 0 to t.
We now define the semidiscrete approximation as the solution of (3.3)-(3.4) re-

stricted to the finite element spaces Xh, Qh.
Definition 4.4 (The semidiscrete approximation). The semidiscrete approxi-

mation is defined to be an element (wh, qh) ∈ C(0, T ;Xh) ∩ C(0, T ;Qh) such that

(wh,t,vh) +A(wh,vh) +B(wh,wh,vh)
+ C(wh,wh,vh)− (qh,∇ · vh) =

(
f ,vh

)
, ∀vh ∈Xh, t ∈ [0, T ],(4.7)

(∇ ·wh, λh) = 0, ∀λh ∈ Qh, t ∈ [0, T ].(4.8)
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We immediately obtain the following two lemmas.
Lemma 4.5 (Leray’s inequality for wh). A solution of (4.7)–(4.8) satisfies

1
2
‖wh(t)‖2 +

∫ t

0

Re−1‖∇wh‖2 ds ≤ 1
2
‖wh(0)‖2 +

∫ t

0

(
f ,wh

)
ds.

Proof. Setting vh = wh and λh = qh in (4.7)–(4.8), we immediately have

(4.9)
1
2
d

dt
‖wh(t)‖2 +Re−1‖∇wh‖2 ≤

(
f ,wh

)
.

Integrating from 0 to t thus yields the stated result.
Lemma 4.6 (Stability of wh). A solution wh of (4.7)–(4.8) satisfies

‖wh(t)‖2 +Re−1 C(Ω)
∫ t

0

‖wh‖2H1 ds

≤ ‖wh(0)‖2 +
Re

C(Ω)

∫ t

0

‖f‖2H−1 ds(4.10)

and

‖wh(t)‖2 + 2Re−1

∫ t

0

et−s ‖∇wh‖2 ds

≤ et ‖wh(0)‖2 +
∫ t

0

et−s ‖f‖2 ds,(4.11)

where C(Ω) denotes a generic constant depending on Ω.
Proof. By using the Cauchy–Schwarz and Young’s inequalities, we have

(
f ,wh

) ≤ ε

2
‖wh‖2H1 +

1
2 ε

∥∥f∥∥2

H−1 .(4.12)

By using Poincaré’s inequality [17], we get

Re−1C(Ω) ‖wh‖2H1 ≤ Re−1‖∇wh‖2.(4.13)

Inserting (4.12) with ε := Re−1 C(Ω) and (4.13) in (4.9), we obtain

1
2
d

dt
‖wh‖2 +

Re−1 C(Ω)
2

‖wh‖2H1 ≤ Re

2C(Ω)

∥∥f∥∥2

H−1 .(4.14)

By integrating (4.14) from 0 to t, we get (4.10).
By using the Cauchy–Schwarz and Young’s inequalities, we have

(
f ,wh

) ≤ 1
2
‖wh‖2 +

1
2

∥∥f∥∥2
.(4.15)

By using (4.15) in (4.9), we obtain

1
2
d

dt
‖wh‖2 − 1

2
‖wh‖2 +Re−1 ‖∇wh‖2 ≤ 1

2

∥∥f∥∥2
.

The positivity of the exponential implies

e−s
(
d

ds
‖wh‖2 − ‖wh‖2 + 2Re−1 ‖∇wh‖2

)
≤ e−s ∥∥f∥∥2

.

By integrating from 0 to t < T and then multiplying by et, we get (4.11).
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Lemma 4.7 (Existence of (wh, qh)). There exists a solution (wh, qh) of the
semidiscrete approximation (4.7)–(4.8).

Proof. Since dim(Xh) < ∞ and any possible solution (wh, qh) satisfies the a
priori stability estimates in Lemma 4.6, Schauder’s fixed point theorem [35] implies
existence of a solution (wh, qh) of the semidiscrete approximation (4.7)–(4.8).

Remark 4.3 (Uniqueness of (wh, qh)). The uniqueness of the solution (wh, qh) of
the semidiscrete approximation (4.7)–(4.8) would follow by using a general argument:
Assume that there exist two distinct solutions (w1h, q1h) and (w2h, q2h) of (4.7)–
(4.8); subtract (4.7)–(4.8) corresponding to the two solutions; use the coercivity of
the operators in the error equation to obtain inequalities of the form ‖w1h−w2h‖ ≤ 0
and ‖q1h − q2h‖ ≤ 0.

This approach, however, fails for (4.7)–(4.8) because of the nonlinear term C(·, ·, ·)
and the bounded AV operator B(·, ·, ·) is just monotone and not strongly monotone
(see Lemma 4.1).

Note that when δ → 0, the bounded AV operator B(·, ·, ·) becomes strongly
monotone (see Remark 4.1), which could, in turn, allow us to prove the uniqueness of
(wh, qh).

5. An a priori error estimate. In order to prove an a priori error estimate
for the semidiscrete approximation (wh, qh), we will assume that the solution to the
continuous problem satisfies w ∈ L4(0, T ;W 1,∞(Ω)).

Theorem 5.1. Assume that the system (3.3)–(3.4) has a solution (w, q) ∈ X×Q
which satisfies

w ∈ L4(0, T ;W 1,∞(Ω)).(5.1)

Then, there exist generic constants C and C1(w) independent of Re, such that the
error w −wh satisfies for T > 0

‖w −wh‖2L∞(0,T ;L2) +Re−1 ‖∇(w −wh)‖2L2(0,T ;L2)

≤ C exp(C1(w)) ‖(w −wh)(x, 0)‖2(5.2)
+ C inf

w̃∈Vh,λh∈Qh

F(w − w̃, q − λh, δ, Re),

where

F(w − w̃, q − λh, δ, Re)
:= ‖w − w̃‖2L∞(0,T ;L2) +Re−1 ‖∇(w − w̃)‖2L2(0,T ;L2)

+ exp(C1(w))
[
‖(w − w̃)t‖2L2(0,T ;L2)

+ ‖w − w̃‖2L2(0,T ;L2) + ‖∇(w − w̃)‖2L2(0,T ;L2)

+ ‖∇(w − w̃)‖2L4(0,T ;L2) + ‖q − λh‖2L2(0,T ;L2)

]
.

Proof. First note that, for standard piecewise polynomial finite element spaces,
it is known that the Lp-projection of a function in Lp, p ≥ 2, is in Lp itself, and the
L2-projection operator is stable in Lp, 2 ≤ p ≤ ∞ [9].

Let the error in w be denoted by e := w −wh, and w̃ denote a stable approxi-
mation of w in Vh, for example, the L2-projection under the conditions of [9].

The error e is decomposed as

e = (w − w̃) + (w̃ −wh) := η + φh,(5.3)
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where η := w − w̃ and φh := w̃ − wh ∈ Vh. By subtracting (4.7) from (3.3) and
using that w ∈ V , we obtain an error equation

(et,vh) +A(e,vh) + [B(w,w,vh)−B(wh,wh,vh)](5.4)
+ [C(w,w,vh)− C(wh,wh,vh)]− (q − λh,∇ · vh) = 0 ∀(vh, λh) ∈ Vh ×Qh.

By adding and subtracting terms and setting vh := φh, (5.4) becomes

(φh,t,φh) +A(φh,φh) + [B(w̃, w̃,φh)−B(wh,wh,φh)]
= −(ηt,φh)−A(η,φh)− [B(w,w,φh)−B(w̃, w̃,φh)]
− [C(w,w,φh)− C(wh,wh,φh)] + (q − λh,∇ · φh).(5.5)

By using the monotonicity of B(·, ·, ·) (Lemma 4.1), we have

B(w̃, w̃,φh)−B(wh,wh,φh) ≥ 0.

Thus, the left-hand side of (5.5) can be bounded from below as follows:

(φh,t,φh)+A(φh,φh)+[B(w̃, w̃,φh)−B(wh,wh,φh)]≥ 1
2
d

dt
‖φh‖2 +Re−1‖∇φh‖2.

(5.6)

We now start bounding from above the five terms on the right-hand side of (5.5). By
using the Cauchy–Schwarz and Young’s inequalities, we obtain

−(ηt,φh) ≤ |(ηt,φh)| ≤ 1
2
‖φh‖2 +

1
2
‖ηt‖2,(5.7)

−A(η,φh) ≤ |A(η,φh)| ≤ Re−1 ε1 ‖∇φh‖2 +
Re−1

4 ε1
‖∇η‖2.(5.8)

By adding and subtracting terms and using Lemma 4.2, we get

B(w,w,φh)−B(w̃, w̃,φh) ≤ |B(w,w,φh)−B(w̃, w̃,φh)|
≤ |B(w,w,φh)−B(w̃,w,φh)|+ |B(w̃,w,φh)−B(w̃, w̃,φh)|
≤Maμδ

σ+1 (‖∇η‖F ‖∇w‖F , ‖∇φh‖F )
+Maμδ

σ+1 (‖∇w̃‖F ‖∇η‖F , ‖∇φh‖F ) .(5.9)

Note that the stability estimates in [9] imply

‖∇w̃‖L∞ ≤ C̃ ‖∇w‖L∞ .(5.10)

Thus,

B(w,w,φh)−B(w̃, w̃,φh)

≤Maμδ
σ+1 ‖∇w‖L∞ ‖∇η‖ ‖∇φh‖+Maμδ

σ+1C̃ ‖∇w‖L∞ ‖∇η‖ ‖∇φh‖
≤ C

(
Ma, μ, δ, σ, C̃

) 1
4 ε2
‖∇w‖2L∞ ‖∇η‖2 + ε2 ‖∇φh‖2.(5.11)
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By adding and subtracting terms, we obtain

C(w,w,φh)− C(wh,wh,φh)
≤ |C(w,w,φh)− C(w,wh,φh)|+ |C(w,wh,φh)− C(wh,wh,φh)|
= |C(w,η + φh,φh)|+ |C(η + φh,wh,φh)|(

since C(η + φh, w̃ −wh,φh) = C(η + φh,φh,φh) = 0
)

= |C(w,η,φh)|+ |C(η + φh, w̃,φh)|
= |(w · ∇η,φh)|+ |(η · ∇w̃,φh)|+ |(φh · ∇w̃,φh)|
≤

(
1
2
‖∇η‖2 +

1
2
‖w‖2L∞ ‖φh‖2

)

+
(

1
2
‖η‖2 +

1
2
‖∇w̃‖2L∞ ‖φh‖2

)
+

(‖∇w̃‖L∞ ‖φh‖2
)
.(5.12)

By using the Cauchy–Schwarz and Young’s inequalities, we obtain

(q − λh,∇ · φh) ≤ |(q − λh,∇ · φh)| ≤ ε3 ‖∇φh‖2 +
1

4 ε3
‖q − λh‖2.(5.13)

Inserting estimates (5.6)–(5.13) into (5.5) and picking ε1 := 1/6, ε2 := Re−1/6, ε3 :=
Re−1/6, we get

1
2
d

dt
‖φh‖2 +

Re−1

2
‖∇φh‖2

≤
(

1
2

+
6
4
Re−1 +

6
4
ReC

(
Ma, μ, δ, σ, C̃

)
‖∇w‖2L∞

)
‖∇η‖2

+
1
2
‖ηt‖2 +

1
2
‖η‖2 +

6
4
Re ‖q − λh‖2

+

(
1
2

+
1
2
‖w‖2L∞ +

C̃2

2
‖∇w‖2L∞ + C̃ ‖∇w‖L∞

)
‖φh‖2.(5.14)

In order to apply Gronwall’s lemma, we need

b(t) :=

(
1
2

+
1
2
‖w‖2L∞ +

C̃2

2
‖∇w‖2L∞ + C̃ ‖∇w‖L∞

)

∈ L1(0, T ).(5.15)

This follows immediately from the hypothesis (w ∈ L4(0, T ;W 1,∞(Ω))).
Hiding all constants in generic C’s, Gronwall’s lemma now implies, for almost all

t ∈ [0, T ], that

‖φh(x, t)‖2 +Re−1 ‖∇φh‖2L2(0,t;L2)

≤ C exp
(‖b(t)‖L1(0,t)

) ‖φh(x, 0)‖2

+C exp
(‖b(t)‖L1(0,t)

) [
‖ηt‖2L2(0,t;L2) + ‖η‖2L2(0,t;L2)

+
(
1 + 3Re−1

) ‖∇η‖2L2(0,t;L2) + C
(
Ma, μ, δ, σ, C̃

)∫ t

0

3Re ‖∇w‖2L∞ ‖∇η‖2 ds

+ 3Re ‖q− λh‖2
]
.(5.16)
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By using the Cauchy–Schwarz inequality in L2(0, t), t ∈ [0, T ], and the hypothesis
(w ∈ L4(0, T ;W 1,∞(Ω))), we get∫ t

0

‖∇w‖2L∞ ‖∇η‖2 ds ≤ ‖∇w‖2L4(0,t;L∞)‖∇η‖2L4(0,t;L2).(5.17)

We apply now the essential supremum over t ∈ [0, T ] on both sides of inequality (5.16).
By using the triangle inequality, the error estimate in the theorem now follows.

Remark 5.1. The error estimate in Theorem 5.1 is not uniform in Re, as the
error estimate for the Smagorinsky model (Theorem 4.2 in [29]). The reason is that
our bounded AV operator B(·, ·, ·) is just monotone (Lemma 4.1) and not strongly
monotone as the Smagorinsky AV operator in [29].

Remark 5.2. The regularity of w (w ∈ L4(0, T ;W 1,∞(Ω))) assumed in The-
orem 5.1 is higher than the regularity of w assumed in the error estimate for the
Smagorinsky model in [29] (w ∈ L2(0, T ;W 1,∞(Ω))). Again, the reason is that our
bounded AV operator B(·, ·, ·) is just monotone (Lemma 4.1), whereas the Smagorin-
sky AV operator is strongly monotone.

Remark 5.3. The multiplicative constant C1(w) := exp
(‖b(t)‖L1(0,T )

)
in the

error estimate in Theorem 5.1 does not depend on Re.
Corollary 5.2. Assuming Pk/Pk−1 velocity pressure discretization (i.e., choos-

ing l := k − 1 in (3.6)), the order of convergence of

‖w −wh‖L∞(0,T ;L2) is O
(
hk

)
,(5.18)

‖w −wh‖L2(0,T ;H1) is O
(
hk

)
.(5.19)

Proof. The proof is an immediate consequence of Theorem 5.1 and the approxi-
mation properties of the interpolation (3.9)–(3.11).

6. Newton approximation scheme for the bounded AV model. In this
section, we discuss the Newton approximation scheme as applied to the NSE with
the bounded AV term (1.2). The analysis in this section is especially relevant to
the numerical discretization of the vortex decay problem used in section 7.2.1. Note
that approximate solutions (uh, ph) ∈ Xh × Qh for the NSE with the bounded AV
term (1.2) must satisfy a nonlinear system of ordinary differential equations. In this
section, we derive the Newton approximation scheme for the semidiscrete variational
problem, and note that, in practice, one would apply a Newton iteration at each time
step for a fully discrete approximation.

It is a straightforward calculation to show that the Gâteaux derivative for the
bounded AV term considered in this paper satisfies the following.

Theorem 6.1. Suppose that the function a(·) : R → R is analytic, and define
the (continuous) map G1 : Xh →Xh as

〈G1[u],v〉 := (a(‖∇u‖F )∇u,∇v) .
Then the Gâteaux derivative in the direction of u evaluated at w, denoted as Ju G1[w],
is equal to

〈Ju G1[w],v〉 = (a(‖∇u‖F )∇w,∇v) +
(
a′(‖∇u‖F )
‖∇u‖F [∇u : ∇w]∇u,∇v

)
.

Corollary 6.2. Suppose that the function a(·) : R → R is analytic, and define
the (continuous) map G2 : Xh →Xh as

〈G2[u],v〉 := (a(δ‖∇u‖F )∇u,∇v) .
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Then the Gâteaux derivative in the direction of u evaluated at w, denoted as Ju G2[w],
is equal to

〈Ju G2[w],v〉 = (a(‖δ∇u‖F )∇w,∇v) + δ

(
a′(‖δ∇u‖F )
‖∇u‖F [∇u : ∇w]∇u,∇v

)
.

We now consider the semidiscrete approximation (uh, ph) ∈ Xh×Qh, which solves
the NSE with the bounded AV term (1.2). For notational simplicity, we drop the “h”
subscripts from u and p. Define the (continuous) map G : Xh ×Qh →Xh ×Qh as

〈G[u, p], (v, q)〉 := (ut,v) +Re−1 (∇u,∇v) + μδσ (a(δ‖∇u‖F )∇u,∇v)
+ (u · ∇u,v)− (p,∇ · v) + (q,∇ · u)− (f ,v) .

Therefore, we immediately have that the Gâteaux derivative of G in the direction of
(u, p), evaluated at (w, r), is given by〈J(u,p) G[w, r], (v, q)

〉
= (wt,v) +Re−1 (∇w,∇v) + μδσ (a(δ‖∇u‖F )∇w,∇v)

+μδσ+1

(
a′(δ‖∇u‖F )
‖∇u‖F [∇u : ∇w]∇u,∇v

)
+ (u · ∇w,v) + (w · ∇u,v)
− (r,∇ · v) + (q,∇ ·w)− (f ,v) .

Now, substituting this formula for
〈J(u,p) G[w, r], (v, q)

〉
into the Newton iteration

system〈
J(u(n−1),p(n−1)) G[u(n) − u(n−1), p(n) − p(n−1)], (v, q)

〉
= −

〈
G[u(n−1), p(n−1)], (v, q)

〉
,

we obtain the Newton iteration scheme(
u

(n)
t ,v

)
+ Re−1

(
∇u(n),∇v

)
+ μδσ

(
a(δ‖∇u(n−1)‖F )∇u(n),∇v

)
+ μδσ+1

(
a′(δ‖∇u(n−1)‖F )
‖∇u(n−1)‖F [∇u(n−1) : ∇u(n)]∇u(n−1),∇v

)
(6.1)

+
(
u(n−1) · ∇u(n),v

)
+

(
u(n) · ∇u(n−1),v

)
−

(
p(n),∇ · v

)
+

(
q,∇ · u(n)

)
= (f ,v) + μδσ+1

(
a′(δ‖∇u(n−1)‖F ) ‖∇u(n−1)‖F∇u(n−1),∇v

)
+

(
u(n−1) · ∇u(n−1),v

)
∀ (v, q) ∈Xh ×Qh.

Remark 6.1. Given an initial (u(0), p(0)) ∈ Xh ×Qh, the existence of a solution
(u(n), p(n)) ∈ Xh × Qh ∀ n = 1, 2, . . . to (6.1) follows by using the same arguments
as in section 4 (Lemmas 4.6 and 4.7). Since the system (6.1), however, is linear, we
can easily prove (by using the properties of a(·)) that the solution (u(n), p(n)) is also
unique.

7. Numerical results. In this section, we present numerical results that illus-
trate the benefits of the bounded AV model (2.12)–(2.14). We begin with a numerical
simulation of turbulent flow in a 3D square duct, comparing the bounded AV model
and Smagorinsky model with a direct numerical simulation (DNS) of the flow (sec-
tion 7.1). This is followed with a careful mesh-refinement study that supports the
theoretical error estimates shown above (section 7.2).



638 JEFF BORGGAARD, TRAIAN ILIESCU, AND JOHN PAUL ROOP

u,x

v,y

w,z
flow

L

D

D

Fig. 7.1. Computational domain for the turbulent flow in a 3D square duct.

7.1. Turbulent flow in a 3D square duct. To demonstrate the improvement
of the bounded AV model over the Smagorinsky model for a wall-bounded flow, we con-
sider the numerical simulation of a turbulent flow in a 3D square duct. This test prob-
lem is often employed in the validation of LES models, e.g., [18, 24, 25, 37]. For our
demonstration, we use the same parameters used in [24, 25] for their DNS simulation.

We performed a posteriori testing of the LES models, comparing coarser dis-
cretizations of the bounded AV model and the Smagorinsky model to a DNS in the
same geometry, with the same level of discretization, and the same Reynolds number
(based on the bulk velocity) as in [24]. In particular, we used the same geometry,
illustrated in Figure 7.1, where Ω = (−D/2, D/2)× (−D/2, D/2)× (0, L) ⊂ R

3, with
D = 1 and L = 6.4. The grid point distributions in the x- and y-directions also
follow [24]:

xj = −1
2

+
1
2

(b − 1)
[

a2 j/Nx − 1
a(2 j/Nx−1) + 1

]
, j = 0, 1, . . . , Nx − 1,(7.1)

where a = b+1
b−1 , Nx is the number of grid points in the x-direction, and b = 1.1 is

a stretching parameter. We use a similar distribution for the y-direction. In the
z-direction, we used a uniform grid point distribution

zj = j
L

Nz − 1
, j = 0, 1, . . . , Nz,(7.2)

where Nz is number of grid points in the z-direction.
• For the benchmark DNS, we used similar discretization levels as used for the

DNS in [24]:

Nx ×Ny ×Nz = 97× 97× 145

yielding 3.6 million degrees of freedom. This is about 50% finer in the z-
direction.
• For the two LES simulations (bounded AV and Smagorinsky), we used the

coarser discretization:

Nx ×Ny ×Nz = 25× 25× 97

yielding 0.14 million degrees of freedom.
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Note that the LES runs were performed on meshes that employed roughly 4 times
fewer nodes in the wall normal directions. This is typical in the a posteriori testing
of LES models (e.g., LES of a turbulent channel flow [26]).

For all three numerical simulations (DNS, Smagorinsky, and bounded AV models),
we used the following boundary conditions: no-slip (u = 0) on the walls, stress-free,
“do-nothing” boundary conditions at the outlet (z = 6.4)(−pI + 2Re−1∇su) · n = 0,(7.3)

and Dirichlet boundary conditions at the inlet. The inflow profile is

u(x, y, z = 0, t) = 0,(7.4)
v(x, y, z = 0, t) = 0,(7.5)

w(x, y, z = 0, t) = C1
2
π

arctan
[
C2

(
1
2
−max {|x|, |y|}

)]
,(7.6)

where C2 = 100 and C1 = π
2 arctan(C2/2)

≈ 1.01. The constant C2 controls the
steepness of the inflow profile near the walls, whereas the constant C1 was chosen to
yield a centerline streamwise velocity of 1.

The initial conditions were obtained from the inflow conditions u(x, y, z, 0) =
u(x, y, z = 0, t) for (x, y, z) ⊂ Ω. The initial pressure was obtained by substituting
the initial conditions into the momentum equations, integrating in z, and using (7.3)
at (x = 0, y = 0) to determine the integration constant.

The inflow velocity (7.4)–(7.6) was used to compute the bulk velocity uB:

uB =
1

area(Ωcs)

∫
Ωcs

u(x, y, z, t) dV,(7.7)

where Ωcs is the cross-section of the computational domain at the inlet. Formu-
las (7.4)–(7.6) and the values of C1 and C2 immediately yield the bulk velocity

uB ≈ 0.9.(7.8)

We define the Reynolds number based on the bulk velocity in the usual way [24, 25]:

ReB :=
uBD

ν
,(7.9)

where ν is the kinematic viscosity. Thus, in order to achieve the ReB used in [24]

ReB = 10, 320,(7.10)

we used the following value for the kinematic viscosity ν:

ν =
uB D

ReB
≈ 8.7207× 10−5.(7.11)

A time dependent forcing function in the z-direction

fz(x, y, z = 0, t) =
{

0.1 sin(20t) cos(10πx) cos(10πy), 0 < t < 1,
0, t ≥ 1,

was used to induce the flow transition to turbulence.
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The flow was integrated in time up to the final time T = 14.5 with a time step
�T = 0.02, which is similar to that used in [24]. Since the centerline streamwise
velocity has magnitude 1, this allows a particle in the center to travel the entire
length of the 3D square duct 2.25 times. Each DNS run was performed on 48 nodes
of SystemX (www.arc.vt.edu) for two CPU weeks. The high computational cost
associated with the DNS runs has restricted the final time to the value presented
above. The numerical results presented below represent instantaneous results and
not time and spatial averages. We emphasize, however, that the qualitative behavior
of the numerical simulations is representative for the entire duration of the numerical
simulation and not only for the particular instantaneous time frame that we present.

The numerical simulations in this section have been carried out with the ViTLES
(see Appendix A for a detailed description of the algorithm and computational im-
plementation). We used a small penalty parameter ε = 10−4 in the penalty method
to compute the pressure. The nonlinear system at each time step was solved with a
Newton iteration up to a Euclidean norm of the residual vector less than 10−8.

For the Smagorinsky model, we chose a filter radius δ = 0.01 and the Smagorinsky
constant cs = 0.17, which is a popular choice in the literature. For the bounded AV
model, we chose the parameters μ ∼ 0.4 and σ = 1. The function a(·) was chosen to
resemble that in Figure 1.1:

a(δ ‖∇su‖F ) := −0.02 +
1

1 + 49 e−5.7δ ‖∇su‖F
.(7.12)

Remark 7.1. This is exactly the function that was chosen in [28] for a completely
different setting (a rotating pulse for the convection-diffusion equation). Therefore,
this choice is not optimal for our present setting (the 3D square duct turbulent flow).
Further testing is needed to find the optimal values. We thus emphasize that we
compare the Smagorinsky model with tuned parameters with the bounded AV model
with nonoptimized parameters.

Figure 7.2 presents numerical approximations for the pressure (p) for the follow-
ing cases (with the given pressure ranges): (i) the DNS (p ∈ [−.003, .124]); (ii) the
Smagorinsky model (1.1) (p ∈ [−.018, .710]) ; and (iii) the bounded AV model (1.2)
(p ∈ [−.005, .160]). Note that the pressure loss for the bounded AV model is more
consistent with the DNS. The larger pressure loss observed in the Smagorinsky model
is indicative of the overly diffusive nature of this model. A larger pressure drop is
required to overcome the diffusion and maintain the inflow velocity.

Remark 7.2. The results obtained in the numerical simulation of turbulent flow
in a 3D square duct are encouraging. They do, however, represent just a first step in
a thorough validation of the bounded AV model. Testing in other settings, such as
turbulent channel flow simulations [4], is needed. Furthermore, improved versions of
the Smagorinsky model (such as the use of the van Driest damping (2.9)) should be
used in the comparison with the bounded AV model. In this case, however, optimized
parameters in the bounded AV model (such as the function a(·)) should be employed
to allow for a fair comparison with the optimized version of the Smagorinsky model.

7.2. Mesh-refinement study. In this section, we present a careful mesh-
refinement study supporting the error estimates in Theorem 5.1 for the bounded
AV model (1.2).

7.2.1. The 2D vortex decay problem. In this section, we present numerical
results for the bounded AV model applied to the vortex decay problem of Chorin [7,
49]. A similar study for the vortex decay problem using the Smagorinsky model was
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Fig. 7.2. 3D square duct flow, vertical cross-section. The pressure distribution (top to bottom):
DNS (first), Smagorinsky (second), and bounded AV (third).

presented in [29]. For the vortex decay problem, we define the domain Ω = (0, 1)2 ⊂
R

2 and specify

u1 := − cos(nπx) sin(nπy) exp
(−2n2π2t/τ

)
,

u2 := sin(nπx) cos(nπy) exp
(−2n2π2t/τ

)
,(7.13)

p := −1
4
(cos(2nπx) + cos(2nπy)) exp

(−4n2π2t/τ
)
.

Note that for τ := Re−1, the set (u1, u2, p) solves the time-dependent NSE with the
appropriate (time-dependent, Dirichlet) boundary conditions. For our purposes, we
take (7.13) as the solution to (2.12)–(2.14) and illustrate two points: that the spatial
semidiscretization error estimates (5.18)–(5.19) in Corollary 5.2 are satisfied and that
the estimates are bounded uniformly with respect to the Reynolds number.
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Table 7.1

Finite element convergence estimates for the vortex decay problem.

h ‖w −wh‖L∞(0,T ;L2) rate ‖w −wh‖L2(0,T ;L2) rate ‖w −wh‖L2(0,T ;H1) rate

1/8 4.020927 · 10−1 4.936365 · 10−1 1.560773 · 101

1/16 3.103567 · 10−2 3.70 3.952673 · 10−2 3.64 2.886625 · 100 2.43

1/24 5.534371 · 10−3 4.25 7.594030 · 10−3 4.07 1.096755 · 100 2.39

1/32 1.822532 · 10−3 3.86 2.418206 · 10−3 3.98 5.182457 · 10−1 2.61

1/40 7.778230 · 10−4 3.82 1.018835 · 10−3 3.87 2.870239 · 10−1 2.65

1/48 4.227375 · 10−4 3.34 5.138958 · 10−4 3.75 1.763596 · 10−1 2.68

1/56 2.567581 · 10−4 3.26 2.907396 · 10−4 3.70 1.166515 · 10−1 2.68

1/64 1.645877 · 10−4 3.33 1.779283 · 10−4 3.68 8.151033 · 10−2 2.68

1/72 1.102856 · 10−4 3.40 1.154125 · 10−4 3.68 5.940966 · 10−2 2.69

Accordingly, we specify the following parameters:

Re := 1010,

τ := 1000,
final time T := 2,

filter radius δ := 0.1,
μ = c2s := 0.172,

Δt := 0.01.

For our calculations, we assume n = 3, i.e., a 3 × 3 array of vortices and study
the finite element convergence rates for fixed δ := 0.1 as h → 0. For the spatial
discretization, we take the Taylor–Hood finite element pair and implement the Newton
iteration scheme as described in section 6. For the temporal discretization, we use
the Crank–Nicolson scheme. As indicated in Table 7.1, the spatial semidiscretization
errors are of order 3 in the spatial L2 norm and 2 in the spatial H1 norm. Thus,
for this test problem, we obtain superconvergence in both norms (see Corollary 5.2).
Also, note that these estimates are independent of the selected Reynolds number, as
we have taken a relatively high value for Re and a relatively high value for Δt.

Appendix A. The Virginia Tech large eddy simulator (ViTLES). In this
paper, we have used ViTLES, a parallel, finite element computational platform for the
numerical validation of CFD and LES models. In what follows, we briefly describe
the algorithm around which ViTLES is developed. More details can be found at
http://icam.vt.edu/ViTLES.

For spatial discretization, the computational domain is decomposed in a collection
of nonoverlapping triangles (in 2D) or tetrahedra (in 3D). We employ the traditional
Taylor–Hood finite element pair (continuous quadratic velocities and continuous linear
pressures), which satisfies the discrete inf-sup (LBBh) condition [6].

For time discretization, we employ the second-order accurate, unconditionally
stable Crank–Nicolson scheme [10].

We also employ the penalty method [10, 22, 42], in which the incompressibility
constraint ∇ · u = 0 in the NSE (2.1)–(2.3) is relaxed by setting

εpε +∇ · uε = 0,(A.1)

where ε is a small parameter. In our computations, we used ε = 0.0001. As ε→ 0, the
solution of the penalized problem converges to that of the unpenalized problem [22].
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We employ a Newton iteration scheme for solving the nonlinear system at each
time step. The scheme implemented in ViTLES explicitly constructs finite difference
approximations of the Jacobians rather than calculating the actual Jacobian matrix.

ViTLES is written on top of PETSc (the portable, extensible toolkit for scientific
computing) developed at Argonne National Laboratory [3]. ViTLES makes use of the
message passing interface (MPI), the LINPACK library, and the basic linear algebra
subprograms (BLAS) library. We have also used ADIC, the automatic differentiation
tool [23], to compute Jacobians. Tecplot (http://www.tecplot.com/) was used to
visualize the numerical results.
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[2] J.C. André, G.D. Moor, P. Lacarrere, and R.D. Vachat, Turbulence approximations for

inhomogeneous flows. Part I: The clipping approximation, J. Atmospheric Sci., 33 (1976),
pp. 476–481.

[3] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley,

L. Curfman McInnes, B.F. Smith, and H. Zhang, PETSc Users Manual, Technical
report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, Argonne, IL, 2004.

[4] L.C. Berselli, T. Iliescu, and W.J. Layton, Mathematics of Large Eddy Simulation of
Turbulent Flows, Springer-Verlag, New York, 2005.
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SUPERCONVERGENCE OF SOME PROJECTION
APPROXIMATIONS FOR WEAKLY SINGULAR INTEGRAL

EQUATIONS USING GENERAL GRIDS∗
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Abstract. This paper deals with superconvergence phenomena in general grids when projection-
based approximations are used for solving Fredholm integral equations of the second kind with
weakly singular kernels. Four variants of the Galerkin method are considered. They are the clas-
sical Galerkin method, the iterated Galerkin method, the Kantorovich method, and the iterated
Kantorovich method. It is proved that the iterated Kantorovich approximation exhibits the best su-
perconvergence rate if the right-hand side of the integral equation is nonsmooth. All error estimates
are derived for an arbitrary grid without any uniformity or quasi-uniformity condition on it, and
are formulated in terms of the data without any additional assumption on the solution. Numerical
examples concern the equation governing transfer of photons in stellar atmospheres. The numerical
results illustrate the fact that the error estimates proposed in the different theorems are quite sharp,
and confirm the superiority of the iterated Kantorovich scheme.
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1. Introduction. It is well known that some variants of the Galerkin approxi-
mation can be superconvergent in the sense that convergence to the solution is faster
than the convergence to it of its own projection.

We recall that in a Hilbert space H , if πh is a family of orthogonal projections
pointwise convergent to the indentity operator I and if T is a compact operator
for which 1 is not an eigenvalue, then the operator T h := πhT gives the Galerkin
approximation ϕh to ϕ = Tϕ + f as ϕh = (I − T h)−1πhf for all f ∈ H , where
the inverses (I − T h)−1 exist and are uniformly bounded in the operator norm; i.e.,
‖(I − T h)−1‖ ≤ c for some constant c independent of h, for sufficiently small h. The
identity

ϕh − ϕ =
(
I − T h)−1

πh(I − T )ϕ− (I − T h)−1 (
I − T h)ϕ =

(
I − T h)−1 (

πh − I)ϕ
shows that ∥∥(I − πh)ϕ∥∥ ≤ ∥∥ϕ− ϕh∥∥ ≤ c ∥∥(I − πh)ϕ∥∥ ,
so the Galerkin approximation ϕh converges to the solution ϕ as slow as the projection
of ϕ onto the range of πh converges to ϕ.

For integral equations the phenomenon of superconvergence of some variants of
the Galerkin approximation has been studied since 1976 (cf. [16], [17], [18], [11], [12],
[4], [19], [6], [23], [20], [15], [24], [9], and references therein).
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In this paper we study superconvergence results on three other projection methods
for solving weakly singular integral equations of the form

ϕ(τ) = �0

∫ τ∗

0

E(|τ − τ ′|)ϕ(τ ′) dτ ′ + f(τ), τ ∈ J :=]0, τ∗[,(1)

where ϕ is the unknown.
The phenomenon of superconvergence is studied here following the properties of

the Banach space X , which may be Lp(J), C(J), BV (J), or W 1,p(J), in which the
equation is settled. In all the spaces, the discretization procedure is the weakest one
we can conceive in the Lebesgue space L1, namely, projection techniques based on
piecewise constant functions. We are particularly interested in the case in which �0

is close to 1 from below, and τ∗ is much bigger than 1. For instance, in Astrophysics,
typical values may be �0 = 0.9999 and τ∗ = 106.

2. Description of the methods and formulation of some results. We
assume that the kernel E is a positive decreasing function defined on R

+ :=]0,+∞[,
such that E(0+) = +∞ (that is why (1) is called singular), E ∈ Lr(R) for all r ∈ [1,∞[
(that is why (1) is only weakly singular), and

‖E‖L1(R+) ≤ 1/2.(2)

We suppose that �0 is a fixed real number in ]0, 1[, and that f ∈ Lp(J) for some
p ∈ [1,∞].

The heat transfer integral equation

ϕ(τ) =
�0

2

∫ τ∗

0

E1(|τ − τ ′|)ϕ(τ ′) dτ ′ + f(τ), τ ∈ J,(3)

widely used for mathematical modelling in Astrophysics (cf. [3], [5], [10], and [22]), is
an important example of (1), where

E1(τ) :=
∫ 1

0

μ−1e−τ/μ dμ, τ > 0,

is the exponential-integral function of order 1. Usually, in Astrophysics, τ∗, called the
optical depth, is a very large number, and �0, called the albedo, may be very close
to 1. So it is important to find accurate estimates of the error which are independent
of τ∗ but depend on �0 in an explicit form.

Let us define the integral operator

(Λϕ)(τ) :=
∫ τ∗

0

E(|τ − τ ′|)ϕ(τ ′) dτ ′, ϕ ∈ X, τ ∈ [0, τ∗],

where X ⊆ L1(J) is a suitable Banach space, and rewrite (1) as follows.
For a given f ∈ X , find ϕ ∈ X such that

ϕ = �0Λϕ+ f.(4)

Different choices of X will be made precise throughout the paper.
For integers p and q such that p ≤ q, we denote by [[p, q]] the set of all integers j

such that p ≤ j ≤ q.
In order to compute approximate solutions to (4), we consider the following nu-

merical process:
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Let Jh := {τj : j ∈ [[0, n]]} be a finite set of n+ 1 points in [0, τ∗] such that

0 = τ0 < τ1 < · · · < τn−1 < τn = τ∗.

Set

hi := τi − τi−1, i ∈ [[1, n]], hmax := max
i∈[[1,n]]

hi, h := (h1, h2, . . . , hn),(5)

Ji−1/2 := [τi−1, τi[, i ∈ [[1, n]].(6)

Let Sh1/2(J) be the following space of piecewise constant functions:

Sh1/2(J) := {f : f(τ) = fi−1/2 for all i ∈ [[1, n]], and all τ ∈ Ji−1/2}.

Let πh : Lp(J) → Lp(J) be the bounded projection defined, for all ϕ ∈ Lp(J), as
follows:

For each i ∈ [[1, n]] and all τ ∈ Ji−1/2,

(
πhϕ

)
(τ) :=

1
hi

∫ τi

τi−1

ϕ(τ ′) dτ ′.(7)

It is clear that the range of πh is equal to Sh1/2(J).
We shall deal with four different projection approximations based on πh:
The first one is the well-known classical Galerkin approximation ϕh which solves

ϕh = �0π
hΛϕh + πhf.(8)

We observe that ϕh ∈ Sh1/2(J). Since πhΛ is a finite rank operator, ϕh may be
computed with the help of the solution of an auxiliary system of linear algebraic
equations (cf. [2]). Moreover, in this particular case, the coefficient matrix of the
linear system is self-adjoint and positive definite with respect to the inner product

〈
ϕh, ψh

〉
=

n∑
i=1

ϕhi−1/2ψ
h
i−1/2hi

defined in Sh1/2(J)× Sh1/2(J).
The second approximation is the iterated Galerkin approximation ϕh [21], also

called Sloan approximation, which solves

ϕh = �0Λπhϕh + f.(9)

ϕh may be computed in the following way: Apply πh to (9) and note that πhϕh = ϕh,
the Galerkin approximation. Hence

ϕh = �0Λϕh + f.

It is well known (cf. [16], [19], [4], [6], [7], [23]) that the iterated Galerkin method has
a higher order of convergence than the Galerkin method itself.

The third one, called Kantorovich approximation, is based on Kantorovich regu-
larization (cf. [8]) of (4):

y = �0Λy + Λf.(10)
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The Kantorovich approximation is defined to be the solution of

ϕ̃h = �0π
hΛϕ̃h + f.(11)

To solve (11), set y := Λϕ, yh := πhΛϕ̃h and note that

ϕ = �0y + f, ϕ̃h = �0y
h + f,

and that y solves (10) while yh solves

yh = �0π
hΛyh + πhΛf.

So yh ∈ Sh1/2(J) is the Galerkin approximation to (10).
This method was considered in [11], [12], [13], [15], [20]. Since it approximates

y = Λϕ, this method is appropriate if Λϕ is more smooth then ϕ.
The fourth approximation is the iterated Kantorovich approximation (cf. [20],

[14]) defined to be the solution of

ϕ̂h = �0Λπhϕ̂h + f +�0Λ
(
I − πh) f.(12)

As it is quoted in [20], to compute ϕ̂h we may find the Sloan approximation yh to
(10),

yh = �0Λπhyh + Λf,

and then use the fact that ϕ̂h = �0y
h + f .

Remark 1. Note that ϕ̃h − ϕ = �0(yh − y) and ϕ̂h − ϕ = �0(yh − y). So
for estimating the errors of Kantorovich and iterated Kantorovich approximations,
we may apply the estimates we have obtained for the error of Galerkin and Sloan
approximations but to (10) with right-hand side Λf instead of f and with solution
y = Λϕ instead of ϕ.

Remark 2. We recall that the classical Galerkin approximation ϕh ∈ Sh1/2(J) is
defined by reducing to zero the projection of the residual onto the finite dimensional
approximating subspace Sh1/2(J), the range of πh:

πh
(
ϕh −�0π

hΛϕh − f) = 0.

Another Galerkin-type approximation ψh can be built as the solution of

ψh = �0π
hΛπhψh + f.

In this case, f is kept as it is and no projection acts on it. Obviously, ϕh = πhψh, but
in general, ϕh and ψh do not coincide. However, is f belongs to the range of πh, i.e.,
if πhf = f , then not only ψh = ϕh but ϕ̃h = ϕh too, and hence the iterated Galerkin
approximation and the iterated Kantorovich approximation coincide: ϕ̂h = ϕh.

Throughout this paper, p, q, and s are real numbers in [1,∞] such that p ≤ q,
and

1/s = 1− 1/p+ 1/q.(13)

Note that s ∈ [1,∞], s = 1 if p = q and that s =∞ means that p = 1 and q =∞.
Let

γ0 :=
1

1−�0
, γ1 :=

�0

1−�0
, Mp := 21/p‖E‖Lp(R+).
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Let C0(J) denote the space of all continuous functions on J , BV (J) the space
of functions with bounded variation, and W 1,p(J) the classical Sobolev space, with
respective norms

‖f‖C0 := max
τ∈J
|f(τ)|, ‖f‖BV := var

J
f + γ1 sup

τ∈J
|f(τ)|,

‖f‖W 1,p := ‖Df‖Lp + 21−1/pMpγ1‖f‖C0.

Here and later Df = f ′.
Let us formulate the error estimates which are proved in this paper in the case of

the heat transfer equation (3).
These errors will be denoted by

εh := ϕh − ϕ, εh := ϕh − ϕ, ε̃h := ϕ̃h − ϕ, ε̂h := ϕ̂h − ϕ.

Remark 3. All error estimates are derived for an arbitrary grid without any
uniformity or quasi-uniformity condition on it, and are formulated in the terms of the
data without any additional assumption on the solution. All the error bounds are
independent of τ∗ and depend on �0 through γ0 and γ1.

Theorem 1. Assume that E = 1
2E1, f ∈ Lp(J), and 1 ≤ p ≤ q ≤ ∞. The

following estimates hold as hmax → 0:

∥∥πhεh∥∥
Lq ≤ γ0γ1 h

1−1/p+1/q
max ln

1
hmax

(1 + o(1))‖f‖Lp for s <∞,
∥∥εh∥∥

Lq ≤ γ0γ1 h
1−1/p+1/q
max ln

1
hmax

(1 + o(1))‖f‖Lp for s <∞,
∥∥πhε̃h∥∥

Lq ≤ γ2
1 h

2−1/p+1/q
max ln2 1

hmax
(1 + o(1))‖f‖Lp ,

∥∥ε̃h∥∥
Lq ≤ γ0γ1 h

1−1/p+1/q
max ln

1
hmax

(1 + o(1))‖f‖Lp for s <∞,
∥∥ε̂h∥∥

Lq ≤ γ2
1 h

2−1/p+1/q
max ln2 1

hmax
(1 + o(1))‖f‖Lp .

As a corollary

∥∥πhεh∥∥
Lp ≤ γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖Lp ,

∥∥εh∥∥
Lp ≤ γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖Lp ,

∥∥πhε̃h∥∥
Lp ≤ γ2

1 h
2
max ln2 1

hmax
(1 + o(1))‖f‖Lp,

∥∥ε̃h∥∥
Lp ≤ γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖Lp ,

∥∥ε̂h∥∥
Lp ≤ γ2

1 h
2
max ln2 1

hmax
(1 + o(1))‖f‖Lp.

As we see, when f ∈ Lp(J), then the iterated Galerkin method and the Kan-
torovich method have the same accuracy. The iterated Kantorovich method is appre-
ciably more accurate.
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Theorem 2. Assume that E = 1
2E1, f ∈ BV (J), and 1 ≤ q ≤ ∞. The following

estimates hold as hmax → 0:

∥∥πhεh∥∥
Lq ≤ γ0γ1 h

1+1/q
max ln

1
hmax

(1 + o(1))‖f‖BV ,∥∥εh∥∥
Lq ≤ γ2

0 h
1/q
max‖f‖BV ,

‖εh‖Lq ≤ γ0γ1 h
1+1/q
max ln

1
hmax

(1 + o(1))‖f‖BV ,
∥∥πhε̃h∥∥

Lq ≤ γ2
1 h

2
max ln

1
hmax

(1 + o(1))‖Λf‖W 1,q for q <∞,∥∥ε̃h∥∥
Lq ≤ γ0γ1hmax‖Λf‖W 1,q for q <∞,∥∥ε̂h∥∥
Lq ≤ γ2

1 h
2
max ln

1
hmax

(1 + o(1))‖Λf‖W 1,q for q <∞,

The following estimates hold too:

∥∥πhεh∥∥
BV
≤ 3γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖BV ,
∥∥εh∥∥

W 1,1 ≤ 3γ0γ1 hmax ln
1

hmax
(1 + o(1))‖f‖BV ,

∥∥πhε̃h∥∥
BV
≤ 3γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖BV ,
∥∥ε̂h∥∥

W 1,1 ≤ 3γ0γ1 hmax ln
1

hmax
(1 + o(1))‖f‖BV .

Theorem 2 shows that, when f ∈ BV (J), then the iterated Galerkin method is
more accurate than the Kantorovich method. The iterated Kantorovich method keeps
an advantage.

Theorem 3. Assume that E =
1
2
E1, f ∈ W 1,p(J) for some p ∈ [1,∞[, and

p ≤ q ≤ ∞. The following estimates hold as hmax → 0:

∥∥πhεh∥∥
Lq ≤ γ0γ1 h

2−1/p+1/q
max ln

1
hmax

(1 + o(1))‖f‖W 1,p ,∥∥εh∥∥
Lq ≤ γ2

0 h
1−1/p+1/q
max ‖f‖W 1,p ,∥∥εh∥∥

Lq ≤ γ0γ1 h
2−1/p+1/q
max ln

1
hmax

(1 + o(1))‖f‖W 1,p .

As a corollary

∥∥πhεh∥∥
Lp ≤ γ0γ1 hmax ln

1
hmax

(1 + o(1))‖f‖W 1,p ,∥∥εh∥∥
Lp ≤ γ2

0 hmax ‖f‖W 1,p ,∥∥εh∥∥
Lp ≤ γ0γ1 h

2
max ln

1
hmax

(1 + o(1))‖f‖W 1,p .

Theorems 2 and 3 show us that, when f ∈ W 1,p(J), p ∈ [1,∞[, then the classical
Galerkin method has almost the same accuracy as the Kantorovich method, and the
iterated Galerkin method has almost the same accuracy as the iterated Kantorovich
method.



652 ANDREY AMOSOV, MARIO AHUES, AND ALAIN LARGILLIER

Theorems 1–3 follow from Theorem 11 and Theorem 14 because E1 satisfies the
following properties:

1. E1 ∈W 1,r(δ,∞) for all δ > 0 and r ∈ [1,∞[,
2. DE1(t) = o(t−1E1(t)) as t→ 0+,
3. E1(t) = ln 1

t (1 + o(1)) as t→ 0+ (cf. [1]).
Remark 4. It is proved in section 3 that, if f ∈ BV (J), then Λf ∈ BV (J),

Λf ∈ W 1,q(J) for all q ∈ [1,∞[, and

‖Λf‖BV (J) ≤ var
J
f + γ0 sup

τ∈J
|f(τ)|,

‖Λf‖W 1,q ≤Mq

(
var
J
f + 21−1/qγ0 sup

τ∈J
|f(τ)|

)
.

It is proved also that, if f ∈ W 1,p(J) for some p ∈ [1,∞[, then Λf ∈ W 1,q(J) for all
q ∈ [p,∞[, and

‖Λf‖W 1,q ≤Ms‖Df‖Lp + 21−1/qγ0Mq‖f‖C0(J).

Remark 5. The Kantorovich approach has no sense if f ∈ W 1,∞(J) is such that
f(0) �= 0 or f(τ∗) �= 0. It follows from formula (21) that in that case Λf /∈W 1,∞(J),
and, as a corollary, Λϕ /∈ W 1,∞(J). So the iterated Galerkin method should be
preferred if f belongs to W 1,∞(J) or if it is smoother than that.

3. Some properties of the solution. We use the notations

(ϕ, ψ) :=
∫ τ∗

0

ϕ(τ)ψ(τ) dτ,

E∗(τ) := E(τ∗ − τ).

Let f ∈ Lp(J), and E ∈ Lr(R+) for all r ∈ [1,∞[.
In this section, h denotes a strictly positive real number. We introduce differences

Δhf(τ) := f(τ + h)− f(τ), Δ−hf(τ) := f(τ − h)− f(τ),

and the modulus of continuity of the kernel E :

ωr(E , h) := sup
0<δ≤h

‖ΔδE(| · |)‖Lr(R),

that is to say

ωr(E , h) = sup
0<δ≤h

(∫
R

|E(|τ + δ|)− E(|τ |)|r dτ
)1/r

.

Lemma 1. Let s �= ∞. Then Λ is a bounded linear operator from Lp(J) into
Lq(J), and the following estimates hold:

‖Λ‖Lp→Lq ≤Ms,(14)
‖ΔhΛ‖Lp→Lq ≤ ωs(E , h).(15)
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Proof. For p ∈ [1,∞[ and by Hölder inequality,

|Λf(τ)|p ≤
(∫ τ∗

0

E(|τ − τ ′|)|f(τ ′)| dτ ′
)p

=
(∫ τ∗

0

E(|τ − τ ′|)s(1−1/p)E(|τ − τ ′|)s/q|f(τ ′)|dτ ′
)p

≤
[∫ τ∗

0

E(|τ − τ ′|)sdτ ′
]p−1∫ τ∗

0

E(|τ − τ ′|)sp/q |f(τ ′)|pdτ ′

≤M s(p−1)
s

∫ τ∗

0

E(|τ − τ ′|)sp/q |f(τ ′)|pdτ ′,

and similarly

|ΔhΛf(τ)|p =
∣∣∣ ∫ τ∗

0

ΔhE(|τ − τ ′|)f(τ ′) dτ ′
∣∣∣p

≤ ωs(E , h)s(p−1)

∫ τ∗

0

|ΔhE(|τ − τ ′|)|sp/q |f(τ ′)|p dτ ′.

If q =∞ these estimates immediately imply inequalities (14), (15).
If q <∞, then by generalized Minkowski inequality we get

‖Λf‖pLq ≤M s(p−1)
s

∥∥∥∥
∫ τ∗

0

E(| · −τ ′|)sp/q |f(τ ′)|p dτ ′
∥∥∥∥
Lq/p

≤M s(p−1)
s

∫ τ∗

0

∥∥E(| · −τ ′|)sp/q∥∥
Lq/p |f(τ ′)|p dτ ′

= M s(p−1)
s

∫ τ∗

0

‖E(| · −τ ′|)‖sp/qLs |f(τ ′)|p dτ ′ ≤ Mp
s ‖f‖pLp,

and

‖ΔhΛf‖pLq ≤ ωs(E , h)s(p−1)

∥∥∥∥
∫ τ∗

0

|ΔhE(| · −τ ′|)|sp/q |f(τ ′)|p dτ ′
∥∥∥∥
Lq/p

≤ ωs(E , h)s(p−1)

∫ τ∗

0

∥∥∥ΔhE(| · −τ ′|)sp/q
∥∥∥
Lq/p
|f(τ ′)|p dτ ′

= ωs(E , h)s(p−1)

∫ τ∗

0

‖ΔhE(| · −τ ′|)‖sp/qLs |f(τ ′)|p dτ ′ ≤ ωs(E , h)p‖f‖pLp.

If p = q =∞, then

|Λf(τ)| ≤
∫ τ∗

0

E(|τ − τ ′|) dτ ′‖f‖L∞ ≤ M1‖f‖L∞, |ΔhΛf(τ)| ≤ ω1(E , h)‖f‖L∞ .

The proof is complete.
Corollary 1. The following estimate holds for all p ∈ [1,∞]:

‖Λ‖Lp→Lp ≤M1 = 1.(16)

Corollary 2. If 1 < p ≤ ∞, then Λ is a bounded linear operator from Lp(J)
into C0(J).
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Theorem 4. If f ∈ Lp(J) for some p ∈ [1,∞], then there exists a unique solution
ϕ ∈ Lp(J) of (1) and

‖ϕ‖Lp ≤ γ0‖f‖Lp.(17)

If f ∈ C0(J), then ϕ ∈ C0(J) and

‖ϕ‖C0 ≤ γ0‖f‖C0.(18)

Proof. It follows from (16) and the Banach Fixed Point Theorem.
Lemma 2. Assume that ϕ, y ∈ L1(J) and h−1Δhϕ → y in L1

loc(J) as h → 0.
Then ϕ ∈W 1,1(J) and Dϕ = y.

Proof. It is easy to see that, if h is a sufficiently small number, then(
h−1Δhϕ, ψ

)
=
(
ϕ, h−1Δ−hψ

)
for all ψ ∈ C∞0

(
J
)
.

After a limit transition we get

(y, ψ) = −(ϕ,Dψ) for all ψ ∈ C∞0
(
J
)
.

This means that y = Dϕ.
Theorem 5. If f ∈ W 1,p(J) for some p ∈ [1,∞[, then ϕ ∈W 1,p(J) and

Dϕ = �0ΛDϕ+�0ϕ(0)E −�0ϕ(τ∗)E∗ +Df in J,(19)
‖Dϕ‖Lp ≤ γ0‖f‖W 1,p .(20)

Proof. Let h ∈ ]0, τ∗[ and τ ∈ Jh :=]0, τ∗ − h[. It follows from (1) that

Δhϕ(τ) = �0

∫ τ∗

0

ΔhE(|τ − τ ′|)ϕ(τ ′) dτ ′ + Δhf(τ)

= �0

∫ τ∗−h

0

E(|τ − τ ′|)Δhϕ(τ ′) dτ ′ +�0

∫ h

0

E(|τ + h− τ ′|)ϕ(τ ′) dτ ′

− �0

∫ τ∗

τ∗−h
E(|τ − τ ′|)ϕ(τ ′) dτ ′ + Δhf(τ).

Hence the function yh := h−1Δhϕ solves

yh(τ) = �0

∫ τ∗−h

0

E(|τ − τ ′|)yh(τ ′) dτ ′ + ψh(τ) for all τ ∈ Jh,

where
ψh(τ)

:= �0h
−1

∫ h

0

E(|τ + h− τ ′|)ϕ(τ ′) dτ ′ −�0h
−1

∫ τ∗

τ∗−h
E(|τ − τ ′|)ϕ(τ ′) dτ ′ + h−1Δhf(τ).

Note that ∥∥h−1

∫ h

0

E(| ·+h− τ ′|)ϕ(τ ′) dτ ′ − ϕ(0)E(·)∥∥
L1

≤ h−1

∫ h

0

‖E(| ·+h− τ ′|)‖L1 |ϕ(τ ′)− ϕ(0)| dτ ′

+ h−1

∫ h

0

‖E(| ·+h− τ ′|)− E(| · |)‖L1 dτ ′|ϕ(0)|

≤ h−1

∫ h

0

|ϕ(τ ′)− ϕ(0)| dτ ′ + ω1(E , h)|ϕ(0)|,

which tends to 0 as h→ 0.
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Similarly,∥∥∥∥h−1

∫ τ∗

τ∗−h
E(| · −τ ′|)ϕ(τ ′) dτ ′ − ϕ(τ∗)E∗(·)

∥∥∥∥
L1

→ 0 as h→ 0.

But Df ∈ Lp(J) and hence ‖h−1Δhf −Df‖Lp(Jh) → 0 as h → 0. Thus, ‖ψh −
ψ‖L1(Jh) → 0, where

ψ := �0ϕ(0)E −�0ϕ(τ∗)E∗ +Df ∈ Lp(J).

Let y ∈ Lp(J) be a solution of the equation

y(τ) = �0

∫ τ∗

0

E(|τ − τ ′|)y(τ ′) dτ ′ + ψ(τ), τ ∈ J.

Applying Theorem 3 to this equation we get

‖y‖Lp ≤ γ0‖ψ‖Lp ≤ 2γ1‖E‖Lp‖ϕ‖C0 + γ0‖Df‖Lp ≤ γ0‖f‖W 1,p .

Considering zh := yh − y as a solution of equation

zh(τ) = �0

∫ τ∗−h

0

E(|τ − τ ′|)zh(τ ′) dτ ′ + gh(τ), τ ∈ Jh,

where

gh(τ) := ψh(τ) − ψ(τ) +�0

∫ τ∗

τ∗−h
E(|τ − τ ′|)y(τ ′) dτ ′,

we get the estimate

‖yh − y‖L1(Jh) ≤ γ0

[
‖ψh − ψ‖L1(Jh) +�0

∫ τ∗

τ∗−h
‖E(| · −τ ′|)‖L1 |y(τ ′)| dτ ′

]
,

which tends to 0 as h → 0. So h−1ϕh → y in L1
loc(J) and, from Lemma 2,

y = Dϕ.
Lemma 3. If f ∈ W 1,p(J) for some p ∈ [1,∞[, then Λf ∈ W 1,q(J) for all

q ∈ [p,∞[, and

DΛf = ΛDf + f(0)E − f(τ∗)E∗,(21)
‖DΛf‖Lq ≤Ms‖Df‖Lp + 21−1/qMq‖f‖C0.(22)

Proof. As in the proof of Theorem 5

h−1ΔhΛf(τ) =
∫ τ∗−h

0

E(|τ − τ ′|)h−1Δhf(τ ′) dτ ′ + h−1

∫ h

0

E(|τ + h− τ ′|)f(τ ′) dτ ′

−h−1

∫ τ∗

τ∗−h
E(|τ − τ ′|)f(τ ′) dτ ′ →

∫ τ∗

0

E(|τ − τ ′|)Df(τ ′) dτ ′ + f(0)E(τ)− f(τ∗)E∗(τ)

in L1
loc(J). So (21) is true. Inequality (22) follows from (21).
Lemma 4. If f ∈ BV (J), then Λf ∈W 1,p(J) for all p ∈ [1,∞[ and

‖DΛf‖Lp ≤Mp

(
var
J
f + 21−1/p sup

τ∈J
|f(τ)|

)
.(23)
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Proof. Put f(τ) := f(τ∗) for τ > τ∗. Consider the average function

fδ(τ) := δ−1

∫ δ

0

f(τ + τ ′) dτ ′.(24)

It is well known that fδ ∈ W 1,∞(J) and that, for all p ∈ [1,∞[, fδ → f in Lp(J) as
δ → 0. Also,

‖Dfδ‖L1 ≤ var
J
f, ‖fδ‖C0 ≤ sup

τ∈J
|f(τ)|.(25)

It follows from Lemma 3 that

‖DΛfδ‖Lp ≤Mp

(
var
J
f + 21−1/p sup

τ∈J
|f(τ)|

)
for all p ∈ [1,∞[.

If p ∈]1,∞[ this inequality implies that there exists DΛf ∈ Lp(J) and inequality (23)
holds. For p = 1 the inequality may be justified by a limiting process as p→ 1.

Theorem 6. Let f ∈ BV (J). Then there exists a function ϕ ∈ BV (J) satisfying
(4) for all τ ∈ J̄ and

var
J
ϕ ≤ γ0 ‖f‖BV ,(26)

sup
τ∈J
|ϕ(τ)| ≤ γ0 sup

τ∈J
|f(τ)|.(27)

Proof. As f ∈ BV (J) ⊂ L∞(J), there exists a solution ϕ ∈ L∞(J) for which
Λϕ ∈ C0(J) and (4) is satisfied almost everywhere. Putting ϕ∗ := �0Λϕ + f , we
note that this function is equivalent to ϕ and ϕ∗ = �0Λϕ∗ + f for all τ ∈ J . We will
consider this special solution of (4) and will denote it by ϕ again.

It is evident that function ϕ is bounded. It follows from (4) that

sup
τ∈J
|ϕ(τ)| ≤ �0 sup

τ∈J
|ϕ(τ)| + sup

τ∈J
|f(τ)|.

So (27) holds.
Now put ϕ(τ) := ϕ(0) for τ < 0 and ϕ(τ) := ϕ(τ∗) for τ > τ∗. Let

VN := max
M∈[[1,N ]]

[
sup

0=τ0<τ1<···<τM=τ∗

M−1∑
i=0

|ϕ(τi+1)− ϕ(τi)|
]
.

Note that VN <∞ and that

VN = max
M∈[[1,N ]]

[
sup

−∞<τ0<τ1<···<τM<∞

M−1∑
i=0

|ϕ(τi+1)− ϕ(τi)|
]
.

It follows from (4) that

ϕ(τi+1)− ϕ(τi) = �0

∫
R

E(|τ |)(ϕ(τ + τi+1)− ϕ(τ + τi)) dτ

+ �0

∫ −τi

−τi+1

E(|τ |) dτ ϕ(0)−�0

∫ τ∗−τi

τ∗−τi+1

E(|τ |) dτϕ(τ∗)

+ f(τi+1)− f(τi).
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So
M−1∑
i=0

|ϕ(τi+1)− ϕ(τi)| ≤ �0

∫
R

E(|τ |)
M−1∑
i=0

|ϕ(t+ τi+1)− ϕ(τ + τi)| dτ

+ �0

∫ 0

−τ∗
E(|τ |) dτ |ϕ(0)| + �0

∫ τ∗

0

E(τ) dτ |ϕ(τ∗)|+
M−1∑
i=0

|f(τi+1 − f(τi)|

≤ �0VN + �0 sup
τ∈J
|ϕ(τ)| + var

J
f ≤ �0VN + γ1 sup

τ∈J
|f(τ)| + var

J
f.

As a consequence VN ≤ �0VN + ‖f‖BV and VN ≤ γ0‖f‖BV . The last inequality
implies (26).

Corollary 3. If Λf ∈ BV (J), then Λϕ ∈ BV (J) and

var
J

Λϕ ≤ γ0 ‖Λf‖BV ,(28)

sup
τ∈J
|Λϕ(τ)| ≤ γ0 sup

τ∈J
|Λf(τ)|.(29)

To prove Corollary 3 we remind that y = Λϕ solves (10).

4. Some subsidiary results. In this section we will consider some properties
of operators πh and I − πh. We come back to the general notations of the paper,
introduced in section 2. In addition, p′ ∈ [1,∞] will denote the conjugate of p ∈ [1,∞]
in the sense that 1/p+ 1/p′ = 1.

It is evident that (πh)2 = πh. So πh and I − πh are projections from Lp(J) into
Lp(J). It is easy to see that for all p ∈ [1,∞] we have

‖πh‖Lp→Lp = 1.

Moreover, πh has this self-adjoint-like property:(
πhϕ, ψ

)
=
(
ϕ, πhψ

)
for all ϕ ∈ Lp(J), ψ ∈ Lp′(J).

Let f ∈ Lp(J), E ∈ Lr(R+) for all r ∈ [1,∞[, and α ∈]0, 1[. We introduce the
following difference operator Δh

α and two modulii of continuity, all three associated
with the grid Jh :

Δh
αf(τ) :=

{
Δαhif(τ) for all τ ∈ [τi−1, τi − αhi],
0 for all τ ∈ ]τi − αhi, τi[, i ∈ [[1, n]],

ωp(f, Jh) :=

⎧⎨
⎩ 21/p

[∫ 1

0 ‖Δh
αf‖pLp(J) dα

]1/p
for all p ∈ [1,∞[,

maxi∈[[1,n]] essup (τ,τ ′)∈[τi−1,τi[2 |f(τ)− f(τ ′)| for p =∞,
ωr
(E , Jh) := sup

0<τ ′<τ∗
ωr
(E(| · −τ ′|), Jh)

= 21/r sup
0<τ ′<τ∗

[∫ 1

0

‖Δh
αE(| · −τ ′|)‖rLrdα

]1/r
for all r ∈ [1,∞[.

Lemma 5. The following estimates hold:∥∥(I − πh) f∥∥
Lp ≤ ωp

(
f, Jh

)
for all f ∈ Lp(J),(30) ∥∥(I − πh) f∥∥

Lq ≤ h1/q
max var

J
f for all f ∈ BV (J) ,(31) ∥∥(I − πh) f∥∥

Lq ≤ h1/s
max‖Df‖Lp for all f ∈W 1,p(J).(32)
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Proof. Let f ∈ Lp(J). It follows from (7) that, for all i ∈ [[1, n]] and τ ∈ Ji−1/2,

(
I − πh) f(τ) =

1
hi

∫ τi

τi−1

(f(τ) − f(τ ′)) dτ ′.(33)

If p <∞, then

∫ τi

τi−1

∣∣(I − πh) f(τ)
∣∣p dτ ≤ ∫ τi

τi−1

[
1
hi

∫ τi

τi−1

|f(τ ′)− f(τ)| dτ ′
]p

dτ

≤ 1
hi

∫ τi

τi−1

[∫ τi

τi−1

|f(τ ′)− f(τ)|pdτ ′
]
dτ =

2
hi

∫ τi

τi−1

[∫ τi

τ

|f(τ ′)− f(τ)|pdτ ′
]
dτ

= 2
∫ τi

τi−1

[∫ (τi−τ)/hi

0

|f(τ + αhi)− f(τ)|pdα
]
dτ = 2

∫ 1

0

[∫ τi−αhi

τi−1

|Δαhif(τ)|pdτ
]
dα.

As a consequence

∥∥(I − πh) f∥∥p
Lp ≤ 2

n∑
i=1

∫ 1

0

[∫ τi−αhi

τi−1

|Δαhif(τ)|pdτ
]
dα = ωp

(
f, Jh

)p
.

In the case p =∞ the estimate is evident.
Let f ∈ BV (J). It follows from (33) that, for all i ∈ [[1, n]],

sup
τ∈[τi−1,τi[

∣∣(I − πh) f(τ)
∣∣ ≤ var

[τi−1,τi]
f,

so ∥∥(I − πh) f∥∥
L∞ ≤ var

J
f,

and if q <∞, then

∥∥(I − πh) f∥∥q
Lq =

n∑
i=1

∥∥(I − πh) f∥∥q
Lq(τi−1,τi)

≤
n∑
i=1

hi

(
var

[τi−1,τi]
f

)q
≤ hmax

(
var
J
f

)q
.

Let f ∈ W 1,p(J). It follows from (33) that, for all i ∈ [[1, n]],

sup
τ∈[τi−1,τi]

∣∣(I − πh) f(τ)
∣∣ ≤ ‖Df‖L1(τi−1,τi) ≤ h1−1/p

i ‖Df‖Lp(τi−1,τi).

If q =∞, then (32) is evident. If q <∞, then

∥∥(I − πh) f∥∥q
Lq(J)

=
n∑
i=1

∥∥(I − πh) f∥∥q
Lq(τi−1,τi)

≤
n∑
i=1

h
q−q/p+1
i ‖Df‖qLp(τi−1,τi)

≤ hq−q/p+1
max ‖Df‖qLp .

The proof is complete.
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Lemma 6. Let g ∈ L1(0, 1) be a positive nonincreasing function. Then g(t) =
o(t−1) as t→ 0+.

Proof. Otherwise there exist a number c0 > 0 and a sequence (tk)∞k=1 in ]0, 1]
such that limk→∞ tk = 0, tk+1 < tk/2, and g(tk) ≥ c0t−1

k for all k ≥ 1. So

∫ 1

0

g(t) dt ≥
∞∑
k=1

g(tk)tk(1− tk+1/tk) ≥ c0
∞∑
k=1

(1 − tk+1/tk) ≥
∞∑
k=1

1/2 = +∞.

This contradiction proves the lemma.
Corollary 4. Er(t) = o(t−1) as t→ 0+ for all r ∈ [1,∞[.
Lemma 7. If

E ∈W 1,r(δ,∞) for all δ > 0 and all r ∈ [1,∞[,(34)

then

ωr(E , η) ≤ sup
0<δ≤η

41/r

(∫ δ/2

0

E(τ)r dτ + δr
∫ ∞
δ/2

|DE(τ)|r dτ
)1/r

for all r ∈]1,∞[.

(35)
If in addition

DE(τ) = o
(
τ−1E(τ)) as τ → 0+,(36)

then, for all r ∈ [1,∞[,

ωr(E , η) ≤ 21/rη1/rE(η/2)(1 + o(1)) as η → 0+.(37)

Proof. Note that

∫ ∞
−∞
|E(|τ + δ|)− E(|τ |)|r dτ = 2

∫ ∞
0

|E(|τ + δ/2|)− E(|τ − δ/2|)|r dτ

≤ 2
∫ δ/2

0

E(|τ − δ/2|)r dτ + 2
∫ δ

δ/2

E(|τ − δ/2|)r dτ + 2
∫ ∞
δ

(E(τ − δ/2)− E(τ + δ/2))r dτ

≤ 4
∫ δ/2

0

E(τ)r dτ + 2
∫ ∞
δ/2

(E(τ) − E(τ + δ))r dτ

≤ 4
∫ δ/2

0

E(τ)r dτ + 2
∫ ∞
δ/2

[∫ τ+δ

τ

|DE(τ ′)| dτ ′
]r
dτ

≤ 4
∫ δ/2

0

E(τ)r dτ + 2δr−1

∫ ∞
δ/2

[∫ τ+δ

τ

|DE(τ ′)|r dτ ′
]
dτ

≤ 4
∫ δ/2

0

E(τ)r dτ + 2δr
∫ ∞
δ/2

|DE(τ)|rdτ.

So (35) holds.
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To prove (37) we note that δEr(δ/2) → 0 as δ → 0+. (See Corollary 4.) By our
assumptions and the L’Hospital rule,

lim
δ→0+

2
∫ δ/2
0
Er(τ) dτ

δEr(δ/2)
= lim
δ→0+

Er(δ/2)
Er(δ/2) + (r/2)δEr−1(δ/2)DE(δ/2)

= 1,

lim
δ→0+

δr
∫∞
δ/2
|DE(τ)|r dτ

δEr(δ/2)
= lim
δ→0+

∫∞
δ/2
|DE(τ)|r dτ

δ1−rEr(δ/2)

= lim
δ→0+

−|DE(δ/2)|r/2
(1 − r)δ−rEr(δ/2) + (r/2)δ1−rEr−1(δ/2)DE(δ/2)

= 0.

So (37) follows from (35).
Remark 6. We do not need the assumption (34) to prove that

ω1(E , η) ≤ 4
∫ η/2

0

E(τ) dτ.

Proof. In fact,∫ ∞
−∞
|E(|τ + δ|)− E(|τ |)| dτ =

∫ ∞
−∞
|E(|τ + δ/2|)− E(|τ − δ/2|)| dτ

= 2
∫ ∞

0

|E(|τ + δ/2|)− E(|τ − δ/2|)| dτ = 2
∫ ∞

0

(E(|τ − δ/2|)− E(|τ + δ/2|)) dτ

= 2
∫ ∞
−δ/2

E(|τ |) dτ − 2
∫ ∞
δ/2

E(|t|) dt = 4
∫ δ/2

0

E(τ) dτ.

The proof is complete.
Lemma 8. If E satisfies (34), then

ωr
(E , Jh) ≤ 41/r

[∫ hmax/2

0

E(τ)r dτ + hrmax

∫ ∞
hmax/2

|DE(τ)|r dτ
]1/r

.(38)

If in addition E satisfies (36), then

ωr
(E , Jh) ≤ 21/rh1/r

maxE(hmax/2)(1 + o(1)) as hmax → 0+.(39)

Proof. Note that

ωr
(E , Jh)r = 2 sup

0<τ ′<τ∗

n∑
i=1

∫ 1

0

[∫ ti−αhi

ti−1

|E(|τ + αhi|)− E(|τ |)|r dτ
]
dα,

where ti := τi − τ ′ for all i ∈ [[0, n]].
Let us estimate

Ii :=
∫ 1

0

[∫ ti−αhi

ti−1

|E(|τ + αhi|)− E(|τ |)|r dτ
]
dα

=
∫ ti

ti−1

[∫ (ti−τ)/hi

0

|E(|τ + αhi|)− E(|τ |)|r dα
]
dτ.
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If −hmax/2 ≤ ti−1 < ti ≤ hmax/2, then

Ii ≤
∫ 1

0

[∫ ti−αhi

ti−1

(E(|τ + αhi|)r + E(|τ |)r) dτ
]
dα

=
∫ 1

0

[∫ ti

ti−1+αhi

E(|τ |)r dτ
]
dα+

∫ 1

0

[∫ ti−αhi

ti−1

E(|τ |)r dτ
]
dα

=
∫ ti

ti−1

τ − ti−1

hi
E(|τ |)r dτ +

∫ ti

ti−1

ti − τ
hi
E(|τ |)r dτ =

∫ ti

ti−1

E(|τ |)r dτ.

Let ti−1 < 0 < hmax/2 < ti. Note that 0 < −ti−1 < hmax/2 and

| E(|τ + αhi|)− E(|τ |)| ≤
⎧⎨
⎩
E(|τ + αhi|) for τ ∈ (ti−1,−αhi/2),
E(|τ |) for τ ∈ [−αhi/2, hmax/2],
E(hmax/2)− E(ti) for τ ∈ (hmax/2, ti − αhi).

So

Ii ≤
∫ 0

ti−1

[∫ −2τ/hi

0

E(|τ + αhi|)r dα
]
dτ +

∫ 0

ti−1

[∫ (ti−τ)/hi

−2τ/hi

E(|τ |)r dα
]
dτ

+
∫ hmax/2

0

[∫ (ti−τ)/hi

0

E(|τ |)r dα
]
dτ + hi

∣∣∣∣
∫ ti

hmax/2

DE(τ) dτ
∣∣∣∣
r

=
∫ 0

ti−1

[∫ (τ−ti−1)/hi

0

E(|τ |)r dα
]
dτ +

∫ −ti−1

0

[∫ (τ−ti−1)/hi

2τ/hi

E(|τ |)r dα
]
dτ

+
∫ 0

ti−1

ti + τ

hi
E(|τ |)r dτ +

∫ hmax/2

0

ti − τ
hi
E(|τ |)r dτ + hi

∣∣∣∣
∫ ti

hmax/2

DE(τ) dτ
∣∣∣∣
r

≤
∫ 0

ti−1

(
1 +

2τ
hi

)
E(|τ |)r dτ +

∫ −ti−1

0

E(|τ |)r dτ +
∫ hmax/2

−ti−1

ti − τ
hi
E(|τ |)r dτ

+ hmax

∣∣∣∣
∫ ti

hmax/2

DE(τ) dτ
∣∣∣∣
r

≤
∫ hmax/2

ti−1

E(|τ |)r dτ + hrmax

∫ ti

hmax/2

|DE(τ)|r dτ.

If ti−1 ≤ −hmax/2 < 0 < ti, then in an analogous manner

Ii ≤
∫ ti

−hmax/2

E(|τ |)r dτ + hrmax

∫ −hmax/2

ti−1

|DE(τ)|r dτ.

If 0 ≤ ti−1 ≤ hmax/2 < ti, then

Ii ≤
∫ hmax/2

ti−1

E(τ)r dτ +
∫ ti

hmax/2

(E(τ) − E(ti))r dτ

≤
∫ hmax/2

ti−1

E(τ)r dτ + hri

∫ ti

hmax/2

|DE(τ)|r dτ.

In an analogous way if ti−1 < −hmax/2 ≤ ti ≤ 0, then

Ii ≤ hri
∫ −hmax/2

ti−1

|DE(τ)|r dτ +
∫ ti

−hmax/2

E(|τ |)r dτ.
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If hmax/2 ≤ ti−1, then

Ii =
∫ 1

0

[∫ ti−αhi

ti−1

(E(τ) − E(τ + αhi))r dτ

]
dα

≤ hi
[∫ ti

ti−1

|DE(τ)| dτ
]r
≤ hri

∫ ti

ti−1

|DE(τ)|r dτ.

Analogously, if ti ≤ −hmax/2 then

Ii ≤ hri
∫ ti

ti−1

|DE(τ)|r dτ.

The summation of all the estimates for Ii produced above gives us

ωr
(E(| · −τ ′|), Jh)r ≤ 2

[
hrmax

∫ −hmax/2

−∞
|DE(τ)|r dτ +

∫ hmax/2

−hmax/2

E(|τ |)r dτ

+ hrmax

∫ ∞
hmax/2

|DE(τ)|r dτ
]

= 4

[∫ hmax/2

0

E(τ)r dτ + hrmax

∫ ∞
hmax/2

|DE(τ)|r dτ
]
.

So estimate (38) holds. As in the proof of Lemma 7, (38) implies (39).
Lemma 9. If in (13) s <∞, then∥∥(I − πh)Λ

∥∥
Lp→Lq ≤ ωs(E , hmax)1−s/qωs

(E , Jh)s/q ,(40) ∥∥Λ (I − πh)∥∥
Lp→Lq ≤ ωs(E , hmax)s/q ωs

(E , Jh)1−s/q .(41)

Proof. If q �=∞, Lemma 5 and generalized Minkowsky inequality we get

∥∥(I − πh)Λf
∥∥q
Lq ≤ ωq

(
Λf, Jh

)q
= 2

∫ 1

0

∥∥Δh
αΛf

∥∥q
Lq dα

≤ 2
∫ 1

0

∥∥∥∥∥
[∫ τ∗

0

|Δh
αE(| · −τ ′|)|sdτ ′

]1/s−1/q [∫ τ∗

0

|Δh
αE(| · −τ ′|)|sp/q|f(τ ′)|pdτ ′

]1/p∥∥∥∥∥
q

Lq

dα

≤ 2ωs(E , hmax)q−s
∫ 1

0

∥∥∥∥
∫ τ∗

0

|Δh
αE(| · −τ ′|)|sp/q |f(τ ′)|pdτ ′

∥∥∥∥
q/p

Lq/p

dα

≤ 2ωs(E , hmax)q−s
[∫ τ∗

0

(∫ 1

0

‖Δh
αE(| · −τ ′|)‖sLsdα

)p/q
|f(τ ′)|p dτ ′

]q/p

≤ ωs(E , hmax)q−sωs
(E , Jh)s ‖f‖qLp .

If q =∞, then s = p′, and it follows from (33) that∣∣(I − πh)Λf(τ)
∣∣ ≤ 1

hi

∫ τi

τi−1

|Λf(τ)− Λf(τ ′)| dτ ′

≤ 1
hi

∫ τi

τi−1

[∫ τ∗

0

|E(|τ − τ̃ |)− E(|τ ′ − τ̃ |)||f(τ̃ )| dτ̃
]
dτ ′

≤ 1
hi

∫ τi

τi−1

‖E(|τ − ·|)− E(|τ ′ − ·|)‖Ls dτ ′‖f‖Lp ≤ ωs(E , hmax)‖f‖Lp.
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So ∥∥(I − πh)Λf
∥∥
L∞ ≤ ωs(E , hmax)‖f‖Lp .

The inequality (40) is proved.
Note that(

Λ
(
I − πh)ϕ, ψ) =

(
ϕ,
(
I − πh)Λψ

)
for all ϕ ∈ Lp(J), ψ ∈ Lq′(J),

and hence ∥∥Λ (I − πh)∥∥
Lp→Lq =

∥∥(I − πh)Λ
∥∥
Lq′→Lp′ .

So (41) holds.
Lemma 10. The following bound holds with 2/r = 1 + 1/s:∥∥Λ (1− πh)Λ

∥∥
Lp→Lq ≤ ωr(E , hmax)2−rωr

(E , Jh)r .(42)

Proof. Let 2/μ = 1/p+ 1/q. Using the formula

Λ
(
I − πh)Λ = Λ

(
1− πh) (1− πh)Λ

and Lemma 9, we get∥∥Λ (1− πh)Λ
∥∥
Lp→Lq ≤

∥∥Λ (1− πh)∥∥
Lµ→Lq

∥∥(1− πh)Λ
∥∥
Lp→Lµ

≤ ωr(E , hmax)r/qωr
(E , Jh)1−r/q ωr(E , hmax)1−r/μωr

(E , Jh)r/μ
= ωr(E , hmax)2−rωr

(E , Jh)r .
And the proof is complete.

5. Error estimates in Lq(J).
Theorem 7. For the Galerkin approximation, the following error estimates hold:∥∥πhεh∥∥

Lq ≤ γ1

∥∥Λ (I − πh)ϕ∥∥
Lq ,(43) ∥∥εh∥∥

Lq ≤ γ0

∥∥(I − πh)ϕ∥∥
Lq .(44)

Proof. Applying πh to (4),

πhϕ = �0π
hΛπhϕ+ πhf +�0π

hΛ
(
I − πh)ϕ.

Subtracting this equation from (8),

πhεh = �0π
hΛπhεh −�0π

hΛ
(
I − πh)ϕ.

As ‖πh‖Lq→Lq = 1 and ‖Λ‖Lq→Lq ≤ 1,∥∥πhεh∥∥
Lq ≤ �0

∥∥πhεh∥∥
Lq +�0

∥∥Λ (I − πh)ϕ∥∥
Lq .

Hence (43) holds. The estimate (44) follows from (43) and the inequality∥∥εh∥∥
Lq ≤

∥∥πhεh∥∥
Lq +

∥∥(I − πh)ϕ∥∥
Lq .

This ends the proof.
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Corollary 5. It follows from Theorem 4 and inequality (44), that if f ∈ Lp(J)
for some p <∞, then ϕ ∈ Lp(J) and εh → 0 in Lp(J) as hmax → 0.

Corollary 6. If f ∈ Lp(J) and s <∞, then

∥∥πhεh∥∥
Lq ≤ γ0γ1ωs(E , hmax)s/qωs

(E , Jh)1−s/q ‖f‖Lp.(45)

If f ∈ BV (J), then

∥∥πhεh∥∥
Lq ≤ γ0γ1 ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/q

max‖f‖BV ,(46) ∥∥εh∥∥
Lq ≤ γ2

0h
1/q
max‖f‖BV .(47)

If f ∈W 1,p(J) for some p <∞, then

∥∥πhεh∥∥
Lq ≤ γ0γ1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/s

max‖f‖W 1,p ,(48) ∥∥εh∥∥
Lq ≤ γ2

0h
1/s
max‖f‖W 1,p .(49)

Proof. Inequality (45) follows from (43), (41), and (17). To prove (46)–(49) we
use estimates (31), (26), and (32), (20), and for (46), (48), in addition, the formula

Λ
(
I − πh)ϕ = Λ

(
I − πh) (I − πh)ϕ

and the inequality∥∥Λ (I − πh)ϕ∥∥
Lq ≤

∥∥Λ (I − πh)∥∥
Lq→Lq

∥∥(I − πh)ϕ∥∥
Lq .

This completes the proof.
Theorem 8. For the Sloan approximation, the following error estimate holds:∥∥εh∥∥

Lq ≤ γ1

∥∥Λ (I − πh)ϕ∥∥
Lq .(50)

Proof. Subtracting (4) from (9),

εh = �0Λπhεh −�0Λ
(
I − πh)ϕ.

It is clear that (50) holds.
Corollary 7. If f ∈ Lp(J) and s <∞, then

∥∥εh∥∥
Lq ≤ γ0γ1ωs(E , hmax)s/q ωs

(E , Jh)1−s/q ‖f‖Lp .(51)

If f ∈ BV (J), then

∥∥εh∥∥
Lq ≤ γ0γ1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/q

max‖f‖BV .(52)

If f ∈W 1,p for some p <∞, then

∥∥εh∥∥
Lq ≤ γ0γ1ω1(E , hmax)1/q ω1

(E , Jh)1−1/q
h1/s

max‖f‖W 1,p .(53)

Theorem 9. For Kantorovich approximation, the following error estimates hold:∥∥πhε̃h∥∥
Lq ≤ �0γ1

∥∥Λ (I − πh)Λϕ
∥∥
Lq ,(54) ∥∥ε̃h∥∥

Lq ≤ γ1

∥∥(I − πh)Λϕ
∥∥
Lq .(55)
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Proof. The esimates (54) and (55) follow from Theorem 7 and Remark 1.
Corollary 8. If f ∈ Lp(J) and 2/r = 1 + 1/s, then∥∥πhε̃h∥∥

Lq ≤ γ2
1ωr(E , hmax)2−rωr

(E , Jh)r ‖f‖Lp,(56) ∥∥ε̃h∥∥
Lq ≤ γ0γ1ωs(E , hmax)1−s/qωs

(E , Jh)s/q ‖f‖Lp, if s <∞.(57)

If Λf ∈ BV (J), then, for all q ∈ [1,∞[,

∥∥πhε̃h∥∥
Lq ≤ γ2

1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/q

max‖Λf‖BV ,(58) ∥∥ε̃h∥∥
Lq ≤ γ0γ1h

1/q
max‖Λf‖BV .(59)

If Λf ∈ W 1,p for some p ∈ [1,∞[, then, for all q ∈ [1,∞[,

∥∥πhε̃h∥∥
Lq ≤ γ2

1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/s

max‖Λf‖W 1,p ,(60) ∥∥ε̃h∥∥
Lq ≤ γ0γ1h

1/s
max‖Λf‖W 1,p .(61)

Proof. To prove (56) and (57) we use estimates (42), (40), and (17). To prove
(58) and (59) we use estimates∥∥(I − πh)Λϕ

∥∥
Lq ≤ h1/q

max var
J

Λϕ,(62) ∥∥Λ (I − πh)Λϕ
∥∥
Lq ≤

∥∥Λ (I − πh)∥∥
Lq→Lq

∥∥(I − πh)Λϕ
∥∥
Lq(63)

and (41), (28). To prove (60), (61) we use the following inequality∥∥(I − πh)Λϕ
∥∥
Lq ≤ h1/s

max‖DΛϕ‖Lp,

as well as (63), (41), and (20), applied to y = Λϕ which solves (10).
Remark 7. This is a reminder that if f ∈ BV (J), then Λf ∈ BV (J) and

Λf ∈ W 1,p(J) for all p ∈ [1,∞[. (See Lemma 3 and Lemma 4).
Theorem 10. For the iterated Kantorovich approximation, the following error

estimate holds: ∥∥ε̂h∥∥
Lq ≤ �0γ1

∥∥Λ (I − πh)Λϕ
∥∥
Lq .(64)

Proof. The estimate follows from Theorem 8 and Remark 1.
Corollary 9. If f ∈ Lp(J) and 2/r = 1 + 1/s, then∥∥ε̂h∥∥

Lq ≤ γ2
1ωr(E , hmax)2−rωr

(E , Jh)r ‖f‖Lp.(65)

If Λf ∈ BV (J), then, for all q ∈ [1,∞[,

∥∥ε̂h∥∥
Lq ≤ γ2

1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/q

max‖Λf‖BV .(66)

If Λf ∈ W 1,p(J) for some p <∞, then

∥∥ε̂h∥∥
Lq ≤ γ2

1ω1(E , hmax)1/qω1

(E , Jh)1−1/q
h1/s

max‖Λf‖W 1,p .(67)

If E satisfies (34) and (36), then the bounds in corollaries 6, 7, 8, and 9 may be
specified using (37) and (39).



666 ANDREY AMOSOV, MARIO AHUES, AND ALAIN LARGILLIER

Theorem 11. Assume that E satisfies (34) and (36). The following error esti-
mates hold as hmax → 0:

If f ∈ Lp(J), then∥∥πhεh∥∥
Lq ≤ 21/sγ0γ1 h

1/s
maxE(hmax/2)(1 + o(1))‖f‖Lp for s <∞,∥∥εh∥∥

Lq ≤ 21/sγ0γ1 h
1/s
maxE(hmax/2)(1 + o(1))‖f‖Lp for s <∞,∥∥πhε̃h∥∥

Lq ≤ 21+1/sγ2
1 h

1+1/s
max E2(hmax/2)(1 + o(1))‖f‖Lp ,∥∥ε̃h∥∥

Lq ≤ 21/sγ0γ1 h
1/s
maxE(hmax/2)(1 + o(1))‖f‖Lp for s <∞,∥∥ε̂h∥∥

Lq ≤ 21+1/sγ2
1 h

1+1/s
max E2(hmax/2)(1 + o(1))‖f‖Lp .

If Λf ∈ BV (J), then∥∥πhε̃h∥∥
Lq ≤ 2γ2

1 h
1+1/q
max E(hmax/2)(1 + o(1))‖Λf‖BV ,∥∥ε̃h∥∥

Lq ≤ γ0γ1 h
1/q
max‖Λf‖BV ,∥∥ε̂h∥∥

Lq ≤ 2γ2
1 h

1+1/q
max E(hmax/2)(1 + o(1))‖Λf‖BV .

If Λf ∈ W 1,p(J) for some p <∞, then∥∥πhε̃h∥∥
Lq ≤ 2γ2

1 h
1+1/s
max E(hmax/2)(1 + o(1))‖Λf‖W 1,p ,∥∥ε̃h∥∥

Lq ≤ γ0γ1 h
1/s
max‖Λf‖W 1,p ,∥∥ε̂h∥∥

Lq ≤ 2γ2
1 h

1+1/s
max E(hmax/2)(1 + o(1))‖Λf‖W 1,p .

If f ∈ BV (J), then∥∥πhεh∥∥
Lq ≤ 2γ0γ1 h

1+1/q
max E(hmax/2)(1 + o(1))‖f‖BV ,∥∥εh∥∥

Lq ≤ γ2
0 h

1/q
max‖f‖BV ,∥∥εh∥∥

Lq ≤ 2γ0γ1 h
1+1/q
max E(hmax/2)(1 + o(1))‖f‖BV .

If f ∈W 1,p(J) for some p <∞, then∥∥πhεh∥∥
Lq ≤ 2γ0γ1 h

1+1/s
max E(hmax/2)(1 + o(1))‖f‖W 1,p ,∥∥εh∥∥

Lq ≤ γ2
0 h

1/s
max‖f‖W 1,p ,∥∥εh∥∥

Lq ≤ 2γ0γ1 h
1+1/s
max E(hmax/2)(1 + o(1))‖f‖W 1,p .

6. Error estimates in W 1,1(J) and BV (J). In this section we will estimate
projection approximation errors in the norm of the space BV (J). To notations (5),
(6) we add

τi−1/2 := (τi−1 + τi)/2, i ∈ [[1, n]],
hi+1/2 := τi+1/2 − τi−1/2 for all i ∈ [[1, n− 1]], h1/2 := h1/2, hn+1/2 := hn/2,

Ji := ]τi−1/2, τi+1/2] for all i ∈ [[1, n− 1]], J0 := [0, τ1/2], Jn :=]τn−1/2, τ∗].

Let Sh(J) be the following space of piecewise constant functions:

Sh(J) := {ψ : ψ(τ) = ψi for all τ ∈ Ji, and all i ∈ [[0, n]]},
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We consider the following family of standard hat functions: For i ∈ [[0, n]],

ei(τ) :=

⎧⎨
⎩

(τ − τi−1)/hi for all τ ∈ [τi−1, τi],
(τi+1 − τ)/hi+1 for all τ ∈ [τi, τi+1],

0 for all τ /∈ [τi−1, τi+1],

e0(τ) :=
{

(τ1 − τ)/h1 for all τ ∈ [τ0, τ1],
0 for all τ /∈ [τ0, τ1],

en(τ) :=
{

(τ − τn−1)/hn for all τ ∈ [τn−1, τn],
0 for all τ /∈ [τn−1, τn].

Note that

(1, ei) = hi+1/2 for all i ∈ [[0, n]],
n∑
i=0

ei = 1 in J.

Let us introduce the operators σh : L1(J)→ Sh(J),
◦
σh : L1(J)→ Sh(J) such that(

σhψ
)
(τ) := σhψi = h−1

i+1/2(ψ, ei) for all τ ∈ Ji, and all i ∈ [[0, n]],(◦
σhψ

)
(τ) :=

◦
σhψi =

{
σhψi for all τ ∈ Ji, and all i ∈ [[1, n− 1]],

0 for all τ ∈ Ji, if i = 0 or i = n.

Lemma 11. We have∥∥σh∥∥
Lp(J)→Lp(J)

= 1 for all p ∈ [1,∞].(68)

Proof. If p ∈ [1,∞[ and ψ ∈ Lp(J), then, by Hölder inequality,

∥∥σhψ∥∥p
Lp =

n∑
i=0

|σhψi|phi+1/2 ≤
n∑
i=0

h1−p
i+1/2(|ψ|, ei)p

≤
n∑
i=0

h1−p
i+1/2(1, ei)

p−1(|ψ|p, ei) =

(
|ψ|p,

n∑
i=0

ei

)
= ‖ψ‖pLp.

For p =∞ we have∥∥σhψ∥∥
L∞ = max

i∈[[0,n]]

∣∣σhψi∣∣ ≤ max
i∈[[0,n]]

h−1
i+1/2(1, ei)‖ψ‖L∞ = ‖ψ‖L∞ .

Finally taking into account that σh1 = 1 we get (68).
Let Dh : Sh1/2(J)→ Sh(J) be a finite-difference differentiation operator such that

Dhϕ(τ) = Dhϕi =

⎧⎨
⎩
ϕi+1/2 − ϕi−1/2

hi+1/2
for all τ ∈ Ji and i ∈ [[1, n− 1]],

0 for all τ ∈ Ji and i = 0 or i = n.

The proof is complete.
Lemma 12. For all ψ ∈W 1,1(J), the following formulas hold:

σhDψi = Dhπhψi =
πhψi+1/2 − πhψi−1/2

hi+1/2
for all i ∈ [[1, n− 1]],(69)

σhDψ0 =
πhψ1/2 − ψ(0)

h1/2
, σhDψn =

ψ(τ∗)− πhψn−1/2

hn+1/2
.(70)
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Proof. Integration by parts gives

σhDψi = h−1
i+1/2(Dψ, ei) = −h−1

i+1/2(ψ,Dei)

= h−1
i+1/2

(
πhψi+1/2 − πhψi−1/2

)
for all i ∈ [[1, n− 1]],

σhDψ0 = h−1
1/2(Dψ, e0) = −h−1

1/2(ψ(0) + (ψ,De0)) = h−1
1/2(π

hψ1/2 − ψ(0)),

σhDψn = h−1
n+1/2(Dψ, en) = h−1

n+1/2(ψ(τ∗)− (ψ,Den)) = h−1
n+1/2

(
ψ(τ∗)− πhψn−1/2

)
,

and the proof is complete.
Let us introduce an operator Λh : Sh(J)→ Lq(J), q ∈ [1,∞[ by formula

(
Λhψh

)
(τ) :=

n∑
k=0

E(|τ − τk|)ψhkhk+1/2.

Lemma 13. The following inequality holds:∥∥Λhψh∥∥
L1 ≤

∥∥ψh∥∥
L1 for all ψh ∈ Sh(J).(71)

Proof. In fact,

∥∥Λhψh∥∥
L1 ≤

n∑
k=0

∫ τ∗

0

E(|τ − τk|) dτ
∣∣ψhk ∣∣ hk+1/2 ≤

n∑
k=0

∣∣ψhk ∣∣hk+1/2 =
∥∥ψh∥∥

L1 ,

which proves the inequality.
Lemma 14. The following estimate holds:∥∥Λhσh − Λ

∥∥
L1→L1 ≤ ω1(E , hmax).(72)

Proof. Since

(
Λhσh − Λ

)
ψ(τ) =

n∑
k=0

∫ τ∗

0

(E(|τ − τk|)− E(|τ − τ ′|)) ek(τ ′)ψ(τ ′) dτ ′,

then

∥∥(Λhσh − Λ
)
ψ
∥∥
L1 ≤

n∑
k=0

∫ τ∗

0

‖E(| · −τk|)− E(| · −τ ′|)‖L1ek(τ ′)|ψ(τ ′)| dτ ′

≤ ω1(E , hmax)
∫ τ∗

0

n∑
k=0

ek(τ ′)|ψ(τ ′)| dτ ′ = ω1(E , hmax)‖ψ‖L1,

and the estimate is proved.
Lemma 15. The following formulas hold:

DΛψh = ΛhDhψh + ψh1/2E − ψhn−1/2E∗ for all ψh ∈ Sh1/2(J),(73)

DΛπhψ = ΛhσhDψ + ψ(0)E − ψ(τ∗)E∗ for all ψ ∈W 1,1(J).(74)

Proof. Let ψh ∈ Sh1/2(J). Then

(
Λψh

)
(τ) =

n∑
k=1

∫ τk

τk−1

E(|τ − τ ′|) dτ ′ ψhk−1/2 =
n∑
k=1

∫ τk−τ

τk−1−τ
E(|s|) ds ψhk−1/2.
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Hence

(
DΛψh

)
(τ) =

n∑
k=1

(E(|τk−1 − τ |) − E(|τk − τ |))ψhk−1/2

=
n−1∑
k=1

E(|τ − τk|)
ψhk+1/2 − ψhk−1/2

hk+1/2
hk+1/2 + E(τ)ψh1/2 − E(τ∗ − τ)ψhn−1/2

=
(
ΛhDhψh

)
(τ) + ψh1/2E(τ) − ψhn−1/2E∗(τ).

Let ψ ∈ W 1,1(J). Applying formula (73) to ψh = πhψ and taking into account (69)
and (70),

DΛπhψ = ΛhσhDψ − (σhDψ)
0
Eh1/2 −

(
σhDψ

)
n
E∗hn+1/2 + πhψ1/2E − πhψn−1/2E∗

= ΛhσhDψ + ψ(0)E − ψ(τ∗)E∗.
This ends the proof.

Theorem 12. If f ∈W 1,1(J), then

var
J
πhεh ≤ γ0γ1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖f‖W 1,1 ,(75) ∥∥Dεh∥∥
L1 ≤ γ0γ1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖f‖W 1,1 .(76)

If Λf ∈ W 1,1, then

var
J
πhε̃h ≤ γ2

1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖Λf‖W 1,1,(77) ∥∥Dε̂h∥∥
L1 ≤ γ2

1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖Λf‖W 1,1.(78)

Proof. Applying operator Dh to (8) and taking into account (69) and (73), we
obtain

Dhϕh = �0
◦
σhDΛϕh +Dhπhf(79)

= �0
◦
σh
[
ΛhDhϕh + ϕh1/2E − ϕhn−1/2E∗

]
+Dhπhf.

Applying operator
◦
σh to (21) and taking into account (69) and (70),

Dhπhϕ = �0
◦
σh [ΛDϕ+ ϕ(0)E − ϕ(τ∗)E∗] +Dhπhf(80)

= �0
◦
σh
[
ΛhDhπhϕ+

(
Λ− Λhσh

)
Dϕ+ πhϕ1/2E − πhϕn−1/2E∗

]
+ Dhπhf.

Subtracting (81) from (80) we get

Dhπhεh = �0
◦
σhΛhDhπhεh +�0

◦
σh
[(

Λhσh − Λ
)
Dϕ+ πhεh1/2E − πhεhn−1/2E∗

]
.

Using inequalities (68) and (71) we get∥∥Dhπhεh
∥∥
L1 ≤ �0

∥∥Dhπhεh
∥∥
L1 +�0

∥∥Λhσh − Λ
∥∥
L1→L1 ‖Dϕ‖L1 +�0

∥∥πhεh∥∥
L∞ .

From the equality ∥∥Dhπhεh
∥∥
L1 = var

J
πhεh
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and from the inequality (72), it follows that

var
J
πhεh ≤ γ1

(
ω1(E , hmax)‖Dϕ‖L1 +

∥∥πhεh∥∥
L∞
)
.

From (45), it follows that∥∥πhεh∥∥
L∞ ≤ γ0γ1ω1

(E , Jh) ‖f‖L∞ ≤ γ0ω1

(E , Jh) ‖f‖W 1,1 .(81)

Now, using the estimate (20) with p = 1 we get (75).
Applying (74) to the Sloan approximation ϕh, which solves ϕh = �0Λπhϕh + f ,

we get

Dϕh = �0ΛhσhDϕh +�0ϕ
h(0)E −�0ϕ

h(τ∗)E∗ +Df.

Subtracting this equality from (19) we get

Dεh = �0ΛhσhDεh +�0

(
σhΛh − Λ

)
Dϕ+�0ε

h(0)E −�0ε
h(τ∗)E∗,

and hence ∥∥Dεh∥∥
L1 ≤ γ1

(
ω1(E , hmax)‖Dϕ‖L1 +

∥∥εh∥∥∞) .
It follows from (51) that∥∥εh∥∥

C0 ≤ γ0γ1

(E , Jh) ‖f‖C0 ≤ γ1ω1

(E , Jh) ‖f‖W 1,1.(82)

Now, using the estimate (20) with p = 1 we get (76).
Inequalities (77) and (78) follow from (75), (76) and Remark 1.
Theorem 13. If f ∈ BV (J), then∥∥πhεh∥∥

BV
≤ γ0γ1

(
ω1(E , hmax) + 2ω1

(E , Jh)) ‖f‖BV ,(83) ∥∥εh∥∥
W 1,1 ≤ γ0γ1

(
ω1(E , hmax) + 2ω1

(E , Jh)) ‖f‖BV .(84)

If Λf ∈ BV (J), then∥∥πhε̃h∥∥
BV
≤ γ2

1

(
ω1(E , hmax) + 2ω1

(E , Jh)) ‖Λf‖BV ,(85) ∥∥ε̂h∥∥
W 1,1 ≤ γ2

1

(
ω1(E , hmax) + 2ω1

(E , Jh)) ‖Λf‖BV .(86)

Proof. Let fδ be the average function defined in (24), and ϕδ solve

ϕδ = �0Λϕδ + fδ.

Let ϕhδ and ϕhδ be corresponding Galerkin and Sloan approximations to ϕδ:

ϕhδ = �0π
hΛϕhδ + πhfδ, ϕhδ = �0Λπhϕhδ + fδ.

Let εhδ := ϕhδ − ϕδ and εhδ := ϕhδ − ϕδ. As ‖fε‖W 1,1 ≤ ‖f‖BV (see (25)), it follows,
from (75), (46) and (76), (52), that

var
J
πhεhδ ≤ γ0γ1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖f‖BV ,(87) ∥∥πhεhδ∥∥L∞ ≤ γ0γ1ω1

(E , Jh) ‖f‖BV ,(88)

var
J
εhδ ≤ γ0γ1

(
ω1(E , hmax) + ω1

(E , Jh)) ‖f‖BV ,(89) ∥∥εhδ∥∥L∞ ≤ γ0γ1ω1

(E , Jh) ‖f‖BV .(90)
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It is easy to see that εhδ → εh in L1(J), and that πhεhδ → πhεh in the finite dimensional
space Sh1/2(J), as δ → 0. As a consequence, ‖πhεδ‖L∞ → ‖πhε‖L∞ and var J π

hεhδ →
var J π

hεh and a limit transition in (87) and (88) gives (83).
It follows, from the formula εhδ = �0Λεhδ , that εhδ → �0Λεh in C0(J) as δ → 0.

So, by the First Helli Theorem and the property εh ∈ W 1,1(J), (84) follows from (89)
and (90).

Estimates (85) and (86) follow from (83), (84), and Remark 1.
As an immediate result, we have the following.
Theorem 14. Assume that E satisfies (34) and (36).

If f ∈ BV (J), then∥∥πhεh∥∥
BV
≤ 6γ0γ1hmaxE(hmax/2)(1 + o(1))‖f‖BV ,

∥∥εh∥∥
W 1,1 ≤ 6γ0γ1hmaxE(hmax/2)(1 + o(1))‖f‖BV .

If Λf ∈ BV (J), then∥∥πhε̃h∥∥
BV
≤ 6γ2

1hmaxE(hmax/2)(1 + o(1))‖Λf‖BV ,
∥∥ε̂h∥∥

W 1,1 ≤ 6γ2
1hmaxE(hmax/2)(1 + o(1))‖Λf‖BV .

7. Numerical evidence. The results exhibited in the Figures 1–4 are obtained
for the heat transfer equation (3) with the following data:

Albedo: �0 = 0.99,

Optical depth: τ∗ = 50,

Source function: f(τ) = E1(τ),

Number of grid points: n = 680.
All three, ϕ, τ∗, and f , have physical meanings or interpretations. The albedo

ϕ represents the reflectiveness of the stellar atmosphere, the optical depth τ∗ is an
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Fig. 1. Galerkin residual function.
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Fig. 2. Sloan residual function.
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Fig. 3. Kantorovich residual function.

increasing function of the geometrical thickness of the atmosphere and the source
function f represents an intense source of photons located on the surface of the
atmosphere.

The grid is built with first 500 equally spaced points separated by 0.01 one from
the next and last 180 equally spaced points separated by 0.25 one from the next.

Figures 1–4 show the residual functions corresponding to the Galerkin, Sloan,
Kantorovich, and iterated Kantorovich approximations in the interval [0, 0.5].
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for its hospitality as the paper was written when he was on leave at this team.

REFERENCES

[1] M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1964.

[2] M. Ahues, A. Largillier, and B.V. Limaye, Spectral Computations with Bounded Operators,
CRC, Boca Raton, FL, 2001.

[3] I.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge University Press, Cam-
bridge, UK, 1960.

[4] G.A. Chandler, Superconvergence for second kind integral equations, in The Application and
Numerical Solution of Integral Equations, R.S. Anderssen, F.R. de Hoog, and M.A. Lukas,
eds., Alphen aan den Rijn: Sijthoff and Nooordhoff, 1980, pp. 103–107.

[5] S. Chandrasekar, Radiative Transfer, Oxford Calderon Press, 1950.
[6] I.G. Graham, Galerkin method for second kind integral equations with singularities, Math.

Comput., 39 (1982), pp. 519–533.
[7] G.C. Hsiao and W.L. Wendland, The Aubin-Nitsche lemma for integral equations, J. Integral

Equations, 3 (1981), pp. 299–315.
[8] L.V. Kantorovich, Functional analysis and applied mathematics, Usp. Mat. Nauk., 3 (1948),

pp. 89–185 (in Russian). English translation: N.B.S. Report 1509 (1952).
[9] H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein

equations, SIAM J. Numer. Anal., 33 (1996), pp. 1048–1064.
[10] V. Kourganoff, Basic Methods in Transfer Problems, Dover Publications, New York, 1963.
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[12] E. Schock, Über die Konvergenzgeschwindigkeit projektiver Verfahren II, Math. Z., 127 (1972),

pp. 191–198.
[13] E. Schock, Galerkin-like methods for equations of the second kind, J. Integral Equations, 4

(1982), pp. 361–364.
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THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHODS
FOR DIFFUSION PROBLEMS∗

HAILIANG LIU† AND JUE YAN†

Abstract. A new discontinuous Galerkin finite element method for solving diffusion problems
is introduced. Unlike the traditional local discontinuous Galerkin method, the scheme called the
direct discontinuous Galerkin (DDG) method is based on the direct weak formulation for solutions
of parabolic equations in each computational cell and lets cells communicate via the numerical flux
ûx only. We propose a general numerical flux formula for the solution derivative, which is consistent
and conservative; and we then introduce a concept of admissibility to identify a class of numerical
fluxes so that the nonlinear stability for both one-dimensional (1D) and multidimensional problems
are ensured. Furthermore, when applying the DDG scheme with admissible numerical flux to the 1D
linear case, kth order accuracy in an energy norm is proven when using kth degree polynomials. The
DDG method has the advantage of easier formulation and implementation and efficient computation
of the solution. A series of numerical examples are presented to demonstrate the high order accuracy
of the method. In particular, we study the numerical performance of the scheme with different
admissible numerical fluxes.

Key words. diffusion, discontinuous Galerkin methods, stability, convergence rate, numerical
trace

AMS subject classifications. 65M12, 65M60

DOI. 10.1137/080720255

1. Introduction. In this paper, we introduce a new discontinuous Galerkin
(DG) method for solving nonlinear diffusion equations of the form

(1.1) ∂tU −∇ · (A(U)∇U) = 0, Ω× (0, T ),

where Ω ⊂ Rd, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U
is an unknown function of (x, t).

The novelty of our method is to use the direct weak formulation for solutions of
(1.1) in each computational cell and let cells communicate through a numerical trace
of A(U)∇U only. It is from this feature that the method proposed here derives its
name: the direct DG (DDG) method. Here we carefully design a class of numerical
fluxes in such a way that a stable and high order accurate DG method for the nonlinear
diffusion equation (1.1) is achieved.

The DG method is a finite element method using a completely discontinuous
piecewise polynomial space for the numerical solution and the test functions. A
key ingredient of this method is the suitable design of the interelement boundary
treatments (the so-called numerical fluxes) to obtain high order accurate and stable
schemes. The DG method has been vigorously developed for hyperbolic problems
since it was first introduced in 1973 by Reed and Hill [25] for neutron transport
equations. A major development of the DG method is carried out by Cockburn, Shu,
and collaborators in a series of papers [16, 15, 14, 11, 18] for nonlinear hyperbolic
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conservation laws. While it is being actively developed, the DG method has found
rapid applications in many areas; we refer to [20, 13, 19] for further references.

However, the DG method when applied to diffusion problems encounters subtle
difficulties, which can be illustrated by the simple one-dimensional (1D) heat equation

ut − uxx = 0.

Indeed, using this equation in [28], Shu illustrated some typical “pitfalls” in using the
DG method for viscous terms. The DG method when applied to the heat equation
formally leads to

(1.2)
∫
Ij

utv +
∫
Ij

uxvxdx− (̂ux)j+1/2v
−
j+1/2 + (̂ux)j−1/2v

+
j−1/2 = 0,

where both u and v are piecewise polynomials on each computational cell Ij =
(xj−1/2, xj+1/2). Notice that u itself is discontinuous at cell interfaces; the formu-
lation (1.2) even requires approximations of ux at cell interfaces, which we call the
numerical flux (̂ux)!

A primary choice is the slope average (̂ux)j+1/2 = ((ux)−j+1/2 + (ux)+j+1/2)/2.
But the scheme produces a completely incorrect, therefore inconsistent, solution; see
Figure 1 (left). This is called “subtle inconsistency” by Shu in [28].

There are two ways to remedy this problem which were suggested in the literature.
One is to rewrite the heat equation into a 1st order system and solve it with the DG
method

ut − qx = 0, q − ux = 0.

Here both u and the auxiliary variable q are evolved in each computational cell. This
method was originally proposed for the compressible Navier–Stokes equation by Bassi
and Rebay [4]. Subsequently, a generalization called the local discontinuous Galerkin
(LDG) method was introduced in [17] by Cockburn and Shu and further studied in
[10, 7, 12, 8]. More recently, the LDG methods have been successfully extended to
higher order partial differential equations; see, e.g., [32, 22, 31, 23].

Another one is to add extra cell boundary terms so that a weak stability property
is ensured. The scheme thus takes the following form:∫

Ij

utv +
∫
Ij

uxvxdx− (̂ux)j+1/2v
−
j+1/2 + (̂ux)j+1/2v

+
j−1/2

− 1
2
(vx)−j+1/2

(
u+
j+1/2 − u−j+1/2

)
− 1

2
(vx)+j−1/2

(
u+
j−1/2 − u−j−1/2

)
= 0,

where again the slope average was chosen as the numerical flux. Such a method was
introduced by Baumann and Oden [5]; see also Oden, Babuska, and Baumann [24].
This later scheme, once written into a primal formulation, is similar to a class of inte-
rior penalty methods, independently proposed and studied for elliptic and parabolic
problems in the 1970s; see, e.g., [2, 3, 30]. Considering the similarities among the
recently introduced DG methods, Arnold et al. [1] have set the existing DG methods
into a unified framework with a systematic analysis of these methods via linear elliptic
problems. Another framework using both the equation in each element and continuity
relations across interfaces was recently analyzed in [6].

Notice that the above two ways suggest modifications mainly on the scheme for-
mulation but not on the numerical flux ûx. The main goal of this work is to propose
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Fig. 1. On the left ûx = ux and on the right ûx =
[u]
Δx

+ ux at t = 1, mesh size N = 40.

p1 polynomial approximation.

a path which sticks to the direct weak formulation (1.2) but with new choices of nu-
merical flux ûx to obtain a stable and accurate DG scheme. More precisely, the heart
of the DDG method is to use the direct weak formulation for parabolic equations and
let cells communicate via the numerical flux ûx. A key observation is that the jump
of the function itself relative to the mesh size, when numerically measuring slopes
of a discontinuous function, plays an essential role. For example, for the piecewise
constant approximation (k = 0), the choice of

ûx =
u+ − u−

Δx

leads to the standard central finite difference scheme. When we use the numerical
flux

ûx =
u+ − u−

Δx
+

1
2
(
u+
x + u−x

)
,

the resulting scheme with piecewise linear approximation is found of 2nd order accu-
rate and of course gives the correct solution; see Figure 1 (right).

However, the trace of the solution derivative under a diffusion process is rather
subtle. From the PDE point of view, jumps of all even order derivatives as well as the
average of odd order derivatives all contribute to the trace of the solution derivative.
We propose a general numerical flux formula, which is consistent with the solution
gradient and conservative. The form of the numerical flux is motivated by an exact
trace formulation derived from solving the heat equation with smooth initial data
having only one discontinuous point.

We then introduce a concept of admissibility for numerical fluxes. The admissibil-
ity condition serves as a criterion for selecting suitable numerical fluxes to guarantee
nonlinear stability of the DDG method and corresponding error estimates. Indeed in
the linear case, the convergence rate of order (Δx)k for the error in a parabolic energy
norm L∞(0, T ;L2) ∩ L2(0, T ;H1) is obtained when pk polynomials are used.

In this paper, we restrict ourselves to diffusion problems with periodic boundary
conditions. We shall display the most distinctive features of the DDG method using
as simple a setting as possible. This paper is organized as follows. In section 2, we
introduce the DDG methods for the 1D problems. For this model problem, the main
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idea of how to devise the method is presented. The nonlinear stability and error
estimate for the linear case are discussed in section 3. In section 4, we extend the
DDG methods to multidimensional problems in which U is a scalar and A = (aij)d×d
is a positive and semidefinite matrix. The nonlinear stability is established. Finally in
section 5, we present a series of numerical results to validate our DDG methods. For
completeness some projection properties and a trace formula for the heat equation
are presented in the appendix.

Finally, we note that formulating a DG method without rewriting the equation
into a 1st order system as in the LDG method was also explored in three more recent
works [29, 21, 9]. But they all rely on repeated integration by parts for the diffusion
term so that the interface values can be imposed for both the solution and its deriva-
tives. In contrast, we use the standard weak formulation for parabolic equations with
integration by parts only once, and the interface continuity is enforced by defining
suitable interface values of the solution derivative only.

2. 1D diffusion process. In this section, we introduce the formulation of the
DDG method for the simple 1D case

(2.1) Ut − (a(U)Ux)x = 0 in (0, 1)× (0, T )

subject to initial data

(2.2) U(x, 0) = U0(x) on (0, 1)

and periodic boundary conditions.
The unknown function U is a scalar, and we assume the diffusion coefficient a

to be a nonnegative function of U . The DDG method is constructed upon the direct
weak formulation of parabolic equations.

First, we partition the domain (0, 1) by grid points 0 = x1/2 < x3/2 < · · · <
xN+1/2 = 1; we define the mesh {Ij = (xj−1/2, xj+1/2), j = 1 · · ·N} and set the
mesh size Δxj = xj+1/2−xj−1/2. Furthermore, we denote Δx = max1≤j≤N Δxj . We
seek an approximation u to U such that for any time t ∈ [0, T ], u ∈ VΔx,

VΔx :=
{
v ∈ L2(0, 1) : v|Ij ∈ P k(Ij), j = 1, . . . , N

}
,

where P k(Ij) denotes the space of polynomials in Ij with degree at most k. We now
formulate our scheme for (2.1) and describe guidelines for defining numerical fluxes.

2.1. Formulation of the scheme. Denote the flux h := h(U,Ux) = a(U)Ux.
Let U be the exact solution of the underlying problem. Multiply (2.1) by any smooth
function V ∈ H1(0, 1), integrate on Ij , and have integration by parts to obtain the
following equations:∫

Ij

UtV dx− hj+1/2Vj+1/2 + hj−1/2Vj−1/2 +
∫
Ij

a(U)UxVxdx = 0,(2.3)
∫
Ij

U(x, 0)V (x)dx =
∫
Ij

U0(x)V (x)dx.(2.4)

Here the time derivative is to be understood in the weak sense, and hj±1/2 and Vj±1/2

denote values of h and V at x = xj±1/2, respectively.
Next we replace the smooth function V by any test function v ∈ VΔx and the exact

solution U by the numerical approximate solution u. The flux h(U,Ux) is replaced by
the numerical flux ĥ that will be defined later.
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Thus the approximate solution given by the DDG method is defined as∫
Ij

utvdx− ĥj+1/2v
−
j+1/2 + ĥj−1/2v

+
j−1/2 +

∫
Ij

a(u)uxvxdx = 0,(2.5)
∫
Ij

u(x, 0)v(x)dx =
∫
Ij

U0(x)v(x)dx.(2.6)

Note that u is a well defined function since there are as many equations per element
as unknowns. The integral

∫
Ij
a(u)uxvxdx could be either computed exactly or ap-

proximated by using suitable numerical quadratures. Thus, to complete the DG space
discretization, we only have to define the numerical flux ĥ.

2.2. The numerical flux. Crucial for the stability as well as for the accuracy
of the DDG method is the choice of the numerical flux ĥ. To define it, we adopt the
following notations:

u±(t) = u
(
x±j+1/2, t

)
, [u] = u+ − u−, u =

u+ + u−

2
.

The numerical flux ĥ defined at the cell interface xj+1/2 is chosen in such a way that
it is a function depending only on the left and right polynomials and that it (i) is
consistent with h = b(u)x = a(u)ux, where b(u) =

∫ u
a(s)ds when u is smooth; (ii) is

conservative in the sense of ĥ being single valued on xj+1/2 and

d

dt

∫
Ij

udx = ĥj+1/2 − ĥj−1/2;

(iii) ensures the L2-stability; and (iv) enforces the high order accuracy of the method.
Motivated by the trace formula of the solution derivative of the heat equation,

see (7.3) in the appendix, we propose the following general format of the numerical
flux:

(2.7) ĥ = Dxb(u) = β0
[b(u)]
Δx

+ b(u)x +
�k/2�∑
m=1

βm(Δx)2m−1
[
∂2m
x b(u)

]
,

where k is the highest degree of polynomials in two adjacent computational cells and
�·� is the floor function. Note here in (2.7) and in what follows that for nonuniform
mesh Δx should be replaced by (Δxj + Δxj+1)/2 and for uniform mesh Δx = 1/N .

The numerical flux ĥ, which is an approximation of b(U)x at the cell interface,
involves the average b(u)x and the jumps of even order derivatives of b(u), [∂2m

x b(u)],
up to m = �k/2�. For example, with the p3 polynomial approximation we need to
determine suitable β0 and β1 to define the numerical flux

ĥ = Dxb(u) = β0
[b(u)]
Δx

+ b(u)x + β1Δx[b(u)xx].

It is clear for any choice of βi’s that the numerical flux defined in (2.7) is consis-
tent and conservative. As is known, the underlying solution for the heat equation is
smooth, and thus jumps of discrete solutions across cell interfaces have to be properly
controlled so that continuities can be enforced at least in a weak sense.
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To ensure stability and enhance accuracy and more importantly to measure the
goodness of the choice of βi’s, we introduce a notion of admissibility for numerical
fluxes as follows.

Definition 2.1 (admissibility). We call a numerical flux ĥ of the form (2.7)
admissible if there exists a γ ∈ (0, 1) and α > 0 such that

(2.8) γ
N∑
j=1

∫
Ij

a(u)u2
x(x, t)dx +

N∑
j=1

ĥj+1/2[u]j+1/2 ≥ α
N∑
j=1

([b(u)][u])j+1/2

Δx

holds for any piecewise polynomials of degree k, i.e., u ∈ VΔx.
It is shown in the next section that for any admissible flux the DDG scheme

is nonlinear stable and has kth order accuracy in an energy norm when using pk

polynomials for linear problems. We note that for error analysis α > 0 plays an
essential role in controlling the total jumps across cell interfaces.

We now discuss some principles for finding βi’s. To simplify the presentation we
restrict our discussions to the linear case with ĥ = Dxu.

For the piecewise constant approximation, k = 0, the numerical flux (2.7) reduces
to

ûx = Dxu = β0
[u]
Δx

.

Clearly we should take β0 = 1, for which the DDG scheme is consistent with the
central finite difference scheme. Note that β0 	= 1 is admissible but gives O(1) error.

For the piecewise linear approximation, k = 1, the numerical flux (2.7) with
β0 = 1 becomes

(2.9) Dxu =
[u]
Δx

+ ux.

This can be easily verified to be admissible with α = 1/2 and γ = 1/2. The corre-
sponding DDG scheme is of 2nd order as observed numerically in section 5.

We can now prove that (2.9), with possibly an additional amount of [u]/Δx, is
admissible for polynomial approximations of any degree, even for nonlinear diffusion.

Theorem 2.1. Consider the 1D diffusion with a(u) ≥ δ > 0. The numerical flux

(2.10) Dxu = β0
[b(u)]
Δx

+ ux

is admissible for any piecewise polynomial of degree k ≥ 0 provided β0 is suitably
large.

Proof. It is sufficient to select β0 so that the underlying flux is admissible locally
around each cell, i.e.,

γ

∫
Ij

a(u)u2
xdx+Dxu[u] ≥ α[b(u)][u]/Δx,

which, when combined with (2.10), can be rewritten as

γΔx
∫
Ij

a(u)u2
xdx+ ux[u]Δx+ (β0 − α)

[b(u)]
[u]

[u]2 ≥ 0.
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Note for k = 0, β(0) = 1 is admissible for α ≤ 1. From a(u) ≥ δ we have [b(u)]
[u] ≥ δ.

Thus the above inequality is ensured to hold for all u|Ij ∈ P k(Ij) and therefore for
all [u], provided

(uxΔx)2 − 4(β0 − α)γΔxδ
∫
Ij

u2
xdx ≤ 0.

Summing this inequality over all indexes j ∈ N we have

β0 ≥ α+
1

4γδ
Δx

∑
j u

2
x∑

j

∫
Ij
a(u)u2

xdx
.

Maximizing the right side over all u|Ij ∈ P k(Ij) we obtain

β0 ≥ α+
Mk

4γδ2
,

where

Mk = max
u∈Pk(Ij)

Δx
∑

j u
2
x∑

j

∫
Ij
u2
xdx

.

For example, when a(u) = 1, M0 = 0, M1 = 1, M2 = 3, etc.
Numerical experiments show that the scheme with numerical flux (2.10) achieves

(k + 1)th order accuracy if k is odd but kth order accuracy if k is even, as long as
β0 is chosen above a critical value β∗ ∼Mk (to guarantee the scheme stability). The
scheme accuracy is not sensitive to the choice of β0, though the critical value β∗ needs
to be larger as k increases.

In order to gain the (k + 1)th order accuracy when k is even it is necessary
to use higher order derivatives within our DDG framework. We consider exploring
higher order approximations. The idea is to construct a higher order polynomial
p̃(x) ∈ P k+1(Ij ∪ Ij+1) across the interface by interpolating at sample points in two
neighboring cells. There are [k/2] + 1 pairs of points symmetrically sampled on each
side of the underlying interface. Then the numerical flux can be defined as

(2.11) Dxu = ∂xp̃(x)|xj+1/2 .

For k = 2, 3 we explore the Stirling interpolation formula based on four symmetric
points

xj+1/2 ± 1
2
h, xj+1/2 ± h, 0 < h ≤ Δx,

leading to a unique 3rd order polynomial, whose derivative when evaluated at the cell
interface xj+1/2 gives

(2.12) Dxu =
7
6

[u]
h

+ ux +
h

12
[uxx].

For p2 and p3 polynomials, the numerical flux (2.12) with h = Δx enables us to obtain
the optimal 3rd and 4th orders of accuracy, respectively. This suggests that the step
used in the Stirling interpolation spans exactly the full computational cell on each
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side, no more and no less; it is also unbiased. Of course, for nonuniform mesh, Δx
needs to be understood as (Δxj + Δxj+1)/2.

Here we note yet another way to select β1 for k ≤ 2 based on the exact trace
formula (7.3), i.e.,

ux(0, t) =
1√
4πt

[u] + ux +

√
t

π
[uxx], 0 < t < Δt.

Considering the parabolic scaling, the correct mesh ratio should be t ∼ (Δx)2. There-
fore setting t = (ηΔx)2 we obtain the following numerical flux:

Dxu =
1√
4π

[u]
ηΔx

+ ux +
ηΔx√
π

[uxx].

In section 5, we carry out numerical experiments for these η-schemes, and the choice
η =

√
π/12, i.e., again β1 = 1/12, gives the best performance, both in the absolute

error and the order of the scheme.
In summary for pk, k = 0, . . . , 3, we advocate the DDG scheme with the following

numerical flux:

(2.13) Dxu =
[u]
Δx

+ ux +
Δx
12

[uxx].

For pk with k ≥ 4 we employ the simple flux (2.10). It is interesting to note that for
the p2 case the coefficient β1 = 1/12 is indeed important, but the β0 is less important
in the sense that with other choices of β0 3rd order accuracy can also be achieved. In
comparison, for the p0 case β0 = 1 is important.

Remark 2.1. The recipe given in (2.11) leads to a class of admissible numerical
fluxes (2.12). But numerically only the flux with h = Δx delivers the optimal L2

accuracy for P 2 element, which is also the case for both nonuniform meshes in the
1D setting and hypercube partitions in multidimensions; for the latter see (5.10) in
Example 5.5. This fact is further illustrated in Example 5.4 when the equation is
nonlinear.

2.3. Time discretization. Up to now, we have taken the method of lines ap-
proach and have left t continuous. For time discretization we can use total variation
diminishing (TVD) high order Runge–Kutta methods [27, 26] to solve the method of
lines ODE

(2.14) ut = L(u).

The 3rd order TVD Runge–Kutta method that we use in this paper is given by

u(1) = un + ΔtL(un),

u(2) =
3
4
un +

1
4
u(1) +

1
4
ΔtL

(
u(1)

)
,

un+1 =
1
3
un +

2
3
u(2) +

2
3
ΔtL

(
u(2)

)
.
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3. The nonlinear stability and error estimates.

3.1. The nonlinear stability. We first review the stability property for the
continuous problem. We let U ∈ L2 be a smooth solution to the initial value problem
(2.1)–(2.2). Set V = U in the weak formulation, and integrate over [0, T ]; we have
the following energy identity:

1
2

∫ 1

0

U2(x, T )dx+
∫ T

0

∫ 1

0

a(U)U2
xdxdτ =

1
2

∫ 1

0

U2
0dx ∀ T > 0.

We say the DDG scheme is L2 stable if the numerical solution u(x, t) satisfies

∫ 1

0

u2(x, T )dx ≤
∫ 1

0

U2
0dx.

In fact, the numerical solution defined by our DDG scheme (2.5) and (2.6) not only
satisfies this stability property but also has total control on all jumps crossing cell
interfaces {xj+1/2}Nj=1 due to the admissibility of the numerical flux.

Theorem 3.1 (energy stability). Consider the DDG scheme (2.5) and (2.6) with
numerical flux (2.7). If the numerical flux is admissible as described in (2.8), then

1
2

∫ 1

0

u2(x, T )dx+ (1 − γ)
∫ T

0

N∑
j=1

∫
Ij

a(u)u2
x(x, t)dxdt

+ α

∫ T

0

N∑
j=1

[b(u)]
Δx

[u]dt ≤ 1
2

∫ 1

0

U2
0 (x)dx.(3.1)

Proof. Setting v = u in (2.5), we have

d

dt

∫
Ij

u2

2
dx+

∫
Ij

a(u)u2
xdx− ĥj+1/2u

−
j+1/2 + ĥj−1/2u

+
j−1/2 = 0.

Summation over j = 1, 2 · · ·N and integration with respect to t over [0, T ] leads to

1
2

∫ 1

0

u2(x, T )dx+
∫ T

0

N∑
j=1

∫
Ij

a(u)u2
x(x, t)dxdt

+
∫ T

0

N∑
j=1

ĥj+1/2[u]j+1/2dt =
1
2

∫ 1

0

u2(x, 0)dx.(3.2)

From the admissible condition (2.8) of the numerical flux ĥj+1/2 defined in (2.7) it
follows that

∫ T

0

N∑
j=1

ĥj+1/2[u]j+1/2dt =
∫ T

0

N∑
j=1

(
b̂(u)x[u]

)
j+1/2

dt

≥ α
∫ T

0

N∑
j=1

[b(u)]
Δx

[u]dt− γ
∫ T

0

N∑
j=1

∫
Ij

a(u)u2
x(x, t)dxdt.(3.3)
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Finally, we note that (2.6) with v(x) = u(x, 0) gives

(3.4)
∫ 1

0

u2(x, 0)dx ≤
∫ 1

0

U2
0 (x)dx.

Insertion of (3.3) and (3.4) into (3.2) leads to the desired stability estimate (3.1).
Notice that the usual L2-stability follows from such a stability estimate (3.1) since

the term [b(u)][u] = a(u∗)[u]2 remains nonnegative for any jumps [u].

3.2. Error estimates. Now we turn to the question of the quality of the ap-
proximate solution defined by the DDG method. In the linear case a(u) = 1, from
the above stability result and from the approximation properties of the finite element
space VΔx, we can estimate the error e := u − U between the exact solution U and
the numerical solution u. Inspired by the stability estimate (3.1) we introduce the
following energy norm to measure the solutions and the error:

(3.5) |||v(·, t)||| :=
⎛
⎝∫ 1

0

v2dx+ (1− γ)
∫ t

0

N∑
j=1

∫
Ij

v2
xdxdτ + α

∫ t

0

N∑
j=1

[v]2

Δx
dτ

⎞
⎠

1/2

,

with γ ∈ (0, 1) and α > 0. From the stability analysis and the smoothness of the
exact solution U , we reformulate stability estimates for both the exact solution and
the numerical solution in terms of the norm |||(·, T )|||:

|||U(·, T )||| ≤ |||U(·, 0)|||, |||u(·, T )||| ≤ |||U(·, 0)|||.
This section is devoted to the proof of the following error estimate.

Theorem 3.2 (error estimate). Let U be the exact solution and e be the
error between the exact solution and the numerical solution by the DDG method with
numerical flux (2.7). If the numerical flux is admissible (2.8), then the energy norm
of the error satisfies the inequality

(3.6) |||e(·, T )||| ≤ C|||∂k+1
x U(·, T )|||(Δx)k,

where C = C(k, γ, α) is a constant depending on k, γ, and α but is independent of U
and Δx.

Remark 3.1. The error estimates are optimal in Δx for smooth solutions. For
initial data in Hk+1(0, 1) we can simply replace |||∂k+1

x U(·, T )||| by |U0|k+1 since for
parabolic problem Ut = Uxx we have

(3.7)
1
2

∫ 1

0

∣∣∂k+1
x U(x, T )

∣∣2 dx+
∫ T

0

∫ 1

0

∣∣∂k+2
x U(x, T )

∣∣2 dx ≤ 1
2

∫ 1

0

∣∣∂k+1
x U0(x)

∣∣2 dx,
which holds for solution U with initial data U0 ∈ Hk+1(0, 1).

Remark 3.2. The kth order energy error (3.6) does not automatically imply a
(k+1)th order L2 error estimate unless the scheme is adjoint-consistent; see, e.g., [1].
The inclusion of jumps of higher order derivatives in numerical flux in this paper is
intended to restore the optimal L2 error.

Let P be the L2 projection operator from H1(0, 1) to the finite element space
VΔx, which is defined as the only polynomial P(U)(x) in VΔx such that∫

Ij

(P(U)(x) − U(x))v(x)dx = 0 ∀v ∈ VΔx.

Note by (2.6) and the above L2 projection definition we have that u(x, 0) = P(U0).
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To estimate e = u− U , we rewrite the error as

(3.8) e = u− P(U) + P(U)− U = P(e)− (U − P(U)).

Thus we have

(3.9) |||e(·, T )||| ≤ |||P(e)(·, T )|||+ |||(U − P(U))(·, T )|||.
It suffices to estimate the two terms on the right. The projection properties are
essentially used and summarized in the following auxiliary lemma. The proof of the
lemma is based on Bramble–Hilbert lemma 7, and an extended discussion is postponed
in the appendix.

Lemma 3.1 (L2 projection properties). Let U ∈ Hs+1(Ij) for j = 1, . . . , N and
s ≥ 0. Then we have the following estimates:

1. |P(U)− U |m,Ij ≤ ck(Δx)(min{k,s}+1−m)|U |s+1,Ij , m ≤ k + 1.
2. |∂mx (P(U)− U)xj+1/2 | ≤ ck(Δx)(min{k,s}+1/2−m)|U |s+1,Ij+1/2 , m ≤ k + 1/2,

where m ≥ 0 is an integer, Ij+1/2 = Ij
⋃
Ij+1, and constant ck depends on k but is

independent of Ij and U ; | · |m,Ij denotes the seminorm of Hm(Ij).
These basic estimates enable us to prove the following lemma.
Lemma 3.2. Let U be the smooth exact solution, and for any function v the Dxv

at the cell interface xj+1/2 is defined by

(3.10) Dxv = vx +
�k/2�∑
m=0

βm(Δx)2m−1[∂2m
x v].

Then we have
(i) projection error

|||(U − P(U))(·, T )||| ≤ C|||∂k+1
x U |||(Δx)k,

(ii) trace error∫ T

0

N∑
j=1

(Dx(U − P(U)))2j+1/2(t)dt ≤ C|||∂k+1
x U |||2(Δx)2k−1.

Proof. (i) Apply the estimates in Lemma 3.1 to |||(U − P(U))(·, T )|||2 to obtain
N∑
j=1

|P(U)− U |20,Ij
+ (1− γ)

∫ T

0

N∑
j=1

|(P(U)− U)|21,Ij
dt+ α

∫ T

0

N∑
j=1

[P(U)− U ]2

Δx
dt

≤ Ck
(

(Δx)2k+2|U |2k+1,[0,1] + (Δx)2k
∫ T

0

|U(·, t)|2k+2,[0,1]dt

)
.

Thus the estimate in (i) is ensured.
(ii) Applying the estimates in Lemma 3.1 to the expression (3.10) with v =

U − P(U) we have
N∑
j=1

(Dx(U − P(U)))2j+1/2

≤ Ck
N∑
j=1

⎧⎨
⎩(Δx)2k−1|U |2k+2,Ij

+
�k/2�∑
m=0

(Δx)4m−2(Δx)2k+1−4m|U |2k+2,Ij+1/2

⎫⎬
⎭

≤ C(Δx)2k−1|U |2k+2,[0,1].

This gives the estimate (ii). The proof is thus complete.
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To finish the estimate of e in (3.9), it remains to estimate P(e), which favorably
lies in VΔx.

Lemma 3.3. We have

|||P(e)(·, T )|||2 ≤ 1
(1− γ)2

|||(U −P(U))(·, T )|||2 +
Δx
α

∫ T

0

N∑
j=1

(Dx(U −P(U)))2j+1/2dt.

A combination of Lemmas 3.2 and 3.3 with the inequality (3.9) yields the desired
estimate (3.6), which completes the proof of Theorem 4.1.

We now conclude this section by presenting a detailed proof of Lemma 3.3.
Proof of Lemma 3.3. First, we define a bilinear form B(w, v) as

(3.11)

B(w, v) =
∫ T

0

∫ 1

0

wt(x, t)v(x, t)dx +
∫ T

0

N∑
j=1

∫
Ij

wx(x, t)vx(x, t)dxdt + Θ(T, ŵx, v)

for any v ∈ VΔx, and

(3.12) Θ(T, ŵx, v) =
∫ T

0

N∑
j=1

(
(̂wx)j+1/2[v]j+1/2

)
dt.

By the definition of DDG scheme (2.5), we have B(u, v) = 0 ∀v ∈ VΔx. Exact solution
U(x, t) also satisfies B(U, v) = 0 ∀v ∈ VΔx, and then we have

B(e, v) = B(u− U, v) = 0.

This equality when combined with (3.8) gives

B(P(e), v) = B(U − P(U), v).

Taking v = u− P(U) = P(e), we have

(3.13) B(P(e),P(e)) = B(U − P(U),P(e)).

Note the left-hand side of the equality involves the term P(e) that we want to estimate.
The right-hand side of the equality is B(U−P(U),P(e)), which is expected to be small
because it involves the error between the exact solution and its L2 projection U−P(U).

Letting w = v = P(e) in (3.11) and using P(e)(·, 0) = 0, we have

(3.14)

B(P(e),P(e)) =
1
2
‖P(e)(·, T )‖2 +

∫ T

0

N∑
j=1

‖(P(e))x(·, t)‖2Ij
dt+ Θ

(
T, ̂(P(e))x,P(e)

)
.

Recalling the definition of admissibility for the numerical flux in (2.7) and the interface
contribution term Θ defined in (3.12), we obtain

Θ
(
T, ̂(P(e))x,P(e)

)
≥α

∫ T

0

N∑
j=1

[P(e)]2

Δx
dt− γ

∫ T

0

N∑
j=1

‖(P(e))x(·, t)‖2Ij
dt.

Hence

(3.15) B(P(e),P(e)) ≥ |||P(e)(·, T )|||2 − 1
2
||P(e)(·, T )||2.
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On the other hand,

B(U − P(U),P(e)) =
∫ T

0

∫ 1

0

(U − P(U))tP(e)dxdt

+
∫ T

0

N∑
j=1

∫
Ij

(U − P(U))x(P(e))xdxdt+ Θ
(
T, ̂(U − P(U))x,P(e)

)
.(3.16)

With P(e) ∈ VΔx, we have
∫ T

0

∫ 1

0

(U − P(U))tP(e)dxdt = 0.

For the second term in (3.16) we obtain

∫ T

0

N∑
j=1

∫
Ij

(U − P(U))x(P(e))xdxdt

≤ 1
2(1− γ)

∫ T

0

N∑
j=1

‖(U − P(U))x(·, t)‖2Ij
dt+

(1− γ)
2

∫ T

0

N∑
j=1

‖(P(e))x(·, t)‖2Ij
dt.

The third term in (3.16) is majored by

∫ T

0

⎡
⎣ N∑
j=1

̂(U − P(U))x[P(e)]

⎤
⎦ dt

≤ Δx
2α

∫ T

0

N∑
j=1

{Dx(U − P(U))}2dt+
α

2

∫ T

0

N∑
j=1

[P(e)]2

Δx
dt.

The above three estimates when inserted into (3.16) gives

B(U − P(U),P(e)) ≤ 1
2
|||P(e)(·, T )|||2 − 1

2
||P(e)(·, T )||2

+
1

2(1− γ)2
|||(U − P(U))(·, T )|||2 +

Δx
2α

∫ T

0

N∑
j=1

{Dx(U − P(U))}2dt.

This with (3.15) when substituted into (3.16) yields the inequality claimed in
Lemma 3.3.

4. Multidimensional diffusion process. In this section, we generalize the
DDG method discussed in the previous sections to multiple spatial dimensions x =
(x1, . . . , xd). We solve the following diffusion problem:

∂tU −
d∑
i=1

∂xi

⎛
⎝ d∑
j=1

aij(U)∂xjU

⎞
⎠ = 0 in (0, T )× (0, 1)d,(4.1)

U(x, t = 0) = U0 on (0, 1)d,(4.2)

with periodic boundary conditions. The diffusion coefficient matrix (aij) is assumed
to be symmetric, semipositive definite.
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Notice that the assumption of a unit box geometry and periodic boundary con-
ditions is for simplicity only and is not essential: the method can be designed for
arbitrary domain and for nonperiodic boundary conditions.

Let a partition of the unit box (0, 1)d be denoted by shape-regular meshes TΔ =
{K}, consisting of a nonoverlapping open element covering completely the unit box.
We denote by Δ the piecewise constant mesh function with Δ(x) ≡ ΔK = diam{K}
when x is in element K. Let each K be a smooth bijective image of a fixed master
element: the open hypercube C = (−1, 1)d through FK : C → K. On C we define
spaces of polynomials of degree k ≥ 1 as follows:

P k = span{yα : 0 ≤ αi ≤ k, 1 ≤ i ≤ d}.

We denote the finite element space by

(4.3) VΔ =
{
v : v|K ◦ FK ∈ P k ∀K ∈ TΔ

}
.

Note that the master element can also be chosen as the open unit simplex

S = {x ∈ Rd : 0 < x1 + · · ·+ xd < 1, xj > 0, j = 1 · · ·d};

then the corresponding polynomial should be changed to P k = span{yα : 0 ≤ |α| ≤
k}. The DDG method is obtained by discretizing (4.1) directly with the DG method.
This is achieved by multiplying the equation by test functions v ∈ VΔ, integrating
over an element K ∈ TΔ, and integration by parts. We again need to pay special
attention to the boundary terms resulting from the procedure of integration by parts,
as in the 1D case. Thus we seek piecewise polynomial solution u ∈ VΔ, where VΔ is
defined in (4.3) such that for all test functions v ∈ VΔ we have

(4.4)
∫
K

utvdx+
∫
K

d∑
i=1

d∑
j=1

aij(u)∂xju∂xivdx−
∫
∂K

ĥnKv
intKds = 0,

where ∂K is the boundary of element K, nK = (n1,K , . . . , nd,K) is the outward unit
normal for element K along the element boundary ∂K, and vintK denotes the value
of v evaluated from inside the element K. Correspondingly, we use vextK to denote
the value of v evaluated from outside the element K (inside the neighboring element).
The numerical flux ĥnK is defined similarly to the 1D case as

(4.5) ĥnK = ĥnK ,K

(
uintK , uextK

)
=

d∑
i=1

⎛
⎝ d∑
j=1

̂∂xj (bij(u))

⎞
⎠ni,

where bij(u) =
∫ u

aij(s)ds and

̂∂xj(bij(u)) = β0
[bij(u)]

Δ
nj + ∂xj (bij(u)),

where locally Δ can be defined as the average of diameters of two neighboring elements
sharing one common face. Here we have used the following notations:

[u] = uextK − uintK and ∂xju =
∂xju

extK + ∂xju
intK

2
.
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Note that for hyperrectangle meshes we replace Δ by Δxj , which denotes the average
of lengths of two adjacent elements in the xj direction only. This way the scheme
is consistent with the finite difference scheme when β0 = 1. In the general case, the
stability is ensured by a larger choice of β0. The algorithm is now well defined.

We note that the numerical flux defined above enjoys some nice properties similar
to those in the 1D case. More precisely, ĥnK (uintK , uextK ) is consistent with hnK (u)
in the sense that ĥnK (u, u) =

∑d
i=1(

∑d
j=1 ∂xj (bij(u)))ni, which is verified for all u

smooth enough. It is also conservative (that is, there is only one flux defined at each
face shared by two elements), namely,

ĥnK ,K(a, b) = −ĥnK′ ,K′(b, a),

where K and K ′ share the same face where the flux is computed and hence nK′ =
−nK . Moreover, it ensures the L2-stability of the method.

Theorem 4.1 (energy stability). Assume that for p ∈ R, ∃γ and γ∗ such that
the eigenvalues of matrix (aij(p)) lie between [γ, γ∗]. Consider the DDG scheme with
numerical flux chosen in (4.5). Then the numerical solution satisfies

∫
(0,1)d

u2(x, T )dx+
∫ T

0

∑
K

∫
K

d∑
i=1

d∑
j=1

aij(u)uxiuxjdxdt

+ γβ0

∫ T

0

∑
K

∫
∂K

[u]2

Δ
dsdt ≤

∫ 1

0

U2
0 (x)dx,(4.6)

provided β0 ≥ C(k)(γ
∗

γ )2 for some C(k), depending on the degree k of the approxi-
mating polynomial.

Proof. Setting v = u in (4.4) and summing over all elements, we obtain

(4.7)
d

dt

∫
Ω

u2

2
dx+

∑
K

∫
K

∇u · (A(u)∇u)dx +
∑
K

∫
∂K

ĥ[u]ds = 0, Ω := [0, 1]d.

The last term involving the flux (4.5) can be bounded from below as follows:

∑
K

∫
∂K

ĥ[u]ds =
∑
K

∫
∂K

⎛
⎝β0[u]

Δ

d∑
i,j=1

ni
[bij(u)]

[u]
nj +

d∑
i,j=1

∂xjuaij(u)ni

⎞
⎠ [u]ds

≥ β0

Δ

∑
K

∫
∂K

γ[u]2ds− γ∗
∑
K

∫
∂K

|∇u||n||[u]|ds

≥ γβ0

∑
K

∫
∂K

[u]2

Δ
ds− γ∗

∑
K

‖∇u‖0,∂K‖[u]‖0,∂K

≥ β0γ

2

∑
K

Δ−1‖[u]‖20,∂K −
(γ∗)2
2β0γ

∑
K

Δ‖∇u‖20,∂K ,(4.8)

where we used the assumption on matrix A(u), followed by using the inequality ab ≤
εa2/2 + b2/(2ε) to achieve the last inequality. Using the trace inequality and the fact
that u ∈ VΔ we further obtain

‖∇u‖20,∂K ≤ C
(
Δ−1‖∇u‖20,K + Δ‖∇2u‖20,K

) ≤ C(k)Δ−1‖∇u‖20,K .
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Hence

∑
K

Δ‖∇u‖20,∂K ≤ C(k)
∑
K

‖∇u‖20,∂K ≤
C(k)
γ

∑
K

∫
K

∇u · (A(u)∇u)dx.

This, together with (4.8) and when inserted into (4.7), gives

d

dt

∫
Ω

u2

2
dx+

(
1− C(k)

2β0

(
γ∗

γ

)2
)∑

K

∫
K

∇u ·(A(u)∇u)dx+
γβ0

2

∑
K

∫
∂K

[u]2

Δ
ds ≤ 0.

Thus the asserted inequality follows from time integration of the above over [0, T ] and
the fact that ‖u0‖0,Ω ≤ ‖U0‖0,Ω, provided β0 ≥ C(k)(γ

∗

γ )2.

5. Numerical examples. In this section, we provide a few numerical examples
to illustrate the accuracy and capacity of the DDG method. We would like to illustrate
the high order accuracy of the method through these numerical examples from 1D to
2D linear and nonlinear problems. In particular, we study the numerical performance
of the scheme with different admissible numerical fluxes.

Example 5.1 (1D linear diffusion equation).

(5.1) Ut − Uxx = 0 in (0, 2π)

with initial condition U(x, 0) = sin(x) and periodic boundary conditions. The exact
solution is given by U(x, t) = e−tsin(x). We compute the solution up to t = 1. The
numerical flux ûx we first test is

(5.2) ûx = Dx(u) =
[u]
Δx

+ ux.

DDG methods based on pk polynomial approximations with k = 0, 1, 2 are tested.
We list the L2 and L∞ errors in Table 1. Note that in this example and the rest L∞

error is evaluated on many sample points (200 points per cell). We obtain clean 1st
and 2nd order accuracy for p0 and p1 approximations. However, we obtain only 2nd
order convergence for p2 approximations.

For higher order polynomial approximations, the proposed numerical flux for-
mula suggests that interface values necessarily involve higher order derivatives of the
solution. We first test the scheme (2.12) with h = θΔx, called θ-scheme:

(5.3) Dxu =
7

12θ
[u]
Δx

+ ux +
θΔx

6
[uxx].

In Table 2 we compute p2 approximations for problem (5.1) with numerical flux (5.3)
and list the L∞ errors and orders with different θ values in interval (0, 2). We would
like to point out that almost all θ-schemes give us 2nd order convergence for p2

polynomial approximations except the one θ = 0.5, i.e., (2.12), which can fully recover
the order of 3. Numerically, we observe that the scheme with any fixed β1 is not
sensitive to the coefficient before [u]

Δx , i.e., β0, as long as the numerical flux is still
admissible.

Numerical results for p3 approximations with these θ-schemes are displayed in
Table 3. Different from the p2 approximations, all schemes give 4th order convergence.
This is in sharp contrast to the p2 approximations, which give the desired order of 3
only in the case of β1 = 1/12.
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Table 1

Computational domain Ω is [0, 2π]. L2 and L∞ errors at t = 1.0. pk polynomial approximations
with k = 0, 1, 2. Numerical flux (5.2) is used.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 4.8602E−02 2.3771E−02 1.03 1.1818E−02 1.00 5.9007E−03 1.00

L∞ 1.1743E−01 5.8023E−02 1.01 2.8923E−02 1.00 1.4450E−02 1.00

1 L2 1.3400E−02 3.3494E−03 2.00 8.3726E−04 2.00 2.0931E−04 2.00

L∞ 3.0145E−02 7.5004E−03 2.00 1.8871E−03 2.00 4.7252E−04 2.00

2 L2 8.5278E−03 2.1377E−03 1.99 5.3476E−04 1.99 1.3371E−04 2.00

L∞ 1.2082E−02 2.9989E−03 2.00 7.5475E−04 1.99 1.8900E−04 2.00

Table 2

L∞ errors for p2 approximation with sample θ values in (0, 2) at t = 1.0. Numerical flux (5.3)
is used.

θ N=10 N=20 N=40 N=80
error error order error order error order

0.1 1.6671E−03 4.1669E−04 2.00 1.0385E−04 2.00 2.5941E−05 2.00
0.3 2.3926E−03 6.2056E−04 1.95 1.5549E−04 2.00 3.8894E−05 2.00
0.49 7.2472E−04 1.0088E−04 2.84 1.6683E−05 2.60 3.4529E−06 2.27
0.5 7.4892E−04 9.1995E−05 3.02 1.1450E−05 3.00 1.4296E−06 3.00
0.51 8.1560E−04 1.0970E−04 2.89 1.7893E−05 2.61 3.6315E−06 2.30
0.8 9.8839E−03 2.4693E−03 2.00 6.2113E−04 1.99 1.5553E−04 1.99
1.5 5.6436E−02 1.5037E−02 1.90 3.8570E−03 1.96 9.7047E−04 1.99

Table 3

L∞ errors for p3 approximation with sample θ values in (0, 2) at t = 1.0. Numerical flux (5.3)
is used.

θ N=10 N=20 N=40 N=80
error error order error order error order

0.1 8.1835E−05 5.0752E−06 4.01 3.2055E−07 3.98 2.0087E−08 3.99
0.3 5.2604E−05 3.2520E−06 4.01 2.0522E−07 3.98 1.2857E−08 4.00
0.5 1.3097E−04 8.0993E−06 4.01 5.0895E−07 3.99 3.1853E−08 3.99
0.8 5.0961E−04 3.1639E−05 4.00 1.9942E−06 3.98 1.2491E−07 3.99
1.5 2.0972E−03 1.4010E−04 3.90 8.8607E−06 3.98 5.5517E−07 3.99

Next we test the η-scheme with

(5.4) Dxu =
1√
4π

[u]
ηΔx

+ ux +
ηΔx√
π

[uxx].

Similar to the θ-schemes, only η =
√
π

12 gives fully 3rd order convergence for p2 poly-
nomial approximations. In Table 4 we list the L∞ errors with different η values, and
the numerical results are comparable to the θ-schemes. Note that careful verifica-
tion shows that a large class of the θ-schemes and η-schemes satisfy the admissible
condition (2.8).

In summary, β1 = 1
12 numerically gives the optimal (k+1)th order of convergence

for both p2 and p3 polynomial approximations. In Table 5 we use the numerical flux
(5.5) to compute the problem with p2, p3, and p4 polynomial approximations:

(5.5) Dxu =
[u]
Δx

+ ux +
Δx
12

[uxx].
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Table 4

L∞ errors and orders comparisons for η-schemes at t = 1.0. p2 polynomial approximation.
Numerical flux (5.4) is used.

η N=10 N=20 N=40 N=80
error error order error order error order

0.05 1.4733E−03 3.5730E−04 2.04 8.8847E−05 2.00 2.2182E−05 2.00
0.1 1.4427E−03 3.4865E−04 2.05 8.6743E−05 2.00 2.1660E−05 2.00√

π
12

7.3278E−04 9.1488E−05 3.00 1.1434E−05 3.00 1.4291E−06 3.00

0.2 3.1376E−03 7.7015E−04 2.02 1.9054E−04 2.01 4.7511E−05 2.00
0.5 4.7350E−02 1.2413E−02 1.93 3.1738E−03 1.96 7.9794E−04 1.99

Table 5

L2 and L∞ errors at t = 1.0 with pk approximations k = 2, 3, 4. Numerical flux (5.5) is used.

k N=10 N=20 N=40 N=80
error error order error order error order

2 L2 3.9238E−04 4.7037E−05 3.06 5.8181E−06 3.01 7.2535E−07 3.00

L∞ 7.5595E−04 9.2213E−05 3.03 1.1456E−05 3.00 1.4298E−06 3.00

3 L2 9.2531E−05 5.7809E−06 4.00 3.6128E−07 4.00 2.2579E−08 4.00

L∞ 1.5351E−04 9.5014E−06 4.01 5.9750E−07 3.99 3.7403E−08 3.99

4 L2 5.5070E−05 3.4999E−06 3.97 2.1965E−07 3.99 1.3743E−08 3.99

L∞ 7.7911E−05 4.8932E−06 3.99 3.0974E−07 3.98 1.9422E−08 3.99

Similar to the p2 case we lose one order of accuracy for p4 approximations. These
results together indicate that for even-order, k = 2m, polynomial approximations, the
coefficient βm seems indispensable.

Example 5.2 (1D linear diffusion equation with higher order polynomial approxi-
mations). We study the same problem as the one in Example 5.1 with the numerical
flux chosen as

(5.6) Dxu = 2
[u]
Δx

+ ux.

As discussed in section 2, we find out that with β0 (the coefficient before [u]/Δx) big
enough the numerical flux formula (2.7) with the first two terms is admissible. In
this example, we test the DDG scheme with higher order polynomial approximations
pk, k = 2, 3, 4, 5, 6, 7. Errors and orders are listed in Table 6. We obtain kth order
accuracy for even k and (k + 1)th order accuracy for odd k.

Example 5.3 (1D linear diffusion equation with nonuniform mesh). Again, we
study the same problem as the one in Example 5.1. Here the partition of the domain
[0, 2π] consists of a repeated pattern of 1.1Δx and 0.9Δx for odd and even numbers
of indexes i = 1, . . . , N , respectively, where Δx = 2π/N with even number N . The
numerical flux we use is

Dx(u) =
[u]
Δx

+ ux.

We obtain similar results as Example 5.2. Errors and orders are listed in Table 7.
Example 5.4 (1D nonlinear diffusion equations).

(5.7) Ut − (2UUx)x = 0 in [−12, 12].
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Table 6

High order polynomial approximations (pk, k = 2, 3, 4, 5, 6, 7) with numerical flux (5.6). L2 and
L∞ errors at t = 1.0.

k N=4 N=8 N=12 N=16
error error order error order error order

2 L2 2.3913E−02 6.5160E−03 1.88 2.9383E−03 1.96 1.6610E−03 1.98

L∞ 3.0219E−02 8.9725E−03 1.75 4.1066E−03 1.93 2.3335E−03 1.96

3 L2 3.6671E−03 2.2958E−04 4.00 4.5459E−05 3.99 1.4397E−05 4.00

L∞ 4.5777E−03 3.6566E−04 3.65 7.5484E−05 3.90 2.4253E−05 3.95

4 L2 3.5708E−04 2.7557E−05 3.60 5.6506E−06 3.91 1.8111E−06 3.96

L∞ 4.4087E−04 3.7131E−05 3.70 7.8142E−06 3.85 2.5288E−06 3.93

5 L2 3.9466E−05 6.4001E−07 5.95 5.6637E−08 5.98 1.0109E−08 5.99

L∞ 4.6456E−05 9.2965E−07 5.64 8.4966E−08 5.90 1.5332E−08 5.95

6 L2 1.8891E−06 4.1364E−08 5.51 3.8499E−09 5.86 6.9911E−10 5.93

L∞ 2.4795E−06 5.5327E−08 5.49 5.3001E−09 5.78 9.7347E−10 5.89

7 L2 2.1144E−07 8.9249E−10 7.89 3.5478E−11 7.95 3.6571E−12 7.90

L∞ 2.5297E−07 1.2566E−09 7.65 5.1137E−11 7.90 5.3087E−12 7.87

Table 7

Nonuniform mesh test. L2 and L∞ errors at t = 1.0 with k = 0, 1, 2, 3, 4, 5.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 4.8970E−02 2.3903E−02 1.03 1.1879E−02 1.00 5.9304E−03 1.00

L∞ 1.3021E−01 6.3933E−02 1.02 3.1828E−02 1.00 1.5897E−02 1.00

1 L2 1.4011E−02 3.4807E−03 2.00 8.6898E−04 2.00 2.1717E−04 2.00

L∞ 3.8329E−02 9.3268E−03 2.00 2.3522E−03 1.99 5.8881E−04 2.00

2 L2 8.7915E−03 2.2023E−03 1.99 5.5083E−04 2.00 1.3772E−04 2.00

L∞ 1.2720E−02 3.0946E−03 2.03 7.7858E−04 1.99 1.9475E−04 2.00

3 L2 1.9041E−04 1.1836E−05 4.00 7.3911E−07 4.00 4.6186E−08 4.00

L∞ 3.9591E−04 2.4148E−05 4.03 1.5144E−06 4.00 9.4854E−08 4.00

4 L2 2.5721E−05 1.6464E−06 3.97 1.0353E−07 4.00 6.4802E−09 4.00

L∞ 3.7917E−05 2.3196E−06 4.03 1.4645E−07 3.99 9.1649E−09 4.00

5 L2 3.7561E−07 5.8458E−09 6.00 9.1163E−11 6.00 1.4244E−12 6.00

L∞ 7.5379E−07 1.1563E−08 6.02 1.8114E−10 6.00 2.8303E−12 6.00

The Barenblatt’s solution with compact support is given as

(5.8) U(x, t) =

⎧⎨
⎩(t+ 1)−

1
3

(
6− x2

12(t+1)
2
3

)
, |x| < 6(t+ 1)

1
3 ,

0, |x| ≥ 6(t+ 1)
1
3 .

We take the following numerical flux for this nonlinear problem:

2̂uux = (̂u2)x =

[
u2
]

Δx
+ (u2)x +

Δx
12

[(
u2
)
xx

]
.

Both L2 and L∞ errors at t = 1 are evaluated in domain [−6, 6] where the solution
is smooth. Accuracy data are listed in Table 8. We have (k + 1)th order accuracy
with pk polynomial approximations. Propagation of the compact wave using both
P 1 and P 2 elements is plotted in Figure 2. A zoomed-in figure of the left corner at
t = 4 is plotted in Figure 3. The DDG scheme can sharply capture the contacts with
discontinuous derivatives.
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Table 8

Computational domain Ω is [−12, 12]. Exact solution is given as (5.8). L2 and L∞ errors are
computed in smooth region [−6, 6] with k = 0, 1, 2 at t = 1.0.

k N=40 N=80 N=160 N=320
error error order error order error order

0 L2 3.8184E−02 1.8363E−02 1.05 9.0076E−03 1.03 4.4613E−03 1.01

L∞ 1.5739E−01 7.7079E−02 1.03 3.8038E−02 1.02 1.8887E−02 1.01

1 L2 2.8239E−03 6.8004E−04 2.05 1.6478E−04 2.04 4.0616E−05 2.02

L∞ 1.3169E−02 2.8427E−03 2.21 6.6660E−04 2.09 1.6294E−04 2.03

2 L2 2.2321E−04 1.2519E−05 4.15 1.1960E−06 3.38 1.4516E−07 3.04

L∞ 2.5443E−03 8.3480E−05 4.92 3.7225E−06 4.48 4.1537E−07 3.16

x

u

-10 -5 0 5 10

0

0.5

1

1.5

2

2.5 t = 1

t = 2

t = 4

dashed line: p1 approximation

dotted line: p2 approximation

Fig. 2. Nonlinear diffusion equation (5.7). Piecewise linear (p1) and piecewise quadratic (p2)
approximations with mesh N = 400.

Example 5.5 (2D linear diffusion equation).

(5.9) Ut − (Uxx + Uyy) = 0 in (0, 2π)× (0, 2π)

with initial condition U(x, y, 0) = sin(x + y) and periodic boundary conditions. The
exact solution is U(x, y, t) = e−2tsin(x+ y). We compute the solution up to t = 1 on
the uniform rectangular mesh Iij = Ii × Ij . L2 and L∞ errors are listed in Table 9.
k + 1 orders of convergence are obtained for pk elements with k ≤ 3.
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x

u

-12 -11 -10

0

0.05

0.1

0.15

t = 4

line - exact solution
symbol circle - DDG numerical solution

Fig. 3. Zoom in of Figure 2 at t = 4 at the left corner where the solution has a discontinuous
derivative.

Table 9

Computational domain Ω is [0, 2π] × [0, 2π] with rectangular mesh N ×N . L2 and L∞ errors
at t = 1.0. pk polynomials with k = 0, 1, 2, 3, 4. Numerical flux (5.10) is used.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 2.5993E−02 1.2456E−02 1.06 6.1599E−03 1.01 3.0714E−03 1.00

L∞ 8.4874E−02 4.2512E−02 1.00 2.1258E−02 1.00 1.0629E−02 1.00

1 L2 1.0305E−02 2.5482E−03 2.01 6.3522E−04 2.00 1.5869E−04 2.00

L∞ 3.5728E−02 8.8609E−03 2.01 2.2234E−03 1.99 5.5637E−04 2.00

2 L2 1.1503E−03 1.4042E−04 3.03 1.7437E−05 3.00 2.1759E−06 3.00

L∞ 7.4943E−03 9.4734E−04 2.98 1.1872E−04 2.99 1.4849E−05 3.00

3 L2 1.0777E−04 6.2265E−06 4.11 3.8168E−07 4.02 2.3740E−08 4.00

L∞ 5.7940E−04 3.8896E−05 3.89 2.4742E−06 3.97 1.5531E−07 3.99

4 L2 5.3967E−05 3.4795E−06 3.95 2.1932E−07 3.98 1.3738E−08 3.99

L∞ 8.5886E−05 5.1584E−06 4.05 3.1396E−07 4.03 1.9488E−08 4.01

The DDG scheme in 2D with rectangular mesh is a straightforward extension of
the 1D scheme. The numerical flux ûx at xi+1/2 used in this example is defined as
follows:

(5.10) ûx|xi+1/2 =
[u]
Δx

+ ux +
Δx
12

[uxx].

Flux ûy at yj+1/2 is defined in a similar fashion.

6. Concluding remarks. We have proposed a new DG finite element method
for solving diffusion problems. The scheme is formulated using the direct weak for-
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mulation for parabolic equations, combined with a careful design of interface values
of the solution derivative. Unlike the traditional LDG method, the method in this
paper is applied without introducing any auxiliary variables or rewriting the original
equation into a 1st order system. The proposed numerical flux formula for solution
derivatives is consistent and conservative. A concept of admissibility is further intro-
duced to identify a class of numerical fluxes so that the nonlinear stability for both
1D and multidimensional problems are ensured. For the 1D linear case, kth order
accuracy in an energy norm is proven when using kth degree polynomials. A series
of numerical examples are presented to demonstrate the high order accuracy of the
method and its capacity to sharply capture solutions with discontinuous derivatives.
In particular, the optimal (k + 1)th order accuracy is attained for k = 0, 1, 2, 3. The
method maintains the usual features of DG methods such as high order accuracy and
easiness to handle complicated geometry. Moreover, our DDG method has an advan-
tage of easier formulation and implementation and efficient computation of solutions.
The compactness of the scheme allows efficient parallelization and hp-adaptivity.

The numerical tests show the strong dependence of the order of convergence of
the DDG method on the choice of numerical fluxes. The development of even higher
order DDG methods with further analysis of optimal choices for βi, i ≥ 1, will be
studied in a future work. The DDG method for convection-diffusion problems can be
defined by applying the procedure described above for the diffusion term combined
with numerical fluxes for the convection term developed previously for hyperbolic
conservation laws.

7. Appendix. The Bramble–Hilbert lemma. Let Ω be a simply connected
Lipschitz domain in Rd and (m, k) ∈ N2, p, q ∈ [1,∞]. If (p, q, k,m) satisfies

(7.1)
1
q
>

1
p
− k + 1−m

d
,

then the Sobolev space W k+1,p(Ω) is continuously embedded into Wm,q(Ω). With
this setting we recall the celebrated Bramble–Hilbert lemma.

Lemma 7.1 (Bramble–Hilbert). Let l be a linear operator mapping W k+1,p(Ω)
into Wm,q(Ω) and Pk(Ω) ⊂ Ker(l). Then there exists a constant C(Ω) > 0 such that
for all u ∈Wm,q(Ω)

(7.2) |l(v)|m,q ≤ C|v|k+1,p.

The assumption Pk(Ω) ⊂ Ker(l) is used to ensure the Sobolev quotient norm in
W k+1,p/Pk(Ω) to be equivalent to the Sobolev seminorm in W k+1,p(Ω).

In the 1D case Ij is affine equivalent to ω = [0, 1] through a linear mapping

x = xj−1/2 + ξΔx, ξ ∈ [0, 1].

Taking l = I−P and using the scaling argument, the Bramble–Hilbert lemma enables
us to obtain

|v − Pv|m,q,Ij ≤ C(Δx)k+1−m+ 1
q− 1

p |v|k+1,p,Ij , v ∈ W k+1,p(Ij).

Here C depends only on [0, 1] and the projection operator P but is independent of
Δx. Estimates in Lemma 3.1 are immediate if
(i) we set p = q = 2 and assume m < k + 1;
(ii) we set q =∞ and p = 2 and assume m < k + 1/2.
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Solution gradient for the heat equation. Consider the heat equation ut =
uxx with smooth initial data g, having only one discontinuity at x = 0. A straight-
forward calculation from the solution formula

u(x, t) =
1√
4πt

∫ ∞
−∞

e−(x−y)2/(4t)g(y)dy

gives

ux(0, t) =
∑ 2m−1

(2m− 1)!!
tm
[
∂2m
x g

]
/
√
πt+

∑ 2m

(2m)!!
tm∂2m+1

x g

=
1√
4πt

[g] + ∂xg +

√
t

π

[
∂2
xg
]
+ t∂3

xg + · · · ,(7.3)

where the jump or the average of g and its derivatives are involved to evaluate ux at
x = 0.
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uous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195 (2006),
pp. 3293–3310.

[7] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of
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FINITE ELEMENT APPROXIMATION OF THE THREE-FIELD
FORMULATION OF THE STOKES PROBLEM USING ARBITRARY

INTERPOLATIONS∗

RAMON CODINA†

Abstract. The stress-displacement-pressure formulation of the elasticity problem may suffer
from two types of numerical instabilities related to the finite element interpolation of the unknowns.
The first is the classical pressure instability that occurs when the solid is incompressible, whereas the
second is the lack of stability in the stresses. To overcome these instabilities, there are two options.
The first is to use different interpolation for all the unknowns satisfying two inf-sup conditions.
Whereas there are several displacement-pressure interpolations that render the pressure stable, less
possibilities are known for the stress interpolation. The second option is to use a stabilized finite
element formulation instead of the plain Galerkin approach. If this formulation is properly designed,
it is possible to use arbitrary interpolation for all the unknowns. The purpose of this paper is precisely
to present one of such formulations. In particular, it is based on the decomposition of the unknowns
into their finite element component and a subscale, which will be approximated and whose goal is
to yield a stable formulation. A singular feature of the method to be presented is that the subscales
will be considered orthogonal to the finite element space. We describe the design of the formulation
and present the results of its numerical analysis.

Key words. Stokes problem, stress-displacement-pressure, stabilized finite elements
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1. Introduction. The analysis of the three-field formulation of the linear elastic
incompressible problem is probably not a goal by itself, but rather a simple model to
study problems in which it is important to interpolate the stresses independently from
the displacements and, in the case we will consider, also the pressure. Perhaps the
most salient problem that requires the interpolation of the (deviatoric) stresses is the
viscoelastic one. In this case, the algebraic constitutive equation (linear or nonlinear)
that relates stresses and strains has to be replaced by an evolution equation (see [3]
for a review).

The problem we will study in this paper is the simple Stokes problem arising
in linear elasticity or creeping flows, taking as unknowns the displacement field (or
velocity field, in a fluid problem), the pressure, and the deviatoric part of the stresses.
In particular, we shall consider that the material is incompressible.

When the finite element approximation of the problem is undertaken, it is well
known that incompressibility poses a stringent requirement in the way the pressure
is interpolated with respect to the displacement field. The displacement and pres-
sure finite element spaces have to satisfy the classical inf-sup condition [8]. Several
interpolations are known that satisfy this condition and yield a stable displacement-
pressure numerical solution. However, less is known about another inf-sup condition
that needs to be satisfied when the stresses are interpolated independently from the
displacement. This inf-sup condition is trivially satisfied for the continuous problem,
but only a few interpolations are known that verify it for the discrete case. It is
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discussed, for example, in [25]. In the context of viscoelastic flows, a popular stable
three-field interpolation was introduced in [23], and the numerical analysis was un-
dertaken in [15]. See also [28, 26] for other contributions proposing different stable
finite element interpolations.

The inf-sup conditions for the displacement-pressure and stresses-displacement
interpolations are needed if the standard Galerkin method is used for the space dis-
cretization. However, there is also the possibility to resort to a stabilized finite element
method, in which the discrete variational form of the Galerkin formulation is modified
in order to enhance its stability. The purpose of this paper is precisely to present one
of such formulations. In particular, the one proposed here is based on the decomposi-
tion of the unknowns into their finite element component and a subscale, that is, the
component of the continuous unknown that cannot be captured by the finite element
mesh. Obviously, this subscale needs to be approximated in one way or another. This
idea was proposed in the finite element context in [20, 21] and termed variational
multiscale approximation, although there are similar concepts developed in different
situations (both in physical and numerical modeling).

The important property of the formulation to be presented here is that the sub-
scale will be considered orthogonal to the appropriate finite element space. This idea
was first applied to the Stokes problem in displacement-pressure form in [9], and sub-
sequently applied to general incompressible flows in [10]. Likewise, we will introduce
a way to motivate an expression for the subscales on the element boundaries. These
will allow us to consider discontinuous interpolations for either the pressure or the
stress, or both. We will restrict ourselves to conforming approximations, and thus the
displacement interpolation will be considered continuous.

Other stabilization methods based on projecting the pressure or the pressure
gradient to deal with the incompressibility constraint can be found in the literature. A
simple method based on projecting onto discontinuous pressure spaces of lower order
can be found in [13]. In [4] a method based on projecting onto pressures defined
on patches of elements is proposed, which can be also interpreted (after appropriate
approximations) in the variational multiscale framework [7]. See also [24] for an
abstract analysis and generalization of these type of methods. Nevertheless, some
conditions on the finite element mesh are often required that are difficult to meet in
practical unstructured finite element meshes.

Different stabilized formulations for the three-field Stokes problem can be found
in the literature. The GLS (Galerkin/least-squares) method is used, for example, in
[5, 16, 27]. In [19, 14] the authors propose what they call EVSS (elastic-viscous-split-
stress), which is related to the formulation proposed in this paper in what concerns
the way to stabilize the stress interpolation. An analysis of both approaches, GLS
and EVSS, is presented in [6].

Even though our interest is to consider incompressible materials and therefore
to include the pressure as a variable, a similar formulation to the one proposed here
could be applied to other versions of the elasticity problem. The difficulty to devise
stable total stress-displacement interpolations is well known (see, for example, [2] and
also the general approach adopted in [1]). A stabilized formulation for the stress-
displacement-rotation formulation can be found in [17] (in 2D) and [18] (in 3D). In
these references the stability of the Galerkin formulation is also enhanced by adding
some least-square-type terms. The application of the formulation to be presented to
different versions of the elasticity problem would be straightforward.

The paper is organized as follows. In the following section we present the problem
to be solved and its Galerkin finite element approximation, explaining the sources of
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numerical instability. Then we present the stabilized finite element formulation we
propose, for which we present a complete numerical analysis in section 4. The paper
concludes with some final remarks.

2. Problem statement and Galerkin finite element discretization.

2.1. Boundary value problem. Let Ω be the computational domain of R
d

(d = 2 or 3) occupied by the solid (or fluid), assumed to be bounded and polyhedral,
and let ∂Ω be its boundary. If u is the displacement field, p the pressure (taken as
positive in compression), and σ the deviatoric component of the stress field, the field
equations to be solved in the domain Ω are

−∇ · σ +∇p = f ,(2.1)
∇ · u = 0,(2.2)

1
2μ
σ −∇Su = 0,(2.3)

where f is the vector of body forces, μ the shear modulus, and ∇Su the symmetrical
part of ∇u. For simplicity, we shall consider the simplest boundary condition u = 0
on ∂Ω.

2.2. Variational form. To write the weak form of problem (2.1)–(2.3) we
need to introduce some functional spaces. Let V = (H1

0 (Ω))d, Q = L2(Ω)/R, and
T = (L2(Ω))d×dsym , the space of symmetric tensors of rank two with square-integrable
components. If we call U = (u, p,σ), X = V ×Q× T , the weak form of the problem
consists in finding U ∈ X such that

B(U, V ) = L(V ),(2.4)

for all V = (v, q, τ ) ∈ X , where

B(U, V ) = (∇Sv,σ)− (p,∇ · v) + (q,∇ · u) +
1
2μ

(σ, τ )− (∇Su, τ ),(2.5)

L(V ) = 〈f ,v〉,(2.6)

where (·, ·) is the L2 inner product and 〈·, ·〉 is the duality pairing between V and its
dual, (H−1(Ω))d, where f is assumed to belong.

2.3. Stability of the Galerkin finite element discretization. Let us con-
sider a finite element partition Ph of the domain Ω of diameter h. For simplicity, we
will consider quasi-uniform refinements, and thus all the element diameters can be
bounded above and below by constants multiplying h. The extension of the following
analysis to general shape-regular meshes (also called nondegenerate meshes) can be
done using the strategy developed in [11].

From the finite element partition we may build up conforming finite element
spaces Vh ⊂ V , Qh ⊂ Q, and Th ⊂ T in the usual manner. If Xh = Vh × Qh × Th
and Uh = (uh, ph,σh), the Galerkin finite element approximation consists in finding
Uh ∈ Xh such that

B(Uh, Vh) = L(Vh),(2.7)

for all Vh = (vh, qh, τh) ∈ Xh.
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In principle, we have posed no restrictions on the choice of the finite element
spaces. However, let us analyze the numerical stability of problem (2.7). If we take
Vh = Uh, it is found that

B(Uh, Uh) =
1
2μ
‖σh‖2,(2.8)

where ‖ · ‖ is the L2(Ω) norm. It is seen from (2.8) that Bh is not coercive in Xh, the
displacement and the pressure being out of control. Moreover, the inf-sup condition

inf
Uh∈Xh

sup
Vh∈Xh

B(Uh, Vh)
‖Uh‖X‖Vh‖X ≥ β

is not satisfied for any positive constant β unless the two conditions

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)
‖qh‖Qh

‖vh‖Vh

≥ C1,(2.9)

inf
vh∈Vh

sup
τh∈Th

(τ h,∇Svh)
‖τh‖Th

‖vh‖Vh

≥ C2,(2.10)

hold for positive constants C1 and C2 (see, for example, [25]). In all the expressions
above, ‖ · ‖Y stands for the appropriate norm in space Y.

Conditions (2.9) and (2.10) pose stringent requirements on the choice of the finite
element spaces. Our intention in this paper is to present a stabilized finite element
formulation that avoids the need for such conditions and, in particular, allows equal
interpolation for all the unknowns. However, we will consider the most general case,
and we will assume that Vh, Qh, and Th are constructed from finite element interpo-
lations of degree ku, kp, and kσ, respectively, being the functions in Vh continuous
but the stress and pressure interpolation possibly discontinuous.

Before closing this section, let us introduce some notation. The finite element
partition will be denoted by Ph = {K}, and summation over all the elements will
be indicated as

∑
K . The collection of all interior edges (faces, for d = 3) will be

denoted by Eh = {E} and, as for the elements, summation over all these edges will
be indicated as

∑
E . The symbol 〈f, g〉D will be used to denote the integral of the

product of functions f and g over D, with D = K (an element), D = ∂K (an element
boundary), or D = E (an edge). Likewise, ‖f‖2D := 〈f, f〉D. Suppose now that
elements K1 and K2 share an edge E, and let n1 and n2 be the normals to E exterior
to K1 and K2, respectively. For a scalar function f , possibly discontinuous across E,
we define its jump as [[ nf ]]E := n1f |∂K1∩E + n2f |∂K2∩E , and for a vector or tensor
v, [[ n · v ]]E := n1 · v|∂K1∩E + n2 · v|∂K2∩E .

3. Design of the stabilized finite element approximation using sub-
scales. In this section we describe the finite element formulation proposed. The
arguments in this design step are necessarily heuristic. Their validity depends on
the numerical performance of the formulation, which will not be checked here (see
the final remarks in section 5), and on the numerical analysis to be presented in the
following section.

3.1. Decomposition of the unknowns. Let us start by explaining the basic
idea of the multiscale formulation proposed in [20] and applying it to our problem. If
we split U = Uh +U ′, where Uh belongs to the finite element space Xh and U ′ to any
space X ′ to complement Xh in X , problem (2.4) is exactly equivalent to

B(Uh + U ′, Vh) = L(Vh) ∀Vh ∈ Xh,(3.1)
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B(Uh + U ′, V ′) = L(V ′) ∀V ′ ∈ X ′.(3.2)

In essence, the goal of all subscale methods, including the approximation with bubble
functions, is to approximate U ′ in one way or another and end up with a problem for
Uh alone.

Integrating some terms by parts and using the fact that uh = u′ = 0 on ∂Ω, it is
easy to see that (3.1) in our case can be written as

B(Uh, Vh) + (∇Svh,σ′)− (p′,∇ · vh) +
1
2μ

(σ′, τ h)

+
∑
E

〈u′E , [[ nqh − n · τ h ]] 〉E +
∑
K

〈u′K ,−∇qh +∇ · τh〉K = L(Vh),(3.3)

where we have distinguished between the displacement subscale in the elements inte-
riors, u′K , and on the edges, u′E . The stress and pressure subscales are required only
in the element interiors (recall that they may be discontinuous).

On the other hand, integrating back some terms by parts in (3.2) it is found that∑
K

〈v′,−np+ n · σ〉∂K +
∑
K

〈v′,∇p−∇ · σ〉K

+ (q′,∇ · u) +
1
2μ

(σ, τ ′)− (∇Su, τ ′) = L(V ′),(3.4)

which yield as Euler–Lagrange equations the original differential equations projected
onto X ′, together with the continuity of −np+ n · σ across interelement boundaries
in the corresponding trace space.

Let us denote by Ph the projection with respect to

(f, g)h :=
∑
K

〈f, g〉K ,(3.5)

for f and g such that the integral of their product in each K ∈ Ph is well defined.
Observe that (f, g)h coincides with the L2(Ω) inner product when f, g ∈ L2(Ω).

With this definition, (3.4) and the continuity of the stresses across interelement
boundaries imply

−∇ · σ′ +∇p′ = ru := f +∇ · σh −∇ph + ξu
∇ · u′K = rp := −∇ · uh + ξp

1
2μσ

′ −∇Su′K = rσ := − 1
2μσh +∇Suh + ξσ

⎫⎬
⎭ in each K ∈ Ph(3.6)

u′ = u′E
[[ np− n · σ ]]E = 0

}
on each E ∈ Eh,(3.7)

where ξu, ξp, and ξσ are orthogonal to V ′, Q′, and T ′, respectively, with respect to
projection Ph. These vectors are responsible to enforce that the previous equations
hold in the space for the subscales, which still needs to be approximated (see [10]
for more details). Clearly, if (3.6) is to be understood in a classical sense, f should
be more regular than required up to now and, likewise, the subscales need to be
more regular than required. Nevertheless, for the moment we may assume as much
regularity as needed. We will see that the final problem (3.18)–(3.19) is well defined
in the functional framework introduced earlier.

The way to approximate the solution of problems (3.6)–(3.7) and to choose the
space for the subscales is the topic of the following subsection. The objective is to
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obtain a closed form expression for σ′, p′, and u′K defined on the element interiors
and for u′E defined on the interior edges. Without any further simplification, the
problem is as complex as the original one. The essential approximation step consists
of approximating (3.6) without taking into account u′E and then approximating this
unknown assuming the subscales on the element interiors are known.

3.2. Approximation of the subscales in the element interiors. There are
several possibilities to deal with problem (3.6). As in [10], we will approximate σ′, p′,
and u′ by using an (approximate) Fourier analysis of the problem. We start explaining
the basic idea and then we apply it to problem (3.6).

Let us consider a linear differential equation of the form LU = F posed in each
element domain K, where U is in general a vector unknown corresponding to a sub-
scale, L a linear differential operator, and F a given vector function. Let us denote the
Fourier transform by ̂ . Scaling the wave number as k/h, with k dimensionless and h
being the diameter of K, the basic heuristic assumption is to assume that U is highly
fluctuating, and thus dominated by high wave numbers. Thus, the boundary term
in the Fourier transform of the derivatives can be considered negligible compared
with the term involving the integral in K, since the former is O(1) and the latter
O(|k|). This essential approximation amounts to evaluating the Fourier transform of
the equation as for functions vanishing on ∂K (and extended to R

d by zero).
Suppose now that the differential equations are written in such a way that the

product F tU is dimensionally well defined; that is to say, all the terms in the sum
have the same dimension. Here and in what follows we assume that U , possibly with
a subscript, is an element in the domain of L and F , may be also with a subscript,
is an element in the range of L. It is obvious that the products F t

1F2 and U t
1U2 may

not be dimensionally well defined. Let M be a scaling matrix, symmetric, positive-
definite, and possibly diagonal, which makes the products F t

1MF2 and U t
1M
−1U2

dimensionally consistent. We will denote |F |2M = F tMF and |U |2M−1 = U tM−1U
and refer to these quantities as the squared M -norm of F and the squared M−1-norm
of U , respectively. Likewise, we denote by ‖F‖L2

M(K) the L2(K) norm of |F |M .
Our purpose is to approximate LU ≈ ΛU in a certain sense, with Λ a matrix

which has to be determined and that will be called matrix of stabilization parameters.
We propose to do this imposing that the induced L2

M (K) norm of Λ is an upper bound
for the induced L2

M (K) norm of L; that is to say, ‖L‖L2
M(K) ≤ ‖Λ‖L2

M(K). The symbol
≤ has to be understood up to constants and holding independently of the equation
coefficients.

According to the approximation explained, we may write the Fourier transform
of LU as L̂(k)Û(k), where L̂(k) is an algebraic operator. The approximate upper
bound of ‖L‖L2

M(K) can be obtained as follows. For any U in the domain of L we
have

‖LU‖2L2
M(K) =

∫
K

|LU |2Mdx

≈
∫

Rd

|L̂(k)Û(k)|2Mdk

≤
∫

Rd

|L̂(k)|2M |Û(k)|2Mdk

= |L̂(k0)|2M
∫

Rd

|Û(k)|2Mdk

≈ |L̂(k0)|2M‖U‖2L2
M(K).
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In the first and in the last steps we have used Plancherel’s formula for the approximate
Fourier transform, whereas k0 is a wave number whose existence is guaranteed by the
mean value theorem. From the previous result it follows that ‖L‖L2

M(K) ≤ |L̂(k0)|M
for a certain wave number, still denoted k0. Therefore, our proposal is to choose Λ
such that |L̂(k0)|M = |Λ|M . Obviously, the value k0 is unknown. Its components
have to be understood in this context as algorithmic coefficients.

The norm |L̂(k0)|M can be computed as the square root of the maximum eigen-
value (in module) of the generalized eigenvalue problem L̂(k0)

t
M L̂(k0)X = λM−1X .

This leads to an effective way to determine the expression of matrix Λ.
The general idea exposed allows one to obtain the correct matrix of stabilization

parameters for several problems (see [12] for an obtention of this matrix in the context
of the hyperbolic wave equation). In particular, we will apply it now to the design
of this matrix for the problem considered in this paper. Furthermore, we will show
that in this particular case a simple dimensional argument is enough to obtain Λ if
we assume this matrix is diagonal.

For the sake of simplicity, let us consider the case d = 2 (being obvious the
extension to d = 3) and let us organize the unknowns as U = (u1, u2, p, σ11, σ12, σ22).
The first point is to choose matrix M . If [·] denotes a dimensional group, from (3.6)
it is readily checked that

[ru]2
[
h2

μ2

]
= [rp]2 = [rσ]2, [u′]2

[
μ2

h2

]
= [p′]2 = [σ′]2,

and therefore we may take

M = diag (m,m, 1, 1, 1, 1) , m :=
h2

μ2
.(3.8)

Let us consider matrix Λ of the form

Λ = diag(Λu,Λu,Λp,Λσ,Λσ,Λσ).

If we apply the strategy presented above to determine Λu, Λp, and Λσ, it turns out
that these parameters are uniquely determined by dimensionality. To see this, let us
start by noting that if L is now the operator associated to (3.6), it can be checked
that the eigenvalue of the problem

M L̂(k0)
t
M L̂(k0)X = λX

has dimensions [λ] = [μ]−2, and therefore

MΛMΛ = diag
(
Λ2
um

2,Λ2
um

2,Λ2
p,Λ

2
σ,Λ

2
σ,Λ

2
σ

)
has to have all the diagonal entries of dimension [μ]−2. Being μ the only parameter
of the equation, this immediately implies that

Λ−1
u = αu

h2

μ
, Λ−1

p = αp2μ, Λ−1
σ = ασ2μ,

where αu, αp, and ασ are constants that play the role of the algorithmic parameters
of the formulation. This allows us to approximate the solution of (3.6) as

u′K = αu
h2

μ
ru,(3.9)
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p′ = αp2μrp,(3.10)
σ′ = ασ2μrσ.(3.11)

These are the expressions we were looking for.
It only remains to determine which is the space of the subscales, that is, to choose

the functions ξu, ξp, and ξσ. Our particular choice is to take the space for the subscales
Ph orthogonal to the finite element space (see (3.5) for the definition of Ph). In view
of (3.9)–(3.11), this implies that ru, rp, and rσ must be orthogonal to Vh, Qh, and
Th, respectively. Denoting by Pu, Pp, and Pσ, the Ph projections onto these spaces
and by P⊥u , P⊥p , and P⊥σ the orthogonal projections, we will have that

ξu = −Pu(f +∇ · σh −∇ph) and u′K = αu
h2

μ
P⊥u (f +∇ · σh −∇ph),

ξp = −Pp(−∇ · uh) and p′ = αp2μP⊥p (−∇ · uh),

ξσ = −Pσ
(
− 1

2μ
σh +∇Suh

)
and σ′ = ασ2μP⊥σ

(
− 1

2μ
σh +∇Suh

)
.

Clearly, we have that P⊥σ (−σh) = 0. We may also assume for simplicity that the
body force belongs to the finite element space, and thus P⊥u (f) = 0. Hence, the
expressions for the subscales we finally propose are

u′K = αu
h2

μ
P⊥u (∇ · σh −∇ph),(3.12)

p′ = −αp2μP⊥p (∇ · uh),(3.13)

σ′ = ασ2μP⊥σ (∇Suh).(3.14)

3.3. Approximation of the displacement subscale on the interelement
boundaries. The objective now is to propose an expression for u′E in (3.7). Let K1

and K2 be two elements sharing an edge E (face, for d = 3). The idea is to assume
that the expressions (3.12)–(3.14) just obtained for u′Ki

, p′i, and σ′i on element Ki,
i = 1, 2, hold up to a distance δ = δ0h, 0 < δ0 < 1/2, to the edge E, and that the
normal derivative of u′ on E can be approximated as

ni · ∇u′|∂Ki∩E ≈
1
δ

(
u′E − u′Ki

)
, i = 1, 2,(3.15)

which will contribute to the stress on ∂Ki ∩ E with

ni · σ′E |∂Ki∩E = 2μA(ni · ∇u′|∂Ki∩E),

where tangential derivatives u′ on ∂Ki ∩ E have been disregarded and A is a sym-
metric and positive-definite matrix which comes from the fact that σ′|∂Ki∩E has to
be approximated by the symmetric gradient of u′ on ∂Ki ∩E.

Calling also u′Ki
, p′i, and σ′i, the extension of the subgrid displacement, pressure,

and stress computed in the interior of element Ki (i = 1, 2) and extended to the
boundary, the continuity of the total stress expressed in (3.7) implies

0 = [[ n(ph + p′)− n · (σh + σ′ + σ′E) ]]E
= [[ n(ph + p′)− n · (σh + σ′) ]]E − 2μA [[ n · ∇u′ ]]E ,



FE APPROXIMATION OF THE THREE-FIELD STOKES PROBLEM 707

and using (3.15)

u′E = {u′K}E +
δ

2μ
A−1 [[ n(ph + p′)− n · (σh + σ′) ]]E ,(3.16)

where {u′K}E = (u′K1
+ u′K2

)|E/2 is the average of the displacement subscales com-
puted in the element interiors and extended to edge E.

Expression (3.16) can be used as subscale on the element boundaries. In fact, all
the analysis presented in section 4 carries over when it is used. However, both from
numerical experiments and from the numerical analysis presented later on it turns
out that it suffices to use a simpler expression, obtained by keeping the dominant
finite element terms in (3.16) and replacing A by the identity (recall that this is a
symmetric and positive-definite matrix). The bottom line is expression

u′E =
δ

2μ
[[ nph − n · σh ]]E ,(3.17)

which will be used in the following.

3.4. Stabilized finite element problem. Once the approximation for sub-
scales in the element interiors (3.12)–(3.14) and for the displacement subscale on the
interior edges (3.17) have been derived, the stabilized finite element problem is ob-
tained by inserting these approximations into (3.3). Noting that (σ′, τ h) = 0, the
result is the following: Find Uh ∈ Xh such that

Bstab(Uh, Vh) = L(Vh),(3.18)

for all Vh ∈ Xh, where

Bstab(Uh, Vh) := B(Uh, Vh)

+ ασ2μ(P⊥σ (∇Svh), P⊥σ (∇Suh)) + αp2μ(P⊥p (∇ · vh), P⊥p (∇ · uh))

+ αu
h2

μ

∑
K

〈P⊥u (∇qh −∇ · τh), P⊥u (∇ph −∇ · σh)〉K

+
δ0h

2μ

∑
E

〈 [[ nqh − n · τ h ]] , [[ nph − n · σh ]] 〉E .(3.19)

The stabilized finite element method we propose and whose stability and convergence
properties are established in the following section is (3.18). In expression (3.19) for
the stabilized bilinear form some orthogonal projections are used to highlight the
symmetry of the resulting formulation. If P⊥ is any of the orthogonal projections
appearing in (3.19) and P = I − P⊥, in the implementation of the method for any
discrete functions fh and gh one may compute (P⊥(fh), P⊥(gh)) = (fh, gh − P (gh))
and treat P (gh) either implicitly or in an iterative way, that is, evaluated at a previous
iteration of an iterative scheme of any type. For example, denoting with a superscript
the iteration counter, in the simplest case (P⊥(fh), P⊥(gih)) could be approximated by
(fh, gih − P (gi−1

h )) (see [11] for more comments on implementation issues of a similar
formulation).

Finally, let us comment on the choice of the constants ασ, αp, αu, and δ0. The
analysis to be presented next can be applied for any set of values. In some numerical
tests using linear and quadratic elements, with both continuous and discontinuous
stresses and pressures (alhough with the same interpolation for σh and ph) we have
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observed that these parameters can be taken in a wide range with little influence in
the results. By default, we use ασ = αp = 1, αu = 4, and δ0 = 1/10 in our numerical
tests.

4. Numerical analysis of the formulation. We present here the numerical
analysis of the method proposed in the previous section using heuristic arguments.
The norm in which the results will be first presented is

|||Vh|||2 :=
1
2μ
‖τh‖2 + ασ2μ‖∇Svh‖2 + αp2μ‖∇ · vh‖2

+ αu
h2

μ

∑
K

‖∇qh −∇ · τ h‖2K + δ0
h

μ

∑
E

‖ [[ nqh − n · τh ]]‖2E,(4.1)

although later on we will transform our results to “natural” norms. In fact, the term
multiplied by αp is unnecessary, since it already appears in the term multiplied by
ασ. However, we will keep it for generality, to see the effect of the subscale associated
to the pressure introduced in the previous section. Moreover it would be essential in
the case of some nonconforming elements (not considered in this work) for which the
discrete Korn’s inequality does not hold in general (see [22]). In all what follows we
will assume that all the numerical parameters ασ, αp, αu and δ0 are positive.

As it has been mentioned in section 2, we will consider for the sake of conciseness
quasi-uniform finite element partitions. Therefore, we assume that there is a constant
Cinv, independent of the mesh size h (the maximum of all the element diameters),
such that

‖∇vh‖K ≤ Cinvh
−1‖vh‖K ,(4.2)

for all finite element functions vh defined on K ∈ Ph. This inequality can be used for
scalars, vectors, or tensors. Similarly, the trace inequality

‖v‖2∂K ≤ Ctrace

(
h−1‖v‖2K + h‖∇v‖2K

)
,(4.3)

is assumed to hold for functions v ∈ H1(K), K ∈ Ph. The last term can be dropped if
v is a polynomial on the element domain K. Thus, if ϕh is a piecewise discontinuous
polynomial (the pressure or the stresses, in our case) and ψh a continuous one, it
follows that ∑

E

‖ [[ nϕh ]]‖2E ≤ 2Ctraceh
−1
∑
K

‖ϕh‖2K ,(4.4)

∑
E

‖ψh‖2E ≤
1
2
Ctraceh

−1
∑
K

‖ψh‖2K .(4.5)

In all what follows, C, with or without subscript, will denote a positive constant,
independent of the discretization and the physical coefficient μ, and possibly different
at different occurrences.

We start proving what is in fact the key result, which states that the formulation
proposed is stable in the norm (4.1). This stability is presented in the form of an
inf-sup condition:

Theorem 4.1 (stability). There is a constant C > 0 such that

inf
Uh∈Xh

sup
Vh∈Xh

Bstab(Uh, Vh)
|||Uh||||||Vh||| ≥ C.(4.6)
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Proof. Let us start noting that, for any function Uh ∈ Xh, we have

Bstab(Uh, Uh) =
1
2μ
‖σh‖2 + ασ2μ‖P⊥σ (∇Suh)‖2 + αp2μ‖P⊥p (∇ · uh)‖2

+ αu
h2

μ

∑
K

‖P⊥u (∇ph −∇ · σh)‖2K +
δ0h

2μ

∑
E

‖ [[ nph − n · σh ]]‖2E .(4.7)

The basic idea is to obtain control on the components on the finite element space for
the terms whose orthogonal components appear in this expression. The key point is
that this control comes from the Galerkin terms in the bilinear form Bstab.

Let us consider Vh1 := αu
h2

μ (Pu(∇ph − ∇ · σh), 0,0). Recall that Pu is defined
based on elementwise integrals, and thus Pu(∇ph−∇ · σh) is well defined. We will use
the abbreviation v1 ≡ Pu(∇ph −∇ · σh). A straightforward application of Schwarz’s
inequality and the inverse estimate (4.2) leads to

Bstab(Uh, Vh1) ≥ B(Uh, Vh1)− ασ2μαuh
2

μ

Cinv

h
‖v1‖‖P⊥σ (∇Suh)‖

− αp2μαuh
2

μ

Cinv

h
‖v1‖‖P⊥p (∇ · uh)‖.(4.8)

On the other hand,

B(Uh, Vh1) = αu
h2

μ

∑
K

(〈∇Sv1,σh〉K − 〈∇ · v1, ph〉K
)

= αu
h2

μ

∑
K

(−〈v1,∇ · σh〉K + 〈v1,∇ph〉K)− αuh
2

μ

∑
E

〈v1, [[ nph − n · σh ]] 〉E

≥ αuh
2

μ

∑
K

‖v1‖2K − αu
h2

μ

∑
E

‖v1‖E‖ [[ nph − n · σh ]]‖E

≥ αu h
2

2μ

∑
K

‖v1‖2K − αu
hCtrace

4μ

∑
E

‖ [[ nph − n · σh ]]‖2E ,

where Young’s inequality and (4.5) have been used in the last step. Using this in (4.8)
and making use again of Young’s inequality, it follows that there exist constants C1j ,
j = 1, 2, 3, 4, such that

Bstab(Uh, Vh1) ≥ C11αu
h2

μ
‖Pu(∇ph −∇ · σh)‖2 − C12αu

h

μ

∑
E

‖ [[ nph − n · σh ]]‖2E

− C13αuα
2
σμ‖P⊥σ (∇Suh)‖2 − C14αuα

2
pμ‖P⊥p (∇ · uh)‖2.(4.9)

Consider now Vh2 := αp2μ(0, q2,0), where q2 ≡ Pp(∇ · uh). Note that this
function may be discontinuous across interelement boundaries. It turns out that

Bstab(Uh, Vh2) = αp2μ‖q2‖2 + αu
h2

2μ

∑
K

〈∇q2, P⊥u (∇ph −∇ · σh)〉K

+ δ0
h

μ
αp2μ

∑
E

〈 [[ q2 ]] , [[ nph − n · σh ]] 〉E
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The same strategy as before, now using (4.4) to deal with the last term in this ex-
pression, leads to the existence of certain constants C2j , j = 1, 2, 3, such that

Bstab(Uh, Vh2) ≥ C21αpμ‖Pp(∇ · uh)‖2 − C22αpα
2
u

h2

μ
‖P⊥u (∇ph −∇ · σh)‖2

− C23αpδ
2
0

h

μ

∑
E

‖ [[ nph − n · σh ]]‖2E.(4.10)

Finally, taking Vh3 := ασ2μ(0, 0,−Pσ(∇Suh)) we obtain that there exist con-
stants C3j , j = 1, 2, 3, 4, such that

Bstab(Uh, Vh3) ≥ C31ασμ‖Pσ(∇Suh)‖2 − C32ασ
1
μ
‖σh‖2

− C33ασα
2
u

h2

μ
‖P⊥u (∇ph −∇ · σh)‖2 − C34ασδ

2
0

h

μ

∑
E

‖ [[ nph − n · σh ]]‖2E .(4.11)

Let Vh = Uh + β1Vh1 + β2Vh2 + β3Vh3, with Vhi, i = 1, 2, 3, introduced above. Adding
up inequalities (4.9)–(4.11) multiplied by β1, β2, and β3, respectively, and adding also
(4.7), it is trivially verified that the coefficients βi, i = 1, 2, 3, can be chosen large
enough so as to obtain

Bstab(Uh, Vh) ≥ C|||Uh|||2.(4.12)

On the other hand, we have that

|||Vh1|||2 ≤ 2α2
u(αp + ασ)C2

inv

h2

μ
‖∇ph −∇ · σh‖2 ≤ C|||Uh|||2,

|||Vh2|||2 ≤ 2μα2
p(2αuC

2
inv + 4δ0Ctrace)‖∇ · uh‖2 ≤ C|||Uh|||2,

|||Vh3|||2 ≤ 2α2
σμ(1 + 2αuC2

inv + 4δ0Ctrace)‖∇Suh‖2 ≤ C|||Uh|||2,

from where it follows that |||Vh||| ≤ C|||Uh|||. Using this fact in (4.12) we have shown
that for each Uh ∈ Xh there exists Vh ∈ Xh such that Bstab(Uh, Vh) ≥ C|||Uh||||||Vh|||,
from where the theorem follows.

Once stability is established, a more or less standard procedure leads to con-
vergence. To prove it, we need two preliminary lemmas. The first concerns the
consistency of the formulation:

Lemma 4.2 (consistency). Let U ∈ X be the solution of the continuous problem
and Uh ∈ Xh the finite element solution of (3.18). If f ∈ Vh and U is regular enough,
so that Bstab(U, Vh) is well defined, then

Bstab(U − Uh, Vh) = 0 ∀Vh ∈ Xh.(4.13)

Proof. This lemma is a trivial consequence of the consistency of the finite element
method proposed (considering the force term f in the finite element space). Note
that all the terms added to B in the definition (3.19) of Bstab vanish if Uh is replaced
by U (recall that σh could have been added to ∇Suh, since P⊥σ (σh) = 0).

Remark 4.1. If P⊥u (f ) �= 0 there are two options. The first is to include this
orthogonal projection in the definition of the method, and therefore to modify the
right-hand side of (3.18). All the analysis carries over to this case. The second is to
take into account the consistency error coming from f in (4.13). It is easy to see that
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in this case this equation can be replaced by Bstab(U −Uh, Vh) ≤ CE(h)|||Vh|||, where
E(h) is introduced below, and the following results can be immediately adapted.

The second preliminary lemma concerns an interpolation error in terms of the
norm |||·||| and the bilinear form Bstab for the continuous solution U = (u, p,σ) ∈ X ,
assumed to have enough regularity. Let Wh be a finite element space of degree kv.
For any function v ∈ Hk′v+1(Ω) and for i = 0, 1, we define the interpolation errors
εi(v) from the interpolation estimates

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Chk
′′
v +1−i∑

K

‖v‖
Hk′′

v +1(K)
=: εi(v),(4.14)

where k′′v = min(kv, k′v). We will denote by ṽh the best approximation of v in Wh.
Clearly, we have that ε0(v) = hε1(v). We will use this notation for v = u (dis-
placement), v = p (pressure) and v = σ (stresses), being the respective orders of
interpolation ku, kp and kσ.

This notation will allow us to prove that the error function of the method is

E(h) :=
√
με1(u) +

1√
μ
ε0(p) +

1√
μ
ε0(σ).(4.15)

This is indeed the interpolation error:
Lemma 4.3 (interpolation error). Let U ∈ X be the continuous solution, assumed

to be regular enough, and Ũh ∈ Xh its best finite element approximation. Then, the
following inequalities hold:

Bstab(U − Ũh, Vh) ≤ CE(h)|||Vh|||,(4.16)

|||U − Ũh||| ≤ CE(h),(4.17)

where E(h) is given in (4.15).
Proof. Let us start considering a general discontinuous finite element interpolation

of a function v. Using the trace inequality (4.3) we have that∑
E

‖ [[ n(v − ṽh) ]]‖2E ≤ 2
∑
K

‖v − ṽh‖2∂K

≤ 2Ctrace

∑
K

(
h−1‖v − ṽh‖2K + h‖∇v −∇ṽh‖2K

)
≤ C (h−1ε20(v) + hε21(v)

)
.(4.18)

The same estimate holds for a continuous interpolation:∑
E

‖(v − ṽh)‖2E ≤ C
(
h−1ε20(v) + hε21(v)

)
.(4.19)

Let us prove (4.17). By the definition (4.1) of the norm |||·||| and the result just
obtained it is immediately checked that

|||U − Ũh|||2 ≤ C
[

1
2μ
ε20(σ) + ασ2με21(u) + αp2με21(u)

+αu
h2

μ
ε21(p) + αu

h2

μ
ε21(σ) + δ0

h2

μ
ε21(p) + δ0

h2

μ
ε21(σ)

]
,

and (4.17) follows.
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Let eu = u− ũh, ep = p− p̃h, and eσ = σ− σ̃h. The proof of (4.16) is as follows:

Bstab(U − Ũh, Vh) = (∇Svh, eσ)− (ep,∇ · vh) +
1
2μ

(τ h, eσ)

−
∑
K

〈−∇qh +∇ · τh, eu〉K +
∑
E

〈 [[ nqh − n · τh ]] , eu〉E

+ ασ(P⊥σ (∇Svh), P⊥σ (2μ∇Seu − eσ)) + αp2μ(P⊥σ (∇ · vh), P⊥σ (∇ · eu))
+ δ0

h

μ

∑
E

〈 [[ nqh − n · τh ]] , [[ nep − n · eσ ]] 〉E

≤ C
[
√
μ‖∇Svh‖ 1√

μ
‖eσ‖+

√
μ‖∇ · vh‖ 1√

μ
‖ep‖+

1
2
√
μ
‖τh‖ 1√

μ
‖eσ‖

+
∑
K

h√
μ
‖∇qh −∇ · τh‖K

√
μ

h
‖eu‖K +

∑
E

√
h√
μ
‖ [[ nqh − n · τ h ]]‖E

√
μ√
h
‖eu‖E

+
√
μ‖∇Svh‖√μ‖∇Seu‖+

√
μ‖∇Svh‖ 1√

μ
‖eσ‖+

√
μ‖∇ · vh‖√μ‖∇ · eu‖

+
∑
E

√
h√
μ
‖ [[ nqh − n · τh ]]‖E

√
h√
μ

(‖ [[ nep ]]‖E + ‖ [[ n · eσ ]]‖E)

]
.

All the terms have been organized to see that, after making use of (4.18) and (4.19),
they are all bounded by CE(h)|||Vh|||, from where (4.16) follows.

We are finally in a position to prove convergence. The proof is standard, but we
include it for completeness.

Theorem 4.4 (convergence). Let U = (u, p,σ) ∈ X be the solution of the
continuous problem. Then, there is a constant C > 0 such that

|||U − Uh||| ≤ CE(h),

where E(h) is given in (4.15).
Proof. Consider the finite element function Ũh−Uh ∈ Xh where, as in Lemma 4.3,

Ũh ∈ Xh is the best finite element approximation to U . Starting from the inf-sup
condition (4.6), it follows that there exists Vh ∈ Xh such that

C|||Ũh − Uh||||||Vh||| ≤ Bstab(Ũh − Uh, Vh)
= Bstab(Ũh − U, Vh) (from the consistency (4.13))
≤ CE(h)|||Vh||| (from (4.16)),

from where |||Ũh − Uh||| ≤ CE(h). The theorem follows now from the triangle in-
equality |||U − Uh||| ≤ |||U − Ũh||| + |||Ũh − Uh||| and the interpolation error estimate
(4.17).

Clearly, this convergence result is optimal.
Remark 4.2. From the expression of the error function (4.15) it follows that all

the terms have the same order in h if ku = kp + 1 = kσ + 1. However, Theorem 4.4
holds without any restriction on the interpolation order of the different unknowns.

The next step will be to prove stability and convergence in natural norms, that
is to say, in the norm of the space where the continuous problem is posed, and not
in the mesh dependent norm (4.1). Even though the results to be presented are the
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expected ones, the analysis presented up to this point has highlighted the role played
by the stabilization terms of the formulation.

Theorem 4.5 (stability and convergence in natural norms). The solution of the
discrete problem Uh = (uh, ph,σh) ∈ Xh can be bounded as

√
μ‖uh‖H1(Ω) +

1√
μ
‖σh‖+

1√
μ
‖ph‖ ≤ C√

μ
‖f‖H−1(Ω).(4.20)

Moreover, if the solution of the continuous problem U = (u, p,σ) ∈ X is regular
enough, the following error estimate holds:

√
μ‖u− uh‖H1(Ω) +

1√
μ
‖σ − σh‖+

1√
μ
‖p− ph‖ ≤ CE(h).(4.21)

Proof. Let us first recall that Korn’s inequality implies that ‖∇Sv‖ is a norm in
V equivalent to ‖v‖H1(Ω), and this property is inherited by the conforming approxi-
mation considered. On the other hand, it is clear that

〈f ,vh〉 ≤ C√
μ
‖f‖H−1(Ω)

√
μ‖vh‖H1(Ω) ≤ C√

μ
‖f‖H−1(Ω)|||Vh|||,

where Vh = (vh, qh, τh) ∈ Xh is arbitrary. Therefore the inf-sup condition proved in
Theorem 4.1 implies that |||Uh||| ≤ C√

μ‖f‖H−1(Ω), which, together with the definition
of |||·||| in (4.1), yields the bound (4.20) for the first two terms in the left-hand side of
this inequality. More precisely, we have that

μ‖uh‖2H1(Ω) +
1
μ
‖σh‖2

+
h2

μ

∑
K

‖∇ph −∇ · σh‖2K +
h

μ

∑
E

‖ [[ nph − n · σh ]]‖2E ≤
C

μ
‖f‖2H−1(Ω).(4.22)

On the other hand, using the inverse estimate (4.2) and the trace inequality (4.3) we
have

h2

μ

∑
K

‖∇ph‖2K ≤
h2

μ

∑
K

‖∇ph −∇ · σh‖2K +
C

μ
‖σh‖2,

h

μ

∑
E

‖ [[ nph ]]‖2E ≤
h

μ

∑
E

‖ [[ nph − n · σh ]]‖2E +
C

μ
‖σh‖2,

so that (4.22) implies

μ‖uh‖2H1(Ω) +
1
μ
‖σh‖2 +

h2

μ

∑
K

‖∇ph‖2K +
h

μ

∑
E

‖ [[ nph ]]‖2E ≤
C

μ
‖f‖2H−1(Ω).(4.23)

To prove the L2-stability for the pressure we rely on the inf-sup condition between the
velocity and pressure spaces that holds for the continuous problem, that is to say, the
continuous counterpart of (2.9). If ph is the solution of the discrete problem, there
exists w ∈ V such that

C‖ph‖ ‖w‖H1(Ω) ≤ (ph,∇ ·w).
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Let us choose w with ‖w‖H1(Ω) = ‖ph‖ and let w̃h be the best approximation to w
in Vh, which will satisfy ‖w − w̃h‖ ≤ Ch‖ph‖. Using (4.3) once again we have that

C‖ph‖2 ≤ (ph,∇ ·w)

= −
∑
K

〈∇ph,w − w̃h〉K +
∑
E

〈 [[ nph ]] ,w − w̃h〉E

+ (σh,∇Sw̃h)− 〈f , w̃h〉

≤ C‖ph‖
(
h
∑
K

‖∇ph‖K +
√
h
∑
E

‖ [[ nph ]]‖E + ‖σh‖+ ‖f‖H−1(Ω)

)
.

This, together with (4.23), implies the stability estimate (4.20).
The error estimate can be proved using a similar strategy. First, let us notice that

Theorem 4.4 implies the error estimate (4.21) for the displacement and the stresses.
We thus have

μ‖u− uh‖2H1(Ω) +
1
μ
‖σ − σh‖2

+
h2

μ

∑
K

‖∇(p− ph)−∇ · (σ − σh)‖2K

+
h

μ

∑
E

‖ [[ n(p− ph)− n · (σ − σh) ]]‖2E ≤ CE(h)2.(4.24)

On the other hand, using the interpolation estimates (4.14) and (4.18)

h2

μ

∑
K

‖∇(p− ph)‖2K ≤
h2

μ

∑
K

‖∇(p− ph)−∇ · (σ − σh)‖2K +
C

μ
ε20(σ),

h

μ

∑
E

‖ [[ n(p− ph) ]]‖2E ≤
h

μ

∑
E

‖ [[ n(p− ph)− n · (σ − σh) ]]‖2E +
C

μ
ε20(σ),

and, according to (4.24), both terms are bounded by E(h)2. To prove the L2-error
estimate for the pressure, let now w ∈ V , with ‖w‖H1(Ω) = ‖p − ph‖, be such that
C‖p− ph‖2 ≤ (p− ph,∇ ·w), and let w̃h be its best approximation in Vh. We have
that

C‖p− ph‖2 ≤ (p− ph,∇ ·w)

= −
∑
K

〈∇(p− ph),w − w̃h〉K +
∑
E

〈 [[ n(p− ph) ]] ,w − w̃h〉E

+ (σ − σh,∇Sw̃h)

≤ C‖p− ph‖
(
h
∑
K

‖∇(p− ph)‖K +
√
h
∑
E

‖ [[ n(p− ph) ]]‖E + ‖σ − σh‖
)
,

which yields ‖p− ph‖ ≤ C
√
μE(h). This, together with (4.24), finishes the proof of

(4.21).
To complete the analysis of the problem, let us obtain an L2-error estimate for

the displacement, which can be proved using a duality argument.
Theorem 4.6 (L2-error estimate for the velocity). Suppose that the continuous

problem satisfies the elliptic regularity condition

√
μ‖u‖H2(Ω) +

1√
μ
‖σ‖H1(Ω) +

1√
μ
‖p‖H1(Ω) ≤ C√

μ
‖f‖.(4.25)
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Then

√
μ‖u− uh‖ ≤ Ch

(√
μ‖u− uh‖H1(Ω) +

1√
μ
‖σ − σh‖+

1√
μ
‖p− ph‖

)
.(4.26)

Proof. Let (ω, π,S) ∈ X be the solution of the following adjoint problem:

∇ · S −∇π =
μ

2
(u− uh) in Ω,(4.27)

−∇ · ω = 0 in Ω,(4.28)
1
2μ
S +∇Sω = 0 in Ω,(4.29)

with ω = 0 on ∂Ω and where  is a characteristic length scale of the problem that
has been introduced to keep the dimensionality, but that will play no role in the final
result. Let also (ω̃h, π̃h, S̃h) be the best approximation to (ω, π,S) in Xh. Testing
(4.27) with u−uh, (4.28) with p−ph, and (4.29) with σ−σh, we immediately obtain

μ

2
‖u− uh‖2 = B((u − uh, p− ph,σ − σh), (ω, π,S))

= Bstab((u − uh, p− ph,σ − σh), (ω, π,S))

− ασ2μ
∑
K

〈
P⊥σ

(
1
2μ
S +∇Sω

)
, P⊥σ (∇S(u− uh))

〉
K

− αp2μ
∑
K

〈
P⊥σ (∇ · ω), P⊥σ (∇ · (u− uh))

〉
K

− αuh
2

μ

∑
K

〈
P⊥u (∇π −∇ · S), P⊥u (∇(p− ph)−∇ · (σ − σh))

〉
K

− δ0 h2μ
∑
E

〈 [[ nπ − n · S ]] , [[ n(p− ph)− n · (σ − σh) ]] 〉E ,(4.30)

where we have made use of the definition (3.19) of Bstab. Note that we have included
S in P⊥σ ( 1

2μS +∇Sω) because it does not affect the definition of Bstab when applied
to discrete finite element functions.

The second and third terms in the right-hand side of (4.30) are zero because
of (4.29) and (4.28), respectively, and the last one is also zero because of the weak
continuity of the stresses associated to problems (4.27)–(4.29). Therefore, only the
first and fourth terms need to be bounded.

Using Lemma 4.2, for the first term in (4.30) we have

Bstab((u − uh, p− ph,σ − σh), (ω, π,S))

= Bstab((u − uh, p− ph,σ − σh), (ω − ω̃h, π − π̃h,S − S̃h)).(4.31)

Using the interpolation properties and the shift assumption (4.25) it follows that

‖ω − ω̃h‖H1(Ω) ≤ Ch‖ω‖H2(Ω) ≤ Ch 1
2
‖u− uh‖,

‖S − S̃h‖ ≤ Ch‖S‖H1(Ω) ≤ Ch μ
2
‖u− uh‖,

‖π − π̃h‖ ≤ Ch‖π‖H1(Ω) ≤ Ch μ
2
‖u− uh‖.
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From these expressions it can be easily checked that (4.31) can be bounded by

Bstab((u− uh, p− ph,σ − σh), (ω, π,S))

≤ Ch
√
μ

2
‖u− uh‖

(√
μ‖u− uh‖H1(Ω) +

1√
μ
‖σ − σh‖+

1√
μ
‖p− ph‖

)
.(4.32)

Let us check this bound for example for the term in Bstab((u − uh, p − ph,σ −
σh), (ω, π,S)) involving boundary integrals, for which we have

δ0
h

μ

∑
E

〈 [[ n(π̃h − π)− n · (S̃h − S) ]] , [[ n(ph − p)− n · (σh − σ) ]] 〉E

≤ C h
μ

[
h−1/2(‖π̃h − π‖ + ‖S̃h − S‖) + h1/2(‖π̃h − π‖H1(Ω) + ‖S̃h − S‖H1(Ω))

]
×
[
h−1/2(‖ph − p‖+ ‖σh − σ‖) + h1/2(‖ph − p‖H1(Ω) + ‖σh − σ‖H1(Ω))

]
≤ C h

2
‖u− uh‖ (‖p− ph‖+ ‖σ − σh‖) .

The rest of the terms in Bstab((u − uh, p − ph,σ − σh), (ω, π,S)) can be bounded
similarly. We omit the details.

It only remains to bound the fourth term in (4.30). This is again easily done
using that ‖S‖H1(Ω) + ‖π‖H1(Ω) ≤ C μ

�2 ‖u− uh‖, which yields

αu
h2

μ

∑
K

〈
P⊥u (∇π −∇ · S), P⊥u (∇(p− ph)−∇ · (σ − σh))

〉
K

≤ Ch
2

μ

μ

2
‖u− uh‖(‖∇p−∇ph‖+ ‖∇ · σ −∇ · σh‖).

Using this and (4.32) in (4.30) the theorem follows.

5. Concluding remarks. Let us conclude with some remarks concerning the
numerical formulation presented in this paper. This formulation is an application of
subgrid scale concept to the stress-displacement-pressure formulation of the Stokes
problem. Apart from the novelty of this application, a feature of the formulation is
to consider the spaces of subgrid scales orthogonal to the finite element spaces. Other
ingredients original of this paper are the basis for the design of the parameters of
formulation and the introduction of subgrid scales on the element boundaries.

From the point of view of the numerical analysis, the method presented is sta-
ble and optimally accurate using arbitrary interpolations for the displacement, the
pressure and the stresses. Comparing it with the Galerkin method using stable inter-
polations, exactly the same regularity requirements are needed and the same conver-
gence rates are obtained, also in the same norms. Therefore, the main goal has been
achieved.

The accuracy of the method obtained in some numerical experiments is the one
expected from the convergence analysis. Theoretical convergence rates are exactly
recovered. We have preferred to skip the results of numerical testing in the linear
setting analyzed in this paper and to postpone them for a more extensive numerical
experimentation in more complex applications.

The practical interest of the problem studied is obvious. As it has been mentioned
in the Introduction, this is nothing but a model for more complex situations. Typi-
cally, viscoelastic flows are often posed as an example of a problem that requires the
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interpolation of the stresses, but this can also be done for nonlinear models such as
damage or plasticity in solid mechanics, and non-Newtonian fluids or even turbulence
models in fluid mechanics. When designing an extension of the formulations presented
here to these more complex situations, the most important idea to bear in mind is
which is the stabilization mechanism introduced by the formulations proposed. The
analysis dictates that pressure is stabilized by the term proportional to P⊥u (∇ph) in-
troduced in the continuity equation, and the displacement gradient is stabilized by
the term proportional to P⊥σ (∇Suh) introduced in the momentum equation. This is
the essential point. The only condition on the factors that multiply these terms is
that they have to yield an adequate scaling and order of convergence.
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Abstract. We construct and analyze generalized Gaussian quadrature rules for integrands with
endpoint singularities or near endpoint singularities. The rules have quadrature points inside the
interval of integration, and the weights are all strictly positive. Such rules date back to the study of
Chebyshev sets, but their use in applications has only recently been appreciated. We provide error
estimates, and we show that the convergence rate is unaffected by the singularity of the integrand.
We characterize the quadrature rules in terms of two families of functions that share many properties
with orthogonal polynomials but that are orthogonal with respect to a discrete scalar product that,
in most cases, is not known a priori.
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1. Introduction. Gaussian quadrature has many advantages in the numerical
integration of

∫ b

a

w(x)f(x) dx ≈
n∑
j=1

wjf(xj),

with a positive weight function w(x) > 0 ∀x ∈ [a, b]. First, all quadrature points xj
lie inside the interval [a, b] of integration, and the weights wj are all positive [8, 28].
As a result, applying such quadrature rules is numerically stable. Second, it is well
known that among all interpolatory quadrature rules, Gauss-type rules achieve the
highest polynomial order. In particular, a Gaussian rule with n points is exact for
polynomials up to degree 2n−1. Convergence is, therefore, quite fast if the integrand is
sufficiently smooth. It follows from the Weierstrass approximation theorem and from
the positivity of the weights that convergence is guaranteed for all continuous functions
f on [a, b]. Finally, Gaussian quadrature rules can be computed efficiently owing to
their connection to orthogonal polynomials [9, 20], with a computational cost that
scales as O(n2) for traditional algorithms [11] or O(n) for more specialized ones [10].
A disadvantage of Gaussian rules is their inherent lack of adaptivity: different values of
n lead to entirely different sets of quadrature points and weights. This is not the case,
for example, for Clenshaw–Curtis rules, which otherwise share many of the advantages
of Gaussian rules [30]. Several ways have been suggested to remedy the situation,
most notably Gauss–Kronrod and Gauss–Kronrod–Patterson extensions [19, 23]. For
modest values of n, the issue of adaptivity is less severe. In this paper, we consider
the generalization of Gaussian quadrature rules in a different direction, focusing on
achieving high accuracy for small n.
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The main subject of this paper concerns quadrature rules of Gaussian type for
nonsmooth functions f . Though convergence of classical Gauss-type quadrature for
such functions is possible, the convergence rate is low and the use of large n in quadra-
ture is not recommended. Instead, research has focused on composite quadrature,
singularity-removing transformations [29], graded meshes [26], and, in general, adap-
tive methods [3]. An efficient alternative was suggested, however, in [22]. Assume the
integrand has the general form

f(x) = u(x) + v(x)ψ(x),

where both u and v are smooth functions and ψ(x) has an integrable singularity of
some kind, such as ψ(x) = log(x− a) or ψ(x) = (x− a)α, with α > −1. It was proved
in [22] that for many singular choices of ψ, a generalized Gaussian quadrature formula
exists of the form

∑n
j=1 wjf(xj) and with the following properties:

1. xj ∈ (a, b) and wj > 0, j = 1, . . . , n;
2.
∑n

j=1 wj [x
k
j + xljψ(xj)] =

∫ b
a
w(x)[xk + xlψ(x)] dx, k, l = 0, . . . , n− 1.

The first property indicates that, like classical Gauss-type rules, the quadrature points
lie inside the interval [a, b], and the weights are all positive. The second property states
that the singularity is integrated exactly if u and v are polynomials up to degree n−1.
This rule is said to be Gaussian because 2n functions are integrated exactly using only
n function evaluations. Note the important property that the rule evaluates only f ,
and not u or v. It is sufficient that u and v exist—they need not be known explicitly.
Thus, the quadrature rule is a numerically stable approach for integrating nonsmooth
functions, as long as the lack of smoothness is confined to a known function ψ(x). For
this reason, we call f a function with a confined singularity.

The existence of generalized Gaussian quadrature rules dates back to Markov in
the study of Chebyshev sets [21]. A more recent treatise is given in [16]. It follows
from this theory that a quadrature rule with n points exists that integrates 2n basis
functions φk exactly,

(1.1)
n∑
j=1

wjφk(xj) =
∫ b

a

w(x)φk(x) dx, k = 1, . . . , 2n

if {φk}2nk=1 is a Chebyshev set. Functions of the form xk + xlψ(x) are only a special
case of this more general setting (albeit possibly a limiting special case if ψ(x) is
unbounded [22]).

One of the advantages listed above of classical Gauss-type properties has long been
missing: an efficient construction algorithm. Generalized Gaussian quadrature rules
have been described for special cases only in the literature, for example, in [12, 25,
7]. Two generally applicable numerical methods for computing these rules were first
described in [22, 31]. These authors also introduced the name generalized Gaussian
quadrature. The proposed methods essentially consist of a continuation approach
combined with Newton’s method to solve the set of 2n nonlinear equations (1.1) for
the 2n unknowns wj and xj . Although not as efficient as orthogonal polynomial-based
methods for classical rules, generalized Gaussian quadrature rules can be computed
with reasonable efficiency for almost any basis set {φk}. The results are particularly
useful in integral equation methods, which require the evaluation of a large number
of integrals with well-understood singular behavior [27, 18, 17, 2].

The purpose of this paper is to analyze generalized Gaussian quadrature rules in
the setting of functions with a confined singularity. Though more limited than the
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general theory, this setting is very useful in applications. We provide error estimates
for generalized Gaussian quadrature rules in section 3. Next, in section 4 we charac-
terize generalized Gaussian quadrature rules in terms of two sequences of functions
Rn(x) and Sn(x), which obey certain orthogonality properties and which vanish at
the quadrature points. This theory is more comparable to the theory of multivariate
cubature formulae than to the theory of univariate Gaussian quadrature [6, 5, 4]. We
discuss scaling invariance of the quadrature rules in section 5, and we briefly outline
three approaches for the numerical construction of the rules in section 6. We end with
some numerical examples in section 7.

2. Preliminaries. We consider in this paper the numerical approximation of
the integral

(2.1) I[f ] :=
∫ b

a

w(x)f(x) dx,

where w(x) > 0, x ∈ (a, b), by a quadrature rule Q[·] with n points and weights of
the form

(2.2) Q[f ] :=
n∑
j=1

wjf(xj).

This approximation carries an error

ε[f ] := | I[f ]−Q[f ] |.
2.1. Functions with a confined singularity. We assume that the function f

has the form

(2.3) f(x) = u(x) + v(x)ψ(x),

where u and v lie in Ck[a, b] for some sufficiently large k. We make no assumptions
on the smoothness of the function ψ, except that it is possibly unbounded only at
one of the endpoints a or b.1 This most basic case is, arguably, also the most useful
case in applications, as it covers integrands with a singularity or near singularity at
one of the endpoints. We note, for example, that all rules constructed in [22] fit
this pattern. Integrals with an internal singularity, which often appear in boundary
element methods, may be treated by breaking the integrand at the singularity.

We introduce some more notation. We denote by Pm the set of polynomials up
to degree m, and we define P−1 to be the empty set. The sets of functions Tm,
m = 0, 1, . . . , are defined by

(2.4) Tm :=
{{

1, ψ, x, xψ, . . . , xl−1 ψ, xl
}
, m = 2l is even,{

1, ψ, x, xψ, . . . , xl−1 ψ, xl, xlψ
}
, m = 2l + 1 is odd.

They form the sequence {1}, {1, ψ}, {1, ψ, x}, {1, ψ, x, xψ}, . . . . The corresponding
function spaces are defined as

Vm := span{Tm}, m = 0, 1, . . . .

Note that the functions in Vm are not, in general, square integrable because ψ(x)2

may not be integrable on [a, b].

1This condition appears in the proof of Theorem 3.4. It may conceivably be lifted to allow
singularities at both endpoints at the cost of having less nice error estimates.
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2.2. Existence of the quadrature rule. We assume in this paper that the
function ψ is such that a generalized Gaussian quadrature rule exists for all n. That
is, we assume that

(2.5) Q[φ] = I[φ] ∀φ ∈ T2n−1.

Expression (2.5) leads to a set of 2n nonlinear equations in wj and xj—it corresponds
exactly to expression (1.1) in our new notation.

Existence and uniqueness of the quadrature rule are guaranteed if T2n−1 is a
Chebyshev set on [a, b]. This is a side result of a more general theory on the geometric
properties of the moment spaces that are induced by a Chebyshev set (see [21, 16]).
More recently, it was proved in [22] that existence and uniqueness is guaranteed if
T2n−1 is a Chebyshev set on any closed subinterval of (a, b). The latter generalization
allows unbounded singularities at the endpoints. It should be mentioned that these
results yield sufficient, but not necessary, conditions.

In both cases, we can define an interpolation operator Px for a set of points
x = {xj}nj=1 such that Px[f ] ∈ Vn−1 and

(2.6) (Px[f ])(xj) = f(xj), j = 1, . . . , n.

Assuming that Tn−1 is a Chebyshev set on all closed subsets of (a, b), this operator
is the identity on Vn−1 for all sets x, with xj ∈ (a, b), j = 1, . . . , n.

Note that the choice of ψ(x) is not as free as the choice of the weight function
w(x). Any weight function that satisfies w(x) > 0 on (a, b) will do. On the other
hand, it is known that the function ψ(x) should be either monotonically increasing
or decreasing, in order to obtain a Chebyshev set. The main choices we have in mind
are ψ(x) = log(x+ δ) and ψ(x) = (x+ δ)α, with α > −1 and where δ determines the
location of the singularity.

3. Error estimates. The central result in this section is the error estimate,
proved in Theorem 3.4:

ε[f ] ≤ 1
(n− 1)!

(b− a)n
(
W
∥∥u(n)

∥∥
∞ + (2WCψ +Wψ)

∥∥v(n)
∥∥
∞
)
,

with the constants defined as in the theorem and depending only on the weight func-
tion w(x) and the singularity function ψ(x). The estimate shows that the convergence
of the quadrature rule is unaffected by the unboundedness or the lack of smoothness of
the singularity function ψ, even though ψ is evaluated implicitly in f and the smooth
functions u and v are unknown.

3.1. The Peano kernel. Error estimates for interpolatory quadrature rules are
most often given in terms of a derivative of f , with the order of the derivative depend-
ing on the polynomial degree of the rule. These estimates can be obtained from error
estimates for polynomial interpolation or from the Peano kernel theorem. General
error estimates for interpolation by Chebyshev sets are not available. The specific
form of the function spaces V2n−1, however, enables the use of the Peano kernel the-
orem [24]. For a functional L[f ] and an integer k ≥ 0, the Peano kernel is defined by

(3.1) K(θ) =
1
k!
Lx
[
(x− θ)k+

]
,

with

(3.2) (x− θ)k+ =
{

(x− θ)k, x ≥ θ,
0, x < θ.
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The notation Lx[·] indicates that the functional L operates on a function of x. In
the following theorem, V [a, b] is the space of real-valued functions on [a, b] that is of
bounded variation.

Theorem 3.1 (Peano kernel [24]). Let k be any nonnegative integer, and let L be
a bounded linear functional from V [a, b] to R, such that L[f ] is zero when f is in Pk,
and such that the function K(θ), a ≤ θ ≤ b, defined by (3.1), is of bounded variation.
Then, if f is in Ck+1[a, b], the functional L[f ] has the value

(3.3) L[f ] =
∫ b

a

K(θ)f (k+1)(θ) dθ.

The proof is based on an expression for the remainder in a Taylor series of f . An
estimate follows of the form

(3.4) |L[f ]| ≤ ‖K‖1
∥∥f (k+1)

∥∥
∞.

In the following section, from Theorem 3.1 we will obtain bounds for the error L[f ] :=
I[f ]−Q[f ] in terms of a derivative of f .

3.2. Functions with a confined singularity. Let us first apply the Peano
kernel theorem to smooth functions f(x) = u(x). The operator

(3.5) L1[u] := I[u]−Q[u]

defines the error in the numerical approximation of the integral I[u] by a generalized
Gaussian quadrature rule with n points.

Lemma 3.2. For u ∈ Cn[a, b], we have

|I[u]−Q[u]| ≤ 1
(n− 1)!

W (b− a)n∥∥u(n)
∥∥
∞,

where W :=
∫ b
a w(x) dx.

Proof. The quadrature rule is exact for polynomials up to degree n − 1. Thus,
the Peano kernel (3.1) is given by

(3.6) K(θ) =
1

(n− 1)!
(
I
[
(x− θ)n−1

+
]−Q [ (x− θ)n−1

+
] )
.

We have, for θ ∈ [a, b],

I
[
(x − θ)n−1

+
]

=
∫ b

a

w(x)(x − θ)n−1
+ dx =

∫ b

θ

w(x)(x − θ)n−1 dx

≤W (b− θ)n−1 ≤W (b − a)n−1.

We also have

Q
[
(x− θ)n−1

+
]

=
n∑
j=1

wj(xj − θ)n−1
+

≤
n∑
j=1

wj(b− θ)n−1 = W (b − θ)n−1 ≤W (b− a)n−1.

Note that in the latter derivation, we have used the fact that the weights are all
positive and that they sum up to W . Given that both I[ (x−θ)n−1

+ ] and Q[ (x−θ)n−1
+ ]
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in (3.6) are positive, we have

|K(θ)| ≤ 1
(n− 1)!

W (b− a)n−1.

It follows that

‖K‖1 =
∫ b

a

|K(θ)| dθ ≤ 1
(n− 1)!

∫ b

a

W (b− a)n−1 dθ =
1

(n− 1)!
W (b− a)n.

The result now follows from the general error estimate (3.4).
Next, we establish an error estimate for functions of the form f(x) = ψ(x)v(x),

where v(x) is a smooth function. Define the linear functional

L2[v] := I[ψv]−Q[ψv].

This functional is exact for polynomials up to degree n− 1, and hence, we can again
invoke the Peano kernel theorem.

Lemma 3.3. If v ∈ Cn[a, b] and if ψ(x) > 0, ∀x ∈ (a, b), we have

|L2[v]| ≤ 1
(n− 1)!

Wψ (b − a)n∥∥v(n)
∥∥
∞,

where Wψ :=
∫ b
a w(x)ψ(x) dx.

Proof. The result follows from Lemma 3.2 by defining a weight function of the
form w(x)ψ(x). Note that, since ψ(x) is, in this lemma, assumed to be positive, we
indeed have

n∑
j=1

wjψ(xj) =
∫ b

a

w(x)ψ(x) dx = Wψ,

with all terms in the summation positive, as required in the proof of Lemma 3.2.
We can now state the central result of this section.
Theorem 3.4. Assume f(x) = u(x) + v(x)ψ(x), with u, v ∈ Cn[a, b]. Then we

have

(3.7) ε[f ] ≤ 1
(n− 1)!

(b− a)n
(
W
∥∥u(n)

∥∥
∞ + (2WCψ +Wψ)

∥∥v(n)
∥∥
∞

)
,

with constants W and Wψ as defined in Lemma 3.2 and Lemma 3.3 and with

(3.8) Cψ := min

(∣∣∣∣ sup
x∈[a,b]

ψ(x)
∣∣∣∣ ,
∣∣∣∣ inf
x∈[a,b]

ψ(x)
∣∣∣∣
)
≥ 0

a positive and bounded constant.
Proof. We can not immediately invoke Lemma 3.3 because the function ψ(x)

is not necessarily positive on the open interval (a, b). We will construct a function
ψ̃(x) = Aψ(x) + B that is positive on (a, b). Define the values M+ = supx∈[a,b] ψ(x)
and M− = infx∈[a,b] ψ(x). Next, define

ψ̃(x) :=
{
ψ(x) −M−, if |M−| ≤ |M+|,
−ψ(x) +M+, otherwise.

By our assumption that ψ(x) can be unbounded in at most one endpoint, at least one
of M+ or M− is finite. We have thus written ψ̃(x) = Aψ(x) + B, with A = ±1 and
|B| ≤ Cψ, where Cψ is finite. By construction, we have ψ̃(x) ≥ 0 for x ∈ (a, b).
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We rewrite the function f(x) in terms of ψ̃(x), using the fact that 1/A = A:

f(x) = u(x)− B

A
v(x) +

1
A
v(x)(Aψ(x) +B) = u(x)−ABv(x) +Av(x)ψ̃(x).

Note that if u and v are polynomials of degree k, then u(x)−ABv(x) and Av(x) are
also polynomials of degree k. This means that the generalized Gaussian quadrature
rules constructed using either ψ(x) or ψ̃(x) are the same.

We now apply Lemma 3.2, noting that Cψ > |AB| = |B|,

|I[u −ABv]−Q[u−ABv]| ≤ 1
(n− 1)!

W (b− a)n
(∥∥u(n)

∥∥
∞ + Cψ

∥∥v(n)
∥∥
∞
)
.

Lemma 3.3 leads to∣∣∣I [ψ̃Av]−Q [ψ̃Av]∣∣∣ ≤ 1
(n− 1)!

Wψ̃ (b − a)n∥∥v(n)
∥∥
∞.

We also have

Wψ̃ =
∫ b

a

w(x)(Aψ(x) + B) dx ≤Wψ + CψW.

The combination of the above inequalities proves the result.
The importance of Theorem 3.4 is that it shows that the convergence of Q[f ]

to I[f ] depends only on the smoothness of u(x) and v(x), irrespective of the lack
of smoothness in ψ(x). An advantage of the current method of proof is that the
constants in the error estimate (3.7) are entirely explicit in their dependence on the
functions w(x) and ψ(x).

3.3. Functions with multiple singularities. We digress briefly from the case
of functions with a single confined singularity to note that the error estimates readily
extend to the case of functions with multiple singularities. Consider m functions
ψm(x) and a function f(x) with multiple singularities of the form

(3.9) f(x) =
M∑
m=1

um(x)ψm(x),

where um(x) are smooth functions, m = 1, . . . ,M . The function f may, for example,
have singularities in both endpoints of the integration interval [a, b]. One is led to
consider a quadrature rule Q[f ] =

∑n
j=1 wjf(xj) that satisfies

(3.10) Q
[
xkψm

]
= I

[
xkψm

]
, k = 0, . . . , nm − 1, m = 1, . . . ,M.

In the following, we forego the existence question in favor of deriving error estimates.
We assume for simplicity that all ψm(x) ≥ 0 and, moreover, that the quadrature rule
has positive weights.

Lemma 3.5. Assume that all ψm(x) ≥ 0 ∀x ∈ [a, b], and define Lm[u] :=
Q[uψm]− I[uψm]. Then for u ∈ Cnm [a, b], we have

|Lm[u]| ≤ 1
(nm − 1)!

Wψm(b − a)nm
∥∥u(nm)

∥∥
∞,

where Wψm =
∫ b
a
w(x)ψm(x) dx.

The proof of this lemma is exactly like that of Lemma 3.3.
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Theorem 3.6. Let Q[f ] =
∑n

j=1 wjf(xj) satisfy conditions (3.10) for certain
nm > 0, m = 1, . . . ,M , and let wj > 0, j = 1, . . . , n and ψm(x) ≥ 0, m = 1, . . . ,M .
Then, for functions f of the form (3.9), we have

(3.11) |I[f ]−Q[f ]| ≤
m∑
m=1

1
(nm − 1)!

Wψm(b− a)nm
∥∥u(nm)

∥∥
∞,

with Wψm defined as in Lemma 3.5.
Proof. We can write

L[f ]−Q[f ] =
m∑
m=1

Lm[um],

where the linear operators Lm are as in Lemma 3.5. The result follows immediately
from Lemma 3.5 and from

m∑
m=1

Lm[um] ≤
m∑
m=1

|Lm[um]|.

Note that the assumption ψm(x) ≥ 0 simplifies the error estimate (3.11) compared
to the previous estimate (3.7). This comes at a cost of having slightly less general
results.

4. A theory of generalized Gaussian quadrature.

4.1. Orthogonal polynomials. It is well known that the points of a classi-
cal Gaussian rule are the roots of a polynomial pn(x) of degree n that is uniquely
determined, up to a constant factor, by the orthogonality conditions

(4.1)
∫ b

a

w(x)xk pn(x) dx = 0, k = 0, . . . , n− 1.

Let us denote the classical Gaussian quadrature rule relative to the weight function
w(x) by QG[·]. The concept of orthogonality derives from an inner product, which is
not available in the generalized setting. This, however, is not an essential argument
in the characterization of QG by pn. An alternative and more general point of view is
that the quadrature rule QG is characterized by a set of functions that vanish at the
quadrature points. This set, in turn, is characterized by pn. The meaning of these
statements is clarified in the following lemma.

Lemma 4.1. Let I[f ] be a linear, continuous functional defined on a vector space
F of functions on [a, b] and consider a quadrature rule Q[f ] =

∑n
j=1 wjf(xj). For a

subspace F1 ⊂ F , define

F0 = {f0 ∈ F1 : f0(xj) = 0, j = 1, . . . , n}.
A necessary and sufficient condition for the existence of a quadrature rule that is exact
for all f ∈ F1 is

(4.2) f0 ∈ F0 ⇒ I[f0] = 0.

Proof. This is only a special case of Theorem 3.1 in [6] (with short proof).
An interpolatory quadrature rule with n points xj is based on interpolating n

given function values by a polynomial of degree n − 1. It is obvious that such rules
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can be exact for polynomials of degree up to n − 1, as the function to integrate is
recovered exactly by the interpolation. Lemma 4.1 gives conditions for exactness in
a larger space F1: the functional I[f ] has to vanish for all functions in F1 that vanish
at the quadrature points.

Consider, for example, the space F1 = P2n−1 of polynomials up to degree 2n −
1. Each polynomial that vanishes at all quadrature points can be factorized into a
polynomial multiple of pn. The space F0 can, therefore, be characterized in terms of
pn by

(4.3) F0 ≡ span
{
pn(x)xk

}n−1
k=0 .

Condition (4.2) now corresponds exactly to the orthogonality conditions (4.1).

4.2. Characterizing generalized Gaussian quadrature rules. We return
to the setting of a function f with a confined singularity of the form (2.3). Define the
space of all functions in V2n−1 vanishing at a set x = {xj}nj=1 of n distinct points in
(a, b) as

(4.4) F0(x) := {f ∈ V2n−1|f(xj) = 0, j = 1, . . . , n}.
The space F0(x) can not be characterized in terms of a single polynomial that vanishes
at the points xj as in (4.3). It can, however, be characterized in terms of two different
functions Rn(x) and Sn(x) that vanish at the set of points. The space F0(x) then
consists of a linear combination of polynomial multiples of Rn(x) and Sn(x). We show
this first for the case where n = 2l is even.

Lemma 4.2. If n = 2l is even, then each f0 ∈ F0(x) can be written as

(4.5) f0(x) = p(x)Rn(x) + q(x)Sn(x),

with p, q ∈ Pl−1 and where

(4.6) Rn(x) = xl − Px

[
xl
]
, Sn(x) = xlψ(x) − Px

[
xlψ
]
.

Conversely, each function of the form (4.5) with p, q ∈ Pl−1 lies in F0(x).
Proof. Recall that Px is an interpolation operator, which is defined by (2.6). It

follows from the construction that Rn(xj) = Sn(xj) = 0. It follows, in turn, that any
function of the form p(x)Rn(x) + q(x)Sn(x) ∈ F0(x) for p, q ∈ Pl−1. It remains to
show that all functions f0 ∈ F0(x) can be written this way.

We prove the decomposition, by construction, with a procedure similar to poly-
nomial long division. Any function f0 ∈ F0(x) ⊂ V2n−1 can be written in the basis
T2n−1 as

f0(x) =
n−1∑
k=0

akx
k +

n−1∑
k=0

bkx
kψ(x),

with suitable coefficients ak and bk. We define the function f1(x) by

f1(x) = f0(x) − an−1x
l−1Rn(x)− bn−1x

l−1ψ(x)Sn(x).

Note that we now have f1 ∈ V2n−3, so we can write

f1(x) =
n−2∑
k=0

ckx
k +

n−2∑
k=0

dkx
kψ(x),
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with suitable coefficients ck and dk. We define f2(x) by

f2(x) = f1(x)− cn−2x
l−2Rn(x) − bn−2x

l−2ψ(x)Sn(x)

and so on. The procedure can be performed l times until we arrive at

f0(x) = p(x)Rn(x) + q(x)Sn(x) + fl(x),

where p(x) and q(x) are polynomials of degree l − 1 and fl ∈ V2n−1−2l = Vn−1.
However, since f0(xj) = 0, we must have fl(xj) = 0. Therefore, Px[fl] ≡ 0, which is
only possible if fl(x) ≡ 0.

The case where n is odd is analogous, only with small differences in the degree of
polynomials involved.

Lemma 4.3. If n = 2l− 1 is odd, then each f0 ∈ F0(x) can be written as

(4.7) f0(x) = p(x)Rn(x) + q(x)Sn(x),

with p(x) ∈ Pl−2 and q(x) ∈ Pl−1, and where

(4.8) Rn(x) = xl − Px

[
xl
]
, Sn(x) = xl−1ψ(x) − Px

[
xl−1ψ

]
.

Conversely, each function of the form (4.7) with p(x) ∈ Pl−2 and q(x) ∈ Pl−1 lies in
F0(x).

From Lemmas 4.2 and 4.3, a set of quadrature points xj can be characterized
as the common roots of the functions Rn(x) and Sn(x). Given a set of points x =
{xj}nj=1, the weights of an interpolatory quadrature rule are found easily. Denote the
n Lagrange functions by Lj(x) ∈ Pn−1, j = 1, . . . , n, i.e.,

Lj(xj′ ) = δj−j′ , j, j′ = 1, . . . , n.

Then we have

(4.9) wj = I[Lj ].
For any set of points x, expression (4.9) yields a quadrature rule that is exact on Vn−1
by construction. For the set of generalized Gaussian quadrature points, the rule is
exact on V2n−1. Assembling our results, we can prove the following theorem.

Theorem 4.4. Let x = {xj}nj=1 be a set of n distinct points in (a, b), and
define a quadrature rule Q[f ] =

∑n
j=1 wjf(xj) with weights given by (4.9). We have

Q[f ] = I[f ] ∀f ∈ V2n−1 if and only if

I
[
xkRn

]
= 0, k = 0, . . . , l − 1,(4.10)

I
[
xkSn

]
= 0, k = 0, . . . , l − 1,(4.11)

if n = 2l is even, and

I
[
xkRn

]
= 0, k = 0, . . . , l − 2,(4.12)

I
[
xkSn

]
= 0, k = 0, . . . , l − 1,(4.13)

if n = 2l − 1 is odd. The functions Rn(x) and Sn(x) are defined by (4.6) for even n
and by (4.8) for odd n.

Proof. We consider only the case where n = 2l is even. The case of odd n is
proven in an analogous manner.
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Fig. 4.1. Plots of the functions Rn(x) (left panel) and Sn(x) (right panel) for n = 0, . . . , 4,
corresponding to the singularity function ψ(x) = x1/3 on [0, 1]. The functions have been normalized
such that Rn(0) = Sn(0) = 1, n = 1, . . . , 4. Moreover, we have set R0(x) = 1 and S0(x) = x1/3.

Assume for the first direction of the “if and only if” statement that x is such that
Q[f ] is exact on V2n−1. It follows from the necessary condition in Lemma 4.1 that we
should have

I[f0] = 0 ∀f0 ∈ F0.

From Lemma 4.2, we may write f0(x) = p(x)Rn(x)+q(x)Sn(x). The functions Rn(x)
and Sn(x) are well defined. We should have I[f0] = 0 ∀p ∈ Pl−1 and ∀q ∈ Pl−1. This
corresponds exactly to conditions (4.10)–(4.11).

Conversely, assume that for a given set x, the conditions (4.10)–(4.11) hold. In
that case, we have from Lemma 4.2 that I[f0] = 0 ∀f0 ∈ F0. This, according to
Lemma 4.1, is a sufficient condition for the result.

Example 4.5. The functions Rn(x) and Sn(x) are illustrated in Figure 4.1 for the
case ψ(x) = x1/3 on the integration interval [0, 1].

The functions Rn(x) and Sn(x) retain some orthogonality properties: They are
orthogonal to polynomials up to a degree of approximately n/2. They are not orthog-
onal to each other: Recall that the product of two functions in Vm for some m may
not be integrable, depending on the type of singularity. Yet, the functions Rn(x) and
Sn(x) are not independent, as one completely characterizes the other and vice-versa
through their common roots at the quadrature points. Denote by R(f) the set of
roots of f(x) on (a, b) for any f with n distinct roots. Then we have the nonlinear
relations

(4.14) Rn(x) = xl − PR(Sn)
[
xl
]
, with l =

⌈n
2

⌉
,

and

(4.15) Sn(x) = xl
′
ψ(x)− PR(Rn)

[
xl

′
ψ
]
, with l′ =

⌊n
2

⌋
.

4.3. Discrete orthogonality. In this section we attempt to further clarify the
difference between classical Gaussian quadrature rules, connected to orthogonal poly-
nomials, and generalized Gaussian quadrature rules, connected to the functions Rn(x)
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and Sn(x). We will show that the functions Rn(x) and Sn(x) are orthogonal to all
functions in Vn−1 with respect to a discrete scalar product, defined in terms of the
points xj and weights wj of the generalized Gaussian quadrature rule as

(4.16) un(f, g) :=
n∑
j=1

wjf(xj)g(xj).

Lemma 4.6. The bilinear form (4.16) is a real scalar product on Vn−1.
Proof. The form is linear and symmetric. It is positive, un(f, f) ≥ 0, because the

weights are all (strictly) positive. Finally, it is nondegenerate because un(f, f) = 0
implies f(xj) = 0, j = 1, . . . , n, and since no nonzero function in Vn−1 vanishes at n
distinct points, this, in turn, implies f(x) ≡ 0.

Consider next the following sequence of orthogonal functions rn,k(x). Denote by
{φj}n−1

j=0 a basis for Vn−1, for example, 1, ψ, x, xψ, . . . . Set

(4.17) rn,0(x) := φ0(x),

and define iteratively

(4.18) rn,k(x) = φk(x)−
k−1∑
j=0

un(φk, rn,j)
un(rn,j , rn,j)

rn,j(x), k = 1, . . . , n− 1.

This Gram–Schmidt procedure leads to well-defined functions rn,k(x) that are orthog-
onal with respect to un.

Next, define the functions

(4.19) rn,n(x) = xl −
n−1∑
j=0

un
(
xl, rn,j

)
un(rn,j , rn,j)

rn,j(x),

with l = �n2 � and

(4.20) sn,n(x) = xl
′
ψ(x)−

n−1∑
j=0

un

(
xl

′
ψ, rn,j

)
un(rn,j , rn,j)

rn,j(x),

with l′ = n2 �.
Theorem 4.7. We have Rn(x) = rn,n(x) and Sn(x) = sn,n(x).
Proof. We have, by construction, that

(4.21) un(rn,n, g) = 0 ∀g ∈ Vn−1.

Construct the functions gj ∈ Vn−1 such that gj(xi) = δi,j , i, j = 1, . . . , n. This is
always possible because Tn−1 is a Chebyshev set. It follows from the definition (4.16)
and from the property (4.21) that

un(rn,n, gj) = wjrn,n(xj) = 0.

This implies that rn,n(xj) = 0, j = 1, . . . , n. We also have, by construction, that
rn,n(x) ∈ span(Tn−1 ∪ {xl}). Moreover, rn,n(x) is nonzero because the basis function
xl has coefficient 1.

The function Rn(x) = xl − Px(xl) is nonzero, has coefficient 1 with xl, and
vanishes at the quadrature points. This function is unique because Px is invertible
on Vn−1. It follows that rn,n(x) = Rn(x).
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The proof for the statement Sn(x) = sn,n(x) is analogous.
Theorem 4.7 implies that both Rn(x) and Sn(x) can be found by a Gram–Schmidt

procedure applied to a basis of Vn−1 using the scalar product un. As the scalar
product itself is defined in terms of the quadrature rule, however, this only implicitly
determines Rn and Sn. In contrast, consider a similar scalar product for classical
Gaussian quadrature rules. This scalar product uGn can be defined as in (4.16) but
using the points and weights of the classical Gaussian quadrature rule. The bilinear
form uGn coincides with the L2 inner product for polynomial f and g up to certain
degree:

uGn (f, g) =
∫ b

a

w(x)f(x)g(x) dx, ∀f ∈ Pn, ∀g ∈ Pn−1.

All computations in the Gram–Schmidt procedure can be performed explicitly, leading
to pn(x). Alternatively, of course, one can employ the three-term recurrence formula
of orthogonal polynomials. Both schemes are not available in the setting of generalized
Gaussian quadrature.

Example 4.8. An exception to the general case is given by the special case
ψ(x) =

√
x. In that case, it is easy to verify that the product of two functions in

Vn−1 lies in V2n−1. The scalar product un then coincides with the L2 inner product
because the quadrature rule is exact on V2n−1. The Gram–Schmidt procedure can be
performed, and Rn(x) can be determined explicitly for all n.

In this case the generalized Gaussian quadrature rule is closely related to a clas-
sical Gaussian quadrature rule with the weight function w(y) = 2y. Indeed, consider
the substitution x = y2,

∫ 1

0
f(x) dx =

∫ 1

0
2yf

(
y2) dy.

For any f(x) = u(x) + v(x)
√
x with polynomial u and v, the function f(y2) is simply

a polynomial in y. The generalized Gaussian quadrature rule with points xj can also
be obtained from the classical Gaussian rule with weight function 2y and quadrature
points yj by xj = y2

j .

5. Scaling of the quadrature rule. One additional useful property of general-
ized Gaussian quadrature rules is that they are invariant to a scaling of the integration
interval for a wide variety of functions ψ with a singularity at one of the endpoints.
Consider, without loss of generality, a singularity function ψ(x) with a singularity at
x = 0, and define the integral

(5.1) Ib[f ] :=
∫ b

0
f(x) dx.

We show that for many cases of practical interest, the generalized Gaussian quadrature
rule for Ib is invariant to a scaling of b, up to a simple scaling of the weights and
quadrature points expressed in (5.3) below.

5.1. Scaling invariant rules. Assume that f(x) = u(x)+v(x)ψ(x) on [0, b]. We
are interested in the points xj,b and weights wj,b of a generalized Gaussian quadrature
rule on [0, b]. Rescaling the interval to [0, 1] by letting x = bt, we note that (bt)α =
bαtα and that log(bt) = log b+ log t. This motivates the following lemma.
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Lemma 5.1. If

(5.2) ψ(bt) = Abψ(t) +Bb,

then

(5.3) wj,b = b wj,1 and xj,b = bxj,1.

Proof. We rescale the interval to [0, 1]. We have Ib[f ] = b I1[f̃ ], with

f̃(t) = f(bt) = u(bt) + v(bt)ψ(bt).

Using (5.3) we write

f̃(t) = u(bt) +Abv(bt) +Bbv(bt)ψ(t) =: ũ(t) + ṽ(t)ψ(t).

Note that if u and v are polynomials of degree n − 1, then ũ(t) = u(bt) + Abv(bt)
and ṽ(t) = Bbv(bt) are also polynomials of the same degree. Therefore, if the points
and weights xj,1 and wj,1 define a generalized Gaussian quadrature rule on [0, 1], then
the scaled points and weights given by (5.3) define a generalized Gaussian quadrature
rule on [0, b] for the integral (5.1).

Note that, contrary to alternative approaches where the singularity function ψ(x)
has been included into a weight function (see, for example, [15]), in generalized Gaus-
sian quadrature it is not necessary to know the constants Ab and Bb. One evaluates
only the function f(x) on [0, b] in the points bxj,1.

5.2. Nearly scaling invariant quadrature rules. We say that singularity
functions satisfying (5.2) give rise to scaling invariant quadrature rules because ex-
actness is retained for f(x) = u(x) + v(x)ψ(x), x ∈ [0, b], when u(x) and v(x) are
polynomials of sufficiently small degree. Less restrictive conditions on ψ than those
of Lemma 5.1 may still yield useful results, however, as the following lemma shows.

Lemma 5.2. Assume that

(5.4) ψ(bt) = p(t, b)ψ(t) + q(t, b).

Then, for f(x) = u(x) + v(x)ψ(x), x ∈ [0, b], we have∣∣∣∣∣∣Ib[f ]−
n∑
j=1

wj,bf(xj,b)

∣∣∣∣∣∣ ≤
1

(n− 1)!

(
W
∥∥ũ(n)

∥∥
∞ + (2WCψ +Wψ)

∥∥ṽ(n)
∥∥
∞

)
,

with ũ(t) = b[u(bt) + q(t, b)], ṽ(t) = bv(bt)p(t, b), t ∈ [0, 1], and with wj,b and xj,b
given by (5.3).

Proof. Letting x = bt, we obtain∫ b

0
f(x) dx = b

∫ 1

0
[u(bt) + q(t, b) + v(bt)p(t, b)ψ(t)] dt.

We then apply Theorem 3.4 using the definitions of ũ and ṽ.
This lemma shows that if p(t, b) and q(t, b) are smooth functions, in the sense

that they are sufficiently differentiable and have small derivatives, then the scaled
quadrature rule carries small error. The rule is, in general, no longer exact, however,
for polynomials u and v. As before, explicit knowledge of the functions p(t, b) and
q(t, b) is not required; one simply evaluates f(x).
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5.3. Nearly singular integrals. Generalized Gaussian quadrature rules lose
some of their appeal in the setting of nearly singular integrals. Consider, for example,
the integral ∫ 1

0
u(x) + v(x)ψ(x + δ) dx,

with δ ≥ 0. Let us first note that convergence is not the issue. A generalized Gaussian
quadrature rule exists for each value of δ, with the quadrature points xj(δ) and weights
wj(δ) depending on δ. Following Theorem 3.4, the quadrature error is small uniformly
in δ if the quantities

Wψ =
∫ 1

0
w(x)ψ(x + δ) dx

and

min

( ∣∣∣∣∣ sup
x∈[0,1]

ψ(x+ δ)

∣∣∣∣∣ ,
∣∣∣∣ inf
x∈[0,1]

ψ(x+ δ)
∣∣∣∣
)

are bounded in δ or grow only slowly with δ. This can be readily verified for many
singularity functions ψ(x) of interest.

Difficulties may arise in applications, however, if integrals appear with a range of
values of δ. The points xj(δ1) and xj(δ2) are not related by a simple scaling in this
setting. The quadrature rule has to be constructed for each separate value of δ. One
can conceivably approximate the functions xj(δ) and wj(δ) a priori as a function of
δ. This approximation is a current subject of further study.

6. Numerical construction methods. A numerical method for the construc-
tion of generalized Gaussian quadrature rules was first described in [22]. Starting from
a known classical Gaussian quadrature rule, a continuation process is started where
the polynomial basis functions are transformed smoothly into the desired Cheby-
shev set of functions {φk}2nk=1. At each intermediate stage in the process, generalized
Gaussian quadrature rules are computed via Newton’s method by solving a set of n
nonlinear equations in the unknowns xnj (thereby assuming that this intermediate
rule exists, which, in general, need not be the case). The continuation is necessary to
provide starting points for the final computation that are sufficiently close to the true
solution, in order to ensure the convergence of Newton’s method for the quadrature
rule one is interested in.

A different approach was proposed in [31] by performing continuation on the
weight function. There, the authors solve a nonlinear system of 2n equations

(6.1) w1φk(x1) + w2φk(x2) + · · ·+ wnφk(xn) = Iδ[φk], k = 1, . . . , 2n,

where the weight function depends on the continuation parameter δ. The size of the
system is larger, with 2n equations rather than n, but the Jacobian assumes a much
simpler form, and the method is reported to be more robust.

In this section, we briefly outline three separate approaches for the computation of
generalized Gaussian quadrature rules in our framework of functions with an isolated
singularity in ψ(x).

6.1. Exploiting orthogonality. The function Rn completely characterizes the
generalized Gaussian quadrature rule. Consider the case of even n, n = 2l, and recall
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from definition (4.6) that Rn(x) = xl −Px[xl]. Since Px[xl] ∈ Vn−1, we can write Rn
in terms of xl and a linear combination of the elements of Tn−1:

Rn(x) = xl +
l−1∑
k=0

akx
k +

l−1∑
k=0

bkx
kψ(x).

This form has n unknowns. However, the function Rn satisfies l = n/2 orthogonality
conditions (4.10) that result in linear relations in the unknown coefficients ak and bk.
We may, therefore, write l coefficients in terms of the l other coefficients. The remain-
ing l degrees of freedom are found by imposing the orthogonality conditions (4.11) for
Sn.

This approach reduces the size of the nonlinear system of equations from 2n to
n/2 equations. In principle, this is a substantial reduction. However, the Jacobian
of this system of equations is rather involved. The method, in particular, requires an
implementation of the mapping from Rn to Sn as given by (4.15). As a result, we
found that, in practice, it is faster to solve the larger set of equations in all cases we
considered. An easier method to exploit the existence of the functions Rn and Sn
numerically does not seem apparent.

6.2. A bootstrapping algorithm. From the general theory of Chebyshev sets,
one knows that the quadrature points xnj of various n interlace, i.e.,

xnj ∈ (xn+1,j , xn+1,j+1).

From this, we construct starting points x∗n+1,j as follows. Having computed xn,j , we
set

x∗n+1,1 = (a+ xn,1)/2,

x∗n+1,j = (xn,j−1 + xn,j)/2, j = 2, . . . , n,(6.2)

x∗n+1,n+1 = (xn,n + b)/2.

Newton’s method is then used to solve the set of equations (1.1) with x∗n+1 as starting
points and starting weights computed from (4.9). The initial one-point rule Q1 can
usually be computed analytically. The weight w1,1 is given explicitly by

w1,1 =
∫ b

a

w(x) dx,

and the corresponding quadrature point x1,1 is found from

w1,1ψ(x1,1) =
∫ b

a

w(x)ψ(x) dx,

which results in an explicit expression in terms of the inverse of ψ,

x1,1 = ψ−1

(∫ b
a
w(x)ψ(x) dx∫ b
a w(x) dx

)
.

A small, yet crucial difference with [31] is that we use Newton’s method with
damping [24] to solve (6.1). This can be described as follows. Consider a general non-
linear system F (y) = 0 with starting value y0 = y∗. The typical Newton iteration is

yj+1 = yj − JF
(
yj
)−1

F
(
yj
)
, j = 1, 2, . . . ,
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where JF (y) is used to denote the Jacobian of F at y. This is replaced by a damped
iteration

yj+1 = yj − αJF
(
yj
)−1

F
(
yj
)
, j = 1, 2, . . . ,

where 0 < α < 1 is the damping parameter. The occasional lack of convergence of
Newton’s method without damping appears to be remedied in our setting by applying
a small number of initial iterations with damping.

This approach has the clear advantage that no continuation is necessary. Even
though this approach requires the computation of all lower order quadrature rules
Qm for m = 1, . . . , n, we found it to be fastest in practice. A disadvantage is that
convergence of this approach is not guaranteed, not even when the damping parameter
goes to zero. However, we found that the approach converged for all examples that we
have implemented so far. Note that this is the method we have used in all numerical
examples of this paper.

6.3. A continuation method. If the function ψ(x) is a smooth function away
from x = 0, an alternative continuation approach becomes viable. One can perform
continuation on the parameter δ for functions of the form

f(x) = u(x) + v(x)ψ(x + δ).

For large δ, the span of the basis Tn−1 is close to the span of a polynomial basis. For
increasing δ, the generalized Gaussian quadrature rule, therefore, converges to the
classical Gaussian quadrature rule. Starting from the classical Gaussian quadrature
rule and sufficiently large δ, continuation on δ may be performed until δ has the
desired (small) value. Convergence is guaranteed by taking sufficiently small steps.

7. Examples. We end this paper with three numerical examples. We used the
bootstrapping method described in section 6.2 to compute all quadrature rules with
the following damping approach. If Newton’s method without damping failed to
converge, we started a new iteration from the starting values using a damping factor
1/2 in the first five iterations only. This process was repeated, halving the damping
factor of the first five iterations after each restart, until convergence was achieved. No
examples failed to converge with this approach. The majority of computations did
not require any damping. Computations were performed in Maple in high-precision
arithmetic in order to illustrate the convergence to high accuracy. The evaluation of
the quadrature rules was also replicated for all examples in IEEE double precision in
Matlab to confirm stability of the computations up to machine precision (this is not
shown in the figures).

As our first example, consider the integral

I1 :=
∫ 1

0
H

(1)
0 (x) dx,

where H(1)
0 (x) is the Hankel function of the first kind of order zero. The integrand

has the form u(x) + v(x) log(x), but it is not straightforward to obtain expressions
for u and v [1]. The convergence rate is shown in Figure 7.1. Machine accuracy in
double precision is obtained approximately at n = 9 points. The performance of the
classical Gauss–Legendre rules on [0, 1] is included in the same figure to illustrate the
point that these rules, which completely ignore the singularity, also converge to the
right value of the integral, though at a much slower rate.
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Fig. 7.1. Absolute error E in the approximation of I1 by a classical (+) and a generalized (♦)
Gaussian quadrature rule with n points. The error is shown in base-10 logarithmic scale.

Fig. 7.2. Absolute error (in base-10 logarithmic scale) of classical (+) and generalized (♦)
Gaussian quadrature for the logarithmically singular integral I2 with exponential decay (left panel)
and for the nearly singular integral I3 involving a square root (right panel).

In the second example we consider the integral

I2 =
∫ ∞

0
xH

(1)
1 (x)e−(1+i)x dx,

where H(1)
1 is the Hankel function of the first kind of order zero. Integrals of this type

appeared in computational models for scattering phenomena [14] for the evaluation of
oscillatory integrals using a steepest-descent approach [13]. The integrand is continu-
ous at x = 0 but has a logarithmic singularity in its derivatives. It decays like e−x for
large x. We constructed generalized Gaussian quadrature rules with the singularity
function ψ(x) = log(x) and the weight function w(x) = e−x. The results are shown
in the left panel of Figure 7.2. The starting values (6.2) were slightly modified in this
case because the right endpoint of the integration interval is infinite. As a starting
value for the rightmost quadrature point, we used

x∗2,2 = x1,1 + 2,

x∗n+1,n+1 = xn,n + (xn,n − xn−1,n−1), n = 2, . . . .

We also included the performance of classical Gauss–Laguerre quadrature in this
figure. The figure shows that Gauss–Laguerre rules also converge to the right value of
the integral, but again, the convergence rate is much slower than that of generalized
Gaussian quadrature.
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Table 7.1

Points and weights of generalized Gaussian quadrature rules for integrands on [0,∞) with a
logarithmic singularity and with the weight function w(x) = e−x. The values are rounded to 17
significant digits.

N xj wj

5 0.26715698737809023 E − 1 0.95610457336708150 E − 1
0.33502143286158755 E + 0 0.42443007452925864 E + 0
0.13562361335644682 E + 1 0.39130875750538623 E + 0
0.35348502336885737 E + 1 0.85922136050594078 E − 1
0.76316657306249149 E + 1 0.27285745780529126 E − 2

10 0.43429655850744155 E − 2 0.16337243162432338 E − 1
0.61440851829453254 E − 1 0.10976709295285857 E + 0
0.28016211921371600 E + 0 0.25898249226845143 E + 0
0.78997151808506692 E + 0 0.31663066290136217 E + 0
0.17155826587620794 E + 1 0.21103870117564605 E + 0
0.31775355330978616 E + 1 0.73891262254266567 E − 1
0.53108336892605114 E + 1 0.12463634260257873 E − 1
0.83029731539047433 E + 1 0.87005369176965746 E − 3
0.12484738636799131 E + 2 0.18796353846581537 E − 4
0.18673778361448400 E + 2 0.60979108757903096 E − 7

15 0.13999610893490940 E − 2 0.53163416586656096 E − 2
0.20477656406851898 E − 1 0.38934106518844350 E − 1
0.97678338044921310 E − 1 0.11259213060566958 E + 0
0.28882979020397569 E + 0 0.20110058067713363 E + 0
0.65499962351242915 E + 0 0.24617478546017735 E + 0
0.12561634158023614 E + 1 0.21010745635601456 E + 0
0.21493397187772781 E + 1 0.12328344052503329 E + 0
0.33901241449672296 E + 1 0.48314526729893461 E − 1
0.50365761536512140 E + 1 0.12149894815521587 E − 1
0.71552991111532403 E + 1 0.18588202790220021 E − 2
0.98309561518905044 E + 1 0.16073588144237742 E − 3
0.13183148125168729 E + 2 0.70482542970423946 E − 5
0.17402079434042808 E + 2 0.13148642394391024 E − 6
0.22843724056603261 E + 2 0.75127862808739610 E − 9
0.30407448759772375 E + 2 0.58258282243283305 E − 12

In the third example we consider the integral

I3 :=
∫ 1

0

√
0.01 + x+ x2(cos(x) + sin(x)) dx.

This example illustrates both the advantages and disadvantages of generalized Gaus-
sian quadrature for nearly singular integrals. The integral behaves as u(x)

√
x− ε +

v(x) for x→ ε, where ε = −0.0101 . . . is the root of

0.01 + x+ x2 = 0

closest to the interval [0, 1]. Convergence is illustrated in the right panel of Figure 7.2
using ψ(x) =

√
x+ ε. Similar though slightly worse results were obtained by using

ε = 0.01. The disadvantages for nearly singular integrals are that best results are
obtained with a sharp estimate of ε and that the quadrature rule depends on ε. The
advantage is that convergence is very rapid. Machine accuracy in double precision is
reached approximately at n = 9 points. Gauss–Legendre quadrature for this integral
converges exponentially because the singularity is outside the integration interval.
However, in this example too, the rate of convergence is significantly slower than that
of generalized Gaussian quadrature, as expected.

Finally, Table 7.1 displays some of the quadrature rules that were used to compute
the second example of this paper. These rules are useful for the evaluation of singular
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and highly oscillatory integrals that may appear in scattering computations [14]. The
quadrature rules for integrands with a logarithmic endpoint singularity, as in the first
example of this section, are useful in a wide range of applications. They were listed
in [22] and are not repeated here.
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Abstract. In this paper, we perform an a posteriori error analysis of a multiscale operator
decomposition finite element method for the solution of a system of coupled elliptic problems. The
goal is to compute accurate error estimates that account for the effects arising from multiscale
discretization via operator decomposition. Our approach to error estimation is based on a well-known
a posteriori analysis involving variational analysis, residuals, and the generalized Green’s function.
Our method utilizes adjoint problems to deal with several new features arising from the multiscale
operator decomposition. In part I of this paper, we focus on the propagation of errors arising
from the solution of one component to another and the transfer of information between different
representations of solution components. We also devise an adaptive discretization strategy based on
the error estimates that specifically controls the effects arising from operator decomposition. In part
II of this paper, we address issues related to the iterative solution of a fully coupled nonlinear system.
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1. Introduction. Multiscale operator decomposition is a widely used technique
for solving multiphysics, multiscale problems [14, 15]. The general approach is to de-
compose the multiphysics problem into components involving simpler physics over a
relatively limited range of scales and then to seek the solution of the entire system
through some sort of iterative procedure involving solutions of the individual compo-
nents. This approach is appealing because there is generally a good understanding of
how to solve a broad spectrum of single physics problems accurately and efficiently,
and because it provides an alternative to accommodating multiple scales in one dis-
cretization. However, multiscale operator decomposition presents an entirely new set
of accuracy and stability issues, some of which are obvious and some subtle, and all
of which are difficult to correct.

We motivate multiscale operator decomposition for elliptic systems by considering
a model of a thermal actuator. A thermal actuator is a microelectronic mechanical
switch device (see Figure 1.1). A contact rests on thin braces composed of a con-
ducting material. When a current is passed through the braces, they heat up and
consequently expand to close the contact. The system is modeled by a system of
three coupled equations, each representing a distinct physical process. They are an
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Fig. 1.1. Sketch of a thermal actuator.

electrostatic current equation

(1.1) ∇ · (σ∇V ) = 0,

governing potential V (where current J = −σ∇V ), a steady-state energy equation

(1.2) ∇ · (κ(T )∇T ) = σ(∇V · ∇V ),

governing temperature T , and a linear elasticity equation giving the steady-state dis-
placement d,

(1.3) ∇ · (λ tr(E)I + 2μE − β(T − Tref )I
)

= 0, E =
(∇d+∇d�)/2.

Using multiscale operator decomposition, the complete system (1.1–1.3) is de-
composed into three components, each of which is solved with a code specialized to
the particular type of physics. Notice that the electric potential V can be calculated
independently of T and d. The temperature T can be calculated once the electric po-
tential V is known, while the calculation of displacement d requires prior knowledge
of T and therefore of V .

In general, we can write a coupled elliptic system on a domain Ω in the form

(1.4)

⎧⎪⎪⎨
⎪⎪⎩
L1(x, u1, Du1, . . . , un, Dun) = 0,

...
Ln(x, u1, Du1, . . . , un, Dun) = 0.

x ∈ Ω.

A natural form of operator decomposition is to split the global multiphysics prob-
lem into n “single-physics” components that are solved individually. In general, the
solution of each component requires knowledge of the solutions of all the other com-
ponents; the full problem requires some form of iteration to obtain the solution.

It is possible to impose conditions on the system, the components, and the cou-
pling that allow for an a priori convergence analysis. However, operator decomposition
is problematic in practice because it is very difficult to verify such conditions and of-
ten impractical to satisfy them. Indeed, numerical solutions obtained via operator
decomposition are affected significantly by the specific choice of decomposition. In
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this paper, we perform an a posteriori error analysis of a multiscale operator de-
composition finite element method for the solution of a system of coupled elliptic
problems. The components of the problem are solved in sequence using independent
discretizations. The goal is to compute accurate computational error estimates that
specifically account for the effects arising from operator decomposition. We also de-
vise an adaptive discretization strategy based on the error estimates that controls the
effects arising from multiscale operator decomposition.

The a posteriori analysis in this paper is based on a well-known approach involv-
ing variational analysis, residuals, and the generalized Green’s function solving an
adjoint problem [1, 2, 5, 6, 7, 8, 9, 12]. However, we modify this approach to accommo-
date several new features arising from the operator decomposition. Three important
issues addressed here are as follows: (1) Errors in the solution of each component
propagate into the solutions of the other components; (2) Transferring information
between different discretization representations potentially introduces new error; and
(3) The adjoint operators associated with the fully coupled system and an operator
decomposition version are not generally equal. In addition, the analysis stays within
the “single physics paradigm” by only requiring the solution of adjoint problems as-
sociated with the individual components. These issues are characteristic of a broad
range of operator decomposition discretizations, e.g., [10, 13], and generally require
extensions to the usual a posteriori analysis techniques.

In this paper, we focus attention on analyzing the effects of transferring informa-
tion between components, which is necessitated by operator decomposition. In order
to do so, we consider a “triangular” or one-way coupled system

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L1(x, u1, Du1) = 0,
L2(x, u1, Du1, u2, Du2) = 0,
L3(x, u1, Du1, u2, Du2, u3, Du3) = 0,

...
Ln(x, u1, Du1, u2, Du2, u3, Du3, . . . , un, Dun) = 0.

x ∈ Ω.

This system can be solved by a finite sequence of component solutions by considering
the n problems for L1, L2, . . . ,Ln sequentially. Such systems are important in prac-
tice, e.g., the thermal actuator (1.1)–(1.3) has this form. In part II [3], we consider
additional sources of error arising from the iterative procedure required when solving
a fully-coupled system via operator decomposition.

We capture the essential features of (1.5) in a two component “one-way” coupled
system of the form

(1.6)

⎧⎪⎨
⎪⎩
−∇ · a1∇u1 + b1 · ∇u1 + c1u1 = f1(x), x ∈ Ω,
−∇ · a2∇u2 + b2 · ∇u2 + c2u2 = f2(x, u1, Du1), x ∈ Ω,
u1 = u2 = 0, x ∈ ∂Ω,

where ai, bi, ci, fi are smooth functions on a bounded domain Ω in RN with boundary
∂Ω and the coupling occurs through f2. We later generalize to coupling through the
coefficients of the elliptic operator for u2.

In section 2, we illustrate the main idea by applying the analysis to a linear
algebraic system. We perform the transfer error analysis in section 3 and present
computational examples when the corresponding discretizations are “related” in the
sense that either both computational meshes are identical, or one mesh is generated by
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a sequence of mesh refinements on the other mesh. In section 4, we consider the effect
of using distinct discretizations for the two components and analyze the additional
errors caused by using projections between the components. Additionally, we discuss
the use of Monte Carlo integration to estimate these projection errors. We present
the full adaptive algorithm in section 5, which we illustrate with several numerical
examples.

2. A linear algebra example. We introduce the notation and ideas in the
context of a lower triangular linear system of equations. Let U be an approximate
solution of the linear system Au = b. We wish to compute a quantity of interest given
by a linear functional (ψ, u). The error e = u − U is not computable, but we can
compute the residual R = b −AU = Ae. Using the solution φ of the corresponding
adjoint equation A�φ = ψ, the error representation for a linear functional of the
solution is

(
ψ, u

)− (ψ,U) =
(
ψ, e

)
=
(
A�φ, e

)
=
(
φ,Ae

)
=
(
φ,R

)
.

Now consider the triangular system

(2.1) Au =
(

A11 0
A21 A22

)(
u1

u2

)
=
(
b1
b2

)
= b ,

with approximate solution

U =
(
U1

U2

)
≈
(
u1

u2

)
= u.

We estimate the error in a quantity of interest in u2 only, given by the linear functional

(
ψ(1), u

)
=
(
ψ

(1)
2 , u2

)
, where ψ =

(
0
ψ

(1)
2

)
.

We employ the superscript (1), since we later pose additional auxiliary adjoint prob-
lems. Clearly, estimates on linear functionals of u1 are independent of u2. The lower
triangular structure of A yields

A11u1 = b1 ,

A22u2 = b2 −A21u1 ,

and the corresponding residuals are

R1 = b1 −A11U1 ,

R2 = (b2 −A21U1)−A22U2 .

The residual R2 depends upon the solution of the first component, and any attempt
to decrease this residual requires a consideration of the accuracy of U1. The adjoint
problem to (2.1) is

(
A�11 A�21
0 A�22

)(
φ

(1)
1

φ
(1)
2

)
=
(

0
ψ

(1)
2

)
,
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and the resulting error representation is

(2.2)

(
ψ(1), e) =

(
ψ

(1)
2 , e2

)
=
(
A�22φ

(1)
2 , e2

)
=
(
φ

(1)
2 ,A22u2

)− (φ(1)
2 ,A22U2

)
=
(
φ

(1)
2 , b2 −A21u1

)− (φ(1)
2 ,A22U2

)
=
(
φ

(1)
2 , b2 −A21U1 −A22U2

)− (φ(1)
2 ,A21e1

)
=
(
φ

(1)
2 , R2

)− (φ(1)
2 ,A21e1

)
.

The first term of the error representation requires only U2 and φ
(1)
2 . Since the

adjoint system is upper triangular and

φ
(1)
2 =

(
A�22

)−1

ψ
(1)
2

is independent of the first component, the calculation of
(
φ

(1)
2 , R2

)
remains within

the “single physics paradigm.” The second term
(
φ

(1)
2 ,A21e1

)
represents the effect of

errors in U1 on the solution U2. At first glance, this term is uncomputable, but we
note that it is a linear functional of e1 since(

φ
(1)
2 ,A21e1

)
=
(
A�21φ

(1)
2 , e1

)
.

We therefore form the adjoint problem for the transfer error
(

A�11 A�21
0 A�22

)(
φ

(2)
1

φ
(2)
2

)
=
(
ψ

(2)
1

0

)
=
(

A�21φ
(1)
2

0

)
.

The upper triangular block structure of A� immediately yields φ(2)
2 = 0. As noted

earlier, error estimates of u1 should be independent of u2. Thus, A�11φ
(2)
1 = ψ

(2)
1 =

A�21φ
(1)
2 , so that, once again, we can solve for φ(2) in the “single physics paradigm.”

Given φ(2), we obtain the secondary error representation

(2.3)
(
ψ(2), e

)
=
(
ψ

(2)
1 , e1

)
=
(
A�21φ

(1)
2 , e1

)
=
(
A�11φ

(2)
1 , e1

)
=
(
φ

(2)
1 , R1

)
.

Combining the first term of (2.2) with (2.3) yields the complete error representation

(2.4)
(
ψ(1), e

)
=
(
φ

(1)
2 , R2

)− (φ(2)
1 , R1

)
,

which is a sum of the inner products of “single physics” residuals and adjoint solutions
computed using the “single physics” paradigm.

3. Analysis of the discretization error. The corresponding weak form of
(1.6) reads as follows: find ui ∈ W̃ 1

2 (Ω) satisfying

(3.1)

{
A1(u1, v1) = (f1, v1),
A2(u2, v2) = (f2(x, u1, Du1), v2)

∀vi ∈ W̃ 1
2 (Ω),

where

A1(u1, v1) = A1(u1, v1) ≡ (a1∇u1,∇v1) + (b1(x) · ∇u1, v1) + (c1u1, v1),
A2(u2, v2) = A2(u2, v2) ≡ (a2∇u2,∇v2) + (b2(x) · ∇u2, v2) + (c2u2, v2)
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are assumed to be coercive bilinear forms on Ω and W̃m
p (Ω) is the subspace of Wm

p (Ω)
with zero trace on ∂Ω. We suppress the “cross” dependence on the other solutions
except in a few remarks below. After introducing (conforming) discretizations Sh,i(Ω),
we solve the discretized system

(3.2)

{
A1(U1, χ1) = (f1, χ1),
A2(U2, χ2) = (f2(x, U1, DU1), χ2)

∀χi ∈ Sh,i(Ω).

In general, however, Sh,1 � Sh,2 (or vice-versa) on Ω, and we may be forced to
work with either Π1→2f2(U1) or more generally with f2(x,Π1→2U1,Π1→2DU1), where
Πi→j is some projection from Sh,i to Sh,j . If the projection is to Sh,i from W̃ 1

2 (Ωi),
then we simply write the projection as Πi. The resulting discrete system becomes

(3.3)

{
A1(U1, χ1) = (f1, χ1),
A2(U2, χ2) = (f2(x,Π1→2U1,Π1→2DU1), χ2)

∀χi ∈ Sh,i(Ω).

Primary adjoint problem. We seek the error in a quantity of interest repre-
sentable by a linear functional of the error e2, where ui−Ui = ei denotes the pointwise
errors. Note that a quantity of interest involving only u1 can be computed without
solving for u2, hence, there is no loss of generality. The global adjoint problem, defined
relative to the quantity of interest, is{

−∇ · a1∇φ(1)
1 − div(b1φ

(1)
1 ) + c1φ

(1)
1 + Lf2(u1)φ

(1)
2 = 0,

−∇ · a2∇φ(1)
2 − div(b2φ

(1)
2 ) + c2φ

(1)
2 = ψ

(1)
2 ,

where

Lf2(u1)(u1 − U1) =
∫ 1

0

∂f2
∂u1

(u1s+ U1(1− s)) ds

is a linearization of f2 and φ
(1)
1 and φ

(1)
2 satisfy homogeneous Dirichlet boundary

conditions. The corresponding weak formulation is

(3.4)

{
A∗1(φ(1)

1 , v1) + (Lf2(u1)φ
(1)
2 , v1) = 0,

A∗2(φ(1)
2 , v2) = (ψ(1)

2 , v2)
∀vi ∈ W̃ 1

2 (Ω),

where

(3.5)

{
A∗1(φ(1)

1 , v1) = (a1∇φ(1)
1 ,∇v1)− (div(b1φ

(1)
1 ), v1) + (c1φ

(1)
1 , v1),

A∗2(φ(1)
2 , v2) = (a2∇φ(1)

2 ,∇v2)− (div(b2φ
(1)
2 ), v2) + (c2φ

(1)
2 , v2).

Using the standard argument, we have the following error representation formula:

(3.6)
(
ψ(1), e

)
=
(
ψ

(1)
2 , e2

)
= A∗2

(
φ

(1)
2 , e2

)
=
(
f2(x, u1, Du1), φ

(1)
2

)−A2

(
U2, φ

(1)
2

)
.

Observe that φ(1)
1 does not appear in the error representation formula. We define the

primary adjoint problem as

A∗2(φ(1)
2 , v2) = (ψ(1)

2 , v2) ∀v2 ∈ W̃ 1
2 (Ω).

Remark 3.1. At first glance, it appears that we need only to solve the second
adjoint equation and thus do not need to construct the linearization Lf2. However,
as seen in the linear algebra example, the analysis takes into account the transfer
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of error from the solution of the first component. Estimating this transferred error
uses a nonlinear functional of the error to form the right-hand sides in “transfer
adjoint problems”(2.3) and (3.11). We approximate this nonlinear functional using
the linearization Lf2. We evaluate the linearization at the computed solution U ,
which can be justified by using Taylor’s theorem and assuming that the error u − U
is sufficiently small.

Adding and subtracting the projection of φ(1)
2 onto the primal approximation

space (Π2φ
(1)
2 ) in (3.6) yields

(3.7) (ψ(1)
2 , e2) = (f2(x, u1, Du1), (I −Π2)φ

(1)
2 )−A2(U2, (I −Π2)φ

(1)
2 )

+ (f2(x, u1, Du1),Π2φ
(1)
2 )−A2(U2,Π2φ

(1)
2 ).

To simplify later constructions, we introduce the notion of the weak residual of a
solution component, namely,

Ri(Ui, χ; ν) = (fi(ν), χ) −Ai(Ui, χ; ν)

and using this notation write (3.6) as

(ψ(1), e) = R2(U2, φ
(1)
2 ;u1),

indicating that this estimate depends on the solution u1.

3.1. Transfer error analysis. Error representation (3.7) is not computable,
since u1 is unknown. We add and subtract

(
f2(x, U1, DU1), (I − Π2)φ

(1)
2

)
from error

representation formula (3.7) and use the definition of approximate weak statement
(3.2) to obtain
(3.8)

(ψ(1)
2 , e2) =

(
f2(x, U1, DU1), (I −Π2)φ

(1)
2

)−A2(U2, (I −Π2)φ
(1)
2 )

+
(
f2(x, u1, Du1)− f2(x, U1, DU1), φ

(1)
2

)
= R2

(
U2, (I −Π2)φ

(1)
2 ;U1

)
+
(
f2(x, u1, Du1)− f2(x, U1, DU1), φ

(1)
2

)
.

The first term on the right of (3.8) is a traditional dual-weighted residual expression
for the error arising from discretization of the second component, while the remaining
difference represents the transfer error that arises from using an approximation of u1

in defining the coefficients in the equation for u2. The goal now is to estimate this
transfer error and its effect on the quantity of interest.

As with the linear algebra example in section 2, we recognize the transfer error
expression as a functional of error in u1 and define

(f2(x, u1, Du1)− f2(x, U1, DU1), φ
(1)
2 )

as a new quantity of interest. Then, we construct a secondary adjoint problem to
compute the transfer error. In order to obtain a linear functional when f2 is nonlinear
in u1, we linearize f2(u1) ≈ f2(U1) +Df2(U1) × (u1 − U1), where Df is the Fréchet
derivative of f2 at U1. The transfer error term becomes

(3.9)
(
Df2(U1)× e1, φ(1)

2

)
,

which is a linear functional of the error e1 that describes the effect of errors in U1

on the quantity of interest. Note that the Riesz representation theorem guarantees
the existence of a ψ(2)

1 such that (ψ(2)
1 , e1) equals (3.9), though ψ(2)

1 is not needed to
evaluate the functional or compute the corresponding adjoint solution.
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Transfer error adjoint problem. To estimate the new quantity of interest, we
define

{(
a1∇φ(2)

1 ,∇v1
)− (div(b1φ

(2)
1 ), v1

)
+
(
c1φ

(2)
1 , v1) + (Lf2(u1)φ

(2)
2 , v1

)
= ψ

(2)
1 ,(

a2∇φ(2)
2 ,∇v2

)− (div(b2φ
(2)
2 ), v2

)
+
(
c2φ

(2)
2 , v2

)
= 0,

∀vi ∈ W̃ 1
2 (Ω).

The second equation has the trivial solution, and the secondary adjoint problem
reduces to the “transfer error adjoint problem”

(3.10)
(
a1∇φ(2)

1 ,∇v1
)− (div(b1φ

(2)
1 ), v1

)
+
(
c1φ

(2)
1 , v1

)
=
(
ψ

(2)
1 , v1

) ∀v1 ∈ W̃ 1
2 (Ω).

The transfer error representation formula is given by

(3.11)

(
ψ

(2)
1 , e1

)
= A∗1(φ(2)

1 , e1) = A1(e1, φ
(2)
1 )

=
(
f1, (I −Π1)φ

(2)
1

)−A1(U1, (I −Π1)φ
(2)
1 ),

where we have used Galerkin orthogonality to introduce the projection of φ onto the
discretization space (as f1 does not depend on u). Inserting (3.11) into (3.8) yields

(3.12)
(
ψ, e

)
=
(
f2(x, U1, DU1), (I −Π2)φ

(1)
2

)−A2(U2, (I −Π2)φ
(1)
2 )

+
(
f1, (I −Π1)φ

(2)
1

)−A1(U1, (I −Π1)φ
(2)
1 )

or

(
ψ, e

)
= R2(U2, (I −Π2)φ

(1)
2 ;U1) +R1(U1, (I −Π1)φ

(2)
1 ).

Remark 3.2. If the model problem includes coupling in the coefficients of the
second differential operator, i.e.,
(3.13)⎧⎪⎨
⎪⎩
−∇ · a1(x)∇u1 + b1(x) · ∇u1 + c1(x)u1 = f1(x), x ∈ Ω,
−∇ · a2(x, u1)∇u2 + b2(x, u1) · ∇u2 + c2(x, u1)u2 = f2(x, u1, Du1), x ∈ Ω,
u1 = u2 = 0, x ∈ ∂Ω,

then the error representation formula for a quantity of interest that depends on u2

alone is

(
ψ, e

)
= R2(U2, (I −Π2)φ

(1)
2 ;u1).

Since this is not computable, we replace each term in the weak residual with the same
term evaluated at U1, yielding

(
ψ, e

)
= R2(U2, (I −Π2)φ

(1)
2 ;U1) +

(
f2(u1)− f2(U1), φ

(1)
2

)
− ((a2(u1)− a2(U1))U2, φ

(1)
)− ((b2(u1)− b2(U1)) · ∇U2, φ

(1)
)

− ((c2(u1)− c2(U1))U2, φ
(1)
)
.
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We linearize f2, a2, b2, and c2 around U1 to obtain an approximate transfer error
term(
Df2(e1), φ

(1)
2

)
+
(
Da2(e1)∇U2,∇φ(1)

2

)
+
(
Db2(e1) · ∇U2, φ

(1)
2

)
+
(
Dc2(e1)U2, φ

(1)
2

)
.

This is a linear functional on L2(Ω), which we use as data to define the “transfer”
error adjoint problem and derive a corresponding a posteriori error representation.
For details on how to compute a quantity of interest that depends on u1 and u2(so
that the choice of linearizations for the coefficients in the equation for u2 enter directly
into the “primary” error contribution), see [9].

Remark 3.3. For a “lower triangular” one-way coupled system of N elliptic
equations and a quantity of interest based on the Nth component, we solve N total
“single physics” adjoint problems and construct the error representation

(
ψN , eN

)
=

N∑
i=1

RN−i+1

(
UN−i+1, φ

(i);U
)
.

We then solve a sequence of adjoint problems, as the corresponding linear functional
for the ith adjoint problem (i > 1) can be defined recursively (assuming the coupling
occurs only through the right-hand side) as

i−1∑
j=1

(
DfN+1−j
Dui

∣∣∣∣
U

(ei), φ(j)

)
.

This extends to coupling in all of the coefficients as above.

3.2. Numerical examples. The following three numerical examples highlight
the features of the analysis and the importance of accounting for the transfer error.
In the following computations, we approximately solve all adjoint problems using con-
tinuous, piecewise quadratic elements in order to be able to evaluate the interpolants
arising from Galerkin orthogonality. We denote these approximate adjoints solutions
by Φ and use them in place of φ in error representation (3.12). For adaptive mesh
refinement, we write the estimate as a sum of element contributions and derive a
bound by introducing norms. We base the adaptive mesh refinement on the standard
optimization approach using the principle of equidistribution [6] applied to the bound.
We refine elements whose element contribution to the error bound is greater than half
a standard deviation from the mean error contribution or refine a fixed fraction of
the elements with the greatest element contributions, whichever criterion yields the
greater refinement. We do not do any mesh coarsening, smoothing, or edge flips.

Example 3.1. This example demonstrates the fact that the transfer error can be
significant even if the individual components u1 and u2 are well resolved. We consider
a simple system

(3.14)

⎧⎪⎨
⎪⎩
−Δu1 = sin(4πx) sin(πy), (x, y) ∈ Ω,
−Δu2 = b · ∇u1, (x, y) ∈ Ω,
u = 0, (x, y) ∈ ∂Ω,

where

b =
2
π

(
25 sin(4πx)

sin(πx)

)
, f(u) =

(
sin(4πx) sin(πy)

b · ∇u1

)
, Ω = ([0, 1], [0, 1]).
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Fig. 3.1. Example 3.1. Primary and (nonzero) adjoint solutions computed on uniformly fine
meshes. The adjoint solutions are largest near the region of the quantity of interest u2(.25, .25).

The quantity of interest is the solution value of u2 at (.25, .25), which we estimate using
a smooth delta function approximation with localized support. The corresponding
global adjoint problem is

(3.15)

⎧⎪⎨
⎪⎩
−Δφ(1)

1 + Lf(u1)φ
(1)
2 = 0, (x, y) ∈ Ω,

−Δφ(1)
2 = δregx̃ , (x, y) ∈ Ω,

φ = 0, (x, y) ∈ ∂Ω,

where δregx̃ is a regularized delta function and x̃ = (.25, .25). Our primary adjoint
problem is

−Δφ(1)
2 = δregx̃ , (x, y) ∈ Ω, φ = 0, (x, y) ∈ ∂Ω.

The secondary adjoint problem is

(3.16)

{
Δφ(2)

1 = ∇ · (bφ(1)
2 ), (x, y) ∈ Ω,

φ(2) = 0, (x, y) ∈ ∂Ω.

The primal system was solved using identical standard continuous piecewise linear
finite element discretizations for u1 and u2. We plot the results in Figure 3.1 and show
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Table 3.1

Error contributions for Example 3.1.

Primary error Transfer error
0.0042 0.0006
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(b) U2

Fig. 3.2. Example 3.2. Adaptivity based on the standard discretization error estimate for the
“primary” error, ignoring the “transfer” error. Only the mesh for U2 is refined.

Table 3.2

Error contributions for Example 3.2.

Primary error Transfer error
0.00005 0.110

the error contributions in Table 3.1. While the adjoint solution Φ(2)
1 in Figure 3.1(d)

is concentrated near the location of the quantity of interest, it has nontrivial spatial
structure, and the transfer error represents 14% of the total error.

Example 3.2. This example illustrates the importance of computing the transfer
error, since, for this problem, simply forcing the “primary” error contribution to be
small (by refining the second mesh only) does not provide any accuracy in the desired
quantity of interest. We reconsider (3.14) but with quantity of interest equal to the
average value of u2 over the whole domain. The exact solution has zero average
value on Ω. We solve both components of the primary problem on an identical coarse
initial mesh, but adapt and refine only the mesh for u2 using the traditional weighted
residual, the first “primary” error term in (3.12), while neglecting the second “transfer
error” term in (3.12). We show the results in Figure 3.2 and Table 3.2.

Ignoring the transfer error and the implied need to refine the first component pro-
duces a completely unsuitable adaptive procedure. It is clear from Figure 3.2 that the
average value of the second component is far from zero, and the actual computational
value is −0.2245. The estimated transfer error of 0.1 is, in fact, an underestimate
since Φ(2)

1 is based on the highly inaccurate solution U1, which is computed on a very
coarse mesh. The transfer error dominates the computation, and this error cannot be
reduced without refining the mesh for u1.

Example 3.3. The third example shows that an “optimal” adaptive mesh for the
quantity of interest that depends only on u2 may actually involve a richer discretiza-
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Fig. 3.3. Example 3.3. Adaptivity based on the full estimate that accounts for “primary” and
“transfer” errors. The quantity of interest U2(.25, .25) is more sensitive to errors in U1 than U2.

tion of u1 than u2. We consider system (3.14) with the quantity of interest equal to
the average value of u2 over the whole domain and initial coarse meshes as in the
previous example, but we use the transfer error contribution to adapt the mesh for u1

and the primary contribution to adapt the mesh for u2 so that the total error is less
than 10−4. The resulting meshes are shown in Figure 3.3 and illustrate that despite
the fact that the quantity of interest involves only u2, the error inherited from u1 is
the most important contribution to consider. In this problem, the strong influence
of the transfer error is a result of the dependence of u2 on the gradient of u1, which
a priori has lower order accuracy. Similar behavior could also arise when u2 just
depends on u1.

4. Interpolation error analysis. We use a multiscale discretization for the
“fully” adaptive Example 3.3, i.e., the components u1 and u2 were computed on dif-
ferent meshes; see Figure 3.3. This raises the issue of understanding the effect of
translating one component onto the mesh of the other component when performing
the integration necessary to form the discrete equations. Integration involving func-
tions defined on different meshes can cause problems because these quantities may be
complicated, as illustrated in Figure 4.1.

In particular, traditional quadrature formulae based on sets of specific points
may not preserve the accuracy required for effective computation because a function
defined on a different mesh is generally not sufficiently smooth. For example, the

Mesh for U1

Mesh for U2

Fig. 4.1. The problem of translation between meshes. Finite element functions on one mesh
are generally not smooth on another mesh.
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integrand (f2, χ) is piecewise discontinuous on every element τi of mesh 2 in Example
3.3, as b ·∇U1 is continuous only within elements of the mesh for U1. In general, if the
meshes are not congruent, the integrand is C0 at best. Using a “traditional” higher
order quadrature rule will not necessarily lead to the expected increase in accuracy
as the integrand (f2, χ) does not have sufficient regularity. Possible solutions include
either the determination of local intersections of simplices and/or hexahedra or the
construction of a global union mesh. However, both solutions are computationally
expensive, and the global solution often requires several times more memory than the
storage of the two individual meshes, especially for three-dimensional problems.

4.1. Projections from mesh 1 to mesh 2. Instead of constructing a union
mesh, we use a projection Π1→2 from S1,h to S2,h and solve the discrete system given
by (3.3). This introduces additional sources of error. Starting from error representa-
tion formula (3.6), we add and subtract

f2(x,Π1→2U1,Π1→2DU1, (I −Π2)φ
(1)
2 ),

yielding

(ψ(1), e) = (ψ(1)
2 , e2)

=
(
f2(x,Π1→2U1,Π1→2DU1), (I −Π2)φ

(1)
2

)−A2

(
U2, (I −Π2)φ

(1)
2

)
+
(
f2(x, u1, Du1)− f2(x,Π1→2U1,Π1→2DU1), φ

(1)
2

)
.

Adding and subtracting
(
f2(x, U1, DU1), φ

(1)
2

)
produces

(ψ(1), e) =
(
f2(x,Π1→2U1,Π1→2DU1), (I −Π2)φ

(1)
2

)−A2

(
U2, (I −Π2)φ

(1)
2

)
+
(
f2(x, u1, Du1)− f2(x, U1, DU1), φ

(1)
2

)
+
(
f2(x, U1, DU1)− f2(x,Π1→2U1,Π1→2DU1), φ

(1)
2

)
.

The first two terms on the right represent the primary discretization error for a func-
tional of the the second component, the third term on the right represents transfer
error (3.11), and the fourth term is a new expression that represents the error from
the projection Π1→2. The projection error can be decomposed as

(4.1)
(
Π1→2f2(x, U1, DU1)− f2(x,Π1→2U1,Π1→2DU1), φ

(1)
2

)
+ (I −Π1→2)

(
f2(x, U1, DU1), φ

(1)
2

)
.

The first inner product in (4.1) can be computed (with some effort) on Ω2,h. However,
computing the second term raises the same numerical issues that caused the adoption
of the projection Π1→2 in the first place! We handle this term using the Monte Carlo
techniques described in section 4.3.

4.2. Projections from mesh 2 to mesh 1. Complications from the use of pro-
jections also arise in computations with the solution of the secondary adjoint problem.
The secondary adjoint problem domain is Ω1,h, but φ(1)

2 is computed naturally on Ω2,h.
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The new error representation formula for the transfer error becomes

(
Df2(U1)× e1,Π2→1φ

(1)
2

)
+
(
Df2(U1)× e1, (I −Π2→1)φ

(1)
2

)
,

which is the error contribution arising from the transfer as well as an additional term
that is large when the approximation spaces are significantly different. For example,
this term is important when the original system is multiscale. The implicit ψ(2) for
the transfer error adjoint is now

(
f2(u1)− f2(U1), φ

(1)
2

)
=
(
Df2(U1)× e1,Π2→1φ

(1)
2

)
=
(
ψ

(2)
1 , e1

)
.

The additional term
(
Df2(U1)× e1, (I −Π2→1)φ

(1)
2

)
is a linear functional, so we

may define an additional “tertiary” adjoint problem to estimate this quantity.

Projection (“tertiary”) error adjoint problem. This problem has the same
form as transfer error adjoint (3.10), but with data ψ(3)

1 satisfying

(
ψ

(3)
1 , e1

)
=
(
Df2(U1)× e1, (I −Π2→1)φ

(1)
2

)
.

The resulting error representation formula is

(4.2)
(
ψ

(3)
1 , e1

)
=
(
f1, (I −Π1)φ

(3)
1 )−A1(U1, (I −Π1)φ

(3)
1

)
=
(R1, (I −Π2→1)φ

(3)
1

)
.

The error representation is therefore

(4.3)
(ψ(1)

2 , e2) = R2(U2, (I −Π2)φ
(1)
2 ;U1) +R1(U1, (I −Π1)(φ

(2)
1 + φ

(3)
1 ))

+
(
Π1→2f2(U1)− f2(Π1→2U1), φ

(1)
2

)
+
(
(I −Π1→2)f2(U1), φ

(1)
2

)
.

Remark 4.1. Traditional simplex-based numerical integration methods that in-
terrogate U1 at cubature points can be thought of as projecting the integrand f(U1)χ2

into a specific polynomial space Pτ defined on each simplex τ of the mesh for U2 and
then integrating exactly. We may express this “cubature error” as a projection error
and construct a corresponding error representation formula in a similar manner. Cu-
bature error resulting from the fact that integration was not performed on a “union”
mesh of two piecewise polynomial spaces may always be viewed as projection error.

Remark 4.2. In this discussion, we assume that the adjoint problems are solved
using approximation spaces that are compatible with the corresponding primal ap-
proximation space, e.g., using higher order Lagrange elements on the same mesh. In
practice, different meshes may be used for the primal and adjoint solves. However,
this introduces new projection operators between the corresponding approximation
spaces as well as the additional terms due to the loss of Galerkin orthogonality. We
confine ourselves to merely alluding to the notational complexities and length of the
resulting error representation.

4.3. Monte Carlo Integration. Interpolation-based projections suffer from
mesh-aliasing difficulties. An extreme example is given in Figure 4.2. For a more
practical example, we construct two quasi-uniform, unstructured meshes 1 and 2,
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0

1 U1

Π1→2U1

Fig. 4.2. Interpolation errors for two meshes on Ω = [0, 1].

Table 4.1

Errors in various approximations of Ie.

|Ie − I1| |I1 − Igauss| |I1 − IΠ| |I1 − ISamp|
0.000187 0.000246 0.0060 0.00041

both of size h on Ω = [0, 1] × [0, 1] and take the piecewise linear interpolant fI1 of
the function f = sin(20hx) sin(20hy) on mesh 1. We first compute Ie =

∫
Ω f dx and

I1 =
∫
Ω
fI1 dx exactly and then construct three different approximations Igauss, IΠ,

and ISamp as follows:
1. Igauss. Using a third order, four-point quadrature rule [16] on the triangles

of mesh 2 by interpolating fI1 at the corresponding quadrature points.
2. IΠ. Projecting fI1 onto mesh 2 by interpolating fI1 at the nodes of mesh 2

and then using exact integration.
3. ISamp. Performing the integration via a uniform weight quadrature rule us-

ing the quadrature points corresponding to the four-point quadrature rule
employed by Igauss.

We show the accuracy in Table 4.1. Note that the work for all three methods is
roughly the same. The smallest of the projection errors |I1 − Igauss| is larger than
the interpolation error |Ie − I1|. The error in |I1 − IΠ| is a factor of 10 larger than
|I1 − Igauss| and |I1 − ISamp|, which, for this problem, amounts to a factor of h−1.
Note that the four-point Gauss quadrature rule is only slightly more accurate than
the sampling rule ISamp.

Motivated by the example, we employ pseudorandom Monte Carlo integration us-
ing p random uniformly distributed sample points on the reference element. The main
difficulty (and computational expense) when integrating on Ω2,h is the evaluation of
U1 at each random sample point, since this involves locating the point in the appro-
priate element in Ω1,h. Nominally, this process requires (O(N)) operations per sample
point, where N is the number of degrees of freedom for U1, hence O(MN) operations
for the integration, where M is the number of degrees of freedom for U2. However,
this approach may be greatly accelerated by using a geometric implementation of the
assembly and point search algorithms.

We illustrate the search algorithm in Figure 4.3. We generate a random inte-
gration point p1

1 in τ1 ∈ Ω2,h and determine the containing element of Ω1,h. This
could potentially involve a full search of Ω1,h, but as this is the initial element, a good
starting guess for element location could be provided as an input. Once a match-
ing simplex is found in Ω1,h, the computation is performed, and the next integration
point p1

2 is generated. Moreover, the last matching simplex is stored, so the geomet-
ric search using edge/face neighbors and barycentric coordinates to guide neighbor
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τi ∈ Ω2,h

u1,h

pi
2

pi+1
1

pi
1

Fig. 4.3. Monte Carlo integration point search.

selection for the next point is very fast. When the integration is finished, we select
the next element to be an edge/face neighbor. Now when we generate p2

1, we have a
good starting point, namely, the last match in p1

S which should be “close” to the real
element containing p2

1. The assembly routine keeps selecting edge neighbors until it
has looped over all elements recursively.

This algorithm works even with a primitive data structure as long as recursion is
employed. If the number of mesh elements is large, however, this may not be practical
due to recursion limits. A nonrecursive algorithm could lead to termination before
all element contributions for the mesh were calculated, as the next element returned
by the search could have all edge/face neighbors whose element contributions had
already been calculated. The algorithm would have to “restart” from an element that
has not been computed. On quasi-uniform meshes with no fine scale features in the
geometry, the number of “restarts” also grows logarithmically with the number of
elements. Of course, with a more sophisticated data structure, either octree based or,
for example, a mesh where the elements had been ordered by the use of a space-filling
curve, the need for restarting would be eliminated.

When the meshes for Ω1,h and Ω2,h are both quasi-uniform on Ω, the number of
elements tested in Ω is bounded by some h-independent constant for each integration
point. Obviously, this is not the case for general adapted or anisotropic meshes, but
in practice, the number of searches grows at most logarithmically with the numbers
of degrees of freedom in u1. The convergence of this Monte Carlo integration scheme
follows from standard results (see [11]) as the integrand can always be defined as the
sum of integrals of continuous functions on individual simplices of the union mesh of
Ω1,h and Ω2,h.

4.4. Numerical examples. We demonstrate the significance of the projection
errors with two examples.

Example 4.1. The first example illustrates how the projection error can influence
a typical computation. We consider a system defined by (3.14), with two randomly
generated initial meshes for u1 and u2. The initial mesh for u1 is finer than for u2 in
order to reduce the transfer error. The quantity of interest in this computation is the
average value of u2. We show the results in Figure 4.4 and Table 4.2.

We use a local projector Π1→2,τ given by interpolation at the Gauss points (third-
order three-point simplex rule) of simplices τ in Sh,2. Use of this projector would
integrate (U1, U2) exactly if the meshes were identical. The solution using this pro-
jector is given by Figure 4.4(b). This is compared against a 16-point Monte Carlo
computation illustrated by Figure 4.4(c).
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(b) U2 computed with Π1→2
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(c) U2 computed with high-sample Monte Carlo
integration

Fig. 4.4. Example 4.1. The role of projection errors in nonaligned meshes. Note that the
magnitude and oscillation of U2 computed with Π1→2,τ , shown in (b) are incorrect (a fine scale U2

is given by Figure 3.1).

Table 4.2

Example 4.1. Error contributions for computation shown in Figure 4.4.

Primary error Transfer error Projection error
0.003533 0.021589 0.007908

As discussed in section 4.2, projection from S2
h,2 to S2

h,1 can also lead to significant
inaccuracies in computing the transfer error, necessitating the computation of tertiary
adjoint problem (4.2).

Example 4.2. As discussed in section 4.2, projection from S2
h,2 to S2

h,1 can also
lead to significant inaccuracies in computing the transfer error, necessitating the com-
putation of tertiary adjoint problem (4.2). This example shows that computations
with significant differences in mesh scale can contribute significantly to the error. We
again use the system in Example 3.1 with the quantity of interest point value at
(.15, 15), starting with a coarse identical initial mesh for u1 and u2 but refining only
the mesh for u2. There is no projection error as Sh,2 ⊆ Sh,1. However, when we
compute the transfer error, we ignore the fact that a natural choice of decomposition
for the computation is integration over the simplices of Sh,2. Instead, we use the
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Table 4.3

Example 4.2. Error contributions for the computation shown in Figure 4.5.

Primary error Transfer error Projection error Tertiary error
0.000713 0.0905 0 0.0325
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Fig. 4.5. Example 4.2. Tertiary adjoint solution Φ
(3)
1 which estimates the projection error in

computing the transfer error.

interpolation of φ(1)
2 at the quadrature points at the simplices of Sh,1. To compute

(I −Π), we employ the actual nesting of the two meshes to perform an accurate (up
to quadrature error on the fine scale mesh) computation of φ(3)

1 . We show the results
in Table 4.3 and Figure 4.5.

5. An adaptive algorithm for the operator decomposition finite element
method. Given tolerance TOL on the error in the quantity of interest, an adaptive
algorithm that takes into account all the possible sources of error is given below.

while (the total error is less than TOL) do
Compute U1 using standard integration.
Compute U2 using 16-point M.C. integration for the coupling term.
Compute Φ(1)

2 using standard integration.
Compute Φ(2)

1 for given adjoint data using 16-point M.C. integration.
if (the sum of two error contributions is greater than TOL) then

Refine both meshes based on the primary error contributions for U2 and the
transfer error contributions for U1.

else
Compute the projection error by comparing with a 64-point M.C. integration.
Compute Φ(3)

1 .
if (the total error is greater than TOL) then

Refine both meshes based on the primary and projection error contributions
for U2 and the transfer and tertiary error contributions for U1.

end if
end if

end while.
The algorithm drives the primary and transfer error contributions to within a

specified error tolerance and then checks for projection error by using 64-point Monte
Carlo integration as an approximation to the identity operator I in (4.3) and at-
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tempts to correct the projection error by refinement as well. Any projector could be
substituted for the M.C. integration used in computing U2 and Φ(2)

1 .
We select the use of 16 sample points for the Monte Carlo integration based on

our experience from a series of numerical experiments where different functions were
interpolated on a quasi-uniform mesh, and then integrated. This interpolant was then
integrated using Monte Carlo with 2N sample points per simplex on a different quasi-
uniform mesh (with the same approximate h); N = 4 gave the best tradeoff between
speed and accuracy.

5.1. Examples. We describe two applications of the algorithm to one-way cou-
pled systems using different meshes for each solution component. In both examples,
we start with identical coarse initial meshes (quasi-uniform with h ≈ .125) and adapt
each mesh until both the primary and transfer error formulas are less than 10−4. We
control projection error using Monte Carlo integration.

Example 5.1. In the first example, we approximate the value of u2 at (.25, .25),
where (u1, u2) solves⎧⎪⎨
⎪⎩
−Δu1 = 64π2 sin 4π(x− .75 + |x− .75|) sin 4π(y − .75 + |y − .75|), (x, y) ∈ Ω,
−Δu2 = u1, (x, y) ∈ Ω,
u1 = u2 = 0, (x, y) ∈ ∂Ω,

with Ω = ([0, 1], [0, 1]). The corresponding adjoint problem is{
−Δφ(1)

2 = δreg(x0), (x, y) ∈ Ω,
φ

(1)
2 = 0, (x, y) ∈ ∂Ω,

with x0 = (.25, .25). The transfer error adjoint problem is{
−Δφ(2)

1 = φ
(1)
2 , (x, y) ∈ Ω,

φ
(2)
1 = 0, (x, y) ∈ ∂Ω.

The accurate computation of the quantity of interest u2(0.25, 0.25) does not re-
quire the fine scale features of u1 near (0.75, 0.75) to be resolved. However, a quantity
of interest equal to the value of u2 at (0.9, 0.9) near the localized features of u1 requires
better resolution of the details of u1. The adapted solutions U1 for both quantities of
interest are given in Figure 5.1(c) and Figure 5.1(d), respectively.

Example 5.2. We now consider an example where convection in component u1

creates the need for refinement in u1 remote from the the goal-oriented refinement in
u2.

(5.1)

⎧⎪⎨
⎪⎩
−Δu1 − b · ∇u1 = 103e−100‖x−x0‖2 , x ∈ Ω,
−Δu2 = 103e−100‖x−x1‖2u1, x ∈ Ω,
u1 = u2 = 0, x ∈ ∂Ω,

where b = (100 40)�, x0 = (.75, .75), x1 = (.1, .5), and the quantity of interest is the
point value u2(x2), x2 = (.2, .5). The corresponding adjoint problem for the primary
error contribution is {

−Δφ(1)
2 = δreg(x2), x ∈ Ω,

φ
(1)
2 = 0, x ∈ ∂Ω,
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(b) U2 for the quantity of interest u2(0.25, 0.25)
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(c) U1 for the quantity of interest u2(0.25, 0.25)
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(d) U1 for the quantity of interest u2(0.9, 0.9)

Fig. 5.1. Example 5.1. Example of computational efficiency: U1 may be computed on a coarse
discretization, yet U2 may be determined with sufficient accuracy.

while the corresponding transfer error adjoint problem is

⎧⎨
⎩
−Δφ(2)

1 + b · ∇φ(2)
1 = 103e−100‖x−x1‖2φ(1)

2 , x ∈ Ω,

φ
(2)
1 = 0, x ∈ ∂Ω.

The adjoint solution Φ(2)
1 in Figure 5.2(c) shows the influence of the convection

term in the equation for u1. When the quantity of interest is a value of u2 in the
convective region of influence of the localized source term in the equation for u1, the
solution for u1 is resolved “upstream” of the location of the quantity of interest as
shown in Figure 5.2(a).

When the quantity of interest is a value of u2 away from the convective region of
influence of the localized source term in the equation for u1, the adjoint solution φ(2)

1

has a similar structure to that shown in Figure 5.2(c) but has much smaller magni-
tude. The resulting mesh for U1 need not even be detailed enough to eliminate the
numerical oscillation (from not satisfying the corresponding Péclet mesh condition).
This situation is illustrated by Figure 5.2(d), where the choice of quantity of interest
is u2 at (0.15, 0.15).
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(b) U2 for quantity of interest u2(.2, .5)
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1 for quantity of interest u2(.2, .5)
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(d) U1 for quantity of interest u2(.15, .15)

Fig. 5.2. The role of convection in Example 5.2. Note that altering the location of the quantity
of interest alters the density and location of the resulting adapted meshes (same adaptive criteria).

6. Conclusion. In this paper, we perform an a posteriori error analysis of a
multiscale operator decomposition finite element method for the solution of a system
of one-way coupled elliptic problems. The analysis specifically accounts for the effects
arising from multiscale operator decomposition, including the following issues: (1)
Errors in the solution of each component propagate into the solutions of the other
components; and (2) Transferring information between different representations po-
tentially introduces new error. We estimate the various sources of errors by defining
auxiliary adjoint problems whose data are related to errors in the information passed
between components. Through a series of examples, we demonstrate the importance
of accounting for the contributions to the error arising from multiscale operator de-
composition. We also devise an adaptive discretization strategy based on the error
estimates that specifically controls the effects arising from operator decomposition.
Finally, we demonstrate the usefulness of Monte Carlo integration methods for dealing
with a mismatch between discretizations of different components.

We extend this analysis to a “fully coupled” system in the form of (1.4) in part II
of this paper [3]. We address the important issue that the adjoint operator associated
with the fully coupled system and an operator decomposition solution are not generally
equal. This difference requires additional strategies for error control. We consider the
use of noninterpolatory projectors based on averaging to reduce both transfer and
projection error in [4].
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UNIFORM APPROXIMATION OF PIECEWISE r-SMOOTH AND
GLOBALLY CONTINUOUS FUNCTIONS∗

LESZEK PLASKOTA† AND GRZEGORZ W. WASILKOWSKI‡

Abstract. We study the uniform (Chebyshev) approximation of continuous and piecewise r-
smooth (r ≥ 2) functions f : [0, T ] → R with a finite number of singular points. The approximation
algorithms use only n function values at adaptively or nonadaptively chosen points. We construct a
nonadaptive algorithm Anon

r,n that, for the functions with at most one singular point, enjoys the best

possible convergence rate n−r. This is in sharp contrast to results concerning discontinuous functions.
For r ≥ 3, this optimal rate of convergence holds only in the asymptotic sense, i.e., it occurs only for
sufficiently large n that depends on f in a way that is practically impossible to verify. However, it is
enough to modify Anon

r,n by using (r+ 1)�(r − 1)/2� extra function evaluations to obtain an adaptive

algorithm Aada
r,n with error satisfying ‖f − Aada

r,n f‖C ≤ CrT r‖f(r)‖∞L n−r for all n ≥ n0 and n0

independent of f . This result cannot be achieved for functions with more than just one singular point.
However, the convergence rate n−r can be recovered asymptotically by a nonadaptive algorithm Anon

r,n

that is a slightly modified Anon
r,n . Specifically, lim supn→∞ ‖f −Anon

r,n f‖C ·nr ≤ CrT r‖f(r)‖∞L for all
r-smooth functions f with finitely many singular points.

Key words. function approximation, adaptive algorithms, singular functions
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1. Introduction. This paper deals with the approximation of scalar functions
f : [0, T ]→ R that are r-smooth except for an (unknown) singular point sf ∈ (0, T ).
The approximations (algorithms) are based on finitely many function evaluations, and
the functions being approximated are assumed to be continuous with discontinuity
starting at some derivative of order less than r. Such problems occur in a number of
applications, see, e.g., [8], but the traditional algorithms, developed for nonsingular
functions, do not work well. This is why there are a number of results studying singular
functions and, in particular, the detection/localization of singular points. One of the
approaches is based on the assumption that we have at our disposal Fourier coefficients
with respect to some orthogonal basis or wavelet coefficients. See, e.g., papers [3, 4, 5,
6, 7, 9, 12, 13] and papers cited therein. The approach in the present paper is based on
the assumption that only a finite (presumably small) number of function evaluations
are available. In particular, the considered algorithms cannot use Fourier coefficients.

This problem was studied in [11] under the assumption that the functions or
their derivatives may be discontinuous at sf . Such functions cannot be approximated
in the uniform (Chebyshev) norm with error converging to zero as the number n of
function evaluations goes to infinity. It was shown that convergent algorithms exist
when the errors are measured in a weaker metric such as Lp, with 1 ≤ p < ∞, or
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the Skorohod metric. Moreover, to obtain convergence n−r it is necessary to use
adaption; the best one can get from nonadaptive methods is n−1/p for Lp and n−1 for
the Skorohod metric. Recall that nonadaptive methods are those with a priori fixed
sampling points, whereas adaptive methods choose the consecutive sampling points
based on already computed function values.

A similar problem was studied in [1] under the additional assumption that the
functions are globally continuous and that their first-order derivatives are discontin-
uous at sf . This assumption allowed the authors to prove the very surprising and
nontrivial result that the error of their nonadaptive algorithm using the equispaced
grid of size h is bounded by Cr‖f (r)‖L∞ hr in the Chebyshev norm, however, only for
sufficiently small h. Actually, it is an intrinsic weakness of all nonadaptive methods
that, except for r = 2, their errors are bounded as above only for h sufficiently small,
h ≤ h0, depending on the size of the discontinuity of the first derivative of f . Unfor-
tunately, the estimate given in [1] requires nontrivial discontinuity of f ′, i.e., h0 tends
to zero as the size of that discontinuity jump decreases. This means, in particular,
that estimates of [1] are of no interest for singular functions with continuous f and f ′

since then h0 would have to be zero.
The purpose of the present paper is to extend the results of [1] as well as [11]. As

for the former paper, the extensions are in considering functions whose discontinuity
may start at higher than the first-order derivative. For instance, f may be globally
three times continuously differentiable, and only f (4) may be discontinuous at sf .
Moreover, we also consider adaptive algorithms since, as it will be clear later, they
allow us to remove one very crucial and practically impossible to verify assumption
relating the number n of sampling points to the size of the corresponding discontinuity
jump. This yields positive results on the worst case errors of adaptive methods for
a number of function classes. As for the latter paper, the present paper focuses on
the class of globally continuous functions which is a subset of the class considered
in [11]. Although positive results of this paper for adaptive algorithms could be
obtained from those of [11] for the Skorohod metric, they would require some extra
assumptions. In particular, the worst case results in [11] hold under the assumption
that the considered functions have uniformly bounded ‖f ′‖L∞ , which is not needed
now. More importantly, global continuity leads to positive results in the asymptotic
setting for nonadaptive methods. Indeed, nonadaptive methods constructed in this
paper have the optimal convergence rate which is proportional to n−r; recall that
nonadaptive methods are superior to adaptive ones for discontinuous functions.

We now discuss the results of this paper in more detail. As already mentioned,
we consider globally continuous and r-smooth functions with at most one singular
point sf . For such a class of functions, we construct a nonadaptive algorithm Anon

r,n

that asymptotically recovers the error bound of [1]. As it was already noticed in [1],
the asymptotic nature of this result is an intrinsic property of nonadaptive methods.
This is no longer true if adaptive selection of samples is allowed. Indeed, a small
modification of Anon

r,m with very few extra evaluations at adaptively chosen points
yields an adaptive algorithm Aada

r,n such that
∥∥f −Aada

r,n f
∥∥
C
≤ Cr T r

∥∥f (r)
∥∥
L∞ n−r for all n ≥ n0,(1)

where n0 depends “weakly” on f ; see Theorem 1. More precisely, n0 has to be such
that the distance of sf from the end points of the domain is not smaller than (r − 1)
times the step size h = T/n0. Actually, this assumption is only for simplicity of presen-
tation. We show how it can be replaced by a number of other conditions independent
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of the location of sf . One of such assumptions is that f is defined on the whole real
line R, an assumption adopted in [1]. This means, in particular, that the minimal
worst case error of adaptive algorithms over the class of functions with uniformly
bounded rth derivative is of order n−r, while this error for nonadaptive algorithms
(for r ≥ 3) equals infinity; see Theorem 2. An exception is the class of functions with
uniformly bounded first and rth derivatives; however, adaptive algorithms continue
having superior worst case errors also in this class; see Theorem 3.

The algorithms Anon
r,n and Aada

r,n are constructed by amplifying ideas developed
in [1, 10, 11]. (However, we mostly use new proof techniques.) At first, divided
differences of order r corresponding to the equispaced grid ih = iT/m (i = 0, . . . ,m)
are used to detect and locate the singularity within an interval of length at most rh.
If such an interval is not found, which happens when all of the divided differences
are small enough, then the usual piecewise interpolation of degree r − 1 is applied.
Otherwise, the interpolation is used everywhere except for the interval where the
singularity has been detected. In that interval, an extrapolation from the left and from
the right with a specially chosen break point is applied. The nonadaptive and adaptive
algorithms differ by how the break point is chosen. It is chosen without additional
function evaluations in the nonadaptive version and with at most (r + 1)�(r − 1)/2	
additional evaluations in the adaptive version.

Analogous results, both positive and negative, hold when the Lp norms (p <∞)
are used instead of the uniform norm to measure the errors; see Theorems 4 and 5.

The results discussed so far depend very much on the fact that the functions being
approximated have at most one singular point. Indeed, in section 7, we briefly consider
classes of functions with a finite number of singularities and show that, instead of (1),
one can only have algorithms whose worst case errors are at best proportional to n−1;
this holds already for r ≥ 2 and functions with three singular points or for r ≥ 3
and functions with two singular points only; see Theorems 6 and 7. Fortunately, as
explained in section 7.2, the optimal rate of n−r can be regained in the asymptotic
setting, even for functions with arbitrarily large (but finite) number of singularities.
This is achieved even by nonadaptive algorithms. Indeed, a modification of Anon

r,n

yields algorithms Anon
r,n with the errors satisfying

lim sup
n→∞

∥∥∥f −Anon
r,n f

∥∥∥
C
n−r ≤ Cr T r

∥∥f (r)
∥∥
L∞

for all globally continuous and r-smooth functions with a finite number of singular
points. Here the constant Cr does not depend on f or on the number of singularities
of f ; it only depends on r.

2. Preliminaries. For r ≥ 1 and a < b, denote by Wr(a, b) the space of r-
smooth functions defined as

Wr(a, b) =
{
f ∈ Cr−1([a, b]) | f (r−1) absolutely continuous,

∥∥f (r)
∥∥
L∞(a,b) <∞

}
.

Given T > 0, let Fr = Fr(0, T ) be the class of functions satisfying the following
condition: either f ∈ Wr(0, T ) or there exist sf ∈ (0, T ) and functions f− ∈ Wr(0, sf )
and f+ ∈ Wr(sf , T ) such that

f(x) =
{
f−(x), 0 ≤ x < sf ,
f+(x), sf ≤ x ≤ T.(2)
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Equivalently, f ∈ Fr iff

f(x) = g(x) + 1[sf ,T ](x)
r−1∑
j=0

Δ(j)
f

(x − sf )j
j!

, 0 ≤ x ≤ T,(3)

where g ∈ Wr(0, T ) and Δ(j)
f are discontinuity jumps of the successive derivatives of

f at the singular point sf ,

Δ(j)
f = f

(j)
+ (sf )− f (j)

− (sf ), 0 ≤ j ≤ r − 1.

Here and elsewhere 1A denotes the indicator function of A:

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Note that for any 0 ≤ a < b ≤ T we have ‖f (r)‖L∞(a,b) = ‖g(r)‖L∞(a,b).
Approximation of functions from f ∈ Fr (with a possible discontinuity at sf ) was

studied in [11]. In the present paper, we concentrate on the subclass

Gr = Gr(0, T ) := Fr(0, T ) ∩ C([0, T ])

of continuous functions. Note that f ∈ Gr iff f ∈ Fr and

Δ(0)
f = 0.

SinceG1(0, T ) = W1(0, T ) is not an interesting case, we also assume that the regularity

r ≥ 2.

We are interested in uniform approximation of f ∈ Gr that is based on finitely
many evaluations of f . A nonadaptive method of approximation (algorithm) is given
as

Af = ϕ(f(x1), f(x2), . . . , f(xn))

for some xj ∈ [0, T ] and ϕ : R
n → C([0, T ]). We will also allow a more general class

of adaptive methods, where the points xj and the number n of them can be chosen
based on the previously obtained values f(xi) for 1 ≤ i ≤ j − 1. (For more details
and a general discussion of adaptive and nonadaptive methods, see, e.g., [14].)

Uniform approximation means that for any f ∈ Gr the error of approximation is
given by

‖f −Af‖C([0,T ]) = max
a≤x≤b

|f(x)− (Af)(x)|.

For brevity, we write ‖ · ‖C and ‖ · ‖L∞ whenever the norms pertain to the inter-
val [0, T ]. Although both norms are identical for functions considered in this paper,
to help the reader we write ‖g‖C if the function g is continuous and ‖g‖L∞ otherwise.
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3. Generic algorithm. Denote by Pr(f ; a, b) the polynomial of degree at most
r−1 interpolating f at knots a+(j−1)(b−a)/(r−1), 1 ≤ j ≤ r. For given h = (b−a)/m
with m ≥ r− 1, let Phr (f ; a, b) be the piecewise polynomial interpolation of f on [a, b]
that is based on the mesh of size h. That is,

Phr (f ; a, b) =
k∑
i=1

Pr(f ; zi−1, zi)1[zi−1,zi) + Pr(f ; b− (r − 1)h, b)1[zk,b],

where zi = a+ ih(r − 1) and k is the largest integer satisfying kh(r− 1) < b− a. We
also let ti = ih and denote by f [ti, ti+1, . . . , ti+r] the rth order divided difference of f .

Our generic algorithm A∗r,m combines ideas developed in [1, 10, 11]. That is,
it first uses divided differences of f corresponding to the grid of size h to find out
whether the singularity can be ignored. If “yes,” then the piecewise interpolation of
degree r− 1 is applied based on the uniform grid. If “no,” then a subinterval (u, v) of
length at most rh containing the essential singularity (if it exists) is identified. The
final approximation is the piecewise polynomial interpolation, except for (u, v). In
this subinterval, polynomial extrapolation from the left on (u, ξ) and from the right
on [ξ, v) are applied, where ξ is a specially chosen point supposed to approximate the
singularity sf .

The parameters of the algorithm A∗r,m are smoothness r and an arbitrary number

0 ≤ D <∞.

The parameter D plays the role of a threshold and is used to decide whether the
singularity can be ignored or not. Another important ingredient of the algorithm is
the function SINGULAR(u, v) that returns the approximation ξ of sf . This function
can be defined in different ways; for the time being we treat it as a black box.
00 Generic algorithm;
01 begin
02 input m ≥ 2r − 1; h := T/m;
03 for i := 0 to m− r do di := f [ti, ti+1 . . . , ti+r];
04 i∗ := arg maxi |di|;
05 if |di∗ | ≤ D then (A∗r,mf)(x) := Phr (f ; 0, T ) else
06 begin
07 i := max(i∗, r − 1); j := min(i∗ + r,m− r + 1);
08 u := ti; v := tj ; u1 := ti−(r−1); v1 := tj+(r−1);
09 p− := Pr(f ;u1, u); p+ := Pr(f ; v, v1);
10 ξ := SINGULAR(u, v); κ := (p+(ξ)− p−(ξ))/2;

11 (A∗r,mf)(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Phr (f ; 0, u1) 0 ≤ x ≤ u1
p−(x) + κ(x− u1)/(ξ − u1), u1 < x < ξ
p+(x)− κ(x− v1)/(ξ − v1), ξ ≤ x < v1

Phr (f ; v1, T ) v1 ≤ x ≤ T
;

12 end
13 end.

Note that A∗r,mf is a well defined continuous function. The final approximation
uses only function values from the uniform (nonadaptive) grid. However, the whole
method of approximation is nonadaptive only if the strategy of choosing ξ is also
nonadaptive.
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4. Error analysis. In this section, we analyze the error of the Generic Algo-
rithm. The analysis is done under the assumption that the mesh size h is small
enough so that all of the divided differences around sf are well defined. Specifically,
we assume that

h =
T

m
≤ δ0(f), where δ0(f) :=

1
r − 1

min (sf , T − sf ) .(4)

Note that without (4) (or without some other assumptions, see, e.g., Theorems 2 and
3), we would not be able to obtain nontrivial upper bounds, as shown by the following
example.

Example 1. Consider an arbitrary algorithm A and a positive number A. Let xi,
1 ≤ i ≤ n, be the sampling points used by A that correspond to the following function
values: f(xi) = A if xi �= 0 and f(xi) = 0 when xi = 0. Let τ be the smallest positive
point among the xi’s. For any a > 0, define fa by fa(x) = Ax/a for 0 ≤ x ≤ a
and fa(x) = A for a < x ≤ T . Obviously, for all a ≤ τ , fa ∈ Fr and fa(xi) = A
when xi �= 0. Hence the algorithm A does not distinguish between fτ and fε for any
0 < ε < τ . Since ‖fτ − fε‖C = A(1− ε/τ) and ε can be arbitrarily small, the error of
A is at least A/2, independently of how many function evaluations are performed.

Define

Df := max

(
D ,

∥∥f (r)
∥∥
L∞

r!

)
.

We first consider the case when all of the divided differences satisfy

|f [ti, ti+1, . . . , ti+r]| ≤ Df , 0 ≤ i ≤ m− r.(5)

It turns out that if condition (5) is satisfied, then the singularity can be ignored. In
this case, the error of piecewise polynomial interpolation is bounded similarly as for
functions with no singularities. This fact was already noticed in [11] (see also [10])
for Lp norms. Here we use different arguments from those in [11].

Define

cr,k := (k − r + 1)(k − r + 2) . . . (k − 1)k.(6)

Letting

ls(t) :=
r−1∏
s�=k=0

t− k
s− k

be the sth Lagrange polynomial, we also define

Ωr :=
r−1∑
s=0

|ls(r)| = 2r − 1.(7)

Proposition 1. Let f ∈ Gr. If the condition (5) is satisfied and h ≤ δ0(f), then

‖f −A∗r,mf‖C ≤ CrDf h
r,(8)

where

Cr = 2(r! + cr,3r−2 Ωr).
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Proof. If the polynomial interpolation is applied on an interval (a, b) = (ti, ti+r−1),
then by Lemma 2 of the appendix with Δ(0)

f = 0 and B = Df we have

‖f − Pr(f ; a, b)‖C([a,b]) ≤
(∥∥f (r)

∥∥
L∞ + cr,2r−2ΩrDf

)
hr.

This already implies (8) in the case Df = D ≥ ‖f (r)‖L∞/r! since then A∗r,mf =
Pr(f ; 0, T ).

However, if Df = ‖f (r)‖L∞/r! > D, then we have to consider, in addition, the
case when an interval (u, v) in line 08 of the Generic Algorithm is created and the
extrapolation is applied. Then, using again Lemma 2, for any u1 ≤ x ≤ v1 we have

|f(x)− p±(x)| ≤
(∥∥f (r)

∥∥
L∞ + cr,3r−2ΩrDf

)
hr.

Since κ = [(f(ξ)− p−(ξ))− (f(ξ)− p+(ξ))]/2, we have the same upper bound for |κ|.
Hence

‖f −A∗r,mf‖C([u1,ξ]) ≤ ‖f − Pr(f ;u1, u)‖C([u1,ξ]) + |κ|
≤ 2(1 + cr,3r−2Ωr/r!)

∥∥f (r)
∥∥
L∞h

r

and similarly for the interval [ξ, v1]. This completes the proof.
In summary, if (5) holds, then the approximation error is small regardless of the

choice of ξ ∈ (u, v). The strategy of choosing ξ is crucial only when (5) does not hold.
In what follows, we consider one nonadaptive and one adaptive strategy.

4.1. Nonadaptive strategy. Consider first a nonadaptive version Anon
r,m of our

algorithm in which no additional function values are used to determine ξ. Specifically,
we set

ξ := arg min
u≤x≤v

|p+(x)− p−(x)|,(9)

where p+ and p− are interpolation polynomials defined in line 09 of the Generic Algo-
rithm. Note that Anon

r,m is then nonadaptive and uses n = m+ 1 function evaluations.
For given f ∈ Gr, let

Tf (t) :=
r−1∑
j=1

Δ(j)
f

tj

j!

and

ω0(f) := sup{ω > 0 | Tf (t) is monotone on [−rω, 0] and [0, rω] }.(10)

We also define

βr :=
1
r!

r−1∏
j=0

(2r − 1− j) =
(

2r − 1
r − 1

)
.

Note that by the error formula of Lagrange interpolation/extrapolation we have

‖g − Pr(g; ti, ti+r−1)‖C([ti,ti+2r−1]) ≤ βr
∥∥g(r)

∥∥
L∞ hr for all g ∈Wr.



APPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS 769

Proposition 2. Let f ∈ Gr. If the singularity sf is essential, i.e., (5) does not
hold, and

h ≤ min(δ0(f) , ω0(f)),

then ∥∥f −Anon
r,mf

∥∥
C
≤ 3.5 βr

∥∥f (r)
∥∥
L∞ hr.

Proof. Suppose for a moment that the singular point sf is not in the selected in-
terval (u, v). Then all of the divided differences f [ti, . . . , ti+r] with sf ∈ [ti, ti+r] have
their absolute values not greater than |di∗ |. On the other hand, |di∗ | ≤ ‖f (r)‖L∞/r!
since f is r-smooth in (u1, v1). Hence Proposition 1 holds with Df replaced by
‖f (r)‖L∞/r!.

Consider now the case of sf ∈ (u, v). It suffices to consider the error in (u1, v1).
Assume without loss of generality that u < sf ≤ ξ ≤ v (the other case is symmetric),
and denote for brevity

eh := βr
∥∥f (r)

∥∥
L∞ hr.

Observe first that

|κ| ≤ 1
2
|p+(sf )− p−(sf )|

≤ 1
2

(|f(sf )− p−(sf )|+ |f(sf )− p+(sf )|)

≤ 1
2r!

max
r−1≤x≤2r−1

⎛
⎝r−1∏
j=0

|x− j|+
3r−2∏
j=2r−1

|x− j|
⎞
⎠∥∥f (r)

∥∥
L∞h

r

≤ 1
2
eh,

with the last inequality due to the fact that the second derivative of the function
f(x) =

∏r−1
j=0(x− j)+

∏3r−2
j=2r−1(j−x) is nonnegative for x ∈ [r− 1, 2r− 1], and hence

f attains the above maximum at x = r − 1 and/or x = 2r − 1. This implies

∣∣f(x)− (Anon
r,mf

)
(x)

∣∣ ≤ |f(x)− p−(x)|+ |κ| ≤ 3
2
eh for u1 ≤ x ≤ sf .

The same bound obviously holds for ξ ≤ x ≤ v1.
Consider the remaining case sf < x < ξ. For such x,

f(x) = g(x) + Tf (x− sf ),
where g is as in (3). This and monotonicity of Tf yield∣∣f(x)− (Anon

r,mf
)
(x)

∣∣ ≤ |f(x)− p−(x)| + |κ|
≤ |Tf (x− sf )|+ |g(x)− p−(x)|+ |κ|
≤ |Tf (ξ − sf )|+ 3

2
eh.

To estimate |Tf (ξ − sf )| observe that

p+(x)− p−(x) = Tf (x− sf ) + (g(x)− p−(x)) − (f(x)− p+(x)).
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Using this with x = ξ we finally obtain

|Tf (ξ − sf)| ≤ 2|κ|+ |g(ξ)− p−(ξ)|+ |f(ξ)− p+(ξ)| ≤ 2eh

as claimed.
In the case r = 2, for any f the function Tf is linear. Hence ω0(f) = ∞, and

the assumption h ≤ ω0(f) can be dropped. It turns out that using a slightly different
estimation we can also reduce the constant 3.5β2 = 10.5 at ‖f (2)‖L∞h2 in the error
formula of Proposition 2.

Proposition 3. Let f ∈ G2. If the singularity sf is essential, i.e., (5) does not
hold, and h ≤ δ0(f), then∥∥f −Anon

2,mf
∥∥
C
≤ 7.5

∥∥f (2)
∥∥
L∞ h2.

Proof. Since r = 2, the polynomial p+ − p− is of degree at most 1. Hence

|p+(x)− p−(x)| ≤ |p+(sf )− p−(sf )| ≤ eh,
where now

eh = β2 ‖f ′′‖C h2 = 3 ‖f ′′‖C h2.

Hence ∣∣f(x)− (Anon
2,mf

)
(x)

∣∣ ≤ |f(x)− p−(x)| + |κ|
≤ |f(x)− p+(x)| + |p+(x)− p−(x)| + |κ|
≤ 2.5 eh.

This completes the proof.
The assumption h ≤ ω0(f) cannot be omitted when r ≥ 3. This is shown by the

following example, which is a small modification of the corresponding example from
[1]. We present it here for completeness.

Example 2. Consider a nonadaptive algorithm that uses arbitrary n points
x1, . . . , xn. Then one can find an interval (a, b) ⊂ (0, T ) such that xj /∈ (a, b) for
all j, and |b − a| ≥ T/(n + 1). Let g(x) = (x − a)(x − b) and fa = cg1(−∞,a),
fb = cg1(−∞,b), where c ∈ R is arbitrary. For r ≥ 3 we have ‖f (r)

a ‖C = ‖f (r)
b ‖C = 0.

Since fa, fb share the same information and

‖fb − fa‖C =
|c| (b− a)2

4
≥ |c|T 2

4 (n+ 1)2
,

the error for fa or for fb is at least |c|T 2(n+1)−2/8. Note also that ω0(fa) = ω0(fb) =
(b− a)/(2r).

4.2. Adaptive strategy. A closer inspection of the proof of Proposition 3 shows
that assumption (4) is not needed for the error to be bounded by 2.5βr‖f (r)‖L∞

hr for arbitrary r ≥ 2, provided that in the interval [min(sf , ξ),max(sf , ξ)] the poly-
nomial |p+(x) − p−(x)| takes its maximum at x = sf . As shown in Example 2, any
nonadaptive strategy of choosing ξ gives no guarantee that this condition is satisfied.
However, it turns out that it is possible to force that condition (up to a constant
arbitrarily close to 1) by choosing ξ based on a few additional adaptive function
evaluations.
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Specifically, let γ > 0. First we construct a set S of points as follows.
00 Adaptive points;
01 begin
02 S := {ti | i∗ ≤ i ≤ i∗ + r};
03 p := p+ − p−; P := (u, v);
04 while

〈
there exists a local max of |p| in P 〉

do
05 begin
06 x :=

〈
largest local max of |p| in P 〉

;
07 (x−, x+) :=

〈
an interval in P such that x ∈ (x−, x+) and
|p(x)| ≤ (1 + γ)|p(t)| for all t ∈ [x−, x+]

〉
;

08 S := S ∪ 〈 (r + 1) arbitrary different points in [x−, x+]
〉
;

09 P := P \ [x−, x+]
10 end
11 end;

Suppose that S = {τi}kj=0 with ti∗ = τ0 < τ1 < · · · < τk = ti∗+r. Then, similarly
as in the Generic Algorithm, we select

i∗∗ := arg max
0≤i≤k−r

|f [τi, τi+1, . . . , τi+r]|

and define u∗ := max(u, τi∗∗), v∗ := min(τi∗∗+r, v). Finally,

ξ := arg min
u∗≤x≤v∗

|p+(x)− p−(x)|.

This adaptive version of the Generic Algorithm will be denoted by Aada
r,m. Since a

polynomial of degree r − 1 has at most �(r − 1)/2	 local maxima, Aada
r,m uses no more

than

(r + 1)
⌊
r − 1

2

⌋

adaptive function evaluations, in addition to m+1 nonadaptive points from the initial
uniform grid. We also want to stress that for r = 2 no adaptive points are constructed,
and therefore Aada

2,m = Anon
2,m.

Proposition 4. Let f ∈ Gr. If the singularity sf is essential, i.e., (5) does not
hold, and h ≤ δ0(f), then∥∥f −Aada

r,mf
∥∥
C
≤ (2.5 + γ)βr

∥∥f (r)
∥∥
L∞ hr.

Proof. Observe first that in view of Lemma 1 of the appendix we have

|f [τi∗∗ , . . . , τi∗∗+r]| ≥ |f [ti∗ , . . . , ti∗+r]| > Df ,

which means that sf ∈ (u∗, v∗). Note also that [u∗, v∗] contains exactly r + 1 points
from S.

As noticed earlier, it suffices to show that for sf < x < ξ we have

|p(x)| ≤ (1 + γ) |p(sf)|, p := p+ − p−.
Indeed, if there are arguments in (sf , ξ) for which |p| is larger than |p(sf )|, then there
are some local maxima of |p| in (sf , ξ). Let x∗ be the largest such maximum. Then
we have two cases: either x∗ was one of the local maxima considered in line 06 of
Adaptive Points or not.
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Table 1

Results for z1 = π, z2 = π + 1.0.

m Pnon
2,m Anon

2,m Aada
2,m Pnon

4,m Anon
4,m Aada

4,m

102 1.5898 2.1156 2.1156 1.8338 infinity infinity
103 2.8695 3.8217 3.8217 2.9336 infinity infinity
104 3.6170 5.4717 5.4717 3.7438 infinity infinity
105 5.1670 7.6526 7.6526 4.8494 infinity infinity
106 5.7100 9.8947 9.8947 5.8127 infinity infinity
107 6.6451 11.5004 11.5004 6.7849 infinity infinity
108 7.6043 13.4427 13.4427 7.8385 infinity infinity

Table 2

Results for z1 = π, z2 = π + 10−3.

m Pnon
2,m Anon

2,m Aada
2,m Pnon

4,m Anon
4,m Aada

4,m

102 2.6020 −0.9553 −0.9553 3.1310 6.6020 infinity
103 4.6020 −1.0426 −1.0426 4.9480 6.6020 infinity
104 6.4688 5.9212 5.9212 6.7860 6.6020 infinity
105 8.1638 7.7640 7.7640 7.8249 infinity infinity
106 8.7069 9.9052 9.9052 8.8139 infinity infinity
107 9.6449 11.5020 11.5020 9.7847 infinity infinity
108 10.6042 13.4429 13.4429 10.8385 infinity infinity

In the first case, the interval [x−, x+] chosen in line 07 of Adaptive Points had
to contain ξ or sf since, otherwise, there would be more than r + 1 points in [u∗, v∗].
Since |p(ξ)| ≤ |p(sf )|, then |p(x∗)| ≤ (1 + γ)|p(sf )|.

In the other case, there was another local maximum x∗∗ outside of (sf , ξ) for
which the corresponding interval [x−, x+] contained x∗. Then either ξ or sf was in
[x−, x+]. This implies that |p(x∗)| ≤ |p(x∗∗)| ≤ (1 + γ)|p(sf )|, as claimed.

We end this section with two simple numerical tests showing the described algo-
rithms in action. The tests are motivated by Example 2. We want to approximate
f : [0, 10]→ R defined as

f(x) =
{

0, 0 ≤ x ≤ z2,
(x− z1)(x − z2), z2 < x ≤ 10,

where z1 = π, and z2 = π + 1.0 in the first test and z2 = π+ 10−3 in the second test.
The results are presented, correspondingly, in Tables 1 and 2. For r = 2, 4 and for
each algorithm Pnon

r,m (which is the piecewise polynomial interpolation of degree r − 1
based on equispaced grid), Anon

r,m, and Aada
r,m, the errors are given in the logarithmic

scale, i.e., − log10 ‖f−Af‖C([0,10]). Exact approximations are marked with “infinity.”
Observe that the results essentially depend on the distance between z1 and z2.

Indeed, since for our test function z2 − z1 = Δ(1)
f , the jump of f ′ is relatively big

in the first test and relatively small in the second test. Therefore the asymptotic
superiority of Anon

r,m over Pnon
r,m for r = 2, 4 appears very quickly in Table 1 and rather

late in Table 2.
The distance z2 − z1 is also crucial for comparison of Anon

4,m and Aada
4,m. (Recall

that both algorithms coincide for r = 2.) Indeed, since p(x) := p+(x) − p−(x) =
(x− z1)(x− z2), the nonadaptive algorithm wrongly chooses z1 as the approximation
to sf = z2 as long as the resolution is not smaller than z2−z1. On the other hand, the
adaptive algorithm recognizes the right point at the cost of 5 extra adaptive function
evaluations.
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5. Worst case results. Combining Propositions 1, 2, 3, and 4 we obtain the
following theorem.

Theorem 1. (a) There exist C′r such that for r ≥ 3

∥∥f −Anon
r,mf

∥∥
C
≤ C′rDf m

−r ∀f ∈ Gr ∀m ≥ T

min(δ0(f) , ω0(f))

and for r = 2

∥∥f −Anon
2,mf

∥∥
C
≤ C′2Df m

−2 ∀f ∈ G2 ∀m ≥ T

δ0(f)
.

(b) There exist C
′′
r such that for r ≥ 3

∥∥f −Aada
r,mf

∥∥
C
≤ C ′′

r Df m
−r ∀f ∈ Gr ∀m ≥ T

δ0(f)
.

This should be compared with the quality of (nonadaptive) piecewise polynomial
interpolation Phr (f ; 0, T ) of functions f ∈Wr(0, T ) (no singularities), where the error
is upper bounded by Ĉr‖f (r)‖L∞m−r for allm ≥ r−1. Unfortunately, Examples 1 and
2 prove that such unconditional bounds are not available in Gr, i.e., the convergence
rate m−r is only asymptotic for any f ∈ Gr. This has serious consequences for the
worst case setting.

Recall that the worst case error of an algorithm A with respect to a class F is
defined as

e∞(F ;A) := sup
f∈F
‖f −Af‖C .

Let enon
∞ (F ;n) and eada

∞ (F ;n) be the minimal (or the infima of) worst case errors that
can be achieved by, respectively, nonadaptive and adaptive algorithms using no more
than n function evaluations. Obviously, eada∞ (F ;n) ≤ enon∞ (F ;n).

Let 0 < Lr <∞. From what we said it follows that for the class

G0
r :=

{
f ∈ Wr(0, T ) | ∥∥f (r)

∥∥
L∞ ≤ Lr

}
we have enon

∞ (G0
r ;n) � n−r. However, in the presence of singularities, i.e., for

Gr :=
{
f ∈ Gr(0, T ) | ∥∥f (r)

∥∥
L∞ ≤ Lr

}
,

we have

enon
∞ (Gr ;n) = eada

∞ (Gr;n) =∞.(11)

This negative result can be improved by narrowing down the function class. Consider

Gar := { f ∈ Gr | δ0(f) ≥ δ } (δ > 0),

Gbr :=
{
f ∈ Gr | f (j)(0) = f (j)(T ), 0 ≤ j ≤ r − 1

}
,

and

Gcr :=
{
f : R→ R | f |[0,T ] ∈ Gr,

∥∥f (r)
∥∥
L∞(R) ≤ Lr,

f |(−∞,sf ) ∈ Wr(−∞, sf), f |(sf ,∞) ∈Wr(sf ,∞)
}
.
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Theorem 2. Let G∗r be one of the function classes Gar , Gbr , or Gcr . Then

enon
∞ (G∗2 ;n) � n−2,

enon∞ (G∗r ;n) =∞, r ≥ 3,

and

eada
∞ (G∗r ;n) � n−r, r ≥ 2.

Hence if smoothness r ≥ 3, then adaptive algorithms are much better than nonadaptive
algorithms for the class G∗r .

Proof. Additional assumptions on f remove the condition m ≥ T/δ0(f) since now
it is possible to evaluate divided differences in the vicinity of sf , independently of its
location. In particular, functions f ∈ Gbr can be treated as defined on R and such that
all f (j), 0 ≤ j ≤ r−1, are T -periodic. (Note that Example 1 does not work anymore.)
The negative results for nonadaptive algorithms remain valid because Example 2 can
be constructed also for G∗r .

The problem with condition m ≥ T/δ0(f) can also be removed by assuming
uniform boundedness of the first derivative. That is, consider the class

Gdr :=
{
f ∈ Gr | ‖f ′‖L∞ ≤ L1,

∥∥f (r)
∥∥
L∞ ≤ Lr

}
⊂ Gr.

Theorem 3. Let 0 < L1 <∞ and 0 ≤ Lr <∞ (with positive Lr for r = 2). We
have

enon∞ (Gd2 ;n) � n−2,

enon
∞ (Gdr ;n) � n−2, r ≥ 3,

and

eada
∞ (Gdr ;n) � n−r, r ≥ 2.

Hence if smoothness r ≥ 3, then adaptive algorithms are much better than nonadaptive
algorithms for the class Gdr .

Proof. To obtain the lower bounds for nonadaptive algorithms we construct, as
in Example 2, an interval (a, b) and functions fa = cg1(−∞,a), fb = cg1(−∞,b) that
share the same information and ‖fa − fb‖C ≥ |c|T 2(n+ 1)−2/4. Taking c = L1/(2T )
for r ≥ 3 and c = min(L1/(2T ), L2/2) for r = 2, we have that fa, fb ∈ Gdr . Hence for
one of these functions the error of approximation is at least

min
(
L1T, L2T

2
)

16(n+ 1)2

as claimed.
To meet the upper bounds, we can use correspondingly Anon

2,m and Aada
r,m with

slightly modified initial (nonadaptive) sampling for x close to the boundary of [0, T ].
That sampling is described in detail in [11, section 5.1] and relies on using higher
and higher resolution as the end points are approached, finally reaching resolution
τ of order m−r. Then piecewise linear interpolation on intervals [0, (r − 1)τ ] and
[T − (r − 1)τ, T ] gives error of order m−r.
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6. (Remarks on) Lp approximation. In this (and only this) section we as-
sume that, instead of the uniform norm, the Lp norm with 1 ≤ p < ∞ is used to
measure the error of approximation. That is, for any f the error of an algorithm A
is given as

‖f −Af‖Lp =

(∫ T

0
|f(x)− (Af)(x)|p dx

)1/p

.

We denote by enon
p (F ;n) and eada

p (F ;n) the corresponding nth minimal worst case Lp

errors of nonadaptive and adaptive algorithms with respect to a class F .

6.1. Continuous functions. It is easy to see that in the case of Lp approxima-
tion the negative result (11) remains valid for nonadaptive algorithms and r ≥ 2, as
well as for adaptive algorithms and r ≥ 3.

Indeed, let Anon be an arbitrary nonadaptive algorithm. Let τ be the smallest
positive sampling point used by Anon. Let fa(x) = cx/a for 0 ≤ x ≤ a and fa(x) = c
otherwise. Then for any c we have that fτ/2 and fτ are in Gr, both functions share the
same approximation, and the Lp distance between them goes to infinity as c→∞.

For adaptive Aada and r ≥ 3, we choose τ as the smallest positive sampling point
used by Aada for f ≡ 0. The two functions with the properties as above are given by
f±(x) = ±cx(x − τ) for 0 ≤ x ≤ τ and f±(x) = 0 otherwise.

Surprisingly, for smoothness r = 2 it is possible to construct an adaptive algorithm
Bada

2,m, m ≥ 2, with the worst case Lp error in the class G2 proportional to h2, where h =
T/m. This algorithm is defined as follows. For x ∈ (h, T − h) we have (Bada

2,mf)(x) =
(Anon

2,mf)(x). Actually, since the approximations are now in Lp space, we take κ = 0
in the Generic Algorithm.

For x ∈ [T − h, T ] we proceed as follows. Let w− be the polynomial of the first
degree interpolating f at T − 2h and T − h. Fix A > 0, and define

τ := min
(
h,

(
Ah2

|f(T )− w−(T )|
)p)

.(12)

Then on [T − τ, T ] we apply the polynomial w+ of the first degree interpolating f
at T − τ and T , and on [T − h, T − τ) we apply our (nonadaptive) extrapolation
procedure with w− and w+ as polynomials extrapolating f from the left and from the
right, respectively.

For x ∈ [0, h] we proceed symmetrically to the case x ∈ [T − h, T ].
Observe that Bada

2,m is adaptive; however, it uses only two adaptively chosen sam-
ples.

To estimate the error of Bada
r,m we need to know that the extrapolation procedure

works properly on a given interval even when the singularity sf is not in that interval,
and the jump Δ(1)

f is arbitrary. (Due to assumption (4), this case was not present in
the analysis of Anon

2,m.)
Indeed, suppose that the extrapolation procedure is applied on an interval [t−1, t1]

of length at most 2h. Let p− and p+ be correspondingly the polynomials interpolating
f at t−2, t−1 and t1, t2, with 0 < t−1 − t−2 ≤ h and 0 < t2 − t1 ≤ h. Assume without
loss of generality that sf ∈ (t1, t2). Then it suffices to consider the error for ξ ≤ x ≤ t1,
where ξ is the approximation of sf defined as in (9) with [u, v] = [t−1, t1]. For such x
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we have ∣∣f(x)− (Bada
2,mf

)
(x)

∣∣ = |f(x)− p+(x)|
≤ |f(x)− p−(x)|+ |p+(x) − p−(x)|
≤ |f(x)− p−(x)|+ |f(t1)− p−(t1)|
≤ 2 eh,

where eh := β2‖f (2)‖L∞h2.
This and the results for Anon

2,m yield that on the interval (h, T − h) the error is
uniformly bounded by Ceh with some constant C. Hence it remains to consider the
intervals [0, h] and [T −h, T ]. Since the situation is symmetric, we concentrate on the
second interval.

The same arguments as before yield the estimate Ceh for x ∈ [T − h, T − τ).
Consider the last interesting case when both x and sf are in [T − τ, T ]. Then, using
decomposition f = g + Δ(1)

f (· − sf )1[sf ,T ] with g ∈ W2(0, T ), we have

|f(x)− w−(x)| ≤ |g(x)− w−(x)|+
∣∣∣Δ(1)

f

∣∣∣ (x− sf )1[sf ,T ](x)

≤ eh +
∣∣∣Δ(1)

f

∣∣∣ (T − sf)
≤ 2eh + |f(T )− w−(T )|.

We also have

|w+(x) − w−(x)| ≤ max (|f(t− τ)− w−(T − τ)|, |f(T )− w−(T )|)
≤ max (eh, |f(T )− w−(T )|) .

Hence ∣∣f(x)− (Bada
2,mf

)
(x)

∣∣ = |f(x)− w+(x)|
≤ |f(x)− w−(x)|+ |w−(x)− w+(x)|
≤ 4 max (eh, |f(T )− w−(T )|) .

This and definition (12) of τ yield

∥∥f − Bada
2,mf

∥∥
Lp(T−τ,τ) ≤ 4 h2 max

(
β2‖f (2)‖L∞, A

)
.

Thus we have shown the following result.
Theorem 4. Let 1 ≤ p <∞. Then

enon
p (G2;n) =∞,
eada
p (G2;n) � n−2,

and for r ≥ 3

enon
p (Gr ;n) = eada

p (Gr;n) =∞.

6.2. Discontinuous functions. In this subsection, we relax the requirement
that the approximated functions are continuous. That is, we return to the class
Fr = Fr(0, T ), defined by (2), of functions f for which the jump Δ(0)

f is not necessarily
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zero. Note that f is right-continuous at sf , i.e., f(sf ) = f+(sf ). We also naturally
extend the definition of Tf to

Tf (t) :=
r−1∑
j=0

Δ(j)
f

tj

j!

so that f(x) = g(x) + Tf (x − sf )1[sf ,T ](x).
Approximation of such functions was studied in [11], where it was noticed that it

is impossible to have algorithms with error converging to zero in the uniform norm.
Therefore the authors proposed an algorithm with error converging at speed n−r in
Lp for any f ∈ Fr. Moreover, the algorithm from [11] has the worst case Lp error
proportional to n−r with respect to the class

Fdr :=
{
f ∈ Fr |

∥∥f (r)
∥∥
L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1,

∣∣∣Δ(0)
f

∣∣∣ ≤ D0

}
.

Using proof techniques of the present paper, similar results can be obtained with the
condition ‖f ′‖L∞ ≤ L1 replaced by some other assumptions, cf. Theorems 2 and 3.
For that purpose, we first generalize Propositions 2, 3, and 4 to the case of functions
with discontinuity at sf .

Let Anon
r,m be the nonadaptive version of our algorithm with the only difference

that κ = 0 in the Generic Algorithm. Then we have the following results parallel to
Propositions 2 and 3.

Proposition 5. Let f ∈ Fr. If the singularity sf is essential and h ≤ min(δ0(f),
ω0(f)), then ∥∥f −Anon

r,mf
∥∥
C([u,v])

≤
∣∣∣Δ(0)

f

∣∣∣+ 3 βr
∥∥f (r)

∥∥
L∞ hr.

Proof. Assume without loss of generality that u < sf ≤ ξ ≤ v. Then, in the
critical interval sf < x < ξ, we have∣∣f(x)− (Anon

r,mf
)
(x)

∣∣ = |f(x)− p−(x)| ≤ |Tf (x− sf )|+ eh.

We now have two cases depending on the maximum of |Tf | in [0, ξ − sf ]. If the
maximum is attained at 0, then the error above is bounded by |Tf (0)|+ eh = |Δ(0)

f |+
eh. Otherwise, by monotonicity condition (10), the maximum is at ξ − sf . Then
|f(x)− p−(x)| ≤ |Tf (ξ − sf )|+ eh. Note that

Tf (ξ − sf ) = (p+(ξ)− p−(ξ)) + (f(ξ)− p+(ξ)) − (g(ξ)− p−(ξ))

which gives

|Tf (ξ − sf )| ≤
∣∣∣Δ(0)

f

∣∣∣+ 2eh

and completes the proof.
Proposition 6. Let f ∈ F2. If the singularity sf is essential and h ≤ δ0(f), then∥∥f −Anon

2,mf
∥∥
C([u,v])

≤
∣∣∣Δ(0)

f

∣∣∣+ 6
∥∥f (2)

∥∥
L∞h

2.

Proof. Indeed, for sf < x < ξ we have

|f(x)− p−(x)| ≤ |p+(x) − p−(x)|+ |f(x)− p+(x)|
≤ |p+(sf )− p−(sf )|+ eh

≤
∣∣∣Δ(0)

f

∣∣∣ + 2eh,

where eh = β2‖f (2)‖L∞h2 = 3‖f (2)‖L∞h2.
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We now switch to the adaptive version Aada
r,m of our algorithm (again with κ = 0).

Proceeding exactly as in the proof of Proposition 4 we obtain the following result.
Proposition 7. Let f ∈ Fr. If the singularity sf is essential and h ≤ δ0(f),

then

‖f −Ar,mf‖C([u∗,v∗]) ≤ (1 + γ)
∣∣∣Δ(0)

f

∣∣∣+ (2 + γ)βr
∥∥f (r)

∥∥
L∞ hr.

It now follows that the Lp errors of Anon
r,m and Aada

r,m, under the assumptions of
corresponding propositions, are upper bounded by Cr(‖f (r)‖L∞m−r + |Δ(0)

f |m−1/p).
This bound can be improved by using the adaptive (bisection-like) procedure, de-
scribed in detail in [11, section 5], that locates an interval of length at most m−rp

containing the essential singularity (if it exists) and by applying the extrapolation on
that interval. Such modified algorithms use n = o(m) function evaluations and have
the Lp error bounds proportional to(∥∥f (r)

∥∥
L∞ +

∣∣∣Δ(0)
f

∣∣∣) n−r.
Our analysis yields the following result for discontinuous functions that is parallel

to Theorem 2, where continuous functions are considered. Let

Fr :=
{
f ∈ Fr(0, T ) | ∥∥f (r)

∥∥
L∞ ≤ Lr,

∣∣∣Δ(0)
f

∣∣∣ ≤ D0

}
.

Let F∗r , ∗ ∈ {a, b, c}, be defined as G∗r in section 5, with Gr replaced by Fr.
Theorem 5. We have

enon
p (F∗2 ;n) � n−2,

enon
p (F∗r ;n) =∞, r ≥ 3,

and

eada
p (F∗r ;n) � n−r, r ≥ 2.

7. Multiple singularities. The results of the previous sections rely very much
on the fact that the functions being approximated have at most one singular point.
In this section, we consider a more general case by allowing multiple singularities.

Let F∞r = F∞r (0, T ) be the set of functions f : [0, T ] → R that are piecewise r-
smooth. That is, f ∈ F∞r iff there are a function g ∈Wr(0, T ), an integer k = kf ≥ 0,
points 0 = s0 < s1 < · · · < sk < sk+1 = T , and numbers Δ(j)

i , i = 1, . . . , k,
j = 1, . . . , r − 1, such that

f(x) = g(x) +
k∑
i=1

1[si,T ](x)
r−1∑
j=0

Δ(j)
i

(x− si)j
j!

.

Note that si, 1 ≤ i ≤ k, are the singularities of f and Δ(j)
i , 0 ≤ j ≤ r − 1, are the

corresponding discontinuity jumps. We are interested in approximating continuous
functions

f ∈ G∞r = G∞r (0, T ) := F∞r (0, T ) ∩ C([0, T ]).

Obviously, f ∈ G∞r iff f ∈ F∞r and Δ(0)
i = 0 for all 1 ≤ i ≤ k.
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We distinguish in G∞r the classes G�r of functions with no more than � singular
points:

G�r := {f ∈ G∞r | kf ≤ � }.
In particular, G1

r = Gr is the class considered in the previous sections. Obviously,

G0
r ⊂ G1

r ⊂ · · · ⊂ G�r ⊂ · · · ⊂ G∞r and G∞r =
∞⋃
�=0

G�r.

7.1. Worst case setting. Let

G�r :=
{
f ∈ G�r |

∥∥f (r)
∥∥
L∞ ≤ Lr

}
.

Let G�,∗r , ∗ ∈ {a, b, c} be the classes defined as G∗r in section 5 with Gr replaced by G�r
and with

δ0(f) :=
1

r − 1
min(s1, T − sk).

Theorem 6. Even for Lr = 0, we have

eada
∞

(
Ĝ2
r ;n

)
=∞, where Ĝ2

r = G2,a
r ∩ G2,b

r ∩ G2,c
r .

Proof. Let An be an adaptive algorithm. Choose an arbitrary A > 0, and define
functions ψ0(x) = Ax and ψT (x) = A(x − T ). We construct points xi and intervals
(ai, bi) as follows. Initially, (a0, b0) = (δ, T − δ). If the first sampling point x1 /∈
(a0, b0), then (a1, b1) = (a0, b0). Otherwise, (a1, b1) = (a0, x1) or (a1, b1) = (x1, b0),
whichever is longer. The second sampling point x2 is selected using the value ψ0(x1) if
x1 ≤ a1 and ψT (x1) if x1 ≥ b1. The subinterval (a2, b2) equals (a1, b1) if x2 /∈ (a1, b1);
otherwise, it is the longer interval between (a1, x2) and (x2, b1). Repeating this process
inductively n times we get an interval (a, b) = (an, bn) ⊆ (δ, T −δ) whose interior does
not include any of the points xi, and b−a ≥ (T−2δ)2−n. Moreover, xi are the sampling
points for any function f satisfying f(x) = ψ0(x) for x ≤ a, and f(x) = ψT (x) for
x ≥ b.

Consider now

f1(x) =

⎧⎪⎨
⎪⎩
ψ0(x), x ≤ a,
ψ0(a)x−ca−c + ψT (c)x−ac−a , a < x < c,

ψT (x), c ≤ x,
and

f2(x) =

⎧⎪⎨
⎪⎩
ψ0(x), x ≤ c,
ψ0(c)x−bc−b + ψT (b)x−cb−c , c < x < b,

ψT (x), b ≤ x,
where c = (a + b)/2. Clearly, each fk, k = 1, 2, is continuous, its derivative is
discontinuous at exactly two points, and

δ0(fk) ≥ δ.

Moreover, f (j)
k are T -periodic for all j ≥ 0. Hence, indeed, fk ∈ Ĝ2

r .
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Since f1(xi) = f2(xi) for all i, the algorithm An cannot distinguish between the
two functions. This and the fact that ‖f1 − f2‖C = f1(c) − f2(c) = AT imply that
for at least one of the functions the error is at least AT/2. Hence since A can be
arbitrarily large, the worst case error in Ĝ2

r equals infinity.
The situation changes for the class

G�,dr :=
{
f ∈ G�r | ‖f ′‖L∞ ≤ L1

}
.

Theorem 7. We have

enon
∞

(G2,d
2 ;n

) � n−1,

eada∞
(G2,d

2 ;n
) � n−2.

In all of the other cases, i.e., for r = 2 and � ≥ 3, or r ≥ 3 and � ≥ 2,

eada
∞

(G�,dr ;n
) � enon

∞
(G�,dr ;n

) � n−1.

Proof. We first show all of the lower bounds.
For � ≥ 3, the lower bound of any adaptive algorithm A is obtained as follows.

Let xi, 1 ≤ i ≤ n, be the sampling points used by A for f ≡ 0. Then we can find an
interval (a, b) of length T/(n+ 1) that does not contain any xi. Let f∗ be the “hat”
function defined as f∗(x) = 0 for x /∈ (a, b), f∗(x) = L1(x − a) for a ≤ x ≤ c, and
f∗(x) = −L1(x − b) for c < x ≤ b, where c = (a + b)/2. Then f∗ and −f∗ share
the same information and are in G�,dr . Hence for one of them the error is at least
‖f∗‖L∞ = L1T/(2(n+ 1)).

For � = 2 and r ≥ 3, we construct the interval (a, b) as before and define f∗(x) =
L1(x − a)(x − b)/(b − a) for x ∈ (a, b) and f∗(x) = 0 for x /∈ (a, b). The error for f∗

or −f∗ is at least ‖f∗‖L∞ = L1T/(4(n+ 1)).
For � = 2 and r = 2, we again select (a, b) as before. In the case of adaption we

take f∗ = 0 for x /∈ (a, b) and f∗(x) = A(x−a)(x−b), with A = min(L2/2, (b−a)−1).
Then the error for f∗ or −f∗ is at least A(b−a)2/4 � n−2. In the case of nonadaptive
algorithms we take the two functions as follows: f∗1 (x) = L1(x − a) for x ≤ c and
f∗1 (x) = −L1(x−b) for x > c; f∗2 (x) = f∗1 (x) for x /∈ (a, b) and f∗2 (x) = 0 for x ∈ (a, b).
For one of the functions the error is at least ‖f∗1 − f∗2 ‖∞/2 = L1T/(4(n+ 1)).

The upper bounds for the minimal error of nonadaptive algorithms is achieved
by piecewise linear interpolation based on equispaced points xi = (i − 1)/(n − 1),
1 ≤ i ≤ n, where the error for any f ∈ G�,dr is at most L1T/(2(n− 1)).

It remains to construct an adaptive algorithm with the worst case error of order
n−2 in the class G2,d

2 . For an initial resolution h = T/m, the algorithm divides the
interval [0, T ] into two sets V and W = [0, T ] \ V , where V is the sum of some
subintervals [ti, ti+1]. Then the piecewise polynomial interpolation of degree 1 with
resolution h2 is applied on V and with resolution h on W . Specifically, V is defined
as follows. Let D ≥ 0 be arbitrary. Let

|di1 | ≥ |di2 | ≥ |di3 |

be the three largest divided differences among |di| := |f [ti, ti+1, ti+2]|, 0 ≤ i ≤ m− 2.
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00 V -construction;
01 begin
02 V := [0, h] ∪ [T − h, T ];
03 if |di1 | > D then V := V ∪ [ti1 , ti1+2];
04 if |di2 | > D then
05 begin
06 V := V ∪ [ti2 , ti2+2];
07 if (|i2 − i1| = 1) and (|di3 | > D) then V := V ∪ [ti3 , ti3+2]
08 end
09 end.
From the construction it follows that all of the divided differences |di| “covering”
points x /∈ V do not exceed Df := max(D, ‖f (2)‖L∞/2). Then Lemma 3 of the
appendix gives that the error in W is of order h2. Since in V the resolution is h2,
the error in this set is of order h2 as well. The proof completes with the observation
that the described algorithm uses more than n = (m + 1) + 7(m − 1) = 8m + 6
samples.

Thus, unlike for just one singularity, for multiple singularities the worst case
convergence n−r can be obtained only when r = � = 2.

Remark 1. It is easy to check that the algorithm for r = � = 2 described in the
proof of Theorem 7 has the worst case error of order n−2 in the more general than
G2,d

2 class:

G2,e
r :=

{
f ∈ G2

2 | max
(∣∣∣Δ(1)

1

∣∣∣ , ∣∣∣Δ(1)
2

∣∣∣) ≤ D1

}
.

However, for r ≥ 4 the minimal error eada
∞ (G2,e

r ;n) = ∞. To see this, it suffices to
repeat the proof of Theorem 6 with modified f1 and f2. For a < x < c and c < x < b,
these functions are, respectively, defined as polynomials of degree 3 interpolating data
ψ0(a), ψ′0(a), ψT (c), ψ′T (c) and ψ0(c), ψ′0(c), ψT (b), ψ′T (b).

7.2. Asymptotic setting. The problem with multiple singularities in the worst
case setting relies on the fact that the singular points can be arbitrarily close to one
another, and therefore it is impossible to separate them using a prescribed number
n of function evaluations. This problem disappears in the asymptotic setting where
the optimal rate n−r of convergence can be regained. Recall that in the asymptotic
setting we investigate how fast the error of approximation converges to zero for any
f ∈ G∞r as the number of samples increases to infinity.

The rate n−r is already obtained by the adaptive algorithm Aada
r,m from [11, sec-

tion 6.2], with obvious modification related to the fact that Aada
r,m was originally de-

signed for F∞r , i.e., for functions with possible discontinuities. We refer to [11] for a
precise description and analysis of this algorithm. Here we mention only that Aada

r,m

relies, roughly speaking, on the application of an adaptive detection mechanism on
� = �(m) disjoint subintervals corresponding to � largest divided differences, where
�(m) “slowly” increases to ∞.

It follows from [11, Theorems 4 and 5] that Aada
r,m uses n = O(m) samples and

lim
m→∞

∥∥∥f −Aada
r,mf

∥∥∥
C
·mr = αr T

r
∥∥f (r)

∥∥
L∞ for all f ∈ G∞r ,(13)

where

αr :=
1
r!

max
0≤t≤1

r∏
i=1

∣∣∣t− i− 1
r − 1

∣∣∣.
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We want to stress that for continuous functions the convergence n−r can be
achieved by nonadaptive algorithms as well. Indeed, it is possible to modify Aada

r,m,
replacing the adaptive detection mechanism by the nonadaptive version (9) of the
extrapolation procedure, to get a nonadaptive algorithm Anon

r,m with the following
properties.

Theorem 8. The nonadaptive algorithm Anon
r,m uses n = m+ 1 samples and

lim sup
m→∞

∥∥∥f −Anon
r,mf

∥∥∥
C
·mr ≤ 3.5 βr T r

∥∥f (r)
∥∥
L∞ ∀f ∈ G∞r .(14)

We end this section by comparing the asymptotic error bounds (13) and (14).
Since the adaptive algorithm Aada

r,m asymptotically uses m(r − 1) samples, it is only
fair to compare it to the nonadaptive algorithm Anon

r,m(r−1). Then∥∥∥f −Anon
r,m(r−1)f

∥∥∥
C∥∥∥f −Aada

r,mf
∥∥∥
C

≤ R(r) (1 + o(1)) as m→∞,

where

R(r) =
3.5 βr

αr (r − 1)r
.

The exact value of αr can easily be computed for small values of r, i.e., we have
α2 = 1/8, α3 =

√
3/216, and α4 = 1/1944. This yields

R(2) = 84, R(3) = 315
√

3 = 545.596 . . . , and R(4) = 2940.

For larger values of r we proceed as follows. Substituting t = 1/(2(r − 1)) in the
product

∏r
i=1 |t− i−1

r−1 | defining the constant αr, we get

αr ≥
∏r−1
i=1 (2i− 1)

r! (2(r − 1))r
=

(2r − 2)!
r! 22r−1 (r − 1)! (r − 1)r

.

Since βr = (2r − 1)!/(r!(r − 1)!), we then have

R(r) ≤ 1.75 (2r − 1) 4r.

On the other hand,

R(r) ≥ 4r
(

2r − 1
r − 1

)
,

which follows from a well-known fact that

r!αr ≤ (r − 1)!
4 (r − 1)r

.

This means that the ratio between the errors of the nonadaptive and adaptive algo-
rithms could be proportional to 4r. However, this is not so bad since those errors are
inversely proportional to the number of evaluations raised to power r. Hence for the
same errors in both algorithms it suffices to let the nonadaptive algorithm use four
times as many evaluation points.
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Appendix.
Lemma 1. Let f : [a, b] → R and a ≤ τ0 < τ1 < · · · < τk ≤ b with k ≥ r. Then

for any subsequence 0 ≤ j0 < j1 < · · · < jr ≤ k we have

|f [τj0 , τj1 , . . . , τjr ]| ≤ max
0≤i≤k−r

|f [τi, τi+1, . . . , τi+r ]|.

Proof. (The lemma follows, in particular, from [2, Proposition 23]. For complete-
ness, we provide a simple and independent proof.)

Suppose the lemma is not true. We can assume without loss of generality that

f [τj0 , τj1 , . . . , τjr ] > 0.

Let pf be the polynomial of degree r interpolating f at tji for 0 ≤ i ≤ r. Then

(f − pf )[τi, τi+1, . . . , τi+r ] < 0 for 0 ≤ i ≤ k − r.

This implies that the (r − 1)st order divided differences (f − pf )[τi, τi+1, . . . , τi+r−1],
0 ≤ i ≤ k + 1 − r, change sign at most once (where hitting zero is considered a sign
change), the (r− 2)nd order divided differences change sign at most twice, and so on.
Finally, (f − pf )(τi), 0 ≤ i ≤ k, change sign at most r times. This is a contradiction
since f(τji) = pf (τji ) for 0 ≤ i ≤ r.

Lemma 2. Let h = T/m and tj = jh for all j. Let f ∈ F 1
r (0, T ) with singularity

sf ∈ [tr−1, tm−r+1] if Δ(0)
f = 0 and sf ∈ (tr−1, tm−r+1] if Δ(0)

f �= 0. If the divided
differences satisfy

|f [tj , tj+1, . . . , tj+r ]| ≤ B, 0 ≤ j ≤ m− r,

then for any 0 ≤ i ≤ m − r + 1 and 0 ≤ x ≤ T the error of polynomial interpola-
tion/extrapolation

|f(x)− Pr(f ; ti, ti+r−1)(x)| ≤
(∥∥f (r)

∥∥
L∞ + CxB

)
hr,

where Cx = cr,�(x)Ωr,

�(x) = 2(r − 1) + �dist(x, [ti, ti+r−1])/h�,

and cr,k and Ωr are defined by (6) and (7), respectively. (Here dist(x, [u1, u2]) is the
distance of x from the interval [u1, u2].)

In particular, if |f [tj , tj+1, . . . , tj+r ]| ≤ B holds for i− r+ 1 ≤ j ≤ i+ r− 2, then
the error of interpolation

‖f − Pr(f ; ti, ti+r−1)‖C([ti,ti+r−1]) ≤
(∥∥f (r)

∥∥
L∞ + cr,2(r−1)ΩrB

)
hr.

Proof. By the assumption about the location of sf , there exists 0 ≤ j ≤ m− r+1
such that x ∈ (tj−1, tj+r), sf �∈ (min(tj , x),max(tj+r−1, x)), and f is left-continuous
at max(tj+r−1, x). Indeed, we could take j such that x ∈ (tj−1, tj ] when sf ≤ x and
x ∈ [tj+r−1, tj+r) when sf > x.

Denoting by qf the polynomial of degree at most r − 1 interpolating f at tj , . . . ,
tj+r−1 we have

|f(x)− qf (x)| ≤
∥∥f (r)

∥∥
L∞h

r.(15)
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Let, for brevity, pf = Pr(f ; ti, ti+r−1). We now estimate the error |f(tk)−pf (tk)|
for k = j, j+1, . . . , j+r−1. To that end, assume without loss of generality that i ≤ j.
Since (f − pf )(tl) = 0 for i ≤ l ≤ i+ r− 1, by definition of the divided differences we
have

(f − pf)[ti, ti+1, . . . , ti+r−1, tk] =
(f − pf )(tk)

(k − r + 1)(k − r + 2) · · · (k − 1)khr
.

On the other hand, by Lemma 1 we also have

|(f − pf )[ti, ti+1, . . . , ti+r−1, tk]| ≤ max
i≤l≤k−r

|(f − pf )[tl, . . . , tl+r]| ≤ B.

Hence

|(f − pf )(tk)| ≤ cr,k−iBhr.

Since pf − qf is a polynomial of degree at most r − 1, we now have

|pf (x) − qf (x)| ≤
j+r−1∑
k=j

∣∣∣(pf − qf )(tk)lk−j
(
x− tj
h

) ∣∣∣
≤ Bhr

j+r−1∑
k=j

cr,k−i
∣∣∣lk−j

(
x− tj
h

) ∣∣∣
≤ C B hr,(16)

where C = cr,j−i+r−1Ωr = Cx.
Combining (15) and (16) we finally obtain

|f(x)− pf (x)| ≤ |(f − qf )(x)| + |pf (x) − qf (x)|
≤
(∥∥f (r)

∥∥
L∞ + CxB

)
hr

as claimed.
Lemma 3. Let f ∈ G2

2(0, T ). Let 1 ≤ i ≤ m− 2. If

|f [tj , tj+1, tj+2]| ≤ B for j = i− 1, i,

then

‖f − P2(f ; ti, ti+1)‖C([ti,ti+1]) ≤
(

9
8

∥∥f (2)
∥∥
L∞ + 2B

)
h2.

Proof. Let s1 < s2 be the singular points of f . Denote pf := P2(f ; ti, ti+1). If s1
and s2 are not in (ti, ti+1), then the error of interpolation is at most ‖f (2)‖L∞h2/8.
Suppose s1 ∈ (ti, ti+1). (The case s2 ∈ (ti, ti+1) is symmetric.) Then for ti ≤
x ≤ s1 the error is obtained as in the proof of Lemma 2. That is, denoting by qf
the polynomial of degree 1 interpolating f at ti−1 and ti we have |f(x) − qf (x)| ≤
‖f (2)‖L∞h2. We also have |f(ti−1)− pf (ti−1)| ≤ 2Bh2. Hence

|f(x) − pf(x)| ≤ |f(x)− qf (x)| + |qf (x) − pf(x)|
≤
(∥∥f (2)

∥∥
L∞ + 2B

)
h2.
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The same bound is obtained for s2 < x ≤ ti+1 (if s2 < ti+1). Consider the remaining
case s1 < x ≤ s∗ := min(ti+1, s2). Let vf be the polynomial of degree 1 interpolating
f at s1 and s∗. Then |f(x)− vf (x)| ≤ ‖f (2)‖L∞h2/8 and

|vf (x)− pf (x)| ≤ max(|vf (s1)− pf (s1)|, |vf (s∗)− pf (s∗)|)
≤
(∥∥f (2)

∥∥
L∞ + 2B

)
h2.

Hence

|f(x)− pf (x)| ≤ |f(x)− vf (x)| + |vf (x) − pf (x)|
≤
(

9
8

∥∥f (2)
∥∥
L∞ + 2B

)
h2

as claimed.
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Abstract. We introduce a new class of exponential integrators for the numerical integration of
large-scale systems of stiff differential equations. These so-called Rosenbrock-type methods linearize
the flow in each time step and make use of the matrix exponential and related functions of the
Jacobian. In contrast to standard integrators, the methods are fully explicit and do not require the
numerical solution of linear systems. We analyze the convergence properties of these integrators
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derive an abstract stability and convergence result for variable step sizes. This analysis further
provides the required order conditions and thus allows us to construct pairs of embedded methods.
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1. Introduction. In this paper, we are concerned with a new class of numerical
methods for the time integration of large systems of stiff differential equations

(1.1) u′(t) = F (t, u(t)), u(t0) = u0.

Such equations typically arise from spatial discretizations of nonlinear time dependent
partial differential equations. The numerical work when solving (1.1) by standard
integrators like implicit Runge–Kutta methods or backward differentiation formulas
is often dominated by the numerical linear algebra, which is required for the solution
of the arising nonlinear systems of equations. For a collection of ODE solvers, test
problems, and related references, we refer to [21]. In particular, we point out the codes
VODEPK [1, 2] and ROWMAP [28], where the linear algebra is based on Krylov subspace
methods. Runge–Kutta discretizations of nonlinear evolution equations have been
studied in [19, 20, 22].

Exponential integrators, on the other hand, require the matrix exponential and
related functions of a certain matrix. Most exponential integrators analyzed so far in
literature [5, 6, 9, 14, 16, 17, 18, 23, 26] make use of a (rough) a priori linearization

(1.2) u′(t) = Au(t) + f(t, u(t))

of the nonlinear problem (1.1). The matrix A then explicitly enters the formulation of
the exponential integrator as the argument where the matrix functions are evaluated.
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Such an approach is justified in situations where the remainder f is small, or at least
bounded in terms of A. The latter is the case for semilinear parabolic problems, if
f is relatively bounded with respect to A. In particular, if A has a simple structure,
it is possible to compute the product of a matrix function with a vector in a fast
and reliable way. For instance, if A is the semidiscretization of the Laplacian on a
regular rectangular mesh, these functions can be computed by fast Fourier transform
techniques. Such an approach has been used in [16].

On the other hand, a fixed linearization like (1.2) can also lead to problems. As
the remainder f is integrated explicitly by standard exponential methods, a badly
chosen linearization can cause a severe step size restriction. This, for instance, is
the case if the numerical solution stays near an equilibrium point (e.g., a saddle
point) of the problem for a long time. If the linearization (1.2) is performed far from
this equilibrium point, the integrator is forced to take small steps due to stability
requirements. This will cause computational inefficiency.

In order to avoid these problems, we propose a new class of exponential integrators
that linearize (1.1) in each integration step. The linearization can be computed either
analytically or numerically. We first presented this approach in [15]. Here we give
a rigorous stability and convergence proof, we discuss a possible variable step size
implementation, and we give numerical comparisons. Related ideas have been used
in [12] and [27]. Since the Jacobian of the problem changes from step to step, FFT
techniques can no longer be used to compute the products of matrix functions with
vectors. We will use Krylov subspace approximations instead [7, 11].

The outline of our paper is as follows. In section 2, we introduce the method class
and discuss a reformulation of the method which allows an efficient implementation
with Krylov subspace methods. An implementation using Leja points was proposed
in [3]. Since the reformulation speeds up the Krylov implementation considerably,
we will not consider Leja point methods in this paper. In section 3, we introduce
the analytic framework and derive preliminary error bounds. We work in a frame-
work of C0 semigroups that covers many abstract semilinear evolution equations in
Banach spaces. In contrast to exponential Runge–Kutta methods [14], the new class
of Rosenbrock-type methods produces smaller defects when inserting the exact solu-
tion into the numerical scheme. This is due to the linearization. It facilitates the
derivation of the order conditions and gives much simpler conditions than in [14].
In particular, it is possible to construct a fourth-order integrator with an embedded
third-order method, using three stages only. Since the Jacobian varies from step to
step, the stability estimate of the discrete evolution operator is crucial. The necessary
stability bounds for variable step size discretizations are derived in section 3.3.

In section 4, we give a convergence bound for methods up to order four. Par-
ticular methods of order three and four are given in section 5, and a generalization
to nonautonomous problems is discussed in section 6. In section 7, we briefly de-
scribe an implementation based on Krylov subspace approximations, and we present
two numerical examples: a two-dimensional advection-diffusion-reaction problem and
a Schrödinger equation with time dependent potential. The possible extension for
analytic semigroups is sketched in the appendix.

2. Exponential Rosenbrock-type methods. In this paper, we consider the
time discretization of (possibly abstract) differential equations in autonomous form

(2.1) u′(t) = F (u(t)), u(t0) = u0.
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The precise assumptions on the problem class will be stated in section 3 below. The
numerical schemes considered are based on a continuous linearization of (2.1) along
the numerical solution. For a given point un in the state space, this linearization is

u′(t) = Jnu(t) + gn(u(t)),(2.2a)

Jn = DF (un) =
∂F

∂u
(un), gn(u(t)) = F (u(t))− Jnu(t),(2.2b)

with Jn denoting the Jacobian of F and gn the nonlinear remainder, evaluated at un,
respectively. The numerical schemes will make explicit use of these quantities.

2.1. Method class. Let un denote the numerical approximation to the solution
of (2.1) at time tn. Its value at t0 is given by the initial condition. Applying an
explicit exponential Runge–Kutta scheme [14] to (2.2a), we obtain the following class
of explicit one-step methods:

Uni = ecihnJnun + hn

i−1∑
j=1

aij(hnJn)gn(Unj), 1 ≤ i ≤ s,(2.3a)

un+1 = ehnJnun + hn

s∑
i=1

bi(hnJn)gn(Uni).(2.3b)

Here, hn > 0 denotes a positive time step, and un+1 is the numerical approximation
to the exact solution at time tn+1 = tn + hn.

The method is built on s internal stages Uni that approximate the solution at
tn + cihn. The real numbers ci are called nodes of the method. The method is fully
explicit and does not require the solution of linear or nonlinear systems of equations.
As usual in exponential integrators, the weights bi(z) are linear combinations of the
entire functions

(2.4) ϕk(z) =
∫ 1

0

e(1−σ)z σk−1

(k − 1)!
dσ, k ≥ 1.

These functions satisfy the recurrence relations

(2.5) ϕk(z) =
ϕk−1(z)− ϕk−1(0)

z
, ϕ0(z) = ez.

The coefficients aij(z) will be chosen as linear combinations of the related functions
ϕk(ciz). Henceforth, the methods (2.3) will be called exponential Rosenbrock methods.

Without further mentioning, we will assume throughout the paper that the meth-
ods fulfill the following simplifying assumptions:

(2.6)
s∑
i=1

bi(z) = ϕ1(z),
i−1∑
j=1

aij(z) = ciϕ1(ciz), 1 ≤ i ≤ s.

Note that (2.6) implies c1 = 0 and consequently Un1 = un.
Methods that satisfy the simplifying assumptions (2.6) possess several interesting

features. They preserve equilibria of (2.1), they have small defects which in turn
leads to simple order conditions for stiff problems (section 3.1), they allow a refor-
mulation for efficient implementation (see below), and they can easily be extended to
nonautonomous problems (section 6).
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2.2. Reformulation of the method. For the implementation of an exponential
Rosenbrock method, it is crucial to approximate the application of matrix functions
to vectors efficiently. We, therefore, suggest to express the vectors gn(Unj) as

gn(Unj) = gn(un) +Dnj , 2 ≤ j ≤ s.
A similar approach was used in [27]. Due to the simplifying assumptions (2.6), the
method (2.3) takes the equivalent form

Uni = un + cihnϕ1(cihnJn)F (un) + hn

i−1∑
j=2

aij(hnJn)Dnj ,(2.7a)

un+1 = un + hnϕ1(hnJn)F (un) + hn

s∑
i=2

bi(hnJn)Dni.(2.7b)

The main motivation for this reformulation is that the vectors Dni are expected to be
small in norm. When computing the application of matrix functions to these vectors
with some Krylov subspace method, this should be possible in a low-dimensional
subspace. Consequently, only one computationally expensive Krylov approximation
will be required in each time step, namely, that involving F (un). A similar idea has
also been used to make the code exp4 efficient [12].

3. Analytic framework and preliminary error analysis. For the error anal-
ysis of (2.3), we work in a semigroup framework. Background information on semi-
groups can be found in the textbooks [8, 24]. Let

(3.1) J = J(u) = DF (u) =
∂F

∂u
(u)

be the Fréchet derivative of F in a neighborhood of the exact solution of (2.1).
Throughout the paper we consider the following assumptions.

Assumption C.1. The linear operator J is the generator of a strongly continuous
semigroup etJ on a Banach space X . More precisely, we assume that there exist
constants C and ω such that

(3.2)
∥∥etJ∥∥

X←X ≤ C eωt, t ≥ 0

holds uniformly in a neighborhood of the exact solution of (2.1).
Recall that the analytic functions bi(z) and aij(z) are linear combinations of

ϕk(z) and ϕk(ciz), respectively. These functions are related to the exponential func-
tion through (2.4). Assumption C.1 thus guarantees that the coefficients bi(hJ) and
aij(hJ) of the method are bounded operators. This property is crucial in our proofs.

In the subsequent analysis, we restrict our attention to semilinear problems

(3.3) u′(t) = F (u(t)), F (u) = Au+ f(u), u(t0) = u0.

This implies that (2.2b) takes the form

(3.4) Jn = A+
∂f

∂u
(un), gn(u(t)) = f(u(t))− ∂f

∂u
(un)u(t).

Our main hypothesis on the nonlinearity f is the following.
Assumption C.2. We suppose that (3.3) possesses a sufficiently smooth solution

u : [0, T ] → X , with derivatives in X and that f : X → X is sufficiently often
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Fréchet differentiable in a strip along the exact solution. All occurring derivatives are
supposed to be uniformly bounded.

By Assumption C.2, the Jacobian (3.1) satisfies the Lipschitz condition

(3.5) ‖J(u)− J(v)‖X←X ≤ C ‖u− v‖
in a neighborhood of the exact solution.

Remark. If the semigroup generated by J is not only strongly continuous but an-
alytic, more general nonlinearities can be analyzed. To keep our presentation simple,
we restrict ourselves to strongly continuous semigroups for the moment and sketch
the possible extension to analytic semigroups later in Appendix A.

Examples will be considered in section 7.

3.1. Defects. For brevity, we denote Gn(t) = gn(u(t)). Inserting the exact
solution into the numerical scheme gives

u(tn + cihn) = ecihnJnu(tn) + hn

i−1∑
j=1

aij(hnJn)Gn(tn + cjhn) + Δni,(3.6a)

u(tn+1) = ehnJnu(tn) + hn

s∑
i=1

bi(hnJn)Gn(tn + cihn) + δn+1,(3.6b)

with defects Δni and δn+1. The computation and estimation of the defects is carried
out in the same way as in our previous paper [14, section 4.1]. In particular, expressing
the left-hand side of (3.6a) by the variation-of-constants formula

u(tn + cihn) = ecihnJnu(tn) +
∫ cihn

0

e(cihn−τ)JnGn(tn + τ) dτ

and then expanding Gn into a Taylor series at tn yields

(3.7) Δni = hnψ1,i(hnJn)Gn(tn) + h2
nψ2,i(hnJn)G′n(tn) + Δ[2]

ni ,

with

(3.8) ψj,i(z) = ϕj(ciz)c
j
i −

i−1∑
k=1

aik(z)
cj−1
k

(j − 1)!

and remainders Δ[2]
ni satisfying

(3.9)
∥∥∥Δ[2]

ni

∥∥∥ ≤ Ch3
n.

Small defects in the internal stages facilitate our convergence proofs considerably. This
gives a further reason for requiring (2.6), which implies ψ1,i(z) ≡ 0. Unfortunately,
explicit methods cannot have ψ2,i(z) ≡ 0 for all i. Nevertheless, the second term on
the right-hand side of (3.7) turns out to be small. This is seen from the identity

G′n(tn) =
∂gn
∂u

(u(tn)) u′(tn) =
(
∂f

∂u
(u(tn))− ∂f

∂u
(un)

)
u′(tn),

which itself is a consequence of linearizing at each step; cf. (3.4). By Assumption C.2,
this relation implies

(3.10) ‖G′n(tn)‖ ≤ C‖en‖,
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Table 3.1

Stiff order conditions for exponential Rosenbrock methods applied to autonomous problems.

No. Condition in defect Order condition Order

1 ψ1(z) ≡ 0
∑s

i=1 bi(z) = ϕ1(z) 1

2 ψ1,i(z) ≡ 0
∑i−1

j=1 aij(z) = ciϕ1(ciz), 2 ≤ i ≤ s 2

3 ψ3(z) ≡ 0
∑s

i=2 bi(z)c
2
i = 2ϕ3(z) 3

4 ψ4(z) ≡ 0
∑s

i=2 bi(z)c
3
i = 6ϕ4(z) 4

with en = un − u(tn), and the defects of the internal stages thus obey the bound

(3.11) ‖Δni‖ ≤ Ch2
n‖en‖+ Ch3

n.

Similarly, we get for the defects δn+1 at time tn+1

(3.12) δn+1 =
q∑
j=1

hjnψj(hnJn)G
(j−1)
n (tn) + δ

[q]
n+1,

with

(3.13) ψj(z) = ϕj(z)−
s∑

k=1

bk(z)
cj−1
k

(j − 1)!

and remainders δ[q]n+1 satisfying

(3.14)
∥∥∥δ[q]n+1

∥∥∥ ≤ Chq+1
n .

Again, small defects are desirable. Due to (2.6), we have ψ1(z) ≡ 0. To obtain higher
order bounds for δn+1, first observe that the h2-term in (3.12) is small due to (3.10).
Additional terms vanish if ψj = 0, j ≥ 3.

All conditions encountered so far are collected in Table 3.1. They will later turn
out to be the order conditions for methods up to order 4.

Lemma 3.1. If the order conditions of Table 3.1 are satisfied up to order p ≤ 4,
we obtain

(3.15) ‖δn+1‖ ≤ Ch2
n‖en‖+ Chp+1

n .

Proof. This at once follows from (3.12).

3.2. Preliminary error bounds. Let

en = un − u(tn) and Eni = Uni − u(tn + cihn)

denote the differences between the numerical solution and the exact solution. Sub-
tracting (3.6) from the numerical method (2.3) gives the error recursion

Eni = ecihnJnen + hn

i−1∑
j=1

aij(hnJn) (gn(Unj)−Gn(tn + cjhn))−Δni,(3.16a)

en+1 = ehnJnen + hn

s∑
i=1

bi(hnJn) (gn(Uni)−Gn(tn + cihn))− δn+1.(3.16b)

We will derive bounds for these errors.
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Lemma 3.2. Under Assumption C.2, we have

‖gn(Uni)−Gn(tn + cihn)‖ ≤ C (hn + ‖en‖+ ‖Eni‖) ‖Eni‖ ,(3.17a)

‖gn(un)−Gn(tn)‖ ≤ C ‖en‖2 ,(3.17b) ∥∥∥∥∂gn∂u (u(tn))
∥∥∥∥
X←X

≤ C ‖en‖ ,(3.17c)

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.
Proof. The last bound (3.17c) is a direct consequence of the linearization and the

Lipschitz condition (3.5). Using Taylor series expansion, we get

gn(Uni)−Gn(tn + cihn) =
∂gn
∂u

(u(tn + cihn))Eni

+
∫ 1

0

(1− τ)∂
2gn
∂u2

(u(tn + cihn) + τEni) (Eni, Eni) dτ.

Setting i = 1 at once proves (3.17b). To derive (3.17a), we expand the first term on
the right-hand side once more at tn and use the identity

∂gn
∂u

(u(tn)) = −
∫ 1

0

∂2gn
∂u2

(u(tn) + τen) en dτ.

This finally proves (3.17a).
Using this result, we can establish an error bound for the internal stages.
Lemma 3.3. Under Assumptions C.1 and C.2, we have

‖Eni‖ ≤ C ‖en‖+ Ch3
n,

as long as the global errors en remain in a bounded neighborhood of 0.
Proof. The assertion at once follows from (3.16a), Lemma 3.2, and (3.11).

3.3. Stability bounds. In order to establish convergence bounds, we have to
solve recursion (3.16b). For this purpose, stability bounds for the discrete evolution
operators are crucial. In a first step, we will show stability along the exact solution.

We commence with two auxiliary results.
Lemma 3.4. Let the initial value problem (3.3) satisfy Assumptions C.1 and C.2,

and let Ĵn = DF (u(tn)). Then, for any ω̃ > ω, there exists a constant CL independent
of hn−1 such that

(3.18)
∥∥∥etĴn − etĴn−1

∥∥∥
X←X

≤ CLhn−1eω̃t, t ≥ 0.

Proof. Applying the variation-of-constants formula to the initial value problem

v′(t) = Ĵnv(t) = Ĵn−1v(t) +
(
Ĵn − Ĵn−1

)
v(t)

shows the representation

(3.19) etĴn − etĴn−1 =
∫ 1

0

te(1−σ)tĴn−1

(
Ĵn − Ĵn−1

)
eσtĴndσ.

The required estimate now follows from (3.5) and the smoothness of u(t).
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Lemma 3.5. Under the assumptions of Lemma 3.4, the relation

(3.20) |||x|||n = sup
t≥0

e−ω̃t
∥∥∥etĴnx

∥∥∥ , x ∈ X

defines for any n = 0, 1, 2, . . . a norm on X. This norm is equivalent to ‖·‖ and
satisfies the bound

(3.21) |||x|||n ≤ (1 + CLhn−1)|||x|||n−1 , n ≥ 1.

Proof. Obviously, we have ‖x‖ ≤ |||x|||n. On the other hand, the bound (3.2)
yields |||x|||n ≤ C ‖x‖. Thus, the two norms are equivalent.

For arbitrary x ∈ X , we have

|||x|||n = sup
t≥0

e−ω̃t
∥∥∥(etĴn − etĴn−1 + etĴn−1

)
x
∥∥∥

≤ |||x|||n−1 + sup
t≥0

e−ω̃t
∥∥∥etĴn − etĴn−1

∥∥∥
X←X

‖x‖

≤ (1 + CLhn−1) |||x|||n−1

by Lemma 3.4 and the equivalence of the norms.
The following lemma proves the stability of the discrete evolution operators along

the exact solution.
Lemma 3.6. Under the assumptions of Lemma 3.4, there exists a constant C

such that

(3.22)
∥∥∥ehnĴn · · · eh0Ĵ0

∥∥∥
X←X

≤ C eΩ(h0+···+hn),

with Ω = CL + ω̃.
Proof. By (3.20) and Lemma 3.5, we have∣∣∣∣∣∣∣∣∣ehnĴn · · · eh0Ĵ0x

∣∣∣∣∣∣∣∣∣
n

= sup
t≥0

∥∥∥e−ω̃tetĴne−ω̃hneω̃hnehnĴn · · · eh0Ĵ0x
∥∥∥

≤ sup
t≥0

∥∥∥e−ω̃tetĴneω̃hnehn−1Ĵn−1 · · · eh0Ĵ0x
∥∥∥

= eω̃hn

∣∣∣∣∣∣∣∣∣ehn−1Ĵn−1 · · · eh0Ĵ0x
∣∣∣∣∣∣∣∣∣
n

≤ eω̃hn(1 + CLhn−1)
∣∣∣∣∣∣∣∣∣ehn−1Ĵn−1 · · · eh0Ĵ0x

∣∣∣∣∣∣∣∣∣
n−1

.

Thus, the estimate 1+CLhn−1 ≤ eCLhn−1 together with an induction argument proves
the lemma.

We now turn our attention to the operators Jn = DF (un) that result from the
linearization process (2.2). These operators constitute an essential component of the
numerical scheme (2.3). The triangle inequality shows that

(3.23) ‖un − un−1‖ ≤ Chn−1 + ‖en‖+ ‖en−1‖ .

We now repeat the above estimations with Jn in the role of Ĵn and, in particular,
use (3.23) in the proof of Lemma 3.4. This gives the following stability result for the
discrete evolution operators on X .
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Theorem 3.7. Let the initial value problem (3.3) satisfy Assumptions C.1 and C.2.
Then, for any ω̃ > ω, there exist constants C and CE such that

(3.24)
∥∥ehnJn · · · eh0J0

∥∥
X←X ≤ C eΩ(h0+···+hn)+CE

∑n
j=1 ‖ej‖,

with Ω = CL + ω̃. The bound holds as long as the numerical solution un stays in a
sufficiently small neighborhood of the exact solution of (3.3).

The stability bound (3.24) requires some attention. Strictly speaking, stability is
only guaranteed if the term

∑n
j=1 ‖ej‖ is uniformly bounded in n for t0 ≤ tn ≤ T .

This condition can be considered as a (weak) restriction on the employed step size
sequence; see the discussion in section 4 below.

4. Error bounds. We are now ready to present the main result of our paper.
We will show that the conditions of Table 3.1 are sufficient to obtain convergence up
to order 4 under a mild restriction on the employed step size sequence.

Theorem 4.1. Let the initial value problem (3.3) satisfy Assumptions C.1 and
C.2. Consider for its numerical solution an explicit exponential Rosenbrock method (2.3)
that fulfills the order conditions of Table 3.1 up to order p for some 2 ≤ p ≤ 4. Further,
let the step size sequence hj satisfy the condition

(4.1)
n−1∑
k=1

k−1∑
j=0

hp+1
j ≤ CH,

with a constant CH that is uniform in t0 ≤ tn ≤ T . Then, for CH sufficiently small,
the numerical method converges with order p. In particular, the numerical solution
satisfies the error bound

(4.2) ‖un − u(tn)‖ ≤ C
n−1∑
j=0

hp+1
j

uniformly on t0 ≤ tn ≤ T . The constant C is independent of the chosen step size
sequence satisfying (4.1)

Proof. From (3.16b), we obtain the error recursion

(4.3) en+1 = ehnJnen + hn	n − δn+1, e0 = 0,

with

	n =
s∑
i=1

bi(hnJn) (gn(Uni)−Gn(tn + cihn)) .

Solving this recursion and using e0 = 0 yields

(4.4) en =
n−1∑
j=0

hj ehn−1Jn−1 · · · ehj+1Jj+1
(
	j − h−1

j δj+1

)
.

Employing Lemmas 3.1, 3.2, and 3.3, we obtain the bound

(4.5) ‖	j‖+ h−1
j ‖δj+1‖ ≤ C

(
hj ‖ej‖+ ‖ej‖2 + hpj

)
.
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Inserting this into (4.4) and using the stability estimate (3.24) yields

(4.6) ‖en‖ ≤ C
n−1∑
j=0

hj

(
‖ej‖2 + hj ‖ej‖+ hpj

)
.

The constant in this estimate is uniform as long as

(4.7)
n−1∑
j=1

‖ej‖ ≤ CA

uniformly holds on t0 ≤ tn ≤ T . The application of a discrete Gronwall lemma to (4.6)
then shows the desired bound (4.2).

It still remains to verify that condition (4.7) holds with a uniform bound CA. This
follows now recursively from (4.2) and our assumption on the step size sequence (4.1)
with CH sufficiently small.

In the remainder of this section, we discuss the encountered restriction (4.1) on
the step size sequence. For constant step sizes, this condition evidently holds with

CH =
1
2
hp−1(tn − t0)2.

Since p ≥ 2, the size of CH tends to zero for h→ 0.
A similar bound holds for quasi-uniform step size sequences where the ratio be-

tween the maximal and minimal step length is uniformly bounded. For sequences
with increasing step sizes, condition (4.1) is fulfilled as well.

In practice, a problem with (4.1) might occur if the step size suddenly drops by
several orders of magnitude. In that case, however, it is possible to modify the above
stability analysis and to relax the condition on the step sizes. We briefly explain the
idea, but we do not work out all details. If the error at time tj , say, is large compared
to the actual step length, one should rather compare the numerical solution with
a smooth trajectory that passes close to uj. Although uj might be a nonsmooth
initial value, such trajectories exist. Then the previous stability proof can be applied
once more, at the possible price of increasing the constant C in (3.23) and thus the
constants CL and Ω. As long as this is done only a fixed number of times, stability
in (3.24) is still guaranteed.

5. Methods of order up to four. The well-known exponential Rosenbrock–
Euler method is given by

(5.1)
un+1 = ehnJnun + hnϕ1(hnJn)gn(un)

= un + hnϕ1(hnJn)F (un).

It is computationally attractive, since it requires only one matrix function per step.
The method obviously satisfies condition 1 of Table 3.1, while condition 2 is void.
Therefore, it is second-order convergent for problems satisfying our analytic frame-
work. A possible error estimator for (5.1) is described in [3].

From the order conditions of Table 3.1, it is straightforward to construct pairs of
embedded methods of order 3 and 4. For our variable step size implementation, we
consider (2.3b) together with an embedded approximation

(5.2) ûn+1 = ehnJnun + h

s∑
i=1

b̂i(hJn) gn(Uni),
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which relies on the same stages Uni. The methods given below were first introduced
in [15]. They will be used in the numerical experiments in section 7.

The scheme exprb32 consists of a third-order exponential Rosenbrock method
with a second-order error estimator (the exponential Rosenbrock–Euler method). Its
coefficients are

c1
c2 a21

b1 b2
b̂1

=

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

The scheme exprb43 is a fourth-order method with a third-order error estimator. Its
coefficients are

c1
c2 a21

c3 a31 a32

b1 b2 b3
b̂1 b̂2 b̂3

=

0
1
2

1
2ϕ1

(
1
2 ·
)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

Note that the internal stages of the above methods are just exponential Rosenbrock–
Euler steps. This leads to simple methods that can cheaply be implemented.

Evidently, the order conditions of Table 3.1 imply that the weights of any third-
order method have to depend on ϕ3, whereas that of any fourth-order method depend
on ϕ3 and ϕ4 (in addition to ϕ1).

6. Nonautonomous problems. The proposed method can easily be extended
to nonautonomous problems

(6.1) u′ = F (t, u), u(t0) = u0

by rewriting the problem in autonomous form:

(6.2a) U ′ = F(U) , U =
[
t
u

]
, F(U) =

[
1

F (t, u)

]
,

with Jacobian

(6.2b) Jn =
[

0 0
vn Jn

]
, vn =

∂

∂t
F (tn, un), Jn =

∂

∂u
F (tn, un).

This transformation is standard for Rosenbrock methods as well (see [10]), but it
changes a linear nonautonomous problem into a nonlinear one.

In order to apply our method to the autonomous system (6.2), we have to compute
the matrix functions of Jn. Using Cauchy’s integral formula and exploiting the special
structure of J , we get

ϕ(hJ ) =
[

ϕ(0) 0
hϕ̂(hJ)v ϕ(hJ)

]
, ϕ̂(z) =

ϕ(z)− ϕ(0)
z

.

For the particular functions in our method, we obtain from (2.5) the relation

(6.3) ϕ̂i(hJ) = ϕi+1(hJ).
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In our formulation, we will work again with the smaller quantities

(6.4) Dnj = gn(tn + cjhn, Unj)− gn(tn, un),

where

gn(t, u) = F (t, u)− Jnu− vnt.

Applying method (2.7) to the autonomous formulation (6.2), we get

Uni = un + hnciϕ1(cihnJn)F (tn, un)

+ h2
nc

2
iϕ2(cihnJn)vn + hn

i−1∑
j=2

aij(hnJn)Dnj ,(6.5a)

un+1 = un + hnϕ1(hnJn)F (tn, un) + h2
nϕ2(hnJn)vn + hn

s∑
i=2

bi(hnJn)Dni.(6.5b)

This is the format of an exponential Rosenbrock method for nonautonomous prob-
lems (6.1).

7. Numerical experiments. We have implemented the exponential Rosen-
brock methods exprb32 and exprb43 in Matlab with adaptive time stepping. We
employ a standard step size selection strategy based on the local error [10, pp. 28–31].
The error is estimated with the help of the corresponding embedded method from sec-
tion 5. Our implementation involves two different options for dealing with the matrix
ϕ-functions: For small examples, we employ diagonalization or Padé approximation
for the explicit computation of the matrix functions. For large problems, Krylov sub-
space methods are used for approximating the product of the matrix functions with
the corresponding vectors. For autonomous problems, we use the reformulation (2.7),
which requires one Krylov subspace with the vector F (un) and s−1 Krylov subspaces
with the vectors Dni, i = 2, . . . , s. Due to ‖Dni‖ = O(h2

n), these approximations can
be computed in very low dimensional subspaces. For nonautonomous problems, the
format (6.5) requires one additional Krylov subspace with the vector vn. Since the
term involving vn is multiplied with h2

n (compared to hn for the other vectors), this
subspace will be low-dimensional as well.

Example 7.1. As a first example we consider a two-dimensional advection-
diffusion-reaction equation for u = u(x, y, t):

(7.1) ∂tu = ε(∂xxu+ ∂yyu)− α(ux + uy) + γu
(
u− 1

2

)
(1− u), (x, y) ∈ (0, 1)2,

with homogeneous Neumann boundary conditions and the initial value

u(x, y, 0) = 256 ((1− x)x(1 − y)y)2 + 0.3,

where ε = 1/100, α = −10, and γ = 100. The spatial discretization was done with
finite differences using 101 grid points in each direction.

This example is taken from [3], where Fortran implementations of exprb43,
combined with the real Leja point method [4], and of the Runge–Kutta–Chebyshev
method RKC from [25] were compared. Here, we compare Matlab implementations
of RKC, exprb43, exp4 from [12], and Krogstad’s method [17]. The latter three make
use of Krylov subspace approximations. To improve the efficiency of the Krogstad
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Fig. 7.1. Step sizes for the advection-diffusion-reaction equation (7.1) for t ∈ [0, 0.08]
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Fig. 7.2. Number of time steps versus accuracy (left) and CPU time versus accuracy (right)
for the advection-diffusion-reaction example (7.1) for t = 0.08

method, we reused information from previously computed Krylov subspaces, an ap-
proach proposed in [13]. Since an adaptive step size control based on embedding is
not possible for Krogstad’s method, we ran this method with constant step size. For
this particular example, the step size control of the other schemes also lead to almost
constant steps sizes; see Figure 7.1. All simulations achieved a final accuracy of about
0.004 at t = 0.08. It can be seen that, due to the large advection part, the exponential
methods can take much larger steps than RKC with exprb43 taking the largest ones.
In total, exprb43 takes only 18 steps, Krogstad’s method takes 27 steps, exp4 takes
119 steps, while RKC uses 383 steps.

In Figure 7.2, we compare the performance of the Krylov implementations of
exp4, exprb43, and Krogstad’s method with a Matlab implementation of RKC.
Our implementation of RKC is based on the well-established Fortran code by Som-
meijer available from the netlib repository. Our implementations of exp4 and
exprb43 allow a maximum dimension of the Krylov subspaces of 36, which is the
default value suggested in [12]. The codes were run with tolerances atol = rtol =
10−4, 10−4.5, . . . , 10−6.5 (except for Krogstad’s method, which was used with constant
step size). In the left diagram, we plot the achieved accuracy as a function of the
required number of steps. It turns out that, for a given accuracy, the exponential
Rosenbrock method exprb43 uses significantly larger time steps than exp4 and RKC.
The number of time steps required for Krogstad’s method is about the same as for
exprb43.
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Fig. 7.3. Number of time steps versus average number of Krylov steps (left) and number of
Krylov steps versus accuracy (right) for the advection-diffusion-reaction example (7.1) for t = 0.08

However, the efficiency of a code should also take the cost per time step into
account. Therefore, we next consider the CPU time required to achieve a certain
accuracy. We are fully aware of the fact that comparing CPU times strongly depends
on the available computer architecture, the implementation, and the programming
language. Nevertheless, we think that Matlab comparisons might be of interest.

In Figure 7.2 we show the achieved accuracy as a function of the required CPU
time. It can be seen that for moderate tolerances, exp4 is faster than exprb43 while
for more stringent tolerances, exprb43 requires less CPU time. This can be explained
by considering the number of Krylov steps used by these methods. In the left di-
agram in Figure 7.3, we plotted the average number of Krylov steps over the total
number of time steps. Since exprb43 uses significantly larger time steps, we know
from the convergence analysis of Krylov subspace methods [7, 11] that this requires
more Krylov steps. The right diagram of Figure 7.3 shows the achieved accuracy
versus the total number of Krylov steps. Since the Krylov approximations dominate
the computational cost, this explains the right diagram of Figure 7.2. Note that it is
impossible to give a reformulation of Krogstad’s method in such a way that only one
expensive Krylov subspace is required in each step. The gain achieved by reusing pre-
viously computed Krylov subspaces [13] does not compensate for this disadvantage.
Moreover, Krogstad’s method has four stages and uses even more matrix functions
than exprb43.

Example 7.2. As a second example, we consider the one-dimensional Schrödinger
equation [12] for ψ = ψ(x, t):

(7.2a) i
∂ψ

∂t
= H(x, t)ψ,

with the time-dependent Hamiltonian

(7.2b) H(x, t) = −1
2
∂2

∂x2
+ κ

x2

2
+ μ(sin t)2 x .

We used the parameter values κ = 10 and μ = 100. The initial value was chosen as
ψ(x, 0) = e−

√
κx2/2, which corresponds to the ground state of the unforced harmonic

oscillator. Semidiscretization in space was done by a pseudospectral method with 512
Fourier modes on the interval [−10, 10] with periodic boundary conditions.
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Fig. 7.4. Step sizes taken by exp4, radau5, and exprb43 for the laser example (7.2) for t ∈ [0, 3].
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Fig. 7.5. Number of time steps versus accuracy (left) and CPU time versus accuracy (right)
for the laser example (7.2) for t = 3.

It was shown in [12] that the Matlab implementation of exp4 outperforms Mat-

lab’s standard nonstiff ode45 method and matrix-free implementations of the stiff
solvers radau5 and ode15s. We refer to [12] for details. Here, we use exactly the
same spatial discretization but run the simulation until t = 3.

In Figure 7.4, we display the step sizes chosen by the adaptive step size control for
exp4, radau5, and exprb43. The tolerances were set in such a way that all methods
achieved a final accuracy of about 0.05. As illustrated in Figure 7.4, exprb43 advances
with larger step sizes than the other two methods. In total, exprb43 uses 256 steps,
exp4 uses 1906 steps, and radau5 uses 537 steps. In our implementation of radau5,
the linear systems arising within the Newton iteration are solved directly, while exp4
and exprb43 are used with Krylov subspace approximations. The direct solution of
the linear systems arising in the radau5 code result in a total CPU time which is more
than 10 times longer than exprb43. Since it has been shown in [12] that a much more
efficient W-version of radau5 was still slower than exp4, we did not include radau5
into our runtime comparisons.

In Figure 7.5, we compare the performance of the Krylov implementations of exp4
and exprb43. Both codes were run with tolerances atol = rtol = 10−4, 10−4.5,
. . . , 10−6.5. The diagrams show that the exponential Rosenbrock method exprb43
uses significantly larger step sizes than exp4. Moreover, it is also much faster in
terms of total CPU time.
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8. Concluding remarks. In this paper, we have analyzed the convergence prop-
erties of exponential Rosenbrock-type methods in an abstract framework of C0 semi-
groups. A local error analysis revealed the stiff order conditions, which in turn enabled
us to construct methods of orders three and four with embedded error estimates of or-
ders two and three, respectively. To control the error propagation, we derived stability
bounds for variable step sizes. This enabled us to give a variable step size convergence
proof. We implemented the methods in Matlab, using Krylov subspace methods to
approximate the applications of matrix functions to vectors. The numerical results
clearly demonstrate the efficiency of the new integrators.

Appendix A. Analytic semigroups.
So far, we restricted our attention to strongly continuous semigroups. This frame-

work, however, limits the class of possible nonlinearities due to Assumption C.2. If the
semigroup is even analytic, we can allow more general nonlinearities. In this appendix,
we sketch how to extend our analysis to this case. For the theoretical background of
analytic semigroups, we refer to [8, 24].

Assumption A.1. The linear operator A in (3.3) is the generator of an analytic
semigroup.

Without loss of generality, we can assume that A is invertible (otherwise, we shift
it by an appropriate multiple of the identity). Therefore, fractional powers of A are
well defined. We choose 0 ≤ α < 1 and define V = D(Aα) ⊂ X . The linear space V
is a Banach space with norm ‖v‖V = ‖Aαv‖.

Our basic assumptions on f are the following.
Assumption A.2. We suppose that (3.3) possesses a sufficiently smooth solution

u : [0, T ]→ V with derivatives in V and that f : V → X is sufficiently often Fréchet
differentiable in a strip along the exact solution. All occurring derivatives are supposed
to be uniformly bounded.

A consequence of Assumption A.1 is that there exist constants C and ω such that

(A.1)
∥∥etJ∥∥

V←V +
∥∥tαetJ

∥∥
V←X ≤ C eωt, t ≥ 0

holds in a neighborhood of the exact solution.
With these assumptions at hand, we derive once more the bounds of section 3.

Instead of (3.11), we now get

(A.2) ‖Δni‖X + hαn ‖Δni‖V ≤ Ch2
n‖en‖V + Ch3

n,

and (3.15) is replaced by

(A.3) ‖δn+1‖X + hαn‖δn+1‖V ≤ Ch2
n‖en‖V + Chp+1

n .

The same arguments as in the proofs of Lemma 3.2 and 3.3 show the following refined
estimates.

Lemma A.1. Under Assumptions A.1 and A.2, we have

‖gn(Uni)−Gn(tn + cihn)‖X ≤ C (hn + ‖en‖V + ‖Eni‖V ) ‖Eni‖V ,(A.4a)

‖gn(un)−Gn(tn)‖X ≤ C ‖en‖2V ,(A.4b) ∥∥∥∥∂gn∂u (u(tn))
∥∥∥∥
X←V

≤ C ‖en‖V ,(A.4c)

and

(A.4d) ‖Eni‖V ≤ C ‖en‖V + Ch3−α
n ,

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.
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Further, Assumption A.2 implies

(A.5)
∥∥∥Ĵn − Ĵn−1

∥∥∥
X←V

≤ Chn−1, n ≥ 1,

with a constant C that is independent of hn−1. The same arguments as in the proof
of Lemma 3.4 with (3.2) replaced by (A.1) now show that

(A.6)
∥∥∥etĴn − etĴn−1

∥∥∥
V←V

≤ CLhn−1eω̃t.

This implies the desired stability estimate in V . For the convergence proof, we need
an additional stability result that reflects the parabolic smoothing.

Lemma A.2. Let the initial value problem (3.3) satisfy Assumptions A.1 and A.2,
and let Ĵn = DF (u(tn)). Then, for any ω̃ > ω, there exists a constant C independent
of hn−1 such that

(A.7)
∥∥∥ehnĴn · · · eh0Ĵ0

∥∥∥
V←X

≤ C
eΩ(h0+...+hn)

(h0 + . . .+ hn)α
,

with Ω = CL + ω̃ and CL from (A.6).
Proof. Using the same arguments as in [22, section 5] shows this bound.
We are now in the position to state the convergence proof for exponential Rosen-

brock methods in the framework of analytic semigroups. For notational simplicity,
we formulate the result for constant step sizes only.

Theorem A.3. Let the initial value problem (3.3) satisfy Assumptions A.1
and A.2 and consider for its numerical solution an explicit exponential Rosenbrock
method (2.3) with constant step size h. Assume that the order conditions of Table 3.1
hold up to order p with p = 2 or p = 3. Then, for h sufficiently small, the numerical
method converges with order p. In particular, the numerical solution un satisfies the
uniform error bound

‖un − u(tn)‖V ≤ C hp.

The constant C depends on T , but it is independent of n and h for 0 ≤ nh ≤ T − t0.
Proof. We proceed as in the proof of Theorem 4.1. Due to (A.3) and (A.4), we

can bound

(A.8) ‖	n‖X + h−1‖δn+1‖X ≤ C
(
h ‖en‖V + ‖en‖2V + hp

)
.

By the stability estimate, we now have

‖en‖V ≤ C
n−1∑
j=0

h

(tn − tj+1)α
(
h ‖ej‖V + ‖ej‖2V + hp

)
.

The desired error bound thus follows from the application of a discrete Gronwall
lemma with weakly singular kernel.

Remark. For p ≥ 4, the analysis is much more delicate. Due to (A.4d), the bound
(A.8) now contains a term of the order h4−α. Under additional assumptions on f ,
this order reduction can be avoided. For exponential Runge–Kutta methods, this has
been detailed in [14]. We do not elaborate this point here.
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HIGHER-ORDER FINITE ELEMENT METHODS AND POINTWISE
ERROR ESTIMATES FOR ELLIPTIC PROBLEMS ON SURFACES∗
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Abstract. We define higher-order analogues to the piecewise linear surface finite element method
studied in [G. Dziuk, “Finite elements for the Beltrami operator on arbitrary surfaces,” in Partial
Differential Equations and Calculus of Variations, Springer-Verlag, Berlin, 1988, pp. 142–155] and
prove error estimates in both pointwise and L2-based norms. Using the Laplace–Beltrami problem
on an implicitly defined surface Γ as a model PDE, we define Lagrange finite element methods of
arbitrary degree on polynomial approximations to Γ which likewise are of arbitrary degree. Then we
prove a priori error estimates in the L2, H1, and corresponding pointwise norms that demonstrate the
interaction between the “PDE error” that arises from employing a finite-dimensional finite element
space and the “geometric error” that results from approximating Γ. We also consider parametric finite
element approximations that are defined on Γ and thus induce no geometric error. Computational
examples confirm the sharpness of our error estimates.
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1. Introduction. The numerical solution of partial differential equations (PDEs)
defined on surfaces arises naturally in many applications (cf. [CDR03], [CDD+04],
[BMN05], [He06], and [DE07a], among many others). We consider the following
model problem in order to focus on basic issues arising in the definition and analysis
of such numerical methods. Let Γ be a smooth n-dimensional surface (n = 2, 3) with-
out boundary embedded in Rn+1. Let f be given data satisfying

∫
Γ
f dσ = 0 where

dσ is the surface measure, and let u solve

−ΔΓu = f on Γ.

Here ΔΓ is the Laplace–Beltrami operator on Γ, and we require
∫
Γ
u dσ = 0 in order

to guarantee uniqueness.
Several methods for defining suitable triangulations of Γ and corresponding finite

element spaces have been proposed. For example, one may use the manifold structure
of Γ (cf. [Ho01]) or a global parametric representation (cf. [AP05]) to triangulate Γ.
In this work we focus on the method originally considered in [Dz88] in which Γ is
represented as a level set of a smooth signed distance function d. In [Dz88], Γ is
approximated by a polyhedral surface Γh having triangular faces, and the equations
for defining a piecewise linear finite element approximation to u are conveniently de-
fined and solved on Γh. This method has several advantages when compared with
approaches relying on global or local parametrizations of Γ. These include its flexi-
bility in handling various surfaces and its direct extension to problems in which the
surface under consideration evolves in an unknown fashion and a parametrization is
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thus not available. The paradigm example of such an evolution problem is motion of
a surface by mean curvature flow; cf. [Dz91], [DDE05].

In the present work we focus on two goals. The first is to define higher-order ana-
logues to the surface finite element method defined in [Dz88]. Higher-order approx-
imations are desirable in many situations because of their increased computational
efficiency versus piecewise linear finite element methods. In order to obtain such ap-
proximations, it is generally necessary to approximate Γ to higher order in addition
to employing higher-order finite element spaces. We thus construct parametric finite
element spaces of arbitrary degree that are defined on arbitrary-degree polynomial
approximations to Γ. In addition, we describe fully parametric finite element spaces
defined directly on Γ via local transformations from the faces of Γh so that no error
arises from approximating Γ. It should be noted that in both of these cases, we require
explicit knowledge of the distance function d (either through an analytical formula or
by a numerical approximation) in order to construct our algorithm.

Our second main goal is to carry out a thorough error analysis for finite element
methods for the Laplace–Beltrami operator on surfaces. The original work of Dziuk
in [Dz88] contains proofs of optimal-order convergence of the piecewise linear surface
finite element method in the L2 and energy norms. Here we prove optimal-order
estimates for pointwise errors in function values and gradients and for local energy
errors in addition to the L2 and energy errors. These estimates are valid for arbitrary
degrees of finite element spaces and polynomial approximations to Γ. As in [Dz88],
we split the overall error into a “geometric error” arising from the approximation of
Γ and a standard finite element “almost-best-approximation” error which arises from
approximating an infinite-dimensional function space by a finite-dimensional finite
element space. Roughly speaking, when employing finite element spaces of degree r
on polynomial surface approximations of degree k, we have

‖∇Γ(u− uh)‖L2(Γ) ≤ Chr‖u‖Hr+1(Γ) + Chk+1‖u‖H1(Γ),

‖u− uh‖L2(Γ) ≤ Chr+1‖u‖Hr+1(Γ) + Chk+1‖u‖H1(Γ),

where uh is the finite element solution, ∇Γ is the tangential gradient on Γ, and C
depends on geometric properties of Γ. We also prove similar estimates in L∞ and
W 1
∞. As we verify via numerical experiments, one must thus choose k + 1 ≥ r to

achieve optimal-order convergence in W 1
p norms and k ≥ r to achieve optimal-order

convergence in Lp norms.
We finally note that approximating Γ via higher-degree polynomials has the added

benefit that the curvatures of the approximating surface Γh have a natural point-
wise definition and converge to those of Γ. The availability of a simple curvature
approximation is beneficial in applications where the weak form of the PDE under
consideration, and thus also the finite element method, explicitly employs curvature
information (as, for example, in the image processing application in [CDR03]). Cur-
vature information also was used in the a posteriori error estimates given in [DD07].
However, pointwise curvatures are not naturally defined on the piecewise linear dis-
crete surfaces employed in [Dz88], and ad-hoc reconstruction methods must be used to
define suitable curvatures if they are explicitly required in calculations (cf. [CDR03]).

An outline of the paper is as follows. Section 2 contains definitions and prelimi-
naries. In section 3 we prove abstract error estimates in various norms. In section 4,
we demonstrate how these abstract estimates may be applied to various finite element
methods on surfaces and give computational results illustrating the basic error behav-
ior of the methods. In section 5 we give a brief discussion of conditions under which
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our error analysis may be extended to more general classes of PDEs on surfaces and
manifolds.

2. Preliminaries. In this section we record a number of preliminaries concern-
ing geometry, transformations of functions between the continuous and discrete sur-
faces Γ and Γh, analytical results, and finite element approximation theory.

2.1. Geometric and analytical preliminaries on Γ. We assume throughout
that Γ is a compact, oriented, C∞, two- or three-dimensional surface without bound-
ary which is embedded in R3 or R4, respectively. Our results may be extended to
higher-dimensional surfaces of codimension one if appropriate results from finite ele-
ment approximation theory can be proved; we restrict ourselves to lower-dimensional
manifolds so that we may employ the Lagrange interpolant in our analysis.

Let d be the oriented distance function for Γ. For concreteness, let d < 0 on the
interior of Γ and d > 0 on the exterior of Γ. �ν = ∇d is then the outward-pointing unit
normal, and H = ∇2d is the Weingarten map. Here we express these quantities in
the coordinates of the embedding space Rn+1 (n = 2, 3). For x ∈ Γ, the n eigenvalues
κ1, . . . , κn of H corresponding to eigenvectors perpendicular to �ν are the principal
curvatures at x. Let U ⊂ Rn+1 be a strip of width δ about Γ, where δ > 0 is
sufficiently small to ensure that the decomposition

a(x) = x− d(x)�ν(x)

onto Γ is unique. We also require that δ < mini=1,...,n
1

‖κi‖L∞(Γ)
; cf. [GT98, sec-

tion 14.6] and [DD07].
Let P = I− �ν ⊗ �ν be the projection onto the tangent plane at x, where ⊗ is the

outer product defined by (�a⊗�b)�c = �a�b ·�c. Then ∇Γ = P∇ is the tangential gradient,
divΓ = ∇Γ· is the tangential divergence, and ΔΓ = divΓ∇Γ is the Laplace–Beltrami
operator. We shall use standard notation (H1(Γ), W j

p (Γ), etc.) for Sobolev spaces
and norms of functions possessing j tangential derivatives lying in Lp.

Next we state some analytical results. Let

(2.1) L(u, v) =
∫

Γ

∇Γu∇Γv dσ,

and let (·, ·) be the L2 inner product over Γ.
Lemma 2.1. Let f ∈ L2(Γ) satisfy

∫
Γ f dσ = 0. Then the problem L(u, v) =

(f, v) ∀ v ∈ H1(Γ) has a unique weak solution u satisfying
∫
Γ
u dσ = 0, and

(2.2) ‖u‖H2
2(Γ) ≤ C‖f‖L2(Γ).

Proof. See [Aub82, Chapter 4] for a proof of existence and uniqueness. Inequal-
ity (2.2) may be proved by local transformations to subsets of Rn and a covering
argument.

The proofs of our pointwise error estimates also rely on properties of the Green’s
function. We denote by α(x, y) the surface distance between x, y ∈ Γ.

Lemma 2.2. There exists a function G(x, y), unique up to a constant, such that
for all functions φ ∈ C2(Γ),

φ(x) =
1
|Γ|
∫

Γ

φ dσ +
∫

Γ

G(x, y)(−ΔΓφ(y)) dσ.

In addition, for x, y ∈ Γ with x 
= y,

(2.3) G(x, y) ≤
{
C(1 + logα(x, y)), n = 2,
Cα(x, y)2−n, n > 2.
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Also, let |γ + β| > 0, where γ and β are multi-indices. Then

(2.4) |Dγ
Γ,yD

β
Γ,xG(x, y)| ≤ Cα(x, y)2−n−|γ+β|.

Proof. Existence of the Green’s function G, (2.3), and (2.4) for 1 ≤ |α| ≤ 2 and
|β| = 0 are contained in Theorem 4.13 of [Aub82]. Inequality (2.4) may be easily
extended to arbitrary α, β with |α+β| > 0 by using the representation (17) on p. 109
of [Aub82].

Finally, let γΓ > 0 be the largest positive number such that all balls BγΓ(x0) =
{x ∈ Γ : α(x, x0) < γΓ} of radius γΓ map smoothly to domains in Rn. Such a number
γΓ exists since Γ is a smooth, compact surface.

2.2. The discrete surface Γh. Let Γh ⊂ U be a polyhedron having triangular
faces (n = 2) or a polytope having tetrahedral cells (n = 3) whose vertices lie on Γ
and whose faces (cells) are shape-regular and quasi-uniform of diameter h. We shall
denote by T̃h the set of triangular faces of Γh and by Th the image under a of T̃h (i.e.,
Th consists of curved simplices lying on Γ). Let �νh be the outward unit normal on Γh.

We will analyze finite element methods defined on Γh, on Γ, and on higher-
order polynomial approximations of Γ, but Γh will play a central role in defining
and analyzing all of them. From a programming standpoint in particular, Γh is
fundamental to our methods in that the faces T̃h of Γh always constitute the “base”
triangulation of Γ, with parametric finite element spaces then being defined over T̃h.

2.3. Higher-order polynomial approximations to Γ. Next we describe a
family Γkh (k ≥ 1) of polynomial approximations to Γ. The higher-order finite element
spaces we use here are largely described in [He05] and also are similar to the surface
element spaces described in [Ne76]. First let Γh = Γ1

h be a polyhedral approximation
to Γ as in the preceding subsection. For k ≥ 2 and for a given element T̃ ∈ T̃h, let
φk1 , . . . , φ

k
nk

be the Lagrange basis functions of degree k on T̃ corresponding to the
nodal points x1, . . . , xnk . For x ∈ T̃ , we then define the discrete projection

ak(x) =
nk∑
j=1

a(xj)φkj (x).

Employing the above definition on each element T̃ ∈ T̃h yields a continuous piecewise
polynomial map on Γh. We then define the corresponding discrete surface

Γkh = {ak(x) : x ∈ Γh}.
Thus each component of ak is the Lagrange interpolant of the corresponding compo-
nent of the projection a restricted to Γh. Let T̂ kh be the image under ak of T̃h, i.e.,
for T̂ ∈ T̂ kh , T̂ = ak(T̃ ) for some T̃ ∈ T̃h. Let also T kh be the image under a of T̂ kh .

Next we discuss the computation of geometric quantities on Γkh. Note first that
Γkh is defined parametrically, not implicitly as is Γ. Thus practical computation of
geometric quantities such as normals and curvatures on Γkh may involve somewhat
different formulas than does computation of the corresponding quantities on Γ.

Let �νkh be the (piecewise smooth) unit normal on Γkh. In order to compute �νkh
in a practical situation, we let K be a unit simplicial reference element lying in Rn.
Let T̂ ∈ T̂ kh with T̂ = ak(T̃ ) where T̃ ∈ T̃h, and let M : K → T̃ be an affine
coordinate transformation with M(K) = T̃ . A typical finite element code allows easy
access to the quantities âk,x1 , . . . , âk,xn , where x1, . . . , xn are the standard Euclidean
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coordinates on K and âk = ak ◦M. �νkh is then the outward-pointing unit vector that
is perpendicular to âk,x1 , . . . , âk,xn . If n = 2, we thus have for x ∈ K

(2.5) �νkh(âk(x)) = ± âk,x1(x) × âk,x2(x)
|âk,x1(x) × âk,x2(x)|

.

One advantage of employing higher-order approximations to Γ is that in contrast
to piecewise linear approximations, such surfaces have naturally defined pointwise
curvatures. This information is explicitly needed in the weak (and thus finite element)
formulations of various equations. Fix a point âk(x) ∈ Γkh, where x ∈ K withK and âk
as above. The second fundamental form with respect to the basis {âk,x1 , . . . , âk,xn} of
the tangent space Tâk(x) is given by II = [âk,xixj ·�νkh ], and the metric tensor is given by
G = [âk,xi · âk,xj ]. The Weingarten map with respect to the basis {âk,x1 , . . . , âk,xn} is
then Htan = IIG−1. It is often desirable to express the Weingarten map with respect
to the coordinates of the embedding space Rn+1 instead of with respect to the basis
of the tangent space induced by âk. We thus compute

Hk
h =

[
âk,x1 .. âk,xn

]
HtanPn

[
âk,x1 .. âk,xn �ν

k
h

]−1

,

where Pn is defined by (x1, . . . , xn, xn+1) → (x1, . . . , xn). The principal curvatures
and corresponding eigenbasis of the tangent space may be computed from Hk

h. An
alternative when n = 2 is to apply the formula Hk

h = ∇Γk
h
�νkh to (2.5).

We now state results concerning the approximation of Γ by Γkh.
Proposition 2.3. For h small enough, T̃ ∈ T̃h, T̂ ∈ T̂ kh , and 1 ≤ i ≤ k,

‖d‖L∞(Γk
h) ≤ ‖a− ak‖L∞(Γh) ≤ Chk+1,(2.6)

‖a− ak‖W i∞(T̃ ) ≤ Chk+1−i,(2.7)

‖�ν − �νkh‖L∞(Γk
h) ≤ Chk,(2.8)

‖H ◦ a−Hk
h‖L∞(T̂ ) ≤ Chk−1.(2.9)

The constants C above depend upon the distance function d and its derivatives.
Proof. Inequalities (2.6) and (2.7) follow directly from the definition of ak as the

Lagrange interpolant of a and the definition of d (cf. [BS02] for standard results con-
cerning finite element interpolation theory). To prove (2.8), consider a point x̂ ∈ Γkh,
where x̂ = ak(x̃) for x̃ ∈ T̃ ⊂ Γh. Employing (2.6) and the smoothness of Γ, we have

|�ν(x̂)− �νkh(x̂)| ≤ |�ν(ak(x̃))− �ν(a(x̃))|+ |�ν(a(x̃))− �νkh(ak(x̃))|
≤ C(Γ)hk+1 + |�ν(a(x̃))− �νkh(ak(x̃))|.

Assuming without loss of generality that T lies in the x1, . . . , xn-hyperplane, we next
note that �ν(a(x̃)) is the outward-facing unit vector orthogonal to ax1 , . . . , axn and
�νkh(ak(x̃)) is the outward-facing unit vector orthogonal to ak,x1 , . . . , ak,xn . From (2.7)
we have |axi−ak,xi | ≤ Chk, and it is also not difficult to compute that |axi | is bounded
from above and below independent of h for 1 ≤ i ≤ n. Using these facts, one may
then compute in an elementary fashion that |�ν(a(x̃))−�νkh(ak(x̃))| ≤ Chk, for example,
by using the Gram–Schmidt orthonormalization algorithm.

Inequality (2.9) may be proved in a similar fashion after noting that ‖axixj −
ak,xixj‖L∞(T̂ ) ≤ Chk−1 for any element T̂ ⊂ Γkh.
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Remark 2.4. Because Hk
h involves the second derivatives of a C0 interpolant,

it is only defined elementwise. However, for k ≥ 2 a pointwise definition of Hk
h on

an element interface may be defined by taking the limit of Hk
h as the interface is

approached from any adjacent element. Stitching these elementwise approximations
together yields a global, piecewise continuous curvature approximation with O(hk−1)
error. In particular, while Hk

h viewed globally is a distribution with singular jump
terms on element interfaces, it is not necessary to take these jump terms into account
in order to obtain a convergent pointwise curvature approximation for higher-order
discrete surfaces.

2.4. The correspondence between Γh, Γk
h, and Γ. Our analysis requires

a number of relationships between functions defined on Γ and Γkh, as in [Dz88] and
[DD07]. In addition, proving approximation results for the parametric finite element
spaces Srhk will require establishing similar relationships between functions defined on
Γkh and Γh.

We first establish relationships between functions defined on the continuous sur-
face Γ and the discrete surfaces Γkh. Let v ∈ H1(Γ) and define the extension v�(x) =
v(a(x)) for x ∈ U . For vh ∈ H1(Γkh) we define the lift ṽh ∈ H1(Γ) by ṽh(a(x̃)) = vh(x),
x̃ ∈ Γh. For vh ∈ H1(Γkh), we then define the extension v�h(x) = ṽh(a(x)) for any
x ∈ U . Also, for x̂ ∈ Γkh let μhk(x̂) satisfy μhk(x̂) dσhk(x̂) = dσ(a(x̂)), where dσ and
dσhk are surface measures on Γ and Γkh, respectively.

Proposition 2.5. Let x ∈ Γkh and n = 2, 3. Then

(2.10) μhk(x̂) = �ν(x̂) · �νkh(x̂)Πn
i=1(1− d(x̂)κi(x̂)).

Remark 2.6. For x ∈ U , κi(x) = κi(a(x))
1+d(x)κi(a(x))

; cf. [GT98], [DD07].
Proof. Equation (2.10) is proved in [DD07] for n = 2 using properties of the cross

product, so we sketch a proof for n = 3. Let T̂ ⊂ Rn be a reference simplex. Let
also f = ak◦L: T̂ → T̃ ⊂ Γkh, where T̃ = ak(T ) for T ∈ T̃h and L : T̂ → T is one of
the obvious natural linear transformations. Let f have Jacobian F ∈ R(n+1)×n with
singular values σ1, . . . , σn and singular value decomposition F = UΣVT . Here U has
orthonormal columns u1, . . . , un, �ν

k
h , Σ ∈ R(n+1)×n, and V ∈ Rn×n is orthogonal.

Let dx be a Lebesgue measure on T̂ . First we compute dσhk = |Πn
i=1σi| dx and

dσ = |det[(P − dH)F �ν]| dx = [Πn
i=1(1 − dκi)]| det[PF �ν]| dx. But | det[PF �ν]| =√

detFTPPF. For n = 2, 3, a short computation involving the singular value decom-
position yields

√
detFTPPF = �ν · �νkh |Πn

i=1σi|, which completes the proof.
Next we state identities regarding tangential gradients on Γ, Γh, and Γkh (cf. [Dz88],

[DD07]). For vh ∈ H1(Γkh), v ∈ H1(Γ), and x̂ ∈ Γkh,

∇Γk
h
v�(x̂) = [Ph,k(x̂)][(I− dH)(x̂)][P(x̂)]∇Γv(a(x̂)),(2.11)

∇Γv
�
h(a(x̂)) = [(I− dH)(x̂)]−1

[
I− �νkh(x̂)⊗ �ν(x̂)

�νkh(x̂) · �ν(x̂)
]
∇Γk

h
vh(x̂).(2.12)

Here Ph,k = I− �νkh ⊗ �νkh is the projection onto the tangent space of Γh,k. Letting

(2.13) AΓ(a(x̂)) =
1

μhk(x̂)
P(x̂)[I− d(x̂)H(x̂)]Ph,k(x̂)[I− d(x̂)H(x̂)]P(x̂)

for x̂ ∈ Γkh, (2.11) also yields the integral equality

(2.14)
∫

Γk
h

∇Γk
h
uh∇Γk

h
vh dσhk =

∫
Γ

AΓ∇Γu
�
h∇Γv

�
h dσ.
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We also shall need to compare Sobolev norms of functions defined on Γ and Γkh.
Let v ∈ W j

p (Γ) with j ≥ 0 and 1 ≤ p ≤ ∞. Then there exist constants Cj depending
on j and Γ such that for h small enough,

1
C0
‖v‖Lp(Γ) ≤ ‖v�‖Lp(Γk

h) ≤ C0‖v‖Lp(Γ),(2.15)

1
C1
‖∇Γv‖Lp(Γ) ≤ ‖∇Γk

h
v�‖Lp(Γk

h
) ≤ C1‖∇Γv‖Lp(Γ),(2.16)

‖Dj

Γk
h

v�‖Lp(Γk
h) ≤ Cj

∑
1≤m≤j

‖Dm
Γ v‖Lp(Γ).(2.17)

The first two inequalities follow from (2.11) and (2.12) along with the equivalence of
dσ and dσhk for h small enough. Inequality (2.17) follows from repeated application
of (2.11), Proposition 2.3, and the equivalence of dσ and dσhk.

Next we establish analogues of (2.15), (2.16), and (2.17) for functions defined on
Γkh and Γh. In particular, let T̃ be a triangular face of Γh, and let T̂ = ak(T̃ ) ⊂ Γkh.
Let also v be defined and piecewise smooth on Γkh, and for x̃ ∈ T̃ let ṽ(x̃) = v(ak(x̃)).
Then there exist positive constants Ci,j such that for h small enough,

1
C0,k
‖v‖Lp(T̂ ) ≤ ‖ṽ‖Lp(T̃ ) ≤ C0,k‖v‖Lp(T̂ ),(2.18)

1
C1,k
‖∇Γk

h
v‖Lp(T̂ ) ≤ ‖∇Γh

ṽ‖Lp(T̃ ) ≤ C1,k‖∇Γk
h
v‖Lp(T̂ ),(2.19)

‖Dj
Γh
ṽ‖Lp(T̃ ) ≤ Cj

∑
1≤m≤j

‖Dm
Γk

h
v‖Lp(T̂ ).(2.20)

We briefly discuss the proof of the above inequalities. Because the transformation
x̃ → ak(x̃) is the Lagrange interpolant of x̃ → a(x̃), ‖ak‖Wm∞(T ) ≤ C‖a‖Wm∞(T ) ≤ C
for m ≥ 0 and h small enough. Let μ̃hk be defined by μ̃hk(x̃) dσh1 = dσhk(ak(x̃)),
x̃ ∈ Γh. Then |μh1− μ̃hk| ≤ Chk, so that μ̃hk ≈ 1 for h small enough. These two facts
taken together immediately give (2.18), (2.20), and the second inequality in (2.19).

In order to establish the first inequality in (2.19), assume for simplicity that n = 2
and T lies in the xy-plane. The general case follows by employing an appropriate
coordinate transformation and making the obvious adjustments if n = 3. We have

∇Γh
ṽ(x̃) =∇Γh

v(ak(x̃))

=
[
ak,x ak,y 0

]T
∇Γk

h
v(ak(x̃))

=
([
ak,x ak,y 0

]T
+ �νkh ⊗ �νkh

)
∇Γk

h
v(ak(x̃)).

(2.21)

Let A =
[
ak,x(x̃) ak,y(x̃) 0

]T
+ �νkh(x̃) ⊗ �νkh(x̃) and B = (I − dH)(x̃) = ∇a + �ν ⊗ �ν

for x̃ ∈ Γh, and let ‖ · ‖2 be the matrix 2-norm. We first use the fact that ∇a =
P − dH to calculate that |az| = |∇a · �ν1

h| = |∇a · (�ν1
h − �ν)| ≤ Ch. In addition,

|ak,x − ax| + |ak,y − ay| ≤ Chk. Next we note that since B is defined on Γh and
approaches the identity as dist(Γh,Γ)→ 0, ‖B‖2 + ‖B−1‖2 ≤ C for h small enough.
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Thus employing (2.8), we have (again for h small enough) that

‖A−1‖2 ≤ ‖A−1 −B−1‖2 + ‖B−1‖2
≤ ‖A−1‖2‖B−A‖2‖B−1‖2 + C

≤ Ch‖A−1‖2 + C ≤ C.
(2.22)

Multiplying (2.21) through by A−1, inserting (2.22) into (2.21), and employing the
equivalence of dσh and dσhk yields the first inequality in (2.19).

2.5. Finite element spaces and approximation theory. We begin by defin-
ing a family of Lagrange finite element spaces on Γh. Let S̃rh = {χ̃ ∈ C0(Γh) : χ̃|T̃ ∈
Pr ∀ T̃ ∈ T̃h}, where r ≥ 1 and Pr is the set of polynomials in n variables of degree r
or less. We next define the family Ŝrhk on Γkh by

Ŝrhk = {χ̂ ∈ C0(Γkh) : χ̂ = χ̃ ◦ a−1
k for some χ̃ ∈ S̃rh}.

Ŝrhk is an isoparametric finite element space if k = r, subparametric if k < r, and
superparametric if k > r. We finally define the corresponding lifted spaces on Γ,

Srh = {χ ∈ C0(Γ) : χ = χ̃� for some χ̃ ∈ S̃rh}

and

Srhk = {χ ∈ C0(Γ) : χ = χ̂� for some χ̂ ∈ Ŝrhk}.

Note that because a ◦ ak 
= a, Srhk 
= Srh.
Next we state results concerning finite element approximation theory. We only

consider Lagrange-type interpolants as we only need to approximate functions which
are sufficiently smooth (H2

2 ) to guarantee the availability of point values for n ≤ 3.
For v ∈ H2

2 (Γ), we define the interpolant I1
h = Ih : C0(Γ)→ Srh by

Ihv = (Ĩhv�)�,

where Ĩh : C0(Γh) → S̃rh is the standard Lagrange interpolant. We also define the
interpolant Îkh : C0(Γkh)→ Ŝrhk by Îkhv(x) = Ĩhv(a−1

k (x)), and

Ikhv = (Îkhv
�)�.

Note that Ih 
= Ikh since a ◦ ak(x) 
= a(x) for x ∈ Γh. This is the case even though the
nodal points lying on Γ (and thus nodal values) of the two interpolants are the same.

At several points in our presentation we will consider subdomains D ⊂ Γ. Let
Dh = int(∪T∈Th,T∩D 	=∅T ) and Dhk = int(∪T∈T k

h
,T∩D 	=∅T ). Also, for a given parame-

ter γ ≥ h, we let Dγ = {x ∈ Γ : distΓ(x,D) < γ}.
We shall need the following approximation and superapproximation results.
Proposition 2.7. Assume that v ∈ W r+1

p (Γ) for some 2 ≤ p ≤ ∞, let h be
small enough, and let D ⊂ Γ. Assume that either I = Ih, D̃h = Dh, and Sr = Srh or
I = Ikh , D̃h = Dhk, and Sr = Srhk. Then for i = 0, 1 and 2 ≤ m ≤ r + 1,

(2.23) |v − Iv|W i
p(D) ≤ Chm−i‖v‖Wm

p (D̃h).
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Let also ω ∈W r
∞(Γ). Then for χ ∈ Sr,

‖∇Γ(ωχ− I(ωχ))‖Lp(D)

≤ C
(
hr‖χ‖Lp(D̃h)‖ω‖W r+1∞ (Γ) + ‖∇Γχ‖Lp(D̃h)

r∑
i=1

hi‖ω‖W i∞(D̃h)

)
.

(2.24)

Finally, for any χ ∈ Sr and any mesh domain D̃h,

(2.25) ‖∇Γχ‖L2(D̃h) ≤ Ch−1‖χ‖L2(D̃h).

All constants above depend on sufficiently high derivatives of the distance function d.
Proof. The proof follows by combining (2.15) through (2.20) with standard es-

timates for the Lagrange interpolant on Γh (cf. [BS02]). For example, if I = Ikh , we
may prove (2.24) by letting T̃ be a face of Γh and (a ◦ ak)(T̃ ) = T ⊂ Γ. Let χ̃(x) =
χ((a ◦ ak)(x)) and ω̃(x) = ω((a ◦ ak)(x)) for x ∈ T̃ . Inequalities (2.15) and (2.19),
standard approximation and inverse results on T̃ , and (2.17) and (2.20) then yield

‖∇Γ(ωχ− Ih(ωχ))‖Lp(T ) ≤ C1C1,k‖∇Γh
(ω̃χ̃− Ĩh(ω̃χ̃))‖Lp(T̃ )

≤ Chr|ω̃χ̃|W r+1
p (T̃ ) ≤ Chr

r+1∑
i=1

|ω̃|W i∞(T̃ )|χ̃|W r+1−i
p (T̃ )

≤ C
(
hr‖χ̃‖Lp(T̃ )|ω̃|W r+1∞ (T̃ ) + ‖∇Γh

χ̃‖Lp(T̃ )

r∑
i=1

hi|ω̃|W i∞(T̃ )

)

≤ CCr+1Cr+1,k

[
hr‖χ‖Lp(T )‖ω‖W r+1∞ (T ) + C1C1,k‖∇Γχ‖Lp(T )

r∑
i=1

hi‖ω‖W i∞(T )

]
.

Summing over T ∩D 
= ∅ completes the proof of (2.20). The rest of Proposition 2.7
is proved in a similar fashion, with obvious slight simplifications when I = Ih.

The proofs of our pointwise estimates also employ a discrete δ-function.
Proposition 2.8. Let Sr = Srh or Sr = Srhk, let x ∈ T ⊂ Γ with T a surface

triangle in either Th or T kh , and let �n be a unit vector lying in the tangent plane to Γ
at x. Then there exist δx ∈ C∞0 (T ) and δ̃x ∈ [C∞0 (T )]n+1 such that

(2.26) ‖δx‖W j
p (T ) + ‖δ̃x‖W j

p (T ) ≤ Ch−j−n+ n
p

for j = 0, 1 and 1 ≤ p ≤ ∞, and for any χ ∈ Sr,

|χ(x)| ≤ C
∣∣∣∣
∫
T

δxχ dσ
∣∣∣∣ ,(2.27)

|∇Γχ(x) · �n| ≤ C
∣∣∣∣
∫
T

χ∇Γ · δ̃x dσ
∣∣∣∣ .(2.28)

Proof. We prove (2.28) when Sr = Srh; the other cases are similar. Assume
x = a(x̃) for x̃ ∈ T̃ ∈ T̃h, and T = a(T̃ ). Then employing (2.12), we have

|∇Γχ(x) · �n| =
∣∣∣∣[(I− dH)(x̃)]−1

[
I− �νh(x̃)⊗ �ν(x̃)

�νh(x̃) · �ν(x̃)

]
∇Γh

χ�(x̃) · �n
∣∣∣∣

≤ C|∇Γh
χ�(x̃) · �n|.
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Following [SW95], there exists a smooth function δx̃ with support in T̃ and not depen-
dent on χ such that ‖δx̃‖Wk

p (T ) ≤ Ch−k−n+ n
p and ∇Γh

χ�(x̃) ·�n =
∫
T̃
∇Γh

χ� ·�nδx̃ dσh.
Employing (2.11) and integrating by parts yields∫

T̃

∇Γh
χ� · �nδx̃ dσh = −

∫
T

χ∇Γ ·
(

[I− dH][Ph]�n
1
μh
δ�x̃

)
dσ.

Setting δ̃x = 1
μh
δ�x̃[I − dH][Ph]�n, we thus have (2.28). The proof of (2.26) is easily

accomplished using (2.15) and (2.16).

2.6. Finite element methods. In this section we define two main types of
finite element methods. The first type is defined on polynomial approximations of
Γ using the spaces Ŝrhk. Dziuk’s original method in [Dz88] is a special case of this
method. The second class of methods involves finite element solutions defined on Γ
using the spaces Srh and Srhk.

We first define ũhk ∈ Ŝrhk. Let fh ∈ L2(Γkh) be an approximation to f � satisfying∫
Γk

h
fh dσhk = 0. Then ũhk ∈ Ŝrhk uniquely satisfies

∫
Γk

h
ũhk dσhk = 0 and

(2.29)
∫

Γk
h

∇Γk
h
ũhk∇Γk

h
vh dσhk =

∫
Γk

h

fhvh dσhk ∀ vh ∈ Ŝrhk.

Dziuk’s original method results if we take k = r = 1 and fh = f � − 1
|Γh|

∫
Γh
f � dσh1.

Using (2.14) while recalling the definition (2.13) of AΓ and the definition (2.1) of L,
we have the perturbed Galerkin orthogonality relationship

L(u− ũ�hk, χ�) =
∫

Γ

(AΓ −P)∇Γũ
�
hk∇Γχ

� dσ +
∫

Γ

(
f − f �h

μ�hk

)
χ� dσ, χ ∈ Ŝrhk.

We next define two methods directly on Γ. The first of these methods employs the
spaces Srh that are defined by lifting polynomial spaces directly from Γh. In particular,
let uh,Γ ∈ Srh satisfy

∫
Γ uh,Γ dσh = 0 and

(2.30)
∫

Γ

∇Γuh,Γ∇Γvh dσ =
∫

Γ

fvh dσ ∀ vh ∈ Srh.

uh,Γ satisfies the Galerkin orthogonality relationship

L(u− uh,Γ, χ) = 0, χ ∈ Srh.
So long as one has ready access to the projection a, it is not difficult to program
the method (2.30). Indeed, from (2.12) we see that (2.30) may be viewed as a finite
element method over Γh for an elliptic problem with nonconstant elliptic coefficient
matrix. Equation (2.30) may thus be regarded as an alternative to our generalized
version (2.29) of Dziuk’s method which does not involve any geometric error. We
emphasize, however, that there are cases where one has access only to a polynomial
approximation of Γ, and employing (2.30) is not possible in these cases.

In addition, we let uhk ∈ Srhk satisfy
∫
Γ
uhk = 0,

(2.31)
∫

Γ

∇Γuhk∇Γvh dσ =
∫

Γ

fvh dσ ∀ vh ∈ Srhk.

uhk satisfies the Galerkin orthogonality relationship

L(u− uhk, χ) = 0, χ ∈ Srhk.
We employ (2.31) only as a theoretical tool in duality arguments used to prove error
bounds in non–energy norms and do not foresee any practical use for it.
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3. Abstract error analysis. In this section we prove error estimates for surface
finite element methods. Our analysis is carried out under the assumption that the
approximation properties proved for the spaces Srh and Srhk in section 2.5 hold. We
prove our results under general assumptions, as we wish our analysis to apply in other
situations. In particular, these assumptions will hold if the approximating surfaces
Γh and Γkh have nodes that lie within O(hk+1) of Γ instead of on Γ. It is reasonable
to expect that this would be the case when using isoparametric spaces to compute
evolving surfaces as in [Dz91], for example.

3.1. Assumptions on the finite element space and solution. We denote
by Sr a generic finite element space of degree r. Depending on the error estimate to
be proven, we shall require some or all of the following approximation properties:

A1: Basic approximation. We assume that there exists a linear interpolation op-
erator I : H2

2 (Γ)→ Sr satisfying (2.23).
A2: Superapproximation. Inequality (2.24) holds for any χ ∈ Sr.
A3: Inverse inequality. Inequality (2.25) holds for any χ ∈ Sr.
A4: Discrete δ function. There exist discrete δ-functions satisfying the properties

(2.26), (2.27), and (2.28).
Finally we assume that the finite element approximation uh ∈ Sr to u satisfies

the perturbed Galerkin orthogonality relationship

(3.1)
∫

Γ

∇Γ(u − uh)∇Γχ dσ = F (χ) ∀ χ ∈ Sr,

where F is assumed to be a continuous linear functional on H1(Γ)/R. Here we shall
think of F as encoding a geometric error resulting from the discrete approximation
of the surface Γ. Thus F ≡ 0 for the methods (2.30) and (2.31) defined directly on
Γ, while for the method (2.29) defined on polynomial approximations to Γ we have
F (χ) =

∫
Γ
(AΓ − I)∇Γũ

�
hk∇Γχ dσ +

∫
Γ
(f − fh/μ�hk)χ dσ. (The latter version of F is

continuous on H1(Γ)/R because
∫
Γ(f − fh/μ�hk) dσ = 0.) Such a linear functional F

may also be employed to analyze other error sources such as the inexact evaluation of
integrals due to numerical quadrature or nonlinearities (cf. the classical work [NS74]
and the discussion in [De07]).

3.2. H1 and L2 estimates. Here we give local and globalH1 and L2 estimates.
Before doing so, we define the norms

|||F |||H−j = sup
u∈Hj(Γ)/R,‖u‖Hj(Γ)/R

=1

F (u)

and

|||F |||H−1(D) = sup
u∈H1

0 (D),‖∇Γu‖L2(D)=1

F (u), D � Γ

on linear functionals F : H1(Γ)/R→ R.
Theorem 3.1. Assume that u ∈ H1(Γ) and uh ∈ Sr satisfy L(u−uh, vh) = F (vh)

∀vh ∈ Sr, where F is a continuous linear functional on H1(Γ)/R. Then

‖∇Γuh‖L2(Γ) ≤ ‖∇Γu‖L2(Γ) + C|||F |||H−1 ,(3.2)

‖∇Γ(u − uh)‖L2(Γ) ≤ min
χ∈Sr

‖∇Γ(u− χ)‖L2(Γ) + C|||F |||H−1 .(3.3)
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Let D ⊂ Γ be a subdomain, and let Kh ≤ γ ≤ γΓ with K sufficiently large and γΓ

defined as in section 2.1. Then if A.1, A.2, and A.3 hold,

‖∇Γ(u− uh)‖L2(D) ≤ C min
χ∈Sr

(
‖∇Γ(u− χ)‖L2(Dγ) +

1
γ
‖u− χ‖L2(Dγ)

)

+
1
γ
‖u− uh‖L2(Dγ) + |||F |||H−1(Dγ ).

(3.4)

Finally, let u− uh = 1
|Γ|
∫
Γ(u − uh) dσ. Then if A.1 is satisfied,

(3.5) ‖u−uh−u− uh‖L2(Γ) ≤ C
(
h min
χ∈Sr

‖∇(u−χ)‖H1(Γ) +h|||F |||H−1 + |||F |||H−2

)
.

Proof. In order to prove (3.2), we calculate that

‖∇Γuh‖2L2(Γ) =
∫

Γ

∇Γu∇Γuh dσ − F (uh)

≤ ‖∇Γu‖L2(Γ)‖∇Γuh‖L2(Γ) + |||F |||H−1‖uh‖H1(Γ)/R

≤ (‖∇Γu‖L2(Γ) + C|||F |||H−1 )‖∇Γuh‖L2(Γ),

where C arises from a Poincaré inequality. Dividing through by ‖∇Γuh‖L2(Γ) com-
pletes the proof of (3.2). Inequality (3.3) may be proved by writing u − uh =
(u− χ)− (uh − χ).

We next prove (3.4). Let {Di}Ni=1 be a cover of D consisting of balls of radius
γ
4 , and let Di,γ/2 = {x ∈ Γ : distΓ(x,Di) < γ

4 }. We may choose the cover so that
the balls Di,γ/2 have finite overlap. Finally let ωi ∈ C∞0 (Di,γ/2) with ωi|Di ≡ 1 and
‖ωi‖W j

∞(Γ) ≤ Cγ−j , 0 ≤ j ≤ r+ 1. Such a cutoff function ω exists for γ ≤ γΓ. Fixing
χ ∈ Sr, we set ψi = ω2

i (χ− uh) and compute

‖∇Γ(u−uh)‖2L2(D) ≤
N∑
i=1

L(ωi(u− uh), ωi(u− uh))

=
N∑
i=1

L(u− uh, ω2
i (u− uh)) +

∫
Di,γ/2

|∇Γωi|2(u − uh)2 dσ

≤
N∑
i=1

[L(u− uh, ω2
i (u− χ)) + L(u− uh, ψi − Iψi) + F (Iψi)]

+
C

γ2
‖u− uh‖2L2(Dγ).

(3.6)

Next we bound the terms in the last sum in (3.6). For any 1 ≥ ε > 0,

L(u− uh, ω2
i (u− χ)) =

∫
Γ

∇Γ(ωi(u− uh))[ωi∇Γ(u− χ) + 2(u− χ)∇Γωi] dσ

−
∫

Γ

ωi(u− uh)∇Γωi∇Γ(u− χ) dσ − 2
∫

Γ

|∇Γωi|2(u− uh)(u − χ) dσ

≤ ε‖∇Γ(ωi(u− uh))‖2L2(Γ) +
C

ε
‖∇Γ(u− χ)‖2L2(Di,γ/2)

+
C

γ2ε
(‖u− uh‖2L2(Di,γ/2) + ‖u− χ‖2L2(Di,γ/2)

).

(3.7)
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Applying (2.24) and (2.25) while recalling that h ≤ γ and ‖ωi‖W j
∞(Γ) ≤ Cγ−j yields

‖∇Γ(ψi − Ihψi)‖L2(Γ)

≤ Ch
γ

(
1
γ
‖χ− uh‖L2((Di,γ/4)h) + ‖∇Γ(χ− uh)‖L2((Di,γ/4)h)

)

≤ C

γ
(‖u− χ‖L2(Di,γ/2) + ‖u− uh‖L2(Di,γ/2)).

(3.8)

Applying the first line of the previous inequality, we find

L(u− uh, ψi − Ihψi) ≤ Ch
γ
‖∇Γ(u− uh)‖2L2(Di,γ/2)

+ C‖∇Γ(u− χ)‖2L2(Di,γ/2)

+
C

γ2
(‖u− uh‖2L2(Di,γ/2)

+ ‖u− χ‖2L2(Di,γ/2)
).

(3.9)

Applying the second line of (3.8) and noting that ‖∇Γψi‖L2(Di,γ/2) ≤ ‖∇Γ(u −
χ)‖L2(Di,γ/2) + ‖∇Γ(ωi(u− uh))‖L2(Di,γ/2) + 1

γ ‖u− uh‖L2(Di,γ/2), we finally compute

N∑
i=1

F (Iψi) = F

(
N∑
i=1

Iψi

)
≤ |||F |||H−1(Dγ/2)

N∑
i=1

‖∇ΓIψi‖L2(Di,γ/2)

≤ |||F |||H−1(Dγ/2)

[
N∑
i=1

‖∇Γ(Iψi − ψi)‖L2(Di,γ/2) + ‖∇Γψi‖L2(Di,γ/2)

]

≤ C

ε
|||F |||2H−1(Dγ/2)

+
C

γ2
(‖u− χ‖2L2(Dγ/2)

+ ‖u− uh‖2L2(Dγ/2)
)

+ C‖∇Γ(u − χ)‖2L2(Dγ/2)
+ ε

N∑
i=1

‖∇Γ(ωi(u− uh))‖2L2(Γ).

(3.10)

Combining (3.7), (3.9), and (3.10) into (3.6) yields

N∑
i=1

‖∇Γ(ωi(u− uh))‖2L2(Di,γ/2)
≤ C(ε)

[ 1
γ2

(‖u− χ‖2L2(Dγ/2)

+ ‖u− uh‖2L2(Dγ/2)
) + ‖∇Γ(u− χ)‖2L2(Dγ/2)

+ |||F |||2H−1(Dγ/2)

]

+
Ch

γ
‖∇Γ(u− uh)‖2L2(Dγ/2)

+ 2ε
N∑
i=1

‖∇Γ(ωi(u− uh))‖2L2(Di,γ/2)
.

(3.11)

The last term in (3.11) may be kicked back by taking ε = 1
4 , yielding

‖∇Γ(u− uh)‖2L2(D) ≤ C
[ 1
γ2

(‖u− χ‖2L2(Dγ/2)
+ ‖u− uh‖2L2(Dγ/2)

)

+ ‖∇Γ(u− χ)‖2L2(Dγ/2)
+ |||F |||2H−1(Dγ/2)

+
h

γ
‖∇Γ(u − uh)‖2L2(Dγ/2)

]
.

(3.12)

The term h
γ ‖∇Γ(u − uh)‖2L2(Dγ/2)

above may be eliminated by iterating (3.12) with

Dγ/2 and Dγ replacing D and Dγ/2, respectively. This results in a term h2

γ2 ‖∇Γ(u −
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χ)+∇Γ(χ−uh)‖2L2(Dγ ) which may be eliminated by using the triangle inequality and
an inverse inequality.

In order to prove (3.5), we first let z ∈ H1(Γ) solve L(v, z) = (v, e−e)Γ,
∫
Γ z dσ =

0, where e = u− uh and e = u− uh. Then using (2.23), (2.2), and (3.3) yields

‖e− e‖2L2(Γ) = (e− e,−ΔΓz) = L(e, z − Ihz) + F (Ihz − z) + F (z)

≤ C‖∇Γe‖L2(Γ)‖∇Γ(z − Ihz)‖L2(Γ) + |||F |||H−1‖z − Ihz‖H1(Γ)

+ |||F |||H−2‖z‖H2
2(Γ)

≤ C(h min
χ∈Sr

‖∇Γ(u− χ)‖L2(Γ) + h|||F |||H−1 + |||F |||H−2 )‖z‖H2
2(Γ)

≤ C(h min
χ∈Sr

‖∇Γ(u− χ)‖L2(Γ) + h|||F |||H−1 + |||F |||H−2 )‖e− e‖L2(Γ).

Dividing through by ‖e− e‖L2(Γ) completes the proof.

3.3. Pointwise estimates: Statement of results. In this subsection we state
pointwise stability and error estimates. Following [Sch98], let σx(y) = h

α(x,y)+h , where
we recall that α(x, y) is the surface distance on Γ. We then define the weighted norm

‖u‖W j
p ,x,s

=
∑

0≤|α|≤j
‖σsxDαu‖Lp(Γ).

Letting q be the conjugate exponent to p, we define the weighted norm

(3.13) |||F |||W−j
p ,x,s = sup

‖v‖
W

j
q ,x,−s

=1

F (v).

We shall drop the subscripts x and s in (3.13) when s = 0.
Theorem 3.2. Let 0 ≤ s ≤ r − 1 and 0 ≤ t ≤ r, and assume that A1, A2, A3,

and A4 all hold. Then for any x ∈ Γ,

|(u− uh − u− uh)(x)|
≤ C�h,s inf

χ∈Sr
(h‖∇Γ(u− χ)‖L∞,x,s + ‖u− χ‖L∞,x,s)

+ C(h�h,s|||F |||W−1∞ ,x,s + �h|||F |||W−2∞ ),

(3.14)

and

|∇Γuh(x)| ≤ C(�h,t‖∇Γu‖L∞,x,t + �h|||F |||W−1∞ ),(3.15)

|∇Γ(u− uh)(x)| ≤ C(�h,t inf
χ∈Sr

‖∇Γ(u− χ)‖L∞,x,t + �h|||F |||W−1∞ ).(3.16)

Here �h = ln 1
h , �h,t = �h if t = r and �h,t = 1 otherwise, and �h,s = �h if s = r − 1

and �h,s = 1 otherwise.
Taking s = t = 0 and taking a maximum of (3.14) and (3.16) over Γ yields quasi-

optimal L∞ and W 1∞ error estimates, modulo analysis of perturbation terms involving
F . When s > 0 (3.14) shows that the pointwise gradient error at x is localized to x
in that the weight σsx deemphasizes the approximation error ∇(u− χ)(y) by a factor
of hs when α(x, y) ≈ 1. No localization occurs in errors for function values in the
piecewise linear case as s = r − 1 = 0 in this case (cf. [De04] for a counterexample).
Note that (3.14) and (3.16) are very similar to the results in [Sch98] for domains in
Rn. Details peculiar to the fact that we are working on surfaces are hidden in the
functional F .
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3.4. Proof of Theorem 3.2. We shall prove (3.15) in full detail. The proof of
(3.16) follows from (3.15) by writing ∇Γ(u − uh) = ∇Γ(u − χ) − ∇Γ(uh − χ). The
proof of (3.14) is similar but slightly simpler, and we only sketch its proof.

We proceed via a duality argument. Fix a point x ∈ Γ, and let �n be a unit
vector lying in the tangent plane to Γ at x. Let δ̃x satisfy the properties (2.26) and
(2.28), and let gx be a discrete Green’s function satisfying L(v, gx) = (v,∇Γ · δ̃x) for
all v ∈ H1(Γ) and

∫
Γ g

x dσ = 0. (Note that
∫
Γ∇Γ · δ̃x = 0.) Let also gxh ∈ Sr be its

finite element approximation satisfying L(vh, gx−gxh) = 0 ∀vh ∈ Sr and
∫
Γ
gxh dσ = 0.

Then

|∇Γuh(x) · �n| ≤ C
∫

Γ

uh∇Γ · δ̃x dσ

= L(uh, gxh) = L(u, gxh)− F (gxh)

= L(u, gxh − gx) + L(u, gx)− F (gxh)

≤ ‖∇Γu‖L∞,x,t‖∇Γ(gx − gxh)‖L1(Γ),x,−t +
∫
T

u∇Γ · δ̃x dσ

+ |||F |||W−1∞ ‖gxh‖W 1
1 (Γ)

≤ C‖∇Γu‖L∞,x,t(1 + ‖∇Γ(gx − gxh)‖L1(Γ),x,−t)

+ C|||F |||W−1∞ ‖∇Γg
x
h‖L1(Γ),

where we have used a Poincaré inequality in the last step.
Similarly, fix x ∈ Γ, and let ĝx satisfy

∫
Γ ĝ

x dσ = 0 and L(v, ĝx) = (v, δx− δx) for
δx satisfying (2.26) and (2.27). Also let ĝxh ∈ Sr satisfy L(ĝx − ĝxh, χ) = 0 ∀χ ∈ Sr
and

∫
Γ ĝ

x
h dσ = 0. Let also x ∈ T . Then for χ ∈ Sr,

|(u− uh)(x)−u− uh| ≤ |(u− χ)(x)| + C

∣∣∣∣
∫

Γ

(χ− uh − u− uh)δx dσ
∣∣∣∣

≤ C(‖u− χ‖L∞(T ) + |L(u− uh, ĝx)|)
≤ (‖∇Γ(u− χ)‖L∞,x,s + |||F |||W−1∞ ,x,s)‖ĝx − ĝxh‖W 1

1 ,x,−s

+ C‖u− χ‖L∞(T ) + |||F |||W−2∞ ‖ĝx‖W 2
1 (Γ).

The heart of our proof consists of the following lemma.
Lemma 3.3. Under the assumptions of section 2 and Theorem 3.2,

‖∇Γ(gx − gxh)‖L1,x,−t ≤ C�h,t,(3.17)

‖ĝx − ĝxh‖W 1
1 ,x,−s ≤ Ch�h,s,(3.18)

‖∇Γg
x‖L1(Γ) + ‖ĝx‖W 2

1 (Γ) ≤ C�h.(3.19)

The proof of (3.16) will be complete once we prove Lemma 3.3.

3.5. Proof of Lemma 3.3. The proof of Lemma 3.3 is similar to that given for
domains in Rn in [Sch98] (though the fact that we consider here an indefinite bilinear
form complicates matters slightly). Thus we omit some details from our proof.

Note first that gx − gxh satisfies the error estimates of Theorem 3.1 with F ≡ 0.
We then decompose Γ into annular subdomains about the point x. For a parameter
M > 0 which we shall later take to be large enough, we fix Γ0 = BMh(x) and define
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γj = 2jMh. Let J be the largest integer such that γJ ≤ γΓ
2 , where γΓ is defined in

section 2.1. For 0 < j < J , we define the annuli Γj = {y ∈ Γ : γj−1 < α(x, y) < γj}
and then finally define ΓJ = Γ \ ∪0≤j<JΓj . Thus Γ = ∪0≤j≤JΓj . Also, we let
Γ′j = int(Γj−1 ∪ Γj ∪ Γj+1), Γ′′j = Γ′j−1 ∪ Γ′j ∪ Γ′j+1, and Γ′′′j = Γ′′j−1 ∪ Γ′′j ∪ Γ′′j+1.

We then use (3.4), Hölder’s inequality, and (2.23) to find that

‖∇Γ(gx − gxh)‖L1,x,−t

≤ C(M)hn/2‖∇Γ(gx − gxh)‖L2(Γ0) + C

J∑
j=1

(γj
h

)t
γ
n/2
j ‖∇Γ(gx − gxh)‖L2(Γj)

≤ C(M)hn/2[‖∇Γ(gx − gxh)‖L2(Γ0) + h−1‖gx − gxh‖L2(Γ0)

+ min
χ∈Sr

(‖∇Γ(gx − χ)‖L2(Γ0) + h−1‖gx − χ‖L2(Γ0))]

+
J∑
j=1

[(γj
h

)t
γnj h

r‖gx‖W r+1∞ (Γj,h) +
(γj
h

)t
γ
n/2−1
j ‖gx − gxh‖L2(Γj)

]
.

(3.20)

Let ωj ∈ C∞0 (Γ′j) be a cutoff function satisfying 0 ≤ ωj ≤ 1 and ωj ≡ 1 on Γj .
Let Cj = 1

|Γ|
∫
Γ′

j
ω2
j (g

x − gxh) dσ, and let w ∈ H2(Γ) with
∫
Γ w dσ = 0 solve

L(w, v) = (ω2
j (g

x − gxh)− Cj , v) ∀ v ∈ H1(Γ).

Using (2.23) and recalling that
∫
Γ
(gx − gxh) dσ = 0, we compute

‖gx − gxh‖2L2(Γj)
≤ ‖ωj(gx − gxh)‖2L2(Γ)

= (ω2
j (g

x − gxh)− Cj , gx − gxh)
= L(w, gx − gxh)
= L(w − Ihw, gx − gxh)
≤ C(h‖w‖H2(Γ′′′

j )‖∇Γ(gx − gxh)‖L2(Γ′′′
j )

+ hr‖w‖W r+1∞ (Γ\Γ′′
j )‖∇Γ(gx − gxh)‖L1(Γ)).

(3.21)

Noting that w(y) =
∫
Γ
Gy(z)ω2

j (g
x − gxh) dσ(z) since

∫
Γ
Gy(z)Cj dσ(z) = 0, we use

(2.4) to calculate that for any multi-index β with |β| ≤ r + 1 and any y ∈ Γ \ Γ′′j ,

Dβw(y) =
∫

Γ

Dβ
yG

y(z)[ω2
j (g

x − gxh)] dσ(z)

≤
√
|Γj |‖ω2

j (g
x − gxh)‖L2(Γ′

j)
‖Dβ

yG
y‖L∞(Γ′

j)

≤ Cγ
n/2
j ‖ωj(gx − gxh)‖L2(Γ′

j)
γ1−n−r
j .

(3.22)

Inserting (3.22) into (3.21) and using the regularity estimate (2.2) yields

‖ωj(gx − gxh)‖2L2(Γ) ≤ C[h‖∇Γ(gx − gxh)‖L2(Γ′′′
j )

+ γ
−n/2+1
j

(
h

γj

)r
‖∇Γ(gx − gxh)‖L1(Γ)]‖ωj(gx − gxh)‖L2(Γ),
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so that

‖gx − gxh‖L2(Γj) ≤ Ch‖∇Γ(gx − gxh)‖L2(Γ′′′
j )

+ γ
−n/2+1
j

(
h

γj

)r
‖∇Γ(gx − gxh)‖L1(Γ).

(3.23)

Recalling (2.26), we next compute that for y ∈ Γj,h and β with |β| = r + 1,

Dβgx(y) =−
∫

Γ

∇Γ,zD
β
yG

y(z)δ̃x(z) dσ(z)

≤‖∇ΓD
β
yG

y‖L∞(supp(δ̃x))‖δ̃x‖L1(Γ)

≤Cγ−n−rj .

(3.24)

Finally, employing (3.3), (3.5), (2.23), (2.2), and (2.26) yields

C(M)hn/2[‖∇Γ(gx−gxh)‖L2(Γ0) + h−1‖gx − gxh‖L2(Γ0)

+ min
χ∈Sr

h

(‖∇Γ(gx − χ)‖L2(Γ0) + h−1‖gx − χ‖L2(Γ0)]

≤ Chn/2+1‖∇Γ · δ̃x‖L2(Γ) ≤ C.

(3.25)

Inserting (3.23), (3.24), and (3.25) into (3.20), rearranging terms, and finally
employing (3.25) yields

‖∇Γ(gx − gxh)‖L1,x,−t ≤ C + C

J∑
j=1

(γj
h

)t
γ
n/2
j ‖∇Γ(gx − gxh)‖L2(Γj)

≤ C + C
J∑
j=1

(γj
h

)t
γnj h

rγ−r−nj + C
J∑
j=1

(γj
h

)t
γ
n/2
j

h

γj
‖∇Γ(gx − gxh)‖L2(Γj)

+ C‖∇Γ(gx − gxh)‖L1

J∑
j=1

(γj
h

)t( h

γj

)r

≤ C + C(1 + ‖∇Γ(gx − gxh)‖L1(Γ))
J∑
j=1

(
h

γj

)r−t

+
C

M

J∑
j=1

(γj
h

)t
γ
n/2
j ‖∇Γ(gx − gxh)‖L2(Γj).

The last term above may be kicked back (to the last term in the first line) for M large
enough. In addition, we note that

∑J
j=1(

h
γj

)r−t ≤ C�h,t 1
Mr−t . Thus

(3.26) ‖∇Γ(gx − gxh)‖L1,x,−t ≤ C +
C

M r−t �h,t‖∇Γ(gx − gxh)‖L1(Γ).

Applying (3.26) with t = 0 and taking M large enough to kick back the last term
yields

(3.27) ‖∇Γ(gx − gxh)‖L1 ≤ C.
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Inserting (3.27) into (3.26) completes the proof of (3.17).
In order to prove the inequality ‖∇Γg

x‖L1(Γ) ≤ �h from (3.19), we first note the
easily proven regularity estimate

‖∇Γg
x‖L2(Γ) ≤ C‖δ̃x‖L2(Γ) ≤ Ch−n/2.

Computing as in (3.24) yields Dαgx(y) ≤ Cα(x, y)−2 for |α| = 1 and α(x, y) ≥ 3h.
We thus find that

‖∇Γg
x‖L1(Γ) ≤ Chn/2‖∇Γg

x‖L2(Γ) + ‖∇Γg
x‖L1(Γ\B3h(x))

≤ C +
∫ C

3h

y−1 dy ≤ C�h.

The proofs of (3.18) and the inequality ‖ĝx‖W 2
1 (Γ) ≤ C�h are very similar to the

corresponding proofs for the appropriate norms of gx − gxh and ĝx and also to the
proofs given in [Sch98], so we only make a couple of notes. First, (3.18) requires us
to bound a weighted W 1

1 norm of ĝx − ĝxh, not just an L1 norm of the gradient as in
(3.17). However, if we carry out the computation in (3.20) with ĝx− ĝxh and s in place
of gx−gxh and t, respectively, then the last line of (3.20) can easily be shown to bound
‖ĝx − ĝxh‖L1,x,−s. Second, the right-hand side δx − δx is not locally supported, which
requires a modification when performing computations similar to (3.22) and (3.24).
In particular, we note that ĝx(y) =

∫
Γ
Gy(z)(δx − δx) dσ(z) =

∫
Γ
Gy(z)δx dσ(z) and

then proceed essentially as in (3.24).

4. Error analysis of specific methods and numerical results. In this sec-
tion we apply the abstract error analysis in section 3 to the methods (2.29) and (2.30)
in section 2.6. In the case of the method (2.29) defined on polynomial approximations
to Γ, the resulting error bounds consist of a “PDE”- or “almost-best-approximation”-
type term that arises in essentially every finite element approximation, plus a geo-
metric error term arising from the approximation of Γ by Γkh. We also briefly describe
numerical experiments that confirm the structure of our H1 and L2 estimates.

4.1. Error estimates for FEM on polynomial approximations to Γ. We
first state a fundamental geometric error bound which is an extension of a bound
found in [Dz88] to higher-order approximations of Γ.

Proposition 4.1.

(4.1) ‖AΓ −P‖L∞(Γ) ≤ Chk+1.

Proof. Recalling that ‖d‖L∞(Γh,k) ≤ Chk+1 and noting from (2.10) that |1 −
1
μhk
| ≤ Chk+1 + C|1 − �ν · �νkh | ≤ Chk+1 + C|�ν − �νkh |2 ≤ Chk+1, we have |AΓ − P| ≤

|PPh,kP−P|+Chk+1. But |PPh,kP−P| = |(�νkh − �ν · �νkh�ν)⊗ (�νkh − �ν · �νkh�ν)| ≤ Ch2k,
which completes the proof.

Next we give H1 and L2 estimates.
Corollary 4.2. Let ũhk satisfy (2.29) with fh = μhkf

�. Then if u ∈ Hr+1(Γ),

‖∇Γ(u− ũ�hk)‖L2(Γ) ≤ C(hr‖u‖Hr+1(Γ) + hk+1‖∇Γu‖L2(Γ)),(4.2)

‖u− ũ�hk − u− ũ�hk‖L2(Γ) ≤ C(hr+1‖u‖Hr+1(Γ) + hk+1‖∇Γu‖L2(Γ)),(4.3)

where C depends on d and its derivatives.
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Remark 4.3. The geometric error in the L2 estimate (3.5) has the form h|||F |||−1+
|||F |||−2. However, we cannot take advantage of the fact that the norm ||| · |||−2 is
weaker than the norm ||| · |||−1 in order to achieve a higher order of convergence hk+2

for the geometric error in our L2 estimates. Computational experiments in section 4
confirm that the geometric error is indeed of order hk+1 for both the L2 and energy
errors.

Remark 4.4. It is possible to show that |u− ũ�hk| = |ũ�hk| ≤ Chk+1‖∇Γu‖L2(Γ)

for h small enough, so that in fact (4.3) holds with ‖u − ũ�hk‖L2(Γ) on the left-hand
side. We state (4.3) as we do both to maintain consistency with [Dz88] and because
we wish to emphasize that (4.3) is sharp with respect to the order of the geometric
error.

Proof. Note first that if fh = μhkf
�, ũhk satisfies (3.1) with F (χ) =

∫
Γ(AΓ −

P)∇Γũ
�
hk∇Γχ dσ. Combining (3.2) and (4.1) yields

|||F |||H−1 ≤ Chk+1‖∇Γũ
�
hk‖L2(Γ)

≤ Chk+1(‖∇Γu‖L2(Γ) + C|||F |||H−1 ).

Taking h small enough to kick back the last term above yields

(4.4) |||F |||H−1 ≤ Chk+1‖∇Γu‖L2(Γ),

which when combined with (3.3) and (2.23) completes the proof of (4.2).
Noting that |||F |||H−2 ≤ |||F |||H−1 and then inserting (4.4) into (3.5) while re-

calling (2.23) completes the proof of (4.3).
We now give pointwise error estimates.
Corollary 4.5. Let ũhk satisfy (2.29) with fh = μhkf

�. Let also 0 ≤ s ≤ r − 1
and 0 ≤ t ≤ r. Then for any x ∈ Γ,

|(u − ũ�hk)(x) − u− ũ�hk|
≤C�h,s inf

χ∈Sr
hk

(h‖∇Γ(u− χ)‖L∞,x,s + ‖u− χ‖L∞,x,s) + Chk+1�h‖∇Γu‖L∞(Γ),
(4.5)

|∇Γ(u− ũ�hk)(x)| ≤ C(�h,t inf
χ∈Sr

hk

‖∇Γ(u− χ)‖L∞,x,t + hk+1�h‖∇Γu‖L∞(Γ)).(4.6)

Here C depends on d and its derivatives, and �h, �h,t, and �h,s are defined as in
Theorem 3.2.

Proof. We recall that F (χ) =
∫
Γ
(AΓ−P)∇Γũ

�
hk∇Γχ dσ and then use (3.15) with

t = 0 and (4.1) to find that for h small enough,

‖∇Γũ
�
hk‖L∞(Γ) ≤ C(‖∇Γu‖L∞(Γ) + �h‖AΓ −P‖L∞(Γ)‖∇Γũ

�
hk‖L∞(Γ))

≤ C(‖∇Γu‖L∞(Γ) + hk+1�h‖∇Γũ
�
hk‖L∞(Γ))

≤ C‖∇Γu‖L∞(Γ).

Here we have kicked back the last term on the right-hand side by taking h sufficiently
small. Thus |||F |||W−1∞ ,x,s + |||F |||W−2∞ ≤ Chk+1‖∇Γu‖L∞(Γ), which when inserted
into (3.14) and (3.16) yields (4.5) and (4.6), respectively.

Taking the maximum of (4.5) and (4.6) with t = s = 0 leads to standard quasi-
optimal pointwise error estimates. In addition, one can easily use (2.23) and elemen-
tary manipulations to prove asymptotic error expansion inequalities similar to those
given in [Sch98] for domains in Rn.
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Corollary 4.6. Under the conditions of Corollary 4.5,

‖u− ũ�hk − u− ũ�hk‖L∞(Γ) ≤ C(�̃hhr+1‖u‖W r+1∞ (Γ) + Chk+1�h‖∇Γu‖L∞(Γ)),

‖∇Γ(u− ũ�hk)‖L∞(Γ) ≤ C(hr‖u‖W r+1
∞ (Γ) + Chk+1�h‖∇Γu‖L∞(Γ)),

where �̃h = �h if r = 1 and �̃h = 1 otherwise. In addition for 0 ≤ s ≤ r−1, 0 ≤ t ≤ r,
and x ∈ Γ,

|(u− ũ�hk)(x)− u− ũ�hk| ≤ C�h,shr+1

[ ∑
1≤|β|≤r+1

|Dβ
Γu(x)|

+
∑

r+2≤|β|≤r+s
h|β|−r−1|Dβ

Γu(x)|+ hs‖u‖W r+1+s∞ (Γ)

]
,

|∇Γ(u − ũ�hk)(x)| ≤ C�h,rh
r

[ ∑
1≤|β|≤r+1

|Dβ
Γu(x)|

+
∑

r+2≤|β|≤r+t
h|β|−r−1|Dβ

Γu(x)|+ ht‖u‖W r+1+t∞ (Γ)

]
.

4.2. Error estimates for finite element methods defined on Γ. In order
to obtain error estimates for the method (2.30), we simply apply Theorems 3.1 and 3.2
with F ≡ 0 while recalling (2.23).

Corollary 4.7. Let uh,Γ defined by (2.30), and assume u ∈ Hr+1(Γ). Then

‖∇Γ(u − uh,Γ)‖L2(Γ) ≤ Chr‖u‖Hr+1(Γ),

‖u− uh,Γ‖L2(Γ) ≤ Chr+1‖u‖Hr+1(Γ).

For x ∈ Γ, 0 ≤ s ≤ r − 1, and 0 ≤ t ≤ r,

|(u− uh,Γ)(x)| ≤ C�h,s inf
χ∈Sr

h

(h‖∇Γ(u− χ)‖L∞,x,s + ‖u− χ‖L∞,x,s),

|∇Γ(u− uh,Γ)(x)| ≤ C�h,t inf
χ∈Sr

h

‖∇Γ(u− χ)‖L∞,x,t.

Here �h,s and �h,t are as defined in Theorem 3.2.

4.3. Numerical experiments. In our numerical experiments we let Γ = {x ∈
R3 : x2

1 + x2
2 + x2

3
9 = 1}; that is, Γ is an ellipsoid having principal axes of lengths 1,

1, and 3. Also, we let u = x1. (Note that ΔΓu 
≡ 0 on Γ, even though u(x) = x1 is a
harmonic function on R3.) Computations were performed on a sequence of uniformly
refined meshes in all cases, with high-order quadrature being employed. We refer to
[DD07] for more implementation details, in particular the numerical approximation
of a when, as in the current case, d is not explicitly available. All methods were
implemented using the finite element toolbox ALBERTA [SS05].

In Figure 1 we display plots of ‖∇Γ(u − uh)‖L2(Γ) versus the number of degrees
of freedom (DOF), where uh = ũ�h1, uh = ũ�h2, and uh = uh,Γ are the finite element
approximations defined on a polyhedral approximation to Γ (via (2.29) with k = 1), a
quadratic approximation to Γ (via (2.29) with k = 2), and Γ (via (2.30)), respectively.
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Fig. 1. Plots of ‖∇Γ(u − uh)‖L2(Γ) vs. the number of degrees of freedom: Finite element

method defined on Γh (upper left), Γ2
h (upper right), and Γ (bottom).

Optimal-order decrease for ‖∇Γ(u−uh)‖L2(Γ) is DOF−r/2, so we display logarithmic
lines of various slopes for comparison with computed error trends.

The effect of the geometric error is clearly seen. When k = 1 (upper left of Fig-
ure 1), we obtain optimal-order convergence when r = 1 and r = 2 so that hk+1 ≤ hr.
Suboptimal convergence is obtained when r ≥ 3, as expected. When k = 2 (upper
right) we obtain optimal convergence for r ≤ 3, but not for r = 4. Thus (4.2) is
sharp with respect to the geometric error hk+1‖∇Γu‖L2(Γ). Finally, in the bottom
plot of Figure 1 we observe optimal-order convergence for all polynomial degrees r ≤ 4
when defining the finite element method directly on Γ via (2.30). We note, however,
that our experiments use high-order quadrature, and the quadrature error is likely
to be more pronounced when using (2.30) in practical situations, as this formulation
essentially involves an elliptic problem with a nonconstant coefficient matrix.

Similar plots of the L2 error on linear and quadratic surface approximations are
displayed in Figure 2. These plots confirm the sharpness of the error estimate (4.3).

5. Extensions. In this section we briefly discuss extensions of our methods and
analysis to more general situations.

5.1. More general surface approximations. Our definitions in section 2 re-
quire that the nodes of the discrete surfaces Γh and Γkh lie on Γ. This is a reason-
able assumption for stationary problems, but not for geometric evolution problems
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Fig. 2. Plots of ‖u − uh − u − uh‖L2(Γ) vs. the number of degrees of freedom: Finite element

method defined on Γh (left) and Γ2
h (right).

such as mean curvature flow where the goal is to approximate an unknown surface Γ
(cf. [Dz91]). Instead of assuming that the nodes of the discrete surfaces lie on Γ, it
is reasonable to assume that they lie within O(hk+1) of Γ; cf. the comments at the
beginning of section 3.

5.2. Surfaces with boundary. Our development may be carried out for sur-
faces Γ with boundary ∂Γ modulo “variational crimes” that arise when Sr 
⊂ H1(Γ),
just as for domains in Rn. Note that variational crimes do not arise if ∂Γ is “curvi-
polygonal” in the sense that a(∂Γh) = ∂Γ (cf. [DD07]). In a few situations, ∂Γ may
be both smooth and “curvi-polygonal” in this sense (e.g., if Γ is a half-sphere).

5.3. General second-order elliptic PDE. Many applications involve general
second-order linear elliptic problems of the form −divΓ(D∇Γu)+b̃·∇Γu+cu = f. If we
make the natural assumption that D�τ ·�ν = �b ·�ν = 0 for �τ ·�ν = 0 (cf. [DE07b]), then the
H1 and L2 error estimates of sections 3 and 4 hold for this problem if the associated
bilinear form is coercive and the coefficients sufficiently smooth. In particular, one
can show that the geometric error is still of order hk+1 in the more general case. Our
pointwise estimates hold if a Green’s function satisfying the identities and inequalities
in Lemma 2.2 exists (note that [Aub82] considers only the Laplace–Beltrami operator).

5.4. C2 surfaces. In many situations of interest, Γ is not infinitely differen-
tiable. The essential assumption that the orthogonal projection a exists generally
requires that Γ be C2, and situations where Γ is less regular cannot be considered
without substantial modification to our methodology. If Γ is merely C2, the abstract
energy and L2 error estimates of Theorem 3.1 hold verbatim, but the order of the
geometric error in Corollary 4.2 is naturally restricted by the smoothness of Γ. We
also expect the abstract pointwise estimates of Theorem 3.2 to hold if Γ is only C2 so
long as s = 0 and t ≤ 1. Proving such a statement using our techniques requires the
establishment of pointwise estimates for the Green’s function as in Lemma 2.2. This
can likely be accomplished using an elementary mapping argument, though we have
not checked the details.

5.5. Manifolds. The abstract error analysis of section 3 relies on two classes
of assumptions: those concerning the finite element triangulation and space, and
those concerning the underlying PDEs. The PDE assumptions employed in section 3
hold with slight modification if one considers smooth Riemannian manifolds without
boundary instead of smooth surfaces without boundary. Thus if one can construct
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finite element spaces on manifolds satisfying the assumptions A1 through A4, the
results of section 3 should hold as well.
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V. SIMONCINI† AND V. DRUSKIN‡

Abstract. The numerical solution of large-scale continuous-time Lyapunov matrix equations
is of great importance in many application areas. Assuming that the coefficient matrix is positive
definite, but not necessarily symmetric, in this paper we analyze the convergence of projection-type
methods for approximating the solution matrix. Under suitable hypotheses on the coefficient matrix,
we provide new asymptotic estimates for the error matrix when a Galerkin method is used in a
Krylov subspace. Numerical experiments confirm the good behavior of our upper bounds when
linear convergence of the solver is observed.
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1. The problem. We are interested in the approximate solution of the following
Lyapunov matrix equation:

AX +XA� = BB�,(1.1)

with A a real matrix of large dimension andB a real tall matrix. Here A� indicates the
transpose of A. We assume that the n× n matrix A is either symmetric and positive
definite or nonsymmetric with positive definite symmetric part, that is, (A + A�)/2
is positive definite. In the following we mostly deal with the case of B having a single
column, that is, B = b, and we assume that b has unit Euclidean norm, that is,
‖b‖ = 1. Nonetheless, our results can be extended to the multiple vector case.

This problem arises in a large variety of applications, such as signal processing and
system and control theory. The symmetric solution X carries important information
on the stability and energy of an associated dynamical linear system and on the
feasibility of order reduction techniques [2], [6], [8]. The analytic solution of (1.1) can
be written as

X =
∫ ∞

0

e−tABB�e−tA
�
dt =

∫ ∞
0

xx�dt,(1.2)

where we have set x = e−tAB. Let αmin be the smallest eigenvalue of the sym-
metric part of A, αmin = λmin((A + A�)/2) > 0. Then it can be shown that
‖x‖ ≤ exp(−tαmin)‖B‖; see, e.g., [8, Lemma 3.2.1].

Projection-type methods seek an approximate solution Xm in a subspace of R
n

by requiring, e.g., that the residual BB� − (AXm + XmA
�) be orthogonal to this

subspace. A particularly effective choice as approximation space is given by (here for
B = b) the Krylov subspace Km(A, b) = span{b, Ab, . . . , Am−1b} of dimension m ≤ n
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[22], [23], [31]; we also refer to a richer bibliographic account collected in [2], [9], while
we point to [33] for recent algorithmic progress within the Krylov subspace context.
Abundant experimental evidence over the years has shown that the use of the space
Km(A, b) allows one to often obtain a satisfactorily accurate approximation Xm, in a
space of much lower dimension than n. A particularly attractive feature is that Xm

may be written as a low rank matrix, Xm = UmU
�
m with Um of low column rank, so

that only the matrix Um needs to be stored.
To the best of our knowledge, no asymptotic convergence analysis of this Galerkin

method is available in the literature. The aim of this paper is to fill this gap. We also
refer to [30] for a priori estimates on the residual norm when solving the Sylvester
equation with projection-type methods; there, the role of αmin is also emphasized,
although the bound derived in [30, Proposition 4.1] for the residual norm is of greater
value as a nonstagnation condition of the procedure, rather than as an estimate of
the actual convergence behavior.

To derive our error estimates, we shall use the integral representation (1.2) for
both X and Xm and explicitly bound the norm of the error matrix X − Xm; we
refer to [31] for early considerations in this direction. Our approach is highly inspired
by, and fully relies on, the papers [13], [24], where general estimates for the error
in approximating matrix operators by polynomial methods are derived. We provide
explicit estimates when A is symmetric, and when A is nonsymmetric with its field
of values (or spectrum) contained in certain not necessarily convex sets of C

+.
We also show that the convergence of the Galerkin method is closely related to

that of Galerkin methods for solving the linear system (A+ αminI)d = b.
Our estimates are asymptotic, and thus linear; that is, they do not capture the

possibly superlinear convergence behavior of the method that is sometimes observed
[29]. In the linear system setting, the superlinear behavior is due to the fact that
Krylov-based methods tend to adapt to the (discrete) spectrum of A, accelerating
convergence as spectral information is gained while enlarging the space. Recent results
for A symmetric have been derived, which completely describe the behavior of Krylov
subspace solvers in the presence of superlinear convergence [4], [5]; see also [34] for a
discussion and more references.

Throughout the paper we assume exact arithmetic.

2. Numerical solution and preliminary considerations. Given the Krylov
subspace Km(A, b) and a matrix Vm whose orthonormal columns span Km(A, b),
with b = V e1, we seek an approximation in the form Xm = VmYmV

�
m . Here and in

the following, ei denotes the ith column of the identity matrix of given dimension.
Imposing that the residual Rm = bb� − (AXm +XmA

�) be orthogonal to the given
space, the so-called Galerkin condition, yields the equation

V �mRmVm = 0 ⇔ TmY + Y T�m = e1e
�
1 ,

where Tm = V �mAVm; see, e.g., [2], [31]. The m×m matrix Ym can thus be computed
by solving the resulting small-size Lyapunov equation.

The matrix Xm can be equivalently written in integral form. Indeed, let xm =
xm(t) = Vme

−tTme1 be the so-called Krylov approximation to x = x(t) in Km(A, b).
Then Xm can be written as

Xm = Vm

(∫ ∞
0

e−tTme1e
�
1 e
−tT�

mdt

)
V �m

=
∫ ∞

0

Vme
−tTme1e

�
1 e
−tT�

mV �m dt =
∫ ∞

0

xmx
�
mdt.
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We are interested in finding a priori bounds for the 2-norm of the error matrix, that is,
for ‖X−Xm‖, where the 2-norm is the matrix norm induced by the vector Euclidean
norm. We start by observing that ‖X −Xm‖ = ‖ ∫∞

0
(xx� − xmx�m)dt‖, and that

‖xx� − xmx�m‖ = ‖x(x− xm)� + (x− xm)x�m‖ ≤ (‖x‖+ ‖xm‖) ‖x− xm‖.
It holds that λmin((Tm+T�m)/2) ≥ αmin. Using ‖xm‖ ≤ exp(−tλmin((Tm+T�m)/2)) ≤
exp(−tαmin), we have

‖X −Xm‖ ≤
∫ ∞

0

‖xx� − xmx�m‖dt ≤
∫ ∞

0

(‖x‖+ ‖xm‖)‖x− xm‖dt

≤ 2
∫ ∞

0

e−tαmin ‖x− xm‖dt.(2.1)

We notice that

e−tαmin ‖x− xm‖ = ‖ exp(−t(A+ αminI))b − Vm exp(−t(Tm + αminI))e1‖
=: ‖x̂− x̂m‖,

which is the error in the approximation of the exponential of the shifted matrix A+
αminI with the Krylov subspace solution. Therefore,

‖X −Xm‖ ≤ 2
∫ ∞

0

‖x̂− x̂m‖dt.(2.2)

In the following we will bound ‖X −Xm‖ by judiciously integrating an upper bound
of the integrand function. In fact, estimates for the error norm ‖x̂− x̂m‖ are available
in the literature, which show superlinear convergence of the Krylov approximation
xm to the exponential vector x; see, e.g., [12], [39], [36], [21]. However, these bounds
are not appropriate when used in the generalized integral above.

The matrix Vm = [v1, . . . , vm] can be generated one vector at the time, by means
of the following Arnoldi recursion:

AVm = VmTm + vm+1tm+1,me
�
m, v1 = b/‖b‖,(2.3)

where Vm+1 = [Vm, vm+1] has orthonormal columns and spans Km+1(A, b). In gen-
eral, Tm is upper Hessenberg, and it is symmetric, and thus tridiagonal, when A is
itself symmetric.

We conclude this section with a technical lemma, whose proof is included for
completeness; see, e.g., [24] for a similar result in finite precision arithmetic.

Lemma 2.1. Let Pk be a polynomial of degree at most k. Let f(z) =
∑∞
k=0 fkPk(z)

be a convergent series expansion of the analytic function f and assume that the ex-
pansions of f(A) and of f(Tm) are also well defined. Then

‖f(A)b− Vmf(Tm)e1‖ ≤
∞∑
k=m

|fk| (‖Pk(A)‖ + ‖Pk(Tm)‖).

Proof. We have

f(A)b− Vmf(Tm)e1 =
m−1∑
k=0

fk(Pk(A)b − VmPk(Tm)e1)

+
∞∑
k=m

fk(Pk(A)b − VmPk(Tm)e1).
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Using the Arnoldi relation and the fact that Tm is upper Hessenberg, AkVme1 =
VmT

k
me1 for k = 1, . . . ,m − 1, and thus Pk(A)b = Pk(A)Vme1 = VmPk(Tm)e1, k =

1, . . . ,m− 1, so that

f(A)b − Vmf(Tm)e1 =
∞∑
k=m

fk(Pk(A)b − VmPk(Tm)e1).

Taking norms, the result follows.

3. The symmetric case. In the symmetric case, we show that the asymptotic
convergence rate of the Krylov subspace solver is the same as that of the conjugate
gradient method applied to the shifted system (A+αminI)x = b, where αmin = λmin,
the smallest eigenvalue of the positive definite matrix A [18]; see also section 5.

Proposition 3.1. Let A be symmetric and positive definite, and let λmin be the
smallest eigenvalue of A. Let λ̂min, λ̂max be the extreme eigenvalues of A+λminI and
κ̂ = λ̂max/λ̂min. Then

‖X −Xm‖ ≤ 4

√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)m
.(3.1)

Proof. Using (2.1) we are left to estimate
∫∞
0
e−tαmin ‖x − xm‖dt. Let λmax be

the largest eigenvalue of A. Formula (4.2) in [12] shows that both x and xm may be
written as Chebyshev series,1 e.g., for x we have

x = 2 exp
(
−tλmax + λmin

2

) ∞∑′

k=0

Ik

(
t
λmax − λmin

2

)
Tk(A′)b,

where Ik is the Bessel function of an imaginary argument, or modified Bessel function,
Tk is the Chebyshev polynomial of degree k, and A′ = (λmax +λmin)/(λmax−λmin)I−
2/(λmax − λmin)A so that ‖Tk(A′)‖ ≤ 1 holds; see also [1, formula (9.6.34)]. Since
polynomials of degree up to k − 1 are exactly represented in the Krylov subspace of
dimension k (see [12] and also Lemma 2.1), it thus follows that

‖x− xm‖ ≤ 4 exp
(
−tλmax + λmin

2

) ∞∑
k=m

Ik

(
t
λmax − λmin

2

)
.

Therefore, setting p = (3λmin + λmax)/(λmax − λmin) = (κ̂ + 1)/(κ̂ − 1) and ρ =
p+

√
p2 − 1, we have

‖X −Xm‖ ≤ 2
∫ ∞

0

‖x̂− x̂m‖dt

≤ 8
∞∑
k=m

∫ ∞
0

exp
(
−t
(

3
2
λmin +

1
2
λmax

))
Ik

(
t
λmax − λmin

2

)
dt

=
8√

(3
2λmin + λmax

2 )2 − (λmax−λmin)2

4

∞∑
k=m

1(
p+

√
p2 − 1

)k(3.2)

=
8(κ̂+ 1)√

κ̂(3λmin + λmax)

∞∑
k=m

1(
p+

√
p2 − 1

)k
=

4(κ̂+ 1)√
κ̂(3λmin + λmax)

2ρ
ρ− 1

1
ρm

.

1The prime in the series indicates that the first term is divided by two.
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Fig. 3.1. Example of section 3. 400×400 diagonal matrix with uniformly distributed eigenvalues
in [1, 10]. True error norm and its estimate of Proposition 3.1 for the Krylov subspace approximation
of the Lyapunov solution.

To get (3.2) we used the following integral formula for Bessel functions in [19, For-
mula (6.611.4)]:∫ ∞

0

e−αtIν(βt)dt =
βν√

α2 − β2(α+
√
α2 − β2)ν

for �ν > −1 and �α > |�β|.

Standard algebraic manipulations give

ρ =

√
κ̂+ 1√
κ̂− 1

,
2ρ
ρ− 1

=
√
κ̂+ 1.

In Figure 3.1 we report the behavior of the bound of Proposition 3.1 for a 400×400
diagonal matrix A having uniformly distributed eigenvalues between 1 and 10. Here
αmin = λmin = 1. The vector b is the normalized vector of all ones.

We explicitly observe that the linearity of the convergence rate is exactly repro-
duced by the upper bound of Proposition 3.1.

4. The nonsymmetric case. For A nonsymmetric, the result of the previous
section can be generalized whenever the field of values of A is contained in a “well-
behaved” set of the complex plane. We recall that the field of values of a real matrix
A in the Euclidean inner product is defined as F (A) = {x∗Ax, x ∈ C

n, ‖x‖ = 1},
where x∗ is the conjugate transpose of x. The location of the field of values plays a
crucial role in the behavior and analysis of polynomial-type methods for the solution
of linear systems; see, e.g., [15], [27].

The following results make use of the theory of Faber polynomials and of recently
obtained results that have been used in the context of linear systems. To this end, we
need some definitions on conformal mappings. Let C = C ∪ {∞}, and let D(0, 1) =
{|τ | ≤ 1} be the closed unit disk centered at zero. Given a bounded set Ω such that
its complement is simply connected, define the conformal mapping φ that maps the
complement of Ω onto the exterior of the unit disk D(0, 1), and such that φ(∞) =∞
and φ′(∞) > 0; see, e.g., [35, section 1.2]. Let ψ denote the inverse of φ.

The principal (polynomial) part of the Laurent series of φk is the Faber polynomial
Φk, of exact degree k. Under these hypotheses, it was recently shown by Beckermann
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that for any z in a convex and compact set of C, it holds that |Φk(z)| ≤ 2. Assume
that f(λ) = exp(−λt) is regular in Ω = ψ(D(0, r2)), and let

f(λ) ≡ exp(−λt) =
∞∑
k=0

fkΦk(λ)

be the expansion of exp(−λt) in Faber series in Ω with 1 < r2 <∞. For 1 < r < r2,
the expansion coefficients are given as

fk =
1

2πi

∫
|τ |=r

exp(−tψ(τ))
τk+1

dτ, |fk| ≤ 1
rk

sup
|τ |=r

| exp(−tψ(τ))|;(4.1)

see, e.g., [35, sect. 2.1.3], [37]. Note that fk = fk(t).

4.1. Field of values contained in an ellipse. The case in which the field
of values is contained in an ellipse is a particularly natural generalization of the
symmetric case.

Proposition 4.1. Assume the field of values of the real matrix A is contained
in the ellipse E ⊂ C

+ of center (c, 0), foci (c± d, 0), and semiaxes a1 and a2, so that
d =

√
a2
1 − a2

2. Then

‖X −Xm‖ ≤ 8√
(αmin + c)2 − d2

r2
r2 − 1

(
1
r2

)m
,

where r2 = c+αmin
2r + 1

2r

√
(c+ αmin)2 − d2, and r = a1+a2

2 .
Proof. For λ ∈ E, and setting r̂ = 2r/d, we have Φk(λ) = 2(r̂)−kTk(λ−cd ) (see,

e.g., [38], [17]); therefore we can explicitly write the Faber series on E via Chebyshev
ones as

e−λt = 2 exp(−tc)
∞∑′

k=0

Ik(td)Tk
(
λ− c
d

)
= exp(−tc)

∞∑′

k=0

Ik(td)r̂mΦk(λ).

Using Lemma 2.1, the bounds ‖Φk(Tm)‖ ≤ 2, ‖Φk(A)‖ ≤ 2 obtained in [3], and the
same integral formula for Bessel functions as in the proof of Proposition 3.1, we obtain

‖X −Xm‖

≤ 2
∫ ∞

0

‖x̂− x̂m‖dt

≤ 8
∞∑
k=m

∫ ∞
0

e(−αmin−c)tIk(td)r̂kdt

=
8√

(αmin + c)2 − d2

∞∑
k=m

(
1
r2

)k
=

8√
(αmin + c)2 − d2

r2
r2 − 1

(
1
r2

)m
.

We show the quality of the estimate with a few numerical examples.
Example 4.2. We consider a 400× 400 (normal) diagonal matrix A whose eigen-

values are λ = c + a1 cos θ + ıa2 sin θ, θ uniformly distributed in [0, 2π] and c = 20,
semiaxes a1 = 10 and a2 = 2, so that the eigenvalues are on an elliptic curve with
center c and focal distance d =

√
a2
1 − a2

2 =
√

96. Here αmin ≈ 10.001, yielding
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Fig. 4.1. Example 4.2. True error and its estimate of Proposition 4.1 for the Krylov subspace
solver of the Lyapunov equation.

1/r2 ≈ 0.2056 for Proposition 4.1. The vector b is the vector of all ones, normalized
to have unit norm. In Figure 4.1 we report the error associated with the Krylov sub-
space approximation of the Lyapunov solution, and the estimate of Proposition 4.1.
The agreement is impressive, as should be expected since the spectrum lies exactly on
the elliptic curve and the matrix is normal, so that the field of values coincides with
the associated convex hull.

Example 4.3. We next consider the 400 × 400 matrix A stemming from the
centered finite difference discretization of the operator L(u) = −Δu+ 40(x+ y)ux +
200u in the unit square, with Dirichlet boundary conditions. The spectrum of A,
together with its field of values (computed with the MATLAB function fv.m in [20])
and a surrounding ellipse, is shown in the left plot of Figure 4.2. Here αmin = 0.4533.
The ellipse has parameters c = 4.4535, a1 = c − αmin, a2 = 3.7, a1, a2 being the
semiaxes’ length, and focal distance d =

√
a2
1 − a2

2 ≈ 1.52, yielding 1/r2 ≈ 0.8044.
The right plot of Figure 4.2 shows the convergence history of the Krylov solver,
together with the asymptotic factor (1/r2)m in Proposition 4.1. The initial asymptotic
convergence rate is reasonably well captured by the estimate.

Example 4.4. We consider the 400 × 400 bidiagonal matrix A with uniformly
distributed diagonal elements in the interval [10, 110] and unit upper diagonal. In
this case αmin = 9.4692. The vector b is the normalized vector of all ones. Our
numerical computation reported in the left plot of Figure 4.3 showed that the field
of values of A (computed once again with fv.m [20]) is contained in an ellipse with
center c = 60, semiaxes a1 = 50.8, a2 = 4.2, and focal distance d =

√
a2
1 − a2

2 ≈ 50.62,
yielding 1/r2 = 0.4699. The right plot of Figure 4.3 shows the convergence history
of the Krylov solver, together with the asymptotic factor in Proposition 4.1. Once
again, the asymptotic rate is a good estimate of the actual convergence rate. Even
more accurate bounds for this example might be obtained by using more appropriate
conformal mappings than the ellipse. It may be possible to include the field of values
into a rectangle, for which the mapping ψ could be numerically estimated [14], [16];
see also Example 4.9.

4.2. Field of values contained in a more general region. For a more gen-
eral region, we employ the general expansion in Faber series. We will proceed as
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Fig. 4.2. Example 4.3. Left plot: Spectrum of A, field of values (thin solid curve), and smallest
computed elliptic curve including the field of value (thick solid curve). Right plot: True error and its
asymptotic factor in the estimate of Proposition 4.1 for the Krylov subspace solver of the Lyapunov
equation.
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Fig. 4.3. Example 4.4. Left plot: Real spectrum, field of values (thin solid curve), and smallest
computed elliptic curve including the field of value (thick solid curve). Right plot: True error and
its estimate of Proposition 4.1 for the Krylov subspace solver of the Lyapunov equation.

follows. Using Lemma 2.1, we write

‖x̂− x̂m‖ ≤
∞∑
k=m

|fk| (‖Φk(A+ αminI)‖ + ‖Φk(Tm + αminI)‖).

If we consider a convex set containing the field of values of A + αminI, the result in
[3] allows us to write ‖Φk(A+ αminI)‖ ≤ 2 and ‖Φk(Tm + αminI)‖ ≤ 2, so that

‖x̂− x̂m‖ ≤ 4
∞∑
k=m

|fk|,
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and we can conclude by using (4.1), once appropriate estimates for the sup function
and for r2 are identified. More precisely, if M =M(t) > 0 is such that |fk| ≤ Mr−k2

for all k, and
∫∞
0
Mdt converges, then

‖X −Xm‖ ≤ 8
(∫ ∞

0

Mdt

)
r2

r2 − 1

(
1
r2

)m
.

In the next few corollaries we derive a result of the same type, with a choice of r2
such that the generalized integral converges.

In case we wish to work only with a set containing the spectrum, but not nec-
essarily the field of values of A + αminI, we can relax the convexity assumption and
differently bound the norm of the Faber polynomials in A, at the price of keeping the
condition number of the eigenvector matrix in the convergence estimate. This case
will be analyzed at the end of this section, and one example will be given around
Corollary 4.10.

We start by considering once again the case when the field of values is contained
in an ellipse, for which the result is qualitatively the same as that in Proposition 4.1.
The reason for reproducing the result in the case of the ellipse is precisely to appreciate
the limited loss of accuracy given by the bound, when the more general approach is
used, and to explicitly show the calculations in the case of an easy-to-handle mapping.

Corollary 4.5. Assume the field of values of the real matrix A is contained
in an ellipse E ⊂ C

+ of center (c, 0) and semiaxes a1 and a2, a1 > a2. Let αmin =
λmin((A+A�)/2). Then for ε satisfying 0 < ε ≤ 2αmin,

‖X −Xm‖ ≤ 8
ε

r2
r2 − 1

(
1
r2

)m
,

where

r2 =
c+ αmin − ε

2r
+

1
2r

√
(c+ αmin − ε)2 − d2, r =

a1 + a2

2
, d =

√
a2
1 − a2

2.

Proof. Let α = αmin and let Ê be the selected ellipse containing the field of values
of A + αI. We consider the mapping whose boundary image of the unit disk is ∂Ê,
ψ(τ) = c + α + rτ + (d/2)2

rτ , with τ = eiθ ∈ D(0, 1), so that ψ(|τ | = 1) = ∂Ê. For
ε > 0, we define r2 := |ψ−1(ε)|, so that

exp(−tε) = max
|τ |=r2

| exp(−tψ(τ))|,

and for 1 < r̂ < r2,

1
2π

∫ 2π

0

|f(ψ(r̂eiθ))|dθ ≤ exp(−tε) =:M(t).(4.2)

Since Ê is convex, it follows that ‖Φk(A + αI)‖ ≤ 2 for k = 0, 1, . . . ; see [3]. The
same holds for ‖Φk(Tm+αI)‖, since the field of values of Tm+αI is included in that
of A+ αI. Therefore, Lemma 2.1 ensures that

‖x̂− x̂m‖ ≤
∞∑
k=m

|fk| (‖Φk(A+ αI)‖ + ‖Φk(Tm + αI)‖) ≤ 8 exp(−tε) r2
r2 − 1

(
1
r2

)m
.
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Finally, using
∫∞
0

exp(−tε)dt = ε−1,

‖X −Xm‖ ≤
∫ ∞

0

‖x̂− x̂m‖dt ≤ 8
ε

r2
r2 − 1

(
1
r2

)m
,

which completes the proof.
The ideal result for ‖x − xm‖ would set r2 to be equal to r2 = ψ−1(0) and not

to r2 = ψ−1(ε) in the proof. However, this would makeM in (4.2) equal to one, and
the generalized integral would not converge. The result above can be compared to
the sharper one in Proposition 4.1. In practice, however, the asymptotic result is not
affected by the use of ε, since it is sufficient to take ε small compared to αmin, and
the same asymptotic rate as in Proposition 4.1 is recovered; only the multiplicative
factor increases. Therefore, setting r2,0 = ψ−1(0), the result above shows that

‖X −Xm‖ = O

((
1
r2,0

)m)
.(4.3)

The following mapping is a modified version of the external mapping used, for
instance, in [21]:

ψ(τ) = γ1 − γ2

(
1− 1

τ

)2−θ
τ, τ = σeiω, |τ | ≥ 1,(4.4)

for 0 < θ < 1 and γ1, γ2 ∈ R
+. The function ψ maps the exterior of the disc D(0, 1)

onto a wedge-shaped convex set Ω in C
+. The following result holds.

Corollary 4.6. Let Ω̂ ⊂ C
+ be the wedge-shaped set which is the image through

ψ̂ of the disk D(0, 1), where ψ̂ is as in (4.4). Assume the field of values of the matrix
A+ αminI, with αmin = λmin((A+A�)/2), is contained in Ω̂. For 0 < ε < 2αmin, let
r2 = |ψ̂−1(ε)|. Then

‖X −Xm‖ ≤ 8
ε

r2
r2 − 1

(
1
r2

)m
.

Proof. The proof follows the same steps as that of Corollary 4.5.
Example 4.7. We consider the 400 × 400 (normal) diagonal matrix A whose

eigenvalues are on the curve ψ(τ) = 2 − 2(1− 1/τ)2−ωτ for τ ∈ D(0, 1) with ω = 0.3
(see the left plot of Figure 4.4). Here αmin = 1.9627. The image of the mapping
ψ̂(τ) = αmin +ψ(τ), τ ∈ D(0, 1), thus contains the spectrum of A+αminI. Numerical
computation yields r2,0 = |ψ̂−1(0)| ≈ 3.5063. The vector b is the normalized vector
of all ones. The right plot of Figure 4.4 shows the convergence history of the Krylov
solver, together with the asymptotic factor (1/r2,0)m in the estimate of Corollary 4.6.
The linear asymptotic convergence is fully captured by the estimate.

In our next examples we numerically determine a contour bounding the field of
values of the coefficient matrix. Indeed, more general mappings than in the examples
above can be obtained and numerically approximated within the class of Schwarz–
Christoffel conformal mappings [10]. In all cases, the vector b was taken to be the
normalized vector of all ones.

Example 4.8. We consider the 200× 200 Toeplitz matrix

A = Toeplitz(−1,−1, 2, 0.1).
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Fig. 4.4. Example 4.7. Left plot: Spectrum of A. Right plot: True error and its asymptotic
factor associated with the asymptotic estimate (1/r2,0)m related to Corollary 4.6 for the Krylov
subspace solver of the Lyapunov equation.
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Fig. 4.5. Example 4.8. Left: Spectrum (“×”) and approximated field of values (solid line).
Right: True convergence rate and asymptotic estimate (1/r2,0)m.

In this case, the asymptotic convergence rate was numerically determined. To this end,
we used the Schwarz–Christoffel mapping Toolbox [11] in MATLAB to numerically
compute a conformal mapping whose image was an approximation to the boundary
of the field of values of A (cf. left plot of Figure 4.5). A polygon with few vertices
approximating ∂F (A + αminI) was obtained with fv.m, and this was then injected
into the Schwarz–Christoffel inverse mapping function to construct the sought-after
mapping and the value of r2,0 according to (4.3). The asymptotic rate was determined
to be 1/r2,0 ≈ 0.8859. The right plot in Figure 4.5 shows the extremely good agree-
ment between the true error and the asymptotic rate for this numerically determined
mapping.

Example 4.9. We consider once again the matrix in Example 4.4 and use the
Schwarz–Christoffel mapping Toolbox to generate a sharper estimate of the polygon
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Fig. 4.6. Example 4.9. Left: Spectrum (“×”) and approximated field of values (solid line).
Right: True convergence rate and asymptotic estimate (1/r2,0)m.

including the field of values. This provides a refined numerical mapping and a more
accurate convergence rate. The polygon approximating the field of values of A+αminI
is shown in the left plot of Figure 4.6, while the history of the error norm and the
estimate for the numerically computed value 1/r2,0 ≈ 0.4445 (cf. (4.3)) are reported in
the right plot of Figure 4.6. The estimated convergence rate is clearly higher, that is,
1/r2,0 is smaller, than the value computed with the ellipse, which was 1/r2 ≈ 0.4699.

The following mapping was analyzed in [26] and is associated with a nonconvex
domain; the specialized case of an annular sector is discussed, for instance, in [7].
Given a set Ω, assume that ∂Ω is an analytic Jordan curve. If Ω is of bounded (or
finite) boundary rotation, then

max
z∈Ω
|Φk(z)| ≤ V (Ω)

π
,

where V (Ω) is the boundary rotation of Ω, defined as the total variation of the angle
between the positive real axis and the tangent of ∂Ω. In particular, this bound is scale-
invariant, so that it also holds that V (sΩ) = V (Ω) [26]. These important properties
ensure that for a diagonalizable matrix A, ‖Φk(A+αminI)‖ is bounded independently
of k, on a nonconvex set with bounded boundary rotation. Indeed, letting A = QΛQ−1

be the spectral decomposition of A, then ‖Φk(A + αminI)‖ ≤ κ(Q)‖Φk(Λ + αminI)‖,
where κ(Q) = ‖Q‖ ‖Q−1‖, and the estimate above can be applied.

Corollary 4.10. Assume that A is diagonalizable, and let A = QΛQ−1 be its
spectral decomposition. Assume the spectrum of A + αminI is contained in the set
sΩ ∈ C

+, with s > 0, whose boundary is the “bratwurst” image for |τ | = 1 of

ψ(τ) =
(ρτ − λN)(ρτ − λM)

(N −M)ρτ + λ(NM − 1)
∈ C

+,

where τ ∈ D(0, r), r ≥ 1, while N,M, ρ, and λ are given and such that ψ(D(0, 1)) ⊂
C

+. Then, for 0 < ε < min|τ |=1�(ψ(τ)),

‖X −Xm‖ ≤ 8V (Ω)κ(Q)
πε

r2
r2 − 1

(
1
r2

)m
,

where r2 ≥ 1 is the smallest radius such that ε = �(ψ(r2 exp(iθ))) for some θ.
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Fig. 4.7. Example 4.11. Left plot: Spectrum and “bratwurst” curves associated with disks of
different radius. Right plot: True error and the asymptotic factor of its estimate in Corollary 4.10
for the Krylov subspace solver of the Lyapunov equation.

Proof. Proceeding as in Corollary 4.5 we have

‖x̂− x̂m‖ ≤
∞∑
k=m

|fk| (‖Φk(A+ αI)‖ + ‖Φk(Tm + αI)‖)

≤ 4M(t)
V (Ω)κ(Q)

π

r2
r2 − 1

(
1
r2

)m
.

HereM(t) = exp(−tε). Finally,

‖X −Xm‖ ≤ 2
∫ ∞

0

‖x̂− x̂m‖dt ≤ 8V (Ω)κ(Q)
π

∫ ∞
0

M(t)dt
r2

r2 − 1

(
1
r2

)m
,

from which the result follows.
Example 4.11. This example is taken from [25]; see also [26] for more details.

In this case, A is the 225 × 225 matrix pde225 of the Matrix Market repository
[28] and it is such that αmin ≈ 0.08249. The spectrum of A + αminI is included in
the set 2Ω whose boundary is the bratwurst image of ψ as in Corollary 4.10, with
λ = −1, N = 1.0508, ρ = 0.98, M = 0.6626 (exact to the first decimal digits; the
other parameters defined in [25] were set at the different values θ = 5/4π, e = 1.40).
The left plot of Figure 4.7 shows the spectrum of A + αminI as “×”; the solid curve
corresponds to the boundary of ψ(D(0, 1)), enclosing the whole spectrum. Let r2,0 ≥ 1
be the smallest radius such that ψ(r2,0eiθ) = 0 for some θ. Then the dashed curve
is the boundary of ψ(D(0, r2,0)). The right plot of Figure 4.7 shows the convergence
curve of the Krylov subspace solver, together with the asymptotic quantity

(
1
r2,0

)m,
m = 1, 2, . . . , associated with Corollary 4.10. We observe that the initial convergence
phase is well captured by the estimate. As expected, the estimate cannot reproduce
the superlinear convergence of the solver at later stages.

5. Connections to linear system solvers and further considerations. The
relation

z−1 =
∫ ∞

0

e−tzdt
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can be used to show a close connection between our estimates and the solution of the
linear system (A+ αminI)d = b in the Krylov subspace. Let Vm(Tm + αminI)−1e1 be
the Galerkin approximation to the linear system solution d in the Krylov subspace
Km(A, b) = Km(A+ αminI, b). Then the system error can be written as

(A+ αminI)−1b− Vm(Tm + αminI)−1e1

=
∫ ∞

0

(exp(−t(A+ αminI))b − Vm exp(−t(Tm + αI))e1) dt.

Comparing the last integral with the error bound in (2.2) shows that the error norm
‖(A+αminI)−1b−Vm(Tm+αminI)−1e1‖may be bounded by exactly the same tools we
have used for the Lyapunov error and that the two initial integral bounds differ only
by a factor of two. Indeed, the estimates of Proposition 3.1 (symmetric case) and of
Proposition 4.1 (spectrum contained in an ellipse) employ the same asymptotic factors
that characterize the convergence rate of methods such as the conjugate gradients in
the symmetric case, and FOM or GMRES in the nonsymmetric case, when applied
to the system (A + αminI)d = b; see, e.g., [32]. Therefore, we have shown that the
convergence of a Galerkin procedure in the Krylov subspace for solving (1.1) has the
same convergence factor as a corresponding Krylov subspace method for the shifted
(single vector) linear system.

As a natural consequence of the discussion above, the previous results can be
generalized to the case when b is replaced by a matrix B, with more than one column.
A Galerkin approximation may be obtained by first generating the “block” Krylov
subspace Km(A,B) = span{B,AB, . . . , Am−1B} and then proceeding as described in
section 2; see, e.g., [2]. Let B = [b1, . . . , bs]. Setting Z = exp(−tA)B and letting
Zm ∈ Km(A,B) be the associated Krylov approximation to the exponential, we can
bound ‖ZZ� − ZmZ�m‖, for instance, as

‖ZZ� − ZmZ�m‖ ≤
s∑

k=1

‖z(k)
m (z(k)

m )� − z(k)
m (z(k)

m )�‖,

where Z = [z(1), . . . , z(s)] and Zm = [z(1)
m , . . . , z

(s)
m ]. The results of the previous

sections can be thus applied to each term in the sum. Refined bounds may possibly
be obtained by using the theory of matrix polynomials, but this is beyond the scope
of this work; see, e.g., [32].

We also observe that our convergence results can be generalized to the case of
accelerated methods, such as that described in [33], by using the theoretical matrix
function framework described in [13].

Acknowledgments. We are deeply indebted to Leonid Knizhnerman for several
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Abstract. We question whether the recent characterization of Sobolev spaces by Bourgain,
Brezis, and Mironescu (2001) could be useful to solve variational problems on W 1,p(Ω). To answer
this, we introduce a sequence of functionals so that the seminorm is approximated by an integral
operator involving a differential quotient and a radial mollifier. Then, for the approximated for-
mulation, we prove existence, uniqueness, and convergence of the solution to the unique solution of
the initial formulation. We show that these results can also be extended in the BV -case. Interest-
ingly, this approximation leads to a unified implementation, for Sobolev spaces (including with high
p-values) and for the BV space. Finally, we show how this theoretical study can indeed lead to a
numerically tractable implementation, and we give some image diffusion results as an illustration.
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integral approximations, nonlocal formulations
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1. Introduction. The goal of this work is to propose a new unifying method for
solving variational problems defined on the Sobolev spaces W 1,p(Ω) or on the space
of functions of bounded variations BV (Ω) of the form

(1.1) inf
u∈W 1,p(Ω)

F (u),

with

F (u) =
∫

Ω

|∇u(x)|pdx+
∫

Ω

h(x, u(x))dx.

To solve this problem numerically, particularly in the case when p = 1, several methods
have been proposed; see, e.g., [8, 13, 14, 7, 18, 19]. These methods mainly rely on
regularization or duality results.

In this article we propose an alternative method based on a recent new charac-
terization of the Sobolev spaces by Bourgain, Brezis, and Mironescu [5], and further
extended by Ponce [16] in the BV -case. In [5] the authors showed that the Sobolev
seminorm of a function f can be approximated by a sequence of integral operators
involving a differential quotient of f and a suitable sequence of radial mollifiers:

lim
n→∞

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρn(|x − y|)dxdy = KN,p

∫
Ω

|∇u|pdx.
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In this paper, our main contribution is to show how this characterization can be
used to approximate the variational formulation (1.1) by defining the sequence of
functionals

Fn(u) =
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρn(|x− y|)dxdy +

∫
Ω

h(x, u(x)) dx.

To do this, we prove that the sequence of minimizers of Fn converges to the solution
of the original variational formulation. We prove this result for any p ≥ 1, so that the
BV -case is also covered (thanks to results by Ponce [16]). Note that approximation is
not constrained by the fidelity attach term (see [7]). Numerically, we propose a unified
subgradient approach for all p ≥ 1, and we show how to discretize the nonlocal singular
term with a finite element–type method.

Interestingly, the nonlocal term in Fn has some similarities to recent contributions
by Gilboa and Osher [12] and Gilboa et al. [11], who propose to minimize nonlocal
functionals of the type ∫

Ω

∫
Ω

φ(|u(x) − u(y)|)w(|x, y|)dxdy,

where φ is a convex positive function and w is a weighting function. The authors
propose a general formalism for nonlocal smoothing terms but define them heuris-
tically for their applications in image processing (see also the link to neighborhood
filters [6]). In our contribution, the nonlocal term that we propose comes from the
approximation of a seminorm, so that we will show some regularity results on the
solution. Notice that one related major difference is the weighting function, which is
in our case singular.

This paper is organized as follows. In section 2, we recall the main results from [5]
that we will use herein and define the sequence of the approximating functional Fn.
In section 3, we present the most significant results of the paper, considering the case
p > 1: we prove existence and uniqueness of a minimizer un of Fn, characterize its
regularity, derive the optimality condition, and finally show that un converges to the
unique solution of the initial formulation. In section 4, we describe how those results
can be extended to the case p = 1, which corresponds to the BV -case. Finally, we
show in section 5 how this theoretical study can indeed lead to a numerically tractable
implementation, and we give some image diffusion results as an illustration.

2. The Bourgain–Brezis–Mironescu result. Let us first recall the result of
Bourgain, Brezis, and Mironescu [5].

Proposition 2.1. Assume 1 ≤ p <∞ and u ∈ W 1,p(Ω), and let ρ ∈ L1(R), ρ ≥
0. Then

(2.1)
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρ(|x− y|)dxdy ≤ C‖u‖pW 1,p‖ρ‖L1(R),

where ‖u‖pW 1,p denotes the (semi)norm defined by ‖u‖pW 1,p =
∫
Ω
|∇u|pdx and C de-

pends only on p and Ω.
Now let us suppose that (ρn) is a sequence of radial mollifiers, i.e.,

(2.2) ρn ≥ 0,
∫

RN

ρn(|x|)dx = 1,

and for every δ > 0, we assume that

(2.3) lim
n→∞

∫ ∞
δ

ρn(r)rN−1dr = 0.
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With conditions (2.2) and (2.3), which we will assume throughout this article, we
have the following proposition.

Proposition 2.2. If 1 < p <∞ and u ∈ W 1,p(Ω), then

(2.4) lim
n→∞

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρn(|x− y|)dxdy = KN,p‖u‖pW 1,p ,

where KN,p depends only on p and N .
In this paper, we propose to apply Propositions 2.1 and 2.2 for solving general

variational problems of the form

(2.5) inf
u∈W 1,p(Ω)

F (u),

with

(2.6) F (u) =
∫

Ω

|∇u(x)|pdx+
∫

Ω

h(x, u(x))dx, u ∈ W 1,p(Ω).

To do this, following [5], we introduce the nonlocal formulation

(2.7) inf
u∈Lp(Ω)

Fn(u),

with

(2.8) Fn(u) =
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρn(|x− y|)dxdy +

∫
Ω

h(x, u(x)) dx.

Our goal is to establish in which sense formulation (2.7)–(2.8) approximates the initial
formulation (2.5)–(2.6).

3. Approximation of variational problems on W 1,p(Ω), p > 1. Thanks
to Proposition 2.1, functional Fn(u) is well-defined on W 1,p(Ω). However, one can-
not prove directly that Fn admits a unique minimizer on W 1,p(Ω), since minimizing
sequences cannot be bounded in that space. Thus we need to consider the minimiza-
tion over the larger space Lp(Ω), and problem (2.7) is in fact an unbounded problem
in Lp(Ω).

In this section, we prove the following results:
• For n fixed, we show in section 3.1 that problem (2.7) admits a unique solution
un ∈ Lp(Ω).
• Then we show in section 3.2 that un is more regular and belongs to the Sobolev

space W s,p(Ω) with 1/2 < s < 1. Moreover, we show that all minimizing
sequences are bounded onW s,p(Ω). The main consequence is that minimizing
sequences (uln)l indeed converge strongly to un. This additional regularity will
also enable us to consider problems with Dirichlet boundary conditions, since
one can give a meaning to the trace operator on that space.
• The previous regularity result will be fundamental in section 3.3 when we

consider that n tends to infinity. Applying some results by Ponce [16], we
will show that un converges to the unique solution u of the original formula-
tion (2.5).
• In section 3.4 we establish the expression of the Euler–Lagrange equation.

Remark. Note that throughout this section and in the proofs, we will denote by C
a universal constant that may be different from one line to the other. If the constant
depends on n, for example, it will be denoted by C(n).
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3.1. Existence and uniqueness of a solution un in Lp(Ω). Now, let us
show that functional (2.8) admits a unique minimizer. It is clear by using again
Proposition 2.1 and the fact that ‖ρn‖L1(R) = 1 that we have for all v in W 1,p(Ω)

inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W 1,p(Ω)

Fn(u) ≤ Fn(v) ≤ C‖v‖pW 1,p +
∫

Ω

h(x, v(x)) dx,

from which we deduce that infu∈Lp(Ω) Fn(u) is bounded by a finite constant (inde-
pendent of n).

Proposition 3.1. Assume that h ≥ 0, the function x �→ h(x, u(x)) is in L1(Ω)
for all u in Lp(Ω), h is convex with respect to its second argument, and, for each
n, the function t �→ ρn(t) is nonincreasing. Then functional (2.8) admits a unique
minimizer in Lp(Ω).

Before proving this proposition, let us recall a technical lemma from Bourgain,
Brezis, and Mironescu (Lemma 2 in [5]) that we will use in the proof of Proposition 3.1.

Lemma 3.2. Let g, k : (0, δ)→ R+. Assume g(t) ≤ g(t/2) for t ∈ (0, δ), and that
k is nonincreasing. Then for all M > 0, there exists a constant C(M) > 0 such that

(3.1)
∫ δ

0

tM−1g(t)k(t)dt ≥ C(M)δ−M
∫ δ

0

tM−1g(t)dt
∫ δ

0

tM−1k(t)dt.

Proof of Proposition 3.1. Let us consider a minimizing sequence uln of Fn(u) with
n > 0 fixed. Since h ≥ 0 and infu∈Lp(Ω) Fn(u) is bounded, then there exists a constant
C such that

(3.2)
∫

Ω

∫
Ω

|uln(x) − uln(y)|p
|x− y|p ρn(|x− y|)dxdy ≤ C.

We are going to apply techniques borrowed from Bourgain, Brezis, and Mironescu [5,
Theorem 4]. Without loss of generality, we may assume that Ω = R

N and that the
support of uln is included in a ball B of diameter 1. This can be achieved by extending
each function uln by reflection across the boundary in a neighborhood of ∂Ω. We may
also assume the normalization condition

∫
Ω
uln(x)dx = 0 for all n and l. Let us define

for each n, l, t > 0

(3.3) Eln(t) =
∫
SN−1

∫
RN

|uln(x+ tw)− uln(x)|pdxdw,

where SN−1 denotes the unit sphere of R
N . Straightforward changes of variables show

that ∫
Ω

∫
Ω

|uln(x) − uln(y)|p
|x− y|p ρn(|x− y|)dxdy =

∫ 1

0

tN−1E
l
n(t)
tp

ρn(t)dt,

and thus (3.2) can be equivalently expressed as

(3.4)
∫ 1

0

tN−1E
l
n(t)
tp

ρn(t)dt ≤ C.

Now since we have supposed that uln is of zero mean, we can write

uln(x) = uln(x) −
1
|B|

∫
B

uln(y)dy.
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Thus∫
|uln(x)|pdx =

∫ ∣∣∣uln(x)− 1
|B|

∫
B

uln(y)dy
∣∣∣pdx =

1
|B|p

∫ ∣∣∣ ∫
B

uln(x)− uln(y)dy
∣∣∣p dx,

and, thanks to the Hölder inequality, there exists a constant C such that

(3.5)
∫
|uln(x)|pdx ≤ C

∫
|h|≤1

( ∫
|uln(x+h)−uln(x)|p dx

)
dh = C

∫ 1

0

tN−1Eln(t)dt.

Now, an interesting property of Eln is that

(3.6) Eln(2t) ≤ 2pEln(t).

Inequality (3.6) follows from the triangle inequality |a+ b|p ≤ 2p−1(|a|p + |b|p):

Eln(2t) =
∫
SN−1

∫
RN

|uln(x+ 2tw)− uln(x)|pdxdw

=
∫
SN−1

∫
RN

|uln(x+ 2tw)− uln(x+ tw) + uln(x+ tw) − uln(x)|pdxdw

≤ 2p−1
(∫

SN−1

∫
RN

|uln(x+ 2tw)− uln(x+ tw)|pdxdw

+
∫
SN−1

∫
RN

|uln(x+ tw)− uln(x)|pdxdw
)

(3.7)

≤ 2pEln(t),

since both integrals in (3.7) are equal (up to a change of variable).
To conclude we apply Lemma 3.2 with M = N , δ = 1, k(t) = ρn(t), and g(t) =

El
n(t)
tp (this choice is valid thanks to the hypotheses on ρn and property (3.6)). We

obtain ∫ 1

0

tN−1ρn(t)
Eln(t)
tp

dt ≥ C
∫ 1

0

tN−1ρn(t)dt
∫ 1

0

tN−1E
l
n(t)
tp

dt

≥ C
∫ 1

0

tN−1ρn(t)dt
∫ 1

0

tN−1Eln(t)dt,(3.8)

where we have used in the last inequality the fact that 0 < t < 1. Let us denote
d(n) =

∫ 1

0
tN−1ρn(t)dt > 0; we obtain, thanks to (3.4), (3.5), and (3.8), that there

exists a constant C(n) > 0 (but which is independent of l) such that

(3.9)
∣∣uln∣∣Lp(Ω)

≤ C(n).

From (3.9), we deduce that, up to a subsequence, uln tends weakly in Lp(Ω) to some
un ∈ Lp(Ω) as l → +∞. Then we deduce that the sequence wln(x, y) = uln(x)− uln(y)
tends weakly in Lp(Ω× Ω) to wn(x, y) = un(x)− un(y). Since the functional

w→
∫

Ω

∫
Ω

|w(x, y)|p ρn(|x− y|)
|x− y|p dxdy

is nonnegative, convex, and lower semicontinuous from Lp(Ω×Ω)→ R̄, we easily get

Fn(un) ≤ lim
l→∞

Fn(uln) = inf
u∈Lp(Ω)

Fn(u),

where the symbol lim denotes the lower limit. Therefore un is a minimizer of Fn.
Moreover it is unique since the function t �→ |t|p is strictly convex for p > 1.
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3.2. Regularity result for un. We have obtained the existence of a minimizer
in Lp(Ω). Let us show that the solution is in fact more regular than just Lp.

As for W 1,p(Ω), the space W s,p(Ω) can be characterized by a differential quotient.
For 0 < s < 1 and 1 ≤ p <∞, we define

W s,p(Ω) =
{
u ∈ Lp(Ω);

|u(x)− u(y)|
|x− y|s+N/p ∈ L

p(Ω× Ω)
}
,

endowed with the norm

|u|pW s,p(Ω) =
∫

Ω

|u|pdx+
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|sp+N dxdy.

Let us consider n fixed and let us denote by C(n) a universal positive constant de-
pending on n (i.e., C(n) may be different from one line to the next). Let (uln)l be a
minimizing sequence of (2.7) so that

(3.10)
∫

Ω

∫
Ω

|uln(x)− uln(y)|p
|x− y|p ρn(|x− y|)dxdy ≤ C(n).

Then we would like to prove that (3.10) implies

(3.11)
∫

Ω

∫
Ω

|uln(x)− uln(y)|p
|x− y|sp+N dxdy ≤ C(n)

for some 1/2 < s < 1 and some other constant C(n), thus showing that uln belongs
to W s,p(Ω).

Proposition 3.3. Let q be a real number such that p2 < q < p and (p−1) ≤ q, and
let us assume that ρn verifies (2.2)–(2.3) and also that conditions of Proposition 3.1
are fulfilled. Moreover let us suppose that the functions t→ ρn(t) and t→ tq+2−pρn(t)
are nonincreasing for t ≥ 0. Then uln ∈W q/p,p(Ω) for all l.

Proof. Without loss of generality, let us prove Proposition 3.3 for the case N = 2.
Equivalently, thanks to (3.3) of Eln, we can rewrite (3.10) and (3.11) so that one needs
to prove that

(3.12)
∫ 1

0

t
Eln(t)
tp

ρn(t)dt ≤ C(n)

implies ∫ 1

0

t
Eln(t)
tsp+2

dt ≤ C(n).

Let us apply Lemma 3.2 with M = δ = 1, g(t) = El
n(t)
tq+1 , k(t) = tq+2−pρn(t). Assuming

the hypothesis on g(t) is true, Lemma 3.2 gives

(3.13)
∫ 1

0

Eln(t)ρn(t)
tp−1

dt ≥ C(M)
∫ 1

0

Eln(t)
tq+1

dt

∫ 1

0

tq+2−pρn(t)dt.

Therefore ∫ 1

0

Eln(t)
tq+1

dt ≤ 1

C(M)
∫ 1

0
tq+2−pρn(t)dt

∫ 1

0

Eln(t)ρn(t)
tp−1

dt,
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and according to (3.12), we get∫ 1

0

Eln(t)
tq+1

dt ≤ C(n)/C(M)∫ 1

0
tq+2−pρn(t)dt

,

where the right-hand term is bounded independently of l. Thus uln ∈ W s,p(Ω) with
s = q

p , and since we have supposed p
2 < q < p we have 1

2 < s < 1.
So it remains to show that function g(t) verifies the hypothesis of Lemma 3.2.

We have to check g(t) ≤ g(t/2). Since g(t) = El
n(t)
tq+1 then g(t/2) = El

n(t/2)
tq+1 2q+1 ≥

2q+1−p El
n(t)
tq+1 = 2q+1−pg(t) (thanks to (3.3)). Thus we get g(t/2) ≥ g(t) if q+1−p ≥ 0,

i.e., if q ≥ (p− 1).
Depending on p, one needs to find a function ρn(t) so that ρn(t) and tq+2−pρn(t)

are decreasing, and verify (2.2) and (2.3). Let us show that such a ρn function exists.
We define

(3.14) ρn(t) = Cn2ρ(nt) with C =
1∫

R2 ρ(|x|)dx
and, depending on the values of p, we propose the following functions:

(3.15) ρ(t) =

⎧⎪⎪⎨
⎪⎪⎩

exp(−t)/tq+1 if p = 1,with 0.5 < q < 1,

exp(−t)/tq if p = 2,with 1 < q < 2,

exp(−t)/t if p > 2,with q = p− 1.

As a consequence, we have the following proposition.
Proposition 3.4. Let (uln)l be a minimizing sequence of (2.7). Let us suppose

that h verifies the conditions of Proposition 3.1 and the coercivity condition h(x, u) ≥
a|u|p + b, with a > 0. Then the sequence (uln)l is bounded in W q/p,p(Ω) uniformly
with respect to l. Therefore, up to a subsequence, uln tends weakly to un in W q/p,p(Ω)
(and strongly in Lp(Ω)).

Another direct consequence of Proposition 3.3 is the following.
Lemma 3.5. We have infu∈Lp(Ω) Fn(u) = infu∈W s,p(Ω) Fn(u), and the solution of

the problem posed on Lp(Ω) is also the solution of the problem posed in W s,p(Ω).
Proof. Since W s,p(Ω) ⊂ Lp(Ω), then

inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u).

By definition, since un is the minimizer of Fn in Lp(Ω), we have

Fn(un) = inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u),

but as un ∈W s,p(Ω), we have finally

inf
u∈W s,p(Ω)

Fn(u) ≤ Fn(un) = inf
u∈Lp(Ω)

Fn(u) ≤ inf
u∈W s,p(Ω)

Fn(u),

which concludes the proof.
Remark. Yet another consequence of Proposition 3.3 is that one can also consider

problems with Dirichlet boundary conditions if necessary: If one needs to solve prob-
lem (2.5) with a Dirichlet boundary condition u = ϕ on ∂Ω, then one can impose the
minimizing sequence of (2.7) to verify uln = ϕ on ∂Ω (which has a meaning thanks to
this regularity result), so that, by continuity of the trace operator, we have un = ϕ
on ∂Ω. Thus un is the unique minimizer in W q/p,p(Ω) of problem (2.7), also verifying
the Dirichlet boundary condition.
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3.3. Study of the limn→∞ un. In section 3 we proved the existence of a
unique solution un for problem (2.7), with n fixed, which is in fact in W s,p(Ω). Now,
we are going to examine the asymptotic behavior of (2.7) as n → ∞. Throughout
this section we will suppose the hypotheses stated in Propositions 3.3 and 3.4 hold.
By definition of a minimizer, we have, for all v ∈ W q/p,p(Ω),

(3.16) Fn(un) ≤ Fn(v) =
∫

Ω

∫
Ω

|v(x)− v(y)|p
|x− y|p ρn(|x − y|)dxdy +

∫
Ω

h(x, v(x))dx.

Thus by using (2.1) and the fact that |ρn|L1 = 1 we deduce from (3.16) that Fn(un) is
bounded uniformly with respect to n. In particular, we get for some constant C > 0∫

Ω

∫
Ω

|un(x) − un(y)|p
|x− y|p ρn(|x− y|)dxdy ≤ C.

By using the same technique as in Proposition 3.3, we still have that (un) is bounded in
W q/p,p(Ω). Therefore there exists u such that (up to a subsequence) un → u in Lp(Ω)-
strong. Moreover, by applying Theorem 4 from [5], we obtain that u ∈ W 1,p(Ω). We
claim that u is the unique solution of problem (2.5), i.e., for all v ∈ W 1,p(Ω),

(3.17)
∫

Ω

|∇u(x)|pdx +
∫

Ω

h(x, u(x))dx ≤
∫

Ω

|∇v(x)|pdx+
∫

Ω

h(x, v(x))dx.

To prove (3.17) we refer the reader to the paper by Ponce [16]. In this paper the author
studies in the same spirit as [5] new characterizations of Sobolev spaces and also of
the space BV (Ω) of functions of bounded variations (see also section 4). The author
considers more general differential quotients than the ones in [5], namely, functionals
of the form

En(u) =
∫

Ω

∫
Ω

w

( |u(x)− u(y)|
|x− y|

)
ρn(|x− y|)dxdy.

By studying the asymptotic behavior, Ponce [16] obtained new characterizations of
W 1,p(Ω) but also of BV (Ω). In particular, for w(t) = |t|p the author proved that
En(u) Γ-converge (up to a multiplicative constant) to E(u) =

∫
Ω
|∇u|pdx.

We have the following proposition.
Proposition 3.6.

(i) The sequence of functionals

Fn(u) = En(u) +
∫

Ω

h(x, u(x))dx

Γ-converges (up to a multiplicative constant) to

F (u) = E(u) +
∫

Ω

h(x, u(x))dx.

(ii) The sequence un of minimizers of Fn(u), which is precompact in Lp(Ω), con-
verges to the unique minimizer of F (u).

Proof. Item (i) is the Γ-convergence result shown by Ponce [16]. Item (ii) is
a direct consequence of general Γ-convergence properties, since we proved that the
sequence (un) is bounded in W s,p(Ω), and thus converges strongly in Lp(Ω) to u (up
to a subsequence).
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3.4. Euler–Lagrange equation. Since un is a global minimizer of Fn(u) it
necessarily verifies F

′
n(un) = 0, i.e., an Euler–Lagrange equation. The Euler–Lagrange

equation is given in the following proposition.
Proposition 3.7. If function h is differentiable, verifies conditions of Proposi-

tions 3.1 and 3.4, and verifies for all u and a.e. x an inequality of the form |∂h(x,u)
∂u | ≤

l(x) + b|u|p−1 for some function l(x) ∈ L1(Ω), l(x) > 0 and some b > 0, then the
unique minimizer un of Fn(u) verifies for a.e. x

(3.18) 2p
∫

Ω

|un(x)− un(y)|p−2

|x− y|p (un(x)− un(y))ρn(|x− y|)dy +
∂h(x, un(x))

∂u
= 0.

Proof. Let us focus on the smoothing term and denote

En(un) =
∫

Ω

∫
Ω

|un(x) − un(y)|p
|x− y|p ρn(|x− y|)dxdy,

and let us consider for all v in W 1,p(Ω) the differential quotient

Dv(t) =
En(un + tv)− En(un)

t
.

We have

Dv(t) =
∫

Ω

∫
Ω

|un(x)− un(y) + t(v(x) − v(y))|p − |un(x) − un(y)|p
|x− y|p ρn(|x − y|)dxdy.

Thanks to Taylor’s formula, there exists c(t, x, y) with |c(t, x, y)− (un(x)− un(y))| <
t|v(x) − v(y)| such that

Dv(t) = p

∫
Ω

∫
Ω

(v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x− y|p ρn(|x− y|)dxdy.

Moreover, we have, as t→ 0,

(v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x− y|p ρn(|x− y|)

→ (v(x) − v(y))(un(x) − un(y))|un(x)− un(y)|p−2

|x− y|p ρn(|x− y|).

On the other hand

|c(t, x, y)|p−1 ≤ 2p(|un(x)− un(y)|p−1 + |v(x) − v(y)|p−1).

Thus ∣∣∣∣ (v(x) − v(y))c(t, x, y)|c(t, x, y)|p−2

|x− y|p ρn(|x− y|)
∣∣∣∣(3.19)

≤ 2p
( |v(x) − v(y)||un(x)− un(y)|p−1

|x− y|p ρn(|x− y|) +
|v(x)− v(y)|p
|x− y|p ρn(|x − y|)

)
.

Let us discuss the integrability of the right-hand side terms denoted, respectively, by A
and B. The second term B is bounded by an integrable function because v ∈W 1,p(Ω)
and thanks to Proposition 2.1. The first term A gives

A =
|v(x) − v(y)|
|x− y| ρ

1
p
n (x− y)

∣∣∣∣un(x) − un(y)|x− y|
∣∣∣∣
p−1

ρ
p−1

p
n (x− y),
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where
|v(x) − v(y)|
|x− y| ρ

1
p
n (x− y)

is in Lp(Ω) since v ∈ W 1,p(Ω) and thanks to Proposition 2.1, and∣∣∣∣un(x)− un(y)|x− y|
∣∣∣∣
p−1

ρ
p−1

p
n (x− y)

is in L
p

p−1 (Ω) since un is a minimizing sequence. So A is also bounded by an integrable
function.

Therefore we can apply Lebesgue’s dominated convergence theorem (n is fixed)
and get

〈E′n(un), v〉 = p

∫
Ω

|un(x) − un(y)|p−2

|x− y|p (v(x) − v(y))(un(x)− un(y))ρn(|x− y|)dy.

The computation of the derivative of
∫
Ω
h(x, u(x))dx is classical. Thus the desired

result (3.18) by remarking that the function (x, y) �→ |un(x)−un(y)|p−2(un(x)−un(y))
|x−y|p is

antisymmetric with respect to (x, y).

4. Extension of previous results to the BV (Ω)-case (p = 1). A similar
result to that of Proposition 2.2 holds if p = 1; see [16]. In this case we need to search
for a solution for problem (2.5) in BV (Ω), the space of functions of bounded variations
[1, 10]. In fact most results are still valid in this case with some adaptations. We do
not reproduce here details of their proofs, which rely upon the work by Ponce [16],
who has, as said before, generalized to BV (Ω) the results of [5] stated in the W 1,p(Ω)
case.

Let us recall the main steps and show how the results can be extended.
• The first point is that the proof of Proposition 3.1 does not apply in the case
p = 1 since we cannot extract from a sequence bounded in L1(Ω) a weakly
converging subsequence. Thus we have to show that a minimizing sequence
uln of Fn(u) is bounded in the Sobolev spaceW q,1(Ω), with 0.5 < q < 1. To do
that, we use the same proof as in Proposition 3.3. Then, thanks to the two-
dimensional Rellich–Kondrachov theorem W q,1(Ω) ⊂ Lr(Ω) with compact
injection for 1 ≤ r < 2

2−q (note that if 0.5 < q < 1, then 4/3 < 2
2−q < 2).

Therefore, up to a subsequence, uln(x) tends, a.e., to some function un(x).
Then by using Fatou’s lemma we get Fn(un) ≤ lim inf l→∞ Fn(uln); i.e., un is
a minimizer of Fn.
• The result when n tends to infinity is again obtained thanks to the Γ-conver-

gence result by Ponce and the compactness of the sequence un in Lr(Ω). As
a result, un converges strongly in L1(Ω) to u ∈ BV (Ω).
• Finally, the Euler–Lagrange equation (3.18) is no longer true in the case p = 1

since the function t→ |t| is not differentiable. However, it is subdifferentiable.
Therefore (3.18) changes into an inclusion

(4.1) 0 ∈ ∂En(un) +
∂h

∂u
(x, un),

where En(u) =
∫
Ω

∫
Ω
|u(x)−u(y)|
|x−y| ρn(|x − y|)dxdy. In (4.1), we can choose any

element of the subdifferential, and, for example,

(4.2) 2
∫

Ω

1
|x− y| sign(un(x) − un(y))ρn(|x − y|)dy,
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where

(4.3) sign(s) =

⎧⎪⎨
⎪⎩
−1 if s < 0,
0 if s = 0,
1 if s > 0.

5. Implementation details and results.

5.1. A unified discrete implementation. In this section, we give the imple-
mentation details to solve the general variational problem (2.7) in a unified way (for
n fixed) for both Sobolev and BV spaces.

The goal is to solve the differential inclusion

0 ∈ ∂Fn(un),
with a standard subgradient descent approach [17, 4]:

(5.1)
{
uk+1(x) = uk(x) − αkgk(x),
u0(x) = u0(x) ∀x ∈ Ω,

where αk is the kth step size and gk is any subgradient in ∂Fn(un).
Taking into account the expression of the gradient or subgradient, we have here

(5.2) uk+1(x) = uk(x) + αk
(
− ∂h

∂u
(x, uk(x)) − 2pIuk(x)

)
,

with

(5.3) Iuk(x) =
∫

Ω

|uk(x) − uk(y)|p−1

|x− y|p sign(uk(x)− uk(y))ρn(|x − y|)dy ∀p.

Note that (5.3) is a unified expression which corresponds to the gradient when p > 1
(see the Euler–Lagrange equation in section 5.1), or a given element of the subdiffer-
ential in the BV -case (see section 4). We remind the reader that the definition of ρn
also depends on p (see (3.15)).

Now the problem is to discretize in space the integral Iuk (x), which has a singular
kernel, not defined when x = y. Let us introduce the function Juk such that

(5.4) Iuk(x) =
∫

Ω

Juk(x, y)
|x− y| dy,

with

Juk(x, y) =
|uk(x)− uk(y)|p−1

|x− y|p−1
sign(uk(x)− uk(y))ρn(|x− y|).

Because of the singularity, simple schemes using finite differences and integral approx-
imations, for example, will fail. Here we propose to do the following:

• Discretize the space using a triangulation. We denote by T the family of
triangles covering Ω (see Figure 1).
• Interpolate linearly the function Juk

(x, y) on each triangle (x fixed).
• Find explicit expressions for the integral Juk

(x, y)/|x − y| on each triangle.
Note that this kind of estimation also appears, for instance, in electromag-
netism problems such as MEG-EEG (see, e.g., [9]), where one needs to esti-
mate such singular integrals on meshed domains (three-dimensional domains
here).
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(a) (b) (c)

Fig. 1. (a) Mesh definition. Pixels are represented by the dashed squares. The circles correspond
to the centers of the pixels defining the nodes of the mesh. Four nodes define two triangles. (b) In the
special case when x is a node (x = y1 in the figure), one needs an interpolation to define Juk (x, y). In
that situation, another point z close to the node is introduced and a linear interpolation is estimated.
(c) Different cases depending on the situation of x with respect to Ti. Triangle T1 has no edge aligned
with x; for triangle T2, x is one node; for T3, x is aligned with one edge.

Let us now detail each step. First, integral (5.4) becomes

(5.5) Iuk(x) =
∑
Ti∈T

∫
Ti

Juk(x, y)
|x− y| dy.

Then let us approximate Juk(x, y) on each triangle by a linear interpolation. We
assume that x is given and fixed. Given one triangle T ∈ T , let us denote the three
nodes of T by {yi = (y1

i , y
2
i )
T }i=1..3, where the subscript indicates the component.

Then we define {Ai}i=1..3 to be the three-dimensional points

Ai = (y1
i , y

2
i , Juk(x, yi))T .

Note that as soon as x �= yi, Juk(x, yi) is well-defined. Otherwise, if x is in fact a node
of T , for example, y1 (see Figure 1(b)), then we use a linear interpolation algorithm:
We introduce one point z ∈ T close to y1, estimate the value of Juk(z, y1) at this
point, and deduce the value of Juk(x, y1) by interpolation.

So, given {Ai}i=1..3, we can in fact choose any node yj and write

(5.6) Juk(x, y) = Juk(x, yj)− 1
n3

(
n1

n2

)
(y − yj),

where n is the normal to the triangle A1A2A3 (see Figure 1(b)). With (5.6) we obtain∫
T

Juk(x, y)
|x− y| dy = Juk(x, yj)

∫
T

1
|x− y|dy −

1
n3

(
n1

n2

)∫
T

(y − yj)
|x− y| dy(5.7)

= Juk(x, yj)
∫
T

1
|x− y|dy

− 1
n3

(
n1

n2

)[∫
T

(y − x)
|x− y| dy + (x− yj)

∫
T

1
|x− y|dy

]
.

So, in order to estimate the integral over triangle T , one need only estimate

(5.8)
∫
T

1
|x− y|dy and

∫
T

(y − x)
|x− y| dy.
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If we introduce the distance function

Dist(x, y) = |x− y| =
√

(x1 − y1)2 + (x2 − y2)2,

so that

∇yDist(x, y) =
y − x
|x− y| ,

�yDist(x, y) =
1

Dist(x, y)
,

then we have the following relations:∫
T

1
|x− y|dy =

∫
T

�yDist(x, y)dy =
∑
i=1,2

∫
∂T

∂Dist
∂yi

(x, y)N ids ,(5.9)

∫
T

(y − x)
|x− y| dy =

∫
T

∇yDist(x, y)dy =
∫
∂T

Dist(x, y)Nds ,(5.10)

where N is the normal to the edges of the triangle T . So we need to estimate the
two kinds of integrals defined on the boundaries of the triangles. This can be done
explicitly, as follows.

Lemma 5.1. Let us consider a segment S = (α, β) of extremities α = (α1, α2),
β = (β1, β2), N the normal to this segment, and x a fixed given point. Let us define

a = |αβ|, δ = a2b2 − c2, l1 = c/
√
δ,

b = |xα|, d = 	xα ·N, l2 = (a2 + c)/
√
δ,

c = 	xα · 	αβ.

Then we have

∑
i=1,2

∫
S

∂Dist
∂yi

(x, y)N ids =
{

0 if x is aligned with S,
d(asinh(l2)− asinh(l1)) otherwise,

(5.11)

and ∫
S

Dist(x, y)Nds(5.12)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2/2 if x = α or x = β,

a2/2 + c if c = ab (x aligned with 	αβ) and c > 0,

−a2/2− c if c = −ab (x aligned with 	αβ) and c < 0,

δ/a2
(
l2
√

1 + l22 + asinh(l2)− l1
√

1 + l21 − asinh(l1)
)

otherwise.

Proof. Let us show how to obtain (5.11) when x, α, and β are not aligned. To do
this, let us parametrize the segment S = [α, β] so that

S =
{
y(t) = t

(
β1

β2

)
+ (1− t)

(
α1

α2

)
; t ∈ (0, 1)

}
.
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The unitary normal vector of the segment S is given by

N =
( −(β2 − α2)

β1 − α1

)
1√

(β1 − α1)2 + (β2 − α2)2
.

So we have

I =
∑
i=1,2

∫
S

∂Dist
∂yi

(x, y)N ids =
∑
i=1,2

∫ 1

0

yi(t)− xi
|x− y(t)|N

i|αβ|ds .

After some algebraic computations, we get

I = αβ · xα⊥
∫ 1

0

dt√
t2|αβ|2 + |xα|2 + 2 t xα · αβ ,

with xα⊥ =
(−(α2−x2)

α1−x1

)
. Using the notation defined in Lemma 5.1, and since δ > 0

(x, α, and β are not aligned), we have

I = αβ · xα⊥ a√
δ

∫ 1

0

dt√
a4

δ

(
t+ c

a2

)2 + 1
.

We can explicitly compute the integral with the change of variable

z =
a2

√
δ

(
t+

c

a2

)
,

so that we obtain

I =
αβ · xα⊥
|αβ| (asinh(l2)− asinh(l1)),

which concludes the proof. Other cases follow from similar arguments.
With Lemma 5.1, one can estimate (5.9) and (5.10) and thus (5.7). By summing

over all the squares and for a given x, we obtain the estimation of the integral Iuk(x)
(5.5), and then we can iterate (5.2).

5.2. Experiments on image restoration. Let u : Ω ⊂ R2 → R be an original
image describing a real scene, and let u0 be the observed image of the same scene
(i.e., a degradation of u). We assume that

(5.13) u0 = Ru+ η,

where η stands for a white additive Gaussian noise and where R is a linear operator
representing the blur (usually a convolution). Given u0, the problem is then to recon-
struct u knowing (5.13). Supposing that η is a white Gaussian noise, and according
to the maximum likelihood principle, we can find an approximation of u by solving
the least-squares problem

inf
u

∫
Ω

|u0 −Ru|2 dx,

where Ω is the domain of the image. However, this is well known to yield to an
ill-posed problem [15, 3].
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original noisy restored (p = 1)

Fig. 2. Example of image restoration.

A classical way to overcome ill-posed minimization problems is to add a regular-
ization term to the energy so that the problem is to minimize

(5.14) F (u) =
∫

Ω

|u0 −Ru|2 dx+ λ

∫
Ω

|∇u|p dx.

The first term in F (u) measures the fidelity to the data. The second is a smoothing
term. In other words, we search for a u that best fits the data so that its gradient is
low (so that noise will be removed). The parameter λ is a positive weighting constant.
For p = 1 we have in fact a BV -norm which leads to discontinuous solutions (see [2]
for a review).

Remark that (5.14) is of the form (2.5), with h(x, u(x)) = |u0(x)−Ru(x)|2.
Without loss of generality, we will assume that the operator R is the identity operator.
So, in this section, we show some numerical results considering the minimization of
the nonlocal functional

(5.15) Fn(u) =
∫

Ω

|u0 − u|2 dx+ λ

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|p ρn(|x − y|)dxdy

for a given n.
The first result, shown in Figure 2, illustrates an image restoration result on a

real noisy image for p = 1. The result is as expected, which is very close to classical
TV results. We recall that this approximation of the BV regularization problem is
indeed independent of the fidelity attach term.

The second result, shown in Figure 3, is another image restoration result on a
simple synthetic step image, which illustrates the effect of the parameter p on the
edges. For example, we recover the classical observation for p = 1 or p = 2. More
importantly, we show that our approximation can be successfully used to handle
variational problems posed on W 1,p(Ω) with high values of p which, to our knowledge,
generally leads to numerically unstable schemes.

6. Conclusion. Our main contribution was to show that the characterization
result due to Bourgain, Brezis, and Mironescu [5] for the Sobolev seminorm can
indeed be successfully applied to solve variational problems. It was not a priori
straightforward that this characterization of W 1,p could be useful in the theoretical
and numerical analysis of problems of calculus of variations.
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Evolution for p = 1

Evolution for p = 2

Evolution for p = 20

Evolution for p = 40

Fig. 3. Example of evolutions with various values of p applied to a synthetic noisy image.

A step further, we proved that our results can be extended also in the BV -case,
thanks to Ponce’s results [16]. Note that the BV -case is not a simple extension from
the W 1,p-case, and it requires some adaptations.

Interestingly, we show that this approach allows us to treat problems posed in
W 1,p with high values of p, which is a challenging problem as far as we know.

Finally, our contribution does not target a particular field of application, and
image restoration was proposed here as an illustration: We wanted also to show that
this alternative formulation, which leads to nonlocal terms with singular kernels, can
be implemented.
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Abstract. An adaptive finite element method is analyzed for approximating functionals of
the solution of symmetric elliptic second order boundary value problems. We show that the method
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1. Introduction. Adaptive finite element methods (AFEMs) have become a
standard tool for the numerical solution of partial differential equations. Although
used successfully for more than 25 years, in more than one space dimension, even for
the most simple case of symmetric elliptic equations of second order a(u, v) = f(v)
(∀v), their convergence was not demonstrated before the works of Dörfler [Dör96]
and Morin, Nochetto, and Siebert [MNS00]. Convergence alone, however, does not
show that the use of an AFEM for a solution that has singularities improves upon,
or even competes with, that of a nonadaptive FEM. Recently, after the derivation of
such a result by Binev, Dahmen, and DeVore [BDD04] for an AFEM extended with a
so-called coarsening routine, in [Ste07] it was shown that standard AFEMs converge
with the best possible rate in linear complexity.

The aforementioned works all deal with AFEMs in which the error is measured
in the energy norm ‖ · ‖E := a(·, ·) 1

2 . In many applications, however, one is not so
much interested in the solution u as a whole, but rather in a (linear) functional g(u)
of the solution, often being referred to as a quantity of interest. With uτ denoting
the finite element approximation of u with respect to a partition τ , from |g(u) −
g(uτ )| ≤ ‖g‖E′‖u− uτ‖E, obviously it follows that convergence of uτ towards u with
respect to ‖ · ‖E implies that of g(uτ ) towards g(u) with at least the same rate. It is,
however, generally observed that with adaptive methods especially designed for the
approximation of this quantity of interest, known as goal-oriented adaptive methods,
convergence of g(uτ ) towards g(u) takes place at a higher rate. Examples of such
methods can be found in the monographs [AO00, BR03, BS01], and in references
cited therein. So far these goal-oriented adaptive methods are usually not proven to
converge. An exception is the method from [DKV06], however, in which adaptivity is
purely driven by energy norm minimalization of the error in the dual problem a(v, z) =
g(v) (∀v). Another exception is the goal-oriented method from [MvSST06], which is
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proven to converge with a rate equal to what we will demonstrate (for piecewise
linears), where in [MvSST06] the strong assumption u, z ∈ C3(Ω) was made.

The starting point of our method is the well-known upper bound

(1.1) |g(u)− g(uτ)| = |a(u− uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E ,
where zτ is the finite element approximation with respect to τ of z. Having available an
AFEM that is convergent with respect to the energy norm, in view of (1.1) an obvious
approach would be to use it for finding partitions τp and τd such that the corresponding
finite element approximations uτp and zτd

have, say, both energy norm errors less
than

√
ε. Indeed, then the product of the errors in primal and dual finite element

approximations with respect to the smallest common refinement of τp and τd—and
thus the error in the approximation of the quantity of interest—is less than ε. This
approach, however, would not benefit from the situation in which, quantitatively or
qualitatively, either primal or dual solution is easier to approximate by finite element
functions.

The alternative method we propose here works, in essence, as follows. On the kth
iteration, we start from a partition τk and compute on it the solutions of the primal
and dual problems. To advance the iteration, this partition is refined in such a way
that the product ‖u−uτ‖E‖z−zτ‖E is reduced by a constant factor. To achieve this,
we consider the effort needed to reduce each of ‖u− uτ‖E and ‖z− zτ‖E by the same
constant factor, which we do by separately computing suitable refinement sets. The
smallest of these sets is then applied to τk to obtain τk+1.

We can show that this method is convergent. In particular, we prove that if,
for whatever s, t > 0, the solutions of the primal and dual problems can be approxi-
mated in energy norm to any accuracy δ > 0 from partitions of cardinality O(δ−1/s)
or O(δ−1/t), respectively, then given ε > 0, our method constructs a partition of
cardinality O(ε−1/(s+t)) such that

|g(u)− g(uτ )| ≤ ‖u− uτ‖E‖z − zτ‖E ≤ ε.
In view of the assumptions, this order of cardinality realizing ‖u−uτ‖E‖z−zτ‖E ≤ ε
is optimal. Moreover, by solving the arising linear systems only inexactly, we show
that the overall cost of the algorithm is of order O(ε−1/(s+t)).

The convergence rate s + t of our goal-oriented method is thus the sum of the
rates s and t of the best approximations in energy norm for primal and dual problems.
With the approach of approximating both primal and dual problem within tolerance√
ε, the rate would be 2 min(s, t). Another alternative approach, namely, to solve

each of the problems to an accuracy of εs/(s+t) and εt/(s+t), respectively, would also
result in the rate s+ t. This approach, however, is not feasible, since the values s and
t are generally unknown. Our method converges at the rate s + t without previous
knowledge about the regularity of the solutions.

Concerning the value of s (and similarly t), when applying finite elements of
order p, for s up to p/n, a rate s is guaranteed when the solution has “ns orders
of smoothness” in Lτ (Ω) for some τ > (1

2 + s)−1 (instead of in L2(Ω) required for
nonadaptive approximation) (cf. [BDDP02]).

Our method is based on minimizing an upper bound for the error in the func-
tional, which under certain circumstances can be crude. Actually, in all available
goal-oriented adaptive methods the decision of which elements have to be refined is
based on some upper bound for the error. Unlike the error in energy norm, there
exists no computable two-sided bound for the error in a functional of the solution.
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This leaves open the possibility that some bounds are “usually” sharper than others.
An argument against the upper bound (1.1) brought up in [BR03] is that it is based
on the application of a global Cauchy–Schwarz inequality, whereas the dual weighted
residual method advocated there would better respect the local information. The
contribution of the current paper is that we prove a rate that is generally observed
with goal-oriented methods. When applying finite element spaces of equal order at
primal and dual sides, we neither expect (see Remark 5.1 for details) nor observe in
our experiments that on average our bound gets increasingly more pessimistic when
the iteration proceeds.

This paper is organized as follows: In section 2, we describe the model boundary
value problem that we will consider. The finite element spaces and the refinement
rules based on bisections of n-simplices are discussed in section 3. In section 4, we
give results on residual-based a posteriori energy error estimators. In section 5, we
present our goal-oriented AFEM under the simplifying assumption that the right-
hand sides of both primal and dual problems are piecewise polynomial with respect
to the initial finite element partition. We derive the aforementioned bound on the
cardinality of the output partition. In section 6, the method is extended to general
right-hand sides. By replacing the exact solutions of the arising linear systems by
inexact ones, it is further shown that the required number of arithmetic operations
and storage locations satisfies the same favorable bound as the cardinality of the
output partition. Finally, in section 7, we present numerical results obtained with the
method. To apply our approach also to unbounded functionals, here we recall the use
of extraction functionals, an approach introduced in [BS01].

In this paper, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters upon which C and D may depend. Similarly, C � D
is defined as D � C, and C � D as C � D and C � D.

2. The model problem. Let Ω ⊂ Rn be a polygonal domain. We consider the
following model boundary value problem in variational form: Given f ∈ H−1(Ω), find
u ∈ H1

0 (Ω) such that

(2.1) a(u, v) :=
∫

Ω

A∇u · ∇v = f(v) (v ∈ H1
0 (Ω)),

where A ∈ L∞(Ω) is a symmetric n × n matrix with ess infx∈Ω λmin(A(x)) > 0. We
assume that A is piecewise constant with respect to an initial finite element partition
τ0 of Ω specified below. To keep the exposition simple, we do not attempt to derive
results that hold uniformly in the size of jumps of ρ(A) over element interfaces,
although, under some conditions, this is likely possible; cf. [Ste05]. For f ∈ L2(Ω),
we interpret f(v) as

∫
Ω
fv.

Given some g ∈ H−1(Ω), we will be interested in g(u). With z ∈ H1
0 (Ω) we will

denote the solution of the dual problem

(2.2) a(v, z) = g(v) (v ∈ H1
0 (Ω)).

We set the energy norm on H1
0 (Ω) and dual norm on H−1(Ω) by

‖v‖E = a(v, v)
1
2 and ‖h‖E′ = sup

0�=v∈H1
0 (Ω)

|h(v)|
‖v‖E ,

respectively.
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3. Finite element spaces. Given an essentially disjoint subdivision τ of Ω̄ into
(closed) n-simplices, called a partition, we will search approximations for u and z
from the finite element space

Vτ := H1
0 (Ω) ∩

∏
T∈τ

Pp(T ),

where 0 < p ∈ N is some fixed constant. For approximating the functionals f and g,
we will make use of spaces

V∗τ :=
∏
T∈τ

Pp−1(T ).

Although it is not a finite element space in the usual sense, we also use

(3.1) W∗τ :=
∏
T∈τ
{h ∈ H(div;T ) : [[h · n]]∂T ∈ L2(∂T )},

with n being a unit vector normal to ∂T , and [[ ]]∂T denoting the jump of its argument
over ∂T in the direction of n, defined to be zero on ∂Ω. Obviously, [V∗τ ]

n ⊂W∗τ .
Below, we specify the type of (nested) partitions we will consider, and we recall

some results from [Ste08], generalizing upon known results for newest vertex bisection
in two dimensions.

For 0 ≤ k ≤ n−1, a (closed) simplex spanned by k+1 vertices of an n-simplex T
is called a hyperface of T . For k = n−1, it will be called a true hyperface. A partition
τ is called conforming when the intersection of any two different T, T ′ ∈ τ is either
empty or a hyperface of both simplices. Different simplices T , T ′ that share a true
hyperface will be called neighbors. (Actually, when Ω 
= int(Ω), the above definition
of a conforming partition can be unnecessarily restrictive. We refer to [Ste08] for a
discussion of this matter.)

Simplices will be refined by means of bisection. In order to guarantee uniform
shape regularity of all descendants, a proper cyclic choice of the refinement edges
should be made. To that end, given {x0, . . . xn} ⊂ Rn, not on a joint (n − 1)-
dimensional hyperplane, we distinguish between n(n + 1)! tagged simplices given by
all possible ordered sequences (x0, x1, . . . , xn)γ and types γ ∈ {0, . . . , n− 1}. Given a
tagged simplex T = (x0, x1, . . . , xn)γ , its children are the tagged simplices

(x0,
x0+xn

2 , x1, . . . , xγ , xγ+1, . . . , xn−1)(γ+1)modn

and

(xn, x0+xn

2 , x1, . . . , xγ , xn−1, . . . , xγ+1)(γ+1)modn,

where the sequences (xγ+1, . . . , xn−1) and (x1, . . . , xγ) should be read as being void for
γ = n− 1 and γ = 0, respectively. So these children are defined by bisecting the edge
x0xn of T—i.e., by connecting its midpoint with the other vertices x1, . . . , xn−1—
by an appropriate ordering of their vertices and by having type (γ + 1)modn. See
Figure 3.1 for an illustration. This bisection process was introduced in [Tra97] and,
using different notation, in [Mau95]. The edge x0xn is called the refinement edge of
T . In the n = 2 case, the vertex opposite this edge is known as the newest vertex.

Corresponding to a tagged simplex T = (x0, . . . , xn)γ , we set

TR = (xn, x1, . . . , xγ , xn−1, . . . , xγ+1, x0)γ ,
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Fig. 3.1. Bisection of a tagged tetrahedron of type 0 with the next two-level cuts indicated.
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Fig. 3.2. Matching neighbors for n = 2, and their level 1 and 2 descendants. The neighbors in
the rightmost picture are not reflected neighbors, but the pair of their neighboring children are.

which is the tagged simplex that has the same set of children as T , and in this sense
is equal to T . So actually we distinguish between 1

2n(n+ 1)! tagged simplices.
Given a fixed conforming initial partition τ0 of tagged simplices of some fixed

type γ,

we will exclusively consider partitions that can be created from τ0 by
recurrent bisections of tagged simplices, in short, descendants of τ0.

Simplices that can be created in this way are uniformly shape regular, dependent only
on τ0 and n. For the case that Ω might have slits, we assume that

∂Ω is the union of true hyperfaces of T ∈ τ0.

We will assume that the simplices from τ0 are tagged in such a way that any two
neighbors T = (x0, . . . , xn)γ , T ′ = (x′0, . . . , x′n)γ from P0 match in the sense that if
x0xn or x′0x′n is on T ∩T ′, then either T and T ′ are reflected neighbors, meaning that
the ordered sequence of vertices of either T or TR coincides with that of T ′ on all but
one position, or the pair of neighboring children of T and T ′ are reflected neighbors.
See Figure 3.2 for an illustration. It is known (see [BDD04] and the references therein)
that for any conforming partition into triangles there exists a local numbering of the
vertices so that the matching condition is satisfied. We do not now whether the
corresponding statement holds in more space dimensions. Yet we showed that any
conforming partition of n-simplices can be refined, inflating the number of simplices
by not more than an absolute constant factor, into a conforming partition τ0 that
allows a local numbering of the vertices so that the matching condition is satisfied.
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For applying a posteriori error estimators, we will require that the partitions τ
underlying the approximation spaces be conforming. So in the following

τ , τ ′, τ̂ , etc., will always denote conforming partitions.

Bisecting one or more simplices in a conforming partition τ generally results in a
nonconforming partition 	. Conformity has to be restored by (recursively) bisecting
any simplex T ∈ 	 that contains a vertex v of a T ′ ∈ 	 that does not coincide with
any vertex of T (such a v is called a hanging vertex). This process, called completion,
results in the smallest conforming refinement of 	.

Our adaptive method will be of the following form:

for j := 1 to M
do create some, possibly nonconforming refinement 	j of τj−1

complete 	j to its smallest conforming refinement τj
endfor

As we will see, we will be able to bound
∑M

j=1 #	j − #τj−1. Because of the
additional bisections made in the completion steps, however, generally #τM − #τ0
will be larger. The following crucial result, which relies on the matching condition in
the initial partition, shows that these additional bisections inflate the total number
of simplices by at most an absolute constant factor.

Theorem 3.1 (generalizes upon [BDD04, Theorem 2.4] for n = 2).

#τM −#τ0 �
M∑
j=1

#	j −#τj−1,

dependent only on τ0 and n, and in particular thus independently of M .
Remark 3.2. Note that this result in particular implies that any descendant 	

of τ0 has a conforming refinement τ with #τ � #	, dependent only on τ0 and n.
We end this section by introducing two more notations. For partitions τ ′, τ , we

write τ ′ ⊇ τ (τ ′ ⊃ τ) to denote that τ ′ is a (proper) refinement of τ . The smallest
common refinement of τ and τ ′ will be denoted as τ ∪ τ ′.

4. A posteriori estimators for the energy error. Given a partition τ , and
with uτ denoting the solution in Vτ of

(4.1) a(uτ , vτ ) = f(vτ ) (vτ ∈ Vτ ),

in this section we discuss properties of the common residual-based a posteriori error
estimator for ‖u− uτ‖E . Since a( , ) is symmetric, an analogous result will apply to
‖z − zτ‖E , with zτ denoting the solution in Vτ of

(4.2) a(vτ , zτ ) = g(vτ ) (vτ ∈ Vτ ).

By formally viewing H1
0 (Ω) as Vτ corresponding to the infinitely uniformly refined

partition τ =∞, at some places we interpreted results derived for uτ to hold for the
solution u of (2.1) by substituting τ =∞.

For developing an AFEM that reduces the error in each iteration, it will be
necessary to approximate the right-hand side by discrete functions. Loosely speaking,
in [MNS00] the error in this approximation is called data oscillation. Being on a
partition τ , it will be allowed to use functions from V∗τ + div[V∗τ ]

n, where div :=
(−∇)′ : L2(Ω)n → H−1(Ω). Depending on the right-hand side at hand, it might be
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more convenient to approximate it by functions from V∗τ or from div[V∗τ ]
n, or by a

combination of these. In view of this, we will write

(4.3) f = f1 + divf2,

where f1 ∈ H−1(Ω) and f2 ∈ L2(Ω)n are going to be approximated by functions
from V∗τ or from div[V∗τ ]

n, respectively. Similarly, we write g = g1 + divg2.
Remark 4.1. Obviously, any f ∈ H−1(Ω) can be written in the above form with

vanishing f2. On the other hand, by taking f2 = −∇w with w ∈ H1
0 (Ω) being the

solution of
∫
Ω
∇w · ∇v = f(v) (v ∈ H1

0 (Ω)), we see that we can equally well consider
a vanishing f1.

For ūτ ∈ Vτ , f̄1 ∈ L2(Ω), and f̄2 ∈ W∗τ (see (3.1)), where we have in mind
approximations to uτ , f1, and f2, respectively, and T ∈ τ , we set the local error
indicator

ηT (f̄1, f̄2, ūτ ) := diam(T )2‖f̄1 +∇ · [A∇ūτ + f̄2]‖2L2(T )

+ diam(T )‖[[[A∇ūτ + f̄2] · n]]∂T ‖2L2(∂T ).

Note that the first term is the weighted local residual of the equation in strong form.
We set the energy error estimator

E(τ, f̄1, f̄2, ūτ ) :=

[∑
T∈τ

ηT (f̄1, f̄2, ūτ )

] 1
2

.

The following Proposition 4.2 is a generalization of [Ste07, Theorem 4.1] valid for
A = Id, f2 = 0, and polynomial degree p = 1. This result in turn was a generalization
of [BMN02, Lemma 5.1, eq. (5.4)] (see also [Ver96]) in the sense that instead of
‖u − uτ‖E , the difference ‖uτ ′ − uτ‖E for any τ ′ ⊃ τ is estimated. Proposition 4.2
tells us that this difference can be bounded from above by the square root of the sum
of the local error indicators corresponding to those simplices from τ that either are
not in τ ′ since they were refined or have nonempty intersection with such simplices.
By taking τ ′ =∞, this result yields the known bound for ‖u− uτ‖E.

Proposition 4.2. Let τ ′ ⊃ τ be partitions, and let f1 ∈ L2(Ω), f2 ∈W∗τ , and

G = G(τ, τ ′) := {T ∈ τ : T ∩ T̃ 
= ∅ for some T̃ ∈ τ, T̃ 
∈ τ ′}.
Then we have

‖uτ ′ − uτ‖E ≤ C1

[∑
T∈G

ηT (f1,f2, uτ )

] 1
2

for some absolute constant C1 > 0. Note that #G � #τ ′ −#τ .
In particular, by taking τ ′ =∞, we have

(4.4) ‖u− uτ‖E ≤ C1E(τ, f1,f2, uτ ).

Proof. We have ‖uτ ′ − uτ‖E = sup0�=vτ′∈Vτ′
|a(uτ′−uτ ,vτ′)|
‖vτ′‖E

. For any vτ ′ ∈ Vτ ′ ,
vτ ∈ Vτ , we have

a(uτ ′ − uτ , vτ ′) = a(uτ ′ − uτ , vτ ′ − vτ )

=
∑
T

∫
T

f1(vτ ′ − vτ )− f2 · ∇(vτ ′ − vτ )−A∇uτ ′ · ∇(vτ ′ − vτ )

=
∑
T

{
(f1 +∇ · [A∇uτ + f2])(vτ ′ − vτ )−

∫
∂T

[A∇uτ + f2] · n(vτ ′ − vτ )
}
,
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where the last line follows by integration by parts. By taking vτ to be a suitable
local quasi-interpolant of vτ ′ as in [Ste07] (for p > 1, one may consult [KS08]) or,
alternatively, a Clément-type interpolator, and applying a Cauchy–Schwarz inequality,
one completes the proof.

Remark 4.3. For the lowest order elements, i.e., p = 1, a statement similar to
Proposition 4.2 is valid with error indicators consisting of the jump terms over the
interfaces only. As a consequence, along the lines that we will follow for elements
of general degree p, for p = 1 a cheaper goal-oriented AFEM can be developed that
has similar properties. Details can be found in Appendix A of the extended preprint
version [MS08] of this work.

Next we study whether the error estimator also provides a lower bound for ‖u−
uτ‖E and, when τ ′ is a sufficient refinement of τ , for ‖uτ ′ − uτ‖E. In order to
derive such estimates, for the moment we further restrict the type of right-hand sides.
The proof of the following proposition will be derived along the lines of the proof
of [BMN02, Lemma 5.3], where the Stokes problem is considered (see also [MNS00,
Lemma 4.2] for the case p = 1 and f2 = 0). For convenience of the reader we include
it here.

Proposition 4.4. Let τ ⊂ τ ′ be partitions, and let f1 ∈ V∗τ , f2 ∈ [V∗τ ]n, and
ūτ ∈ Vτ .

(a) If T ∈ τ contains a vertex of τ ′ in its interior, then

diam(T )2‖f1 +∇ · [A∇ūτ + f2]‖2L2(T ) � |uτ ′ − ūτ |2H1(T ).

(b) If a joint true hyperface e of T1, T2 ∈ τ contains a vertex of τ ′ in its interior,
then

diam(e)‖[[[A∇ūτ + f2] · n]]e‖2L2(e)
� |uτ ′ − ūτ |2H1(T1∪T2)

+
2∑
i=1

diam(Ti)2‖f1 +∇ · [A∇ūτ + f2]‖2L2(Ti)
.

Proof. Let φT ∈ H1
0 (Ω) ∩∏T ′∈τ ′ P1(T ′) be the canonical nodal basis function

associated to a vertex of τ ′ inside T . Writing RT = (f1+∇·[A∇ūτ+f2])|T ∈ Pd−1(T ),
and vτ ′ = RTφT ∈ Vτ ′ , using the fact that supp vτ ′ ⊂ T , by integration by parts we
get ∫

T

R2
T �

∫
T

R2
TφT =

∫
T

RT vτ ′ = (f1 + divf2)(vτ ′)−
∫
T

A∇ūτ · ∇v′τ

=
∫
T

A∇(uτ ′ − ūτ ) · ∇vτ ′ ,

and so by |vτ ′ |H1(T ) � diam(T )−1‖vτ ′‖L2(T ) � diam(T )−1‖RT ‖L2(T ), we infer (a).
Let φe ∈ H1

0 (Ω)∩∏T ′∈τ ′ P1(T ′) be the canonical nodal basis function associated
to a vertex interior to e. Writing Je = [[[A∇ūτ + f2] · n]]e ∈ Pd−1(e), let J̄e ∈
Pd−1(T1 ∪ T2) denote its extension constant in the direction normal to e, and let
vτ ′ = J̄eφe ∈ Vτ ′ . Using the fact that supp vτ ⊂ T1 ∪ T2, by integration by parts we
get∫
e

J2
e �

∫
e

J2
eφe =

∫
e

Jevτ ′ =
∫
T1∪T2

(A∇ūτ +f2) ·∇vτ ′ +
∫
T1∪T2

∇· (A∇ūτ +f2)vτ ′ .
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From ∫
T1∪T2

f2 · ∇vτ ′ = −divf2(vτ ′) = −a(uτ ′, vτ ′) +
∫
T1∪T2

f1vτ ′ ,

we infer∫
e

J2
e � a(ūτ − uτ ′, vτ ′) +

∫
T1∪T2

(f1 +∇ · (A∇ūτ + f2))vτ ′

�
[
|ūτ − uτ ′|H1(T1∪T2) diam(e)−1 +

2∑
i=1

‖RTi‖L2(Ti)

]
‖vτ ′‖L2(T1∪T2).

Using the fact that ‖vτ ′‖L2(T1∪T2) � ‖J̄e‖L2(T1∪T2) � diam(e)
1
2 ‖Je‖L2(e), we infer

item (b) of the proposition.
In view of this last result, we will call a (possibly nonconforming) 	 ⊃ τ a full

refinement with respect to T ∈ τ when

T , and its neighbors in τ , as well as all true
hyperfaces of T , all contain a vertex of 	 in their interiors.

As a direct consequence of Proposition 4.4 we have the following.
Corollary 4.5. Let τ be a partition, let f1 ∈ V∗τ , f2 ∈ [V∗τ ]

n, and ūτ ∈ Vτ ,
and let τ ′ ⊃ τ be a full refinement of τ with respect to all T from some F ⊂ τ . Then

(4.5) c2

[∑
T∈F

ηT (f1,f2, ūτ )

] 1
2

≤ ‖uτ ′ − ūτ‖E

for some absolute constant c2 > 0. In particular, we have

(4.6) c2E(τ, f1,f2, ūτ ) ≤ ‖u− ūτ‖E .
Next, we investigate the stability of the energy error estimator.
Proposition 4.6. Let τ be a partition, and let f1 ∈ L2(Ω), f2 ∈ W∗τ , and

vτ , wτ ∈ Vτ . Then

c2|E(τ, f1,f2, vτ )− E(τ, f1,f2, wτ )| ≤ ‖vτ − wτ‖E .
Proof. For f̃1 ∈ L2(Ω), f̃2 ∈ W∗τ , and vτ , wτ ∈ Vτ , by two applications of the

triangle inequality in the form
∣∣‖ · ‖ − ‖ · ‖∣∣2 ≤ ‖ · − · ‖2, first for vectors and then for

functions, we have

|E(τ, f1,f2, vτ )− E(τ, f̃1, f̃2, wτ )| ≤ E(τ, f1 − f̃1,f2 − f̃2, vτ − wτ ).
By substituting f̃1 = f1 and f̃2 = f2, and by applying (4.6) the proof is com-
plete.

5. An idealized goal-oriented AFEM. From (2.2) and u−uτ ⊥a( , ) Vτ � zτ ,
we have

(5.1) |g(u)− g(uτ )| = |a(u− uτ , z)| = |a(u− uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E.
We will develop an adaptive method for minimizing the right-hand side of this ex-
pression.



870 MARIO S. MOMMER AND ROB STEVENSON

Remark 5.1. A question that naturally arises is whether there is something to
be gained from using finite elements of different orders for the dual and the primal
problems. Note that the derivation of (5.1) remains valid if the dual solution is
computed in a lower order space, or for that matter in any space that is a subspace of
Vτ . But this will result in a larger ‖z − zτ‖E , worsening our error estimate without
changing the actual error |g(u)− g(uτ )|.

And how about using a higher order space for the dual problem? In this case,
(5.1) no longer holds. As g(u) = f(z), we can approximate it by f(zτ ) with

(5.2) |f(z)− f(zτ )| = |a(u, z − zτ )| = |a(u− uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E .
Thus, as before, we obtain a worse error estimate than if we had used the same higher
order space for the primal problem as well.

We conclude that with our approach there is no gain from using different orders
and, accordingly, will consider here only spaces of equal order.

Up to and including Lemma 5.3, we start with discussing a method for reducing
‖u− uτ‖E or similarly ‖z − zτ‖E separately. For some fixed

θ ∈
(

0,
c2
C1

)
,

we will make use of the following routine to mark simplices for refinement:

MARK[τ, f̄1, f̄2, ūτ ]→ F
% f̄1 ∈ L2(Ω), f̄2 ∈W∗τ , ūτ ∈ Vτ .
Select, in O(#τ) operations, a set F ⊂ τ with, up to some absolute factor, minimal
cardinality such that

(5.3)
∑
T∈F

ηT (f̄1, f̄2, ūτ ) ≥ θ2 E(τ, f̄1, f̄2, ūτ )2.

Remark 5.2. Selecting F that satisfies (5.3) with truly minimal cardinality
would require the sorting of all ηT = ηT (f̄1, f̄2, ūτ ), which takes O(#τ log(#τ))
operations. The log-factor can be avoided by performing an approximate sorting
based on binning that we recall here: With N := #τ , we may discard all ηT ≤
(1 − θ2)E(τ, f̄1, f̄2, ūτ)2/N . With M := maxT∈τ ηT , and q the smallest integer with
2−q−1M ≤ (1− θ2)E(P c, f̄1, f̄2, wP c)2/N , we store the others in q+1 bins depending
on whether ηT is in [M, 1

2M), [12M, 1
4M), . . . , or [2−qM, 2−q−1M). Then we build F

by extracting ηT from the bins, starting with the first bin, moving to the second bin
when the first is empty, and so on until (5.3) is satisfied. Let the resulting F now
contain ηT from the th bin, but not from further bins. Then a minimal set F̃ that
satisfies (5.3) contains all ηT from the bins up to the ( − 1)th one. Since any two
ηT in the th bin differ at most by a factor of 2, we infer that the cardinality of the
contribution from the th bin to F is at most twice as large as that to F̃ , so that
#F ≤ 2#F̃ . Assuming that each evaluation of ηT takes O(1) operations, the number
of operations and storage locations required by this procedure is O(q + #τ), with
q < log2(MN/[(1 − θ2)E(τ, f̄1, f̄2, ūτ )2]) ≤ log2(N/(1 − θ2)) � log2(#τ) < #τ . The
assumption on the cost of evaluating ηT is satisfied when f̄1 ∈ V∗τ and f̄2 ∈ [V∗τ ]

n, as
will be the case in our applications.

Having a set of marked elements F , the next step is to apply the following:



A GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHOD 871

REFINE[τ, F ]→ τ ′

% Determines the smallest τ ′ ⊇ τ which is a full refinement
% with respect to all T ∈ F .

The cost of the call is O(#τ ′) operations.
Using the results on the a posteriori error estimator derived in the previous sec-

tion, we have the following result.
Lemma 5.3. Let f1 ∈ V∗τ , f2 ∈ [V∗τ ]

n. Then for F = MARK[τ, f1,f2, uτ ] and
τ ′ ⊇ REFINE[τ, F ], we have

(5.4) ‖u− uτ ′‖E ≤
[
1− c22θ

2

C2
1

] 1
2 ‖u− uτ‖E.

Furthermore

#F � #τ̂ −#τ0

for any partition τ̂ for which

‖u− uτ̂‖E ≤
[
1− C2

1θ
2

c22

] 1
2 ‖u− uτ‖E.

Proof. Since this is a key result, for convenience of the reader we recall the
arguments from [Ste07].

From

‖u− uτ‖2E = ‖u− uτ ′‖2E + ‖uτ ′ − uτ‖2E
and, by (4.5), (5.3), and (4.4),

‖uτ ′ − uτ‖E ≥ c2θE(τ, f1,f2, uτ ) ≥ c2θ

C1
‖u− uτ‖E ,

we conclude (5.4).
With τ̂ being a partition as in the statement of the theorem, let τ̆ = τ ∪ τ̂ . Then,

as τ and τ̂ , the partition τ̆ is a conforming descendant of τ0, ‖u− uτ̆‖E ≤ ‖u− uτ̂‖E ,
and

#τ̆ −#τ ≤ #τ̂ −#τ0.

To see the last statement, note that each simplex in τ̆ that is not in τ is in τ̂ . Therefore,
since τ ⊃ τ0, the number of bisections needed to create τ̆ from τ , whose number is
equal to #τ̆ −#τ , is not larger than the number of bisections needed to create τ̂ from
τ0, whose number is equal to #τ̂ −#τ0.

With G = G(τ, τ̆ ) from Proposition 4.2, we have

C2
1

∑
T∈G

ηT (f1,f2, uτ) ≥ ‖uτ̆ − uτ‖2E = ‖u− uτ‖2E − ‖u− uτ̆‖2E

≥ C2
1θ

2

c22
‖u− uτ‖2E ≥ C2

1θ
2E(τ, f1,f2, uτ )2

by (4.6). By construction of F , we conclude that

#F � #G � #τ̆ −#τ ≤ #τ̂ −#τ0,

which completes the proof.
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The idea of the goal-oriented AFEM will be to mark sets of simplices for re-
finement corresponding to both primal and dual problems, and then to perform the
actual refinement corresponding to that set of marked simplices that has the small-
est cardinality. In order to assess the quality of the method, we first introduce the
approximation classes As.

For s > 0, we define

As =
{
u ∈ H1

0 (Ω) : |u|As := sup
ε>0

ε inf
{τ :‖u−uτ‖E≤ε}

[#τ −#τ0]s <∞
}

and equip it with norm ‖u‖As := ‖u‖E+|u|As . So As is the class of functions that can
be approximated within any given tolerance ε > 0 in ‖ ‖E by a continuous piecewise
polynomial of degree p on a partition τ with #τ −#τ0 ≤ ε−1/s|u|1/sAs .

Remark 5.4. Although in the definition of As we consider only conforming de-
scendants τ of τ0, in view of Remark 3.2, we note that these approximation classes
would remain the same if we would replace τ by any descendant 	 of τ0, conforming
or not.

While the As contain Vτ for any s, and thus are never empty, only the range
s ≤ p/n is of interest, as even C∞ functions are only guaranteed to belong to As
for this range. Classical estimates show that for s ≤ p/n, H1+p(Ω) ∩ H1

0 (Ω) ⊂ As,
where it is sufficient to consider uniform refinements. The class As is much larger
than H1+p(Ω)∩H1

0 (Ω), which is the reason to consider adaptive methods in the first
place. A (near) characterization of As for s ≤ p/n in terms of Besov spaces can be
found in [BDDP02] (although there the case n = 2 and p = 1 is considered, results
easily generalize).

We now consider the following adaptive algorithm:

GOAFEM[f1,f2, g1, g2, ε]→ [τn, uτn , zτn ]
% For this preliminary version of the goal-oriented AFEM,
% it is assumed that f1, g1 ∈ V∗τ0 and f2, g2 ∈ [V∗τ0 ]

n.
k := 0
while C1E(τk, f1,f2, uτk

) · C1E(τk, g1, g2, zτk
) > ε do

Fp := MARK[τk, f1,f2, uτk
]

Fd := MARK[τk, g1, g2, zτk
]

With F being the smallest of Fp and Fd, τk+1 := REFINE[τk, F ]
k := k + 1

end do
n:=k

Theorem 5.5. Let f1, g1 ∈ V∗τ0 and f2, g2 ∈ [V∗τ0 ]
n. Then [τn, uτn, zτn ] =

GOAFEM[f1,f2, g1, g2, ε] terminates, and ‖u − uτn‖E‖z − zτn‖E ≤ ε. If u ∈ As
and z ∈ At, then

#τn −#τ0 � ε−1/(s+t)(|u|As |z|At)1/(s+t),

dependent only on τ0, and on s or t when they tend to 0 or ∞.
Remark 5.6. Assuming only that u ∈ As and z ∈ At, given a partition τ ,

the generally smallest upper bound for the product of the errors in energy norm in
primal and dual solutions that can be expected is [#τ−#τ0]−s|u|As [#τ−#τ0]−t|z|At .
Setting this expression equal to ε, one finds #τ −#τ0 = ε−1/(s+t)(|u|As |z|At)1/(s+t).
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We conclude that the partition produced by GOAFEM is at most a constant factor
larger than the generally smallest partition τ for which ‖u − uτ‖E‖z − zτ‖E is less
than the prescribed tolerance.

Proof. Let Ek := ‖u−uτk
‖E‖z−zτk

‖E. Then Ek+1 ≤ [1− c22θ
2

C2
1

]
1
2Ek by (5.4), and

c2E(τk, f1,f2, uτk
)c2E(τk, g1, g2, zτk

) ≤ Ek by (4.6). So GOAFEM[f1,f2, g1, g2, ε]
terminates, with En ≤ C1E(τn, f1,f2, uτn)C1E(τn, g1, g2, zτn) ≤ ε by (4.4).

With Fk being the set of marked cells inside the kth call of REFINE, Lemma 5.3
and the assumptions u ∈ As, z ∈ At show that

#Fk ≤ min
{[

1− C2
1θ

2

c22

]− 1
2s ‖u− uτk−1‖−1/s

E |u|1/sAs ,
[
1− C2

1θ
2

c22

]− 1
2t ‖z − zτk−1‖−1/t

E |z|1/tAt

}

� min{‖u− uτk−1‖−1/s
E |u|1/sAs , ‖z − zτk−1‖−1/t

E |z|1/tAt }
≤ max

δη≥Ek−1
min{δ−1/s|u|1/sAs , η

−1/t|z|1/tAt } = E
−1/(s+t)
k−1 (|u|As |z|At)1/(s+t).

The partition τk is the smallest conforming refinement of the generally nonconforming
	k, defined as the smallest refinement of τk−1 which is a full refinement with respect to
all T ∈ Fk. From Theorem 3.1, #	k−#τk−1 � #Fk, the majorized linear convergence
of k �→ Ek−1, and En−1 >

c22
C2

1
ε, we conclude that

#τn −#τ0 �
n∑
k=1

#Fk � E
−1/(s+t)
n−1 (|u|As |z|At)1/(s+t)

� ε−1/(s+t)(|u|As |z|At)1/(s+t).

6. A practical goal-oriented AFEM. So far, we assumed that f = f1 +
divf2, g = g1 + divg2, with f1, g1 ∈ V∗τ , f2, g2 ∈ [V∗τ ]

n for any partition τ that
we encountered; i.e., we assumed that f1, g1 ∈ V∗τ0 , f2, g2 ∈ [V∗τ0 ]

n. From now on,
given a partition τ , we will approximate f, g ∈ H−1(Ω) by f1

τ ′ + divf2
τ ′ , g1

τ ′ + divg2
τ ′ ,

respectively, where f1
τ ′ , g1

τ ′ ∈ V∗τ ′ , f2
τ ′ , g2

τ ′ ∈ [V∗τ ′ ]n and either τ ′ = τ or, when it is
needed to have a smaller approximation error, τ ′ ⊃ τ . We will set

fτ ′ := f1
τ ′ + divf2

τ ′ , gτ ′ := g1
τ ′ + divg2

τ ′ .

To be able to distinguish between primal or dual solutions corresponding to dif-
ferent right-hand sides, we introduce operators L : H1

0 (Ω) → H−1(Ω) by (Lv)(w) =
a(v, w) (v, w ∈ H1

0 (Ω)), and Lτ : Vτ → V′τ by (Lτvτ )(wτ ) = a(vτ , wτ ) (vτ , wτ ∈ Vτ ).
The solutions u, z, uτ , zτ of (2.1), (2.2), (4.1), (4.2) can now be written as L−1f ,
(L′)−1g, L−1

τ f , (L′τ )−1g, respectively. Since in our case L′ = L and L′τ = Lτ , for nota-
tional convenience we will drop the prime. Note that ‖L·‖E′ = ‖·‖E, ‖L−1

τ ‖E′→E ≤ 1,
and ‖(L−1 − L−1

τ )‖E′→E ≤ 1.
Furthermore, in view of controlling the cost of our adaptive solver, from now on

we will solve the arising Galerkin systems only approximately.
The following lemma generalizes upon Lemma 5.3, relaxing both the condition

that the right-hand side is in V∗τ+div[V∗τ ]
n and the assumption that we have the exact

Galerkin solution available, assuming that the deviations from that ideal situation are
sufficiently small in a relative sense.

Lemma 6.1 (see [Ste07, Lemmas 6.1 and 6.2]). There exist positive constants
ω = ω(θ, C1, c2) and λ = λ(ω,C1, c2) such that for any f ∈ H−1(Ω), partition τ ,
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f1
τ ∈ V∗τ , f2

τ ∈ [V∗τ ]
n, ūτ ∈ Vτ with

(6.1) ‖f − fτ‖E′ + ‖L−1
τ fτ − ūτ‖E ≤ ωE(τ, f1

τ ,f
2
τ , ūτ ),

F := MARK[τ, f1
τ ,f

2
τ , ūτ ] satisfies

#F � #τ̂ −#τ0

for any partition τ̂ for which

‖u− uτ̂‖E ≤ λ‖u− ūτ‖E .

Furthermore, given a

μ ∈
([

1− c22θ
2

C2
1

] 1
2
, 1
)
,

there exists an ω = ω(μ, θ, C1, c2) > 0, such that if (6.1) is valid for this ω, and for
τ ′ ⊇ REFINE[τ, F ], fτ ′ ∈ H−1(Ω) and ūτ ′ ∈ Vτ ′ ,

‖f − fτ ′‖E′ + ‖L−1
τ ′ fτ ′ − ūτ ′‖E ≤ ωE(τ, f1

τ ,f
2
τ , ūτ ),

then

‖u− ūτ ′‖E ≤ μ‖u− ūτ‖E .

For solving the Galerkin systems approximately, we assume that we have an it-
erative solver of optimal type available:

GALSOLVE[τ, fτ , u
(0)
τ , δ]→ ūτ

% fτ ∈ (Vτ )′ and u(0)
τ ∈ Vτ , the latter being an initial approximation for an

% iterative solver. The output ūτ ∈ Vτ satisfies

‖L−1
τ fτ − ūτ‖E ≤ δ.

% The call requires � max{1, log(δ−1‖L−1
τ fτ − u(0)

τ ‖E)}#τ
% arithmetic operations.

Multigrid methods with local smoothing, or their additive variants (Bramble–Pasciak–
Xu) as preconditioners in conjugate gradients, are known to be of this type.

A routine called RHSf , and analogously RHSg, will be needed to find a suffi-
ciently accurate approximation to the right-hand side f of the form f1

τ + divf2
τ with

f1
τ ∈ V∗τ , f2

τ ∈ [V∗τ ]
n. Since this might not be possible with respect to the current

partition, a call of RHSf may result in further refinement.

RHSf [τ, δ]→ [τ ′, f1
τ ′,f2

τ ′ ]
% δ > 0. The output consists of f1

τ ′ ∈ V∗τ ′ and f2
τ ′ ∈ [V∗τ ′ ]n, where τ ′ = τ or,

% if necessary, τ ′ ⊃ τ , such that ‖f − fτ ′‖E′ ≤ δ.

Assuming that u ∈ As for some s > 0, the cost of approximating the right-
hand side f using RHSf will generally not dominate the other costs of our adaptive
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method only if there is some constant cf such that for any δ > 0 and any partition τ ,
for [τ ′, ·, ·] := RHSf [τ, δ], it holds that

#τ ′ −#τ ≤ c1/sf δ−1/s,

and the number of arithmetic operations required by the call is � #τ ′. We will refer
to such an RHSf as s-optimal with constant cf . Obviously, given s, such a routine
can exist only when f ∈ Ās, defined by

Ās =

{
f ∈ H−1(Ω) : sup

ε>0
ε inf
{τ :inf

f1
τ ∈V∗

τ ,f2
τ ∈[V∗

τ ]n ‖f−fτ‖E′≤ε}
[#τ −#τ0]s <∞

}
.

On the one hand, u ∈ As implies that f ∈ Ās. Indeed, for any partition τ , let
f2
τ := −A∇uτ . Then f2

τ ∈ [V∗τ ]n and ‖f − divf2
τ ‖E′ = ‖u − uτ‖E. On the other

hand, knowing that f ∈ Ās is a different thing than knowing how to construct suitable
approximations. If s ∈ [ 1

n ,
p+1
n ] and f ∈ Hsn−1(Ω), then the best approximations f1

τ

to f from V∗τ with respect to L2(Ω) using uniform refinements τ of τ0 are known
to converge with the required rate. For general f ∈ Ās, however, a realization of a
suitable routine RHSf has to depend on the functional f at hand.

Remark 6.2. When u and f are smooth, then u ∈ Ap/n and f ∈ Ā(p+1)/n.
Indeed, u is approximated by piecewise polynomials of degree p, and f by those of
degree p− 1 (apart from possible approximations from div[V∗τ ]n), whereas the errors
are measured in H1

0 (Ω) or H−1(Ω), respectively. Also for less smooth u and f , one
can expect that usually u ∈ As and f ∈ Ās′ for some s′ > s.

In our adaptive method, given some partition τ , for both computing the error
estimator and setting up the Galerkin system, we will replace f by an approximation
from V∗τ ′ + div[V∗τ ′ ]n where τ ′ ⊇ τ (and similarly for g). This has the advantages
that we can consider f 
∈ L2(Ω) + divW∗τ , for which thus the error estimator is not
defined, and that we don’t have to worry about quadrature errors in various places in
the algorithm.

Assuming f ∈ L2(Ω) + divWn
τ for any τ , another option, followed in [MNS00], is

not to replace f by an approximation, but to check whether, on the current partition,
the error in the best approximation for f from V∗τ (+div[V∗τ ]n), called data oscillation,
is sufficiently small relative to the error in the current approximation to u, and, if
not, to refine τ to achieve this. Convergence of this approach was shown, and it
can be expected that by applying suitable quadrature and inexact Galerkin solves,
optimal computational complexity can be shown as well. The observations at the
beginning of this remark indicate that “usually,” at least asymptotically, there will
be no refinements needed to reduce the data oscillation. This explains why common
adaptive methods that ignore data oscillation usually converge with optimal rates.

In addition to being s-optimal, we will have to assume that RHSf is linearly
convergent, by which we mean that for any d ∈ (0, 1), there exists a D > 0 such
that for any δ > 0, partitions τ and τ ′ ⊇ τ̂ where [τ̂ , ·, ·] := RHSf [τ, δ], the output
[τ ′′, ·, ·] := RHSf [τ ′, dδ] satisfies #τ ′′ ≤ D#τ ′.

Remark 6.3. Usually, a realization of [τ̂ , ·, ·] := RHSf [τ, δ] will be based on
the selection of τ̂ such that an upper bound for the error is less than the prescribed
tolerance. Since this upper bound will be an algebraically decreasing function of
#τ̂ −#τ0, linear convergence is obtained.

We now have the ingredients in hand to define our practical adaptive goal-oriented
finite element routine GOAFEM. Compared to the idealized version from the previ-
ous section, we will have to deal with the fact that when solving the Galerkin systems
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only inexactly, and applying inexact right-hand sides, C1 times the a posteriori error
estimator E(·) is not necessarily an upper bound for the energy norm of the error. We
have to add correction terms to obtain an upper bound. Furthermore, after applying
REFINE on either the primal or dual side, we have to specify a tolerance for the
error in the new approximation of the right-hand side and in that of the new approx-
imate Galerkin solution. In order to know that a subsequent REFINE results in an
error reduction, in view of Lemma 6.1 we would like to choose this tolerance smaller
than ω times the new error estimator, which, however, is not known yet. Although
we can expect that usually the new estimator is only some moderate factor less than
the existing one, it cannot be excluded that the new estimator is arbitrarily small,
e.g., when we happen to have reached a partition on which the solution can be exactly
represented. In this case, an error reduction is immediate, and so we don’t have to
rely on REFINE to achieve it.

GOAFEM[f, g, δp, δd, ε]→ [τ, ūτ , z̄τ ]
% Let ω ∈ (0, c2) be a constant not larger than the constants ω(θ, C1, c2) and
% ω(μ, θ, C1, c2) for some μ ∈ ([1− c2θ2

C2
1

]
1
2 , 1) mentioned in Lemma 6.1.

% Let 0 < β < [(2+3C1c
−1
2

2+C1c
−1
2

+ C1c
−1
2 )(2 + C1(c−1

2 + 2ω−1))]−1 be a constant.

τ := τ0, [τp, f1
τp
,f2
τp

] := RHSf [τ, δp], [τd, g1
τd
, g2
τd

] := RHSg[τ, δd]
ūτp := z̄τd

:= 0
do

ūτp := GALSOLVE[τp, fτp , ūτp , δp]
z̄τd

:= GALSOLVE[τd, gτd
, z̄τd

, δd]
σp := (2 + C1c

−1
2 )δp + C1E(τp, f1

τp
,f2
τp
, ūτp)

σd := (2 + C1c
−1
2 )δd + C1E(τd, g1

τp
, g2
τp
, z̄τd

)
if σpσd ≤ ε then τ := τp ∪ τd, ūτ := ūτp, z̄τ := z̄τd

stop endif
if 2δp ≤ ωE(τp, f1

τp
,f2
τp
, ūτp) then Fp := MARK[τ, f1

τp
,f2
τp
, ūτp ]

else Fp := ∅ endif
if 2δd ≤ ωE(τd, g1

τp
, g2
τp
, z̄τd

) then Fd := MARK[τ, g1
τp
, g2
τp
, z̄τd

]
else Fd := ∅ endif
if #τp −#τ + #Fp ≤ #τd −#τ + #Fd
then τ := REFINE[τp, Fp], δp := min(δp, βσp)

[τp, f1
τp
,f2
τp

] := RHSf [τ, δp], τd := τ ∪ τd
else τ := REFINE[τd, Fd], δd := min(δd, βσd)

τp := τ ∪ τp, [τd, g1
τp
, g2
τp

] := RHSg[τ, δd]
endif

enddo

Theorem 6.4. [τ, ūτ , z̄τ ] = GOAFEM[f, g, δp, δd, ε] terminates, and

‖u− ūτ‖E‖z − z̄τ‖E ≤ ε.
If u ∈ As, z ∈ At, RHSf (RHSg) is s-optimal (t-optimal) with constant cf (cg),
δp > cf , and δd > cg, then

#τ � #τ0 + ε−1/(s+t)
[
(|u|1/sAs + c

1/s
f )s(|z|1/tAt + c1/tg )t

]1/(s+t)
.

If, additionally, ‖f‖E′ � δp, ‖g‖E′ � δd, and δpδd � ‖u − uτ0‖E‖z − zτ0‖E + ε,
then the number of arithmetic operations and storage locations required by the call
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are bounded by some absolute multiple of the same expression. The constant factors
involved in these bounds may depend only on τ0, and on s or t when they tend to 0 or
∞, and concerning the cost, on the constants involved in the additional assumptions.

Remark 6.5. The condition δp > cf implies that for a call [τ ′, ·, ·] = RHS[τ, δp],
we have τ ′ = τ .

Proof. We start with collecting a few useful estimates. At evaluation of σp, by
(4.4) and Proposition 4.6, we have

‖u− ūτp‖E ≤ ‖u− L−1fτp‖E + ‖(L−1 − L−1
τp

)fτp‖E + ‖L−1
τp
fτp − ūτp‖E

≤ δp + C1E(τp, f1
τp
,f2
τp
, L−1

τp
fτp) + ‖L−1

τp
fτp − ūτp‖E

≤ δp + C1E(τp, f1
τp
,f2
τp
, ūτp) + (C1c

−1
2 + 1)‖L−1

τp
fτp − ūτp‖E

≤ (2 + C1c
−1
2 )δp + C1E(τp, f1

τp
,f2
τp
, ūτp) =: σp(6.2)

and, by Corollary 4.5,

E(τp, f1
τp
,f2
τp
, ūτp) ≤ c−1

2 ‖L−1fτp − ūτp‖E
≤ c−1

2 [‖u− uτp‖E + ‖(L−1 − L−1
τp

)(fτp − f)‖E + ‖L−1
τp
fτp − ūτp‖E]

≤ c−1
2 ‖u− uτp‖E + c−1

2 2δp.(6.3)

So if 2δp ≤ ωE(τp, f1
τp
,f2
τp
, ūτp), then E(τp, f1

τp
,f2
τp
, ūτp) ≤ [c2 − ω]−1‖u− uτp‖E , and

so

(6.4) σp ≤ D‖u− uτp‖E, where D := (1+ 1
2C1c

−1
2 )ω+C1

c2−ω .

Now we are ready to show majorized linear convergence of σpσd. Consider any
two instances σ(A)

p and σ
(B)
p of σp, where σ(A)

p has been computed preceding σ
(B)
p .

With δ
(A)
p , δ(B)

p and τ
(A)
p , τ (B)

p being the corresponding tolerances and partitions,
from (6.3), δ(B)

p ≤ δ
(A)
p and τ (B)

p ⊇ τ
(A)
p , and so ‖u− u

τ
(B)
p
‖E ≤ ‖u− ūτ (A)

p
‖E ≤ σ

(A)
p

by (6.2), and we have

σ(B)
p = (2 + C1c

−1
2 )δ(B)

p + C1E(τ (B)
p , f1

τ
(B)
p
,f2

τ
(B)
p
, ū
τ
(B)
p

)

≤ (2 + 3C1c
−1
2 )δ(A)

p + C1c
−1
2 σ(A)

p

≤ Kσ(A)
p , where K := 2+3C1c

−1
2

2+C1c
−1
2

+ C1c
−1
2 .(6.5)

Let us denote by τ (i)
p , δ(i)p , f1

τ
(i)
p

, f2

τ
(i)
p

, ū
τ
(i)
p

, σ(i)
p the instances of τp, δp, f1

τp
, f2

τp
,

ūτp , σp at the moment of the ith call of REFINE[τp, Fp]. If 2δ(i)p > ωE(τ (i)
p , f1

τ
(i)
p

,

f2

τ
(i)
p

, ū
τ
(i)
p

), then for any k < i,

σ(i)
p < (2 + C1(c−1

2 + 2ω−1))δ(i)p ≤ (2 + C1(c−1
2 + 2ω−1))βσ(k)

p .

If, for some k ∈ N0, 2δ(j)p ≤ ωE(τ (j)
p , f1

τ
(j)
p

,f2

τ
(j)
p

, ū
τ
(j)
p

) for j = i, . . . , i − k, then by

(6.4), Lemma 6.1, where we use that δ(j)p ≤ δ(j−1)
p , and (6.2),

σ(i)
p ≤ D‖u− ūτ (i)

p
‖E ≤ Dμk‖u− ūτ (i−k)

p
‖E ≤ Dμkσ(i−k)

p .
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Since (2 + C1(c−1
2 + 2ω−1))β < 1/K by definition of β, from (6.5) we conclude that

for any α ∈ (0, 1) there exists an M such that σ(i+M)
p ≤ ασ

(i)
p . Since all results

derived so far are equally valid on the dual side, by taking α < 1/K we infer that by
2M iterations of the loop inside GOAFEM, the product σpσd is reduced by a factor
αK < 1. Indeed, either σp or σp is reduced by a factor α, whereas the other cannot
increase by a factor larger than K.

Next, we bound the cardinality of the output partition. If GOAFEM terminates
as a result of the first evaluation of the test σpσd ≤ ε, then by the assumptions that
δp > cf and δd > cg, the output partition τp ∪ τd = τ0. In the following, we consider
the case that initially σpσd > ε.

At evaluation of the test #τp −#τ + #Fp ≤ #τd −#τ + #Fd, we have

(6.6) #τp −#τ ≤ (βK−1σp)−1/sc
1/s
f .

Indeed, the current #τp −#τ is not larger than this difference at the moment of the
most recent call of RHSf [τ, δp]. By the assumption of RHSf being s-optimal, the
latter difference was zero when at that time δp > cf . Otherwise, since δp > cf by
assumption, this δp was equal to β times the minimum of all values attained by σp
up to that moment. Using (6.5) and the fact that RHSf is s-optimal with constant
cf , we end up with (6.6).

If, at evaluation of the test #τp −#τ + #Fp ≤ #τd −#τ + #Fd, Fp 
= ∅, i.e., if
in the preceding lines 2δp ≤ ωE(τp, f1

τp
,f2
τp
, ūτp) and Fp := MARK[τ, f1

τp
,f2
τp
, ūτp ],

an application of Lemma 6.1 and the assumption that u ∈ As show that then

(6.7) #Fp � ‖u− ūτp‖−1/s
E |u|1/sAs � σ−1/s

p |u|1/sAs

by (6.4).
Clearly, results analogous to (6.6) and (6.7) are valid on the dual side. Now with

σp,j , σd,j being the instances of σp, σd at the jth evaluation of the test #τp −#τ +
#Fp ≤ #τd −#τ + #Fd, with n being the last one, an application of Theorem 3.1
shows that for τ being the output of the call of REFINE following this last test,
being thus the last call of REFINE, we have

#τ −#τ0 �
n∑
j=1

min{σ−1/s
p,j (|u|1/sAs + c

1/s
f ), σ−1/t

d,j (|z|1/tAt + c1/tg )}

≤
n∑
j=1

(σp,jσd,j)−1/(s+t)[(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t)

� ε−1/(s+t)[(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t)(6.8)

by the majorized linear convergence of (σp,jσd,j)j and σp,nσd,n > ε.
Suppose that this last call of REFINE took place on the primal side. Then

the output partition of GOAFEM is τp ∪ τd, where [τp, ·, ·] := RHSf [τ, δp] and
τd := τ ∪ τd. As we have seen, if δp ≤ cf , i.e., if possibly τp � τ , then δp is larger than
βK−1 times the current σp, which, by its definition, is larger than 2 + C1c

−1
2 times

the previous value of δp, denoted as δ(prev)
p . A call of RHSf [·, δ(prev)

p ] has been made
inside GOAFEM, and so τ ⊇ τ ′ with [τ ′, ·, ·] := RHSf [·, δ(prev)

p ]. The assumption of
RHSf being linearly convergent shows that #τp � #τ .
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The current #τd−#τ is not larger than this difference at the moment of the last
call of RHSg, and so analogously we find that #τd � #τ . We conclude that

(6.9) #τp ∪ τd � #τ � #τ0 + ε−1/(s+t)[(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t).

Finally, we have to bound the cost of the algorithm. At the moment of the first
call of GALSOLVE[τp, fτp , ūτp , δp], we have

‖L−1
τp
fτp − ūτp‖E ≤ ‖fτp − f‖E′ + ‖f‖E′ ≤ δp + ‖f‖E′ � δp

by assumption. We now consider any further calls. From (6.3), ‖u−uτ0‖E ≤ ‖f‖E′ �
δp by assumption, and (6.5), we have that the currents δp and σp at the moment of
such a call satisfy σp � δp. As a consequence, we have

‖L−1
τp
fτp − ūτp‖E ≤ ‖(L−1 − L−1

τp
)fτp‖E + ‖L−1fτp − ūτp‖E ≤ 2‖L−1fτp − ūτp‖E

≤ 2[‖f − fτp‖E′ + ‖u− ūτp‖E ] ≤ 2δp + 2σp � δp.

By the assumption of GALSOLVE being an optimal iterative solver, we conclude
that the cost of these calls is O(#τp).

The number of arithmetic operations needed for the calls MARK[τ, f1
τp
,f2
τp
, ūτp ],

τ := REFINE[τp, Fp], and [τp, ·, ·] := RHSf [τ, δp] are O(#τ), O(#τ), and O(#τp),
respectively. Moreover, we know that #τp � #τ , and that #τ −#τ0 as a function of
the iteration count is majorized by a linearly increasing sequence with upper bound
(6.8). From the assumption that δpδd � ‖u − uτ0‖E‖z − zτ0‖E + ε, the first σpσd �
‖u − uτ0‖E‖z − zτ0‖E + ε, meaning that after some absolute constant number of
iterations, either the current τ is unequal to τ0 or the algorithm has terminated.
Together, above observations show that the total cost is bounded by some absolute
multiple of the right-hand side of (6.9).

Remark 6.6. The functions ūτ , z̄τ produced by GOAFEM are not the exact
Galerkin approximations, and so ‖u − ūτ‖E‖z − z̄τ‖E is not necessarily an upper
bound for |g(u)− g(ūτ )|. Writing

g(u)− g(ūτ) = a(u− ūτ , z) = a(u− ūτ , z− zτ) = a(u− ūτ , z− z̄τ )−a(u− ūτ , zτ − z̄τ ),

and using the fact that ‖u − ūτ‖E ≤ σp, ‖z − z̄τ‖E ≤ σd, ‖zτ − z̄τ‖ ≤ δd ≤ (2 +
C1c

−1
2 )−1σd, and σpσd ≤ ε, we end up with |g(u)− g(ūτ )| ≤ [1 + (2 + C1c

−1
2 )−1]ε.

7. Numerical experiments. In this section we will consider the performance
of the GOAFEM routine in practice. As many real-world problems require the
evaluation of functionals that are unbounded on H1

0 (Ω), we will also consider such a
problem. As GOAFEM can handle only bounded functionals, we need to do some
additional work. Following [BS01], we will apply a so-called extraction functional,
a technique that we recall below. An alternative approach would be to apply a
regularized functional as suggested in [OR76, BR96]. This approach can be applied
more generally since no Green’s function is needed. On the other hand, it introduces
an additional error that can only be controlled in terms of higher order derivatives of
the solution beyond those that are needed for the functional to be well defined.

7.1. Extraction functionals. Let g̃ be some functional defined on the solution
u of (2.1), but that is unbounded on H1

0 (Ω). With f being the right-hand side of
(2.1), we write g̃(u) = g(u) + M(f), where g ∈ H−1(Ω) and M is a functional on
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f . Since u and f are related via an invertible operator, this is always possible, even
for any g ∈ H−1(Ω). Yet, we would like to do this under the additional constraint
that M(f) can be computed within any given tolerance at low cost. Basically, this
additional condition requires that a Green’s function for the differential operator is
available.

We consider A = Id, i.e., the Poisson problem, on a two-dimensional domain Ω,
and, for some x̄ ∈ Ω, g̃ = g̃x̄ given by

g̃x̄(u) =
∂u

∂x1
(x̄),

assuming that u is sufficiently smooth. With (r, θ) denoting polar coordinates centered
at x̄, we have � log r

2π = δx̄, and so −� cosθ
2πr = g̃x̄ in the sense that for any smooth

test function φ ∈ D(R2), − ∫
R2

cosθ
2πr �φ = g̃x̄(φ). Generally, this formula cannot be

applied with φ replaced by the solution u of (2.1). Indeed, in the general case this
function has a nonvanishing normal derivative at the boundary of Ω, and therefore
its zero extension is not sufficiently smooth. Therefore, with wx̄0 := cosθ

2πr , wx̄1 being a
sufficiently smooth function equal to wx̄0 outside some open Σ � Ω that contains x̄,
and wx̄ := wx̄0 − wx̄1 for any φ ∈ D(R2), we write

g̃x̄(φ) = −
∫

R2
wx̄1�φ−

∫
R2
wx̄�φ

=
∫

R2
�(−wx̄1 )φ+

∫
Ω

wx̄(−�φ)

=: gx̄(φ) +Mx̄(−�φ).

Clearly, gx̄ extends to a bounded functional on L1(R2), with gx̄(v) =
∫
Ω�(−wx̄1 )v

when supp v ⊂ Ω. In particular, gx̄ is bounded on H1
0 (Ω), which enables us to use

GOAFEM to evaluate it. Moreover, since suppwx̄ � Ω, under some mild conditions
the above reformulation can be shown to be applicable to u. The details are as follows.

Proposition 7.1. If
(a) f ∈ L2(Ω),
(b) u is continuously differentiable at x̄, and
(c) in a neighborhood of x̄, f is in Lp for some p > 2,

then

g̃x̄(u) = gx̄(u) +Mx̄(f).

Proof. Let B(x̄; ε) be the ball centered at x̄ with radius ε, and small enough
such that B(x̄; ε) � Ω. Since u,wx̄ ∈ H1(Ω\B(x̄; ε)), �u ∈ L2(Ω\B(x̄; ε)) by (a),
�wx̄ ∈ L2(Ω\B(x̄; ε)), and suppwx̄ � Ω, integration by parts shows that

(7.1)
∫
∂B(x̄;ε)

wx̄
∂u

∂n
− u∂w

x̄

∂n
=
∫

Ω\B(x̄;ε)

u�wx̄ − wx̄�u,

where n is the outward pointing normal of ∂B(x̄; ε).
We have limε↓0

∫
Ω\B(x̄;ε)

u�wx̄ = − limε↓0
∫
Ω\B(x̄;ε)

u�wx̄1 = gx̄(u).
Since | ∫B(x̄;ε) w

x̄
0f | ≤ ‖f‖Lp(B(x̄;ε))‖wx̄0‖Lq(B(x̄;ε)) ( 1

p + 1
q = 1), and furthermore

‖wx̄0‖Lq(B(x̄;ε)) = [
∫ ε
0

∫ 2π

0 | cosθ2πr |qr]1/q → 0 when ε ↓ 0 and q < 2, from (c) we conclude
that − limε↓0

∫
Ω\B(x̄;ε)

wx̄�u =
∫
Ω
wx̄f = Mx̄(f).
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The contributions of wx̄1 to the left-hand side of (7.1) vanish when ε ↓ 0.
From

∫
∂B(x̄;ε) w

x̄
0
∂u
∂n =

∫ 2π

0 (cosθ ∂u
∂x1

+ sinθ ∂u
∂x2

) cosθ
2πε εdθ and (b), we infer that

limε↓0
∫
∂B(x̄;ε)

wx̄0
∂u
∂n = 1

2
∂u
∂x1

(x̄).
From ∫

∂B(x̄;ε)

u
∂wx̄

0
∂n = −1

2πε

∫ 2π

0

cosθ udθ = 1
2πε

∫ 2π

0

sinθ ∂u∂θ dθ

= 1
2π

∫ 2π

0

sinθ (− sinθ ∂u
∂x1

+ cosθ ∂u
∂x2

)dθ

and (b), we infer that − limε↓0
∫
∂B(x̄;ε)

ux̄
∂wx̄

0
∂n = 1

2
∂u
∂x1

(x̄). Together, the above obser-
vations give the proof.

7.2. Implementation. The implementation of the GOAFEM routine is essen-
tially as described above, with the sole difference that we did not approximate the
right-hand sides for setting up the Galerkin systems and computing the a posteriori
error estimators, but instead used quadrature directly. This was possible, and in view
of Remark 6.2 reasonable, because in our experiments either the right-hand sides are
very smooth or they are already in V∗τ0 + div[V∗τ0 ]

n.
For all experiments, we used p = 2, i.e., quadratic Lagrange elements.
The GALSOLVE routine we use solves the linear systems with the conjugate

gradient method using the well-known Bramble–Pasciak–Xu preconditioner.
All routines were implemented in Common Lisp and run using the SBCL compiler

and run-time environment. This allowed for a short development time and well-
instrumented code. With regards to efficiency, the only effort made in that direction
consisted in making sure that the asymptotics were correct. While an efficient im-
plementation would be possible with moderate effort (see [Neu03]), for our purposes
convenience and correctness were the most important considerations.

For the experiment in which we use the extraction functional for the partial
derivative at a point introduced above, we also have to solve a quadrature problem.
For this we used the adaptive cubature routine Cuhre [BEG91] as implemented in the
Cuba cubature package [Hah05].

7.3. Experiments. To test GOAFEM, we chose two distinct situations. For
the first example, we want to compute a partial derivative at a point of a function
given as the solution of a Poisson problem, thus illustrating the applicability of our
method to this situation.

In our second example, we consider a problem in which the singularities of the
solutions to the primal and dual problems are spatially separated.

Example 7.2. Let Ω = (0, 1)2. We consider problem (2.1), choosing the right-
hand side f = 1 (i.e., f(v) =

∫
Ω vdx). We will test the performance of GOAFEM

on the task of computing

∂u

∂x1
(x̄),

with x̄ = (π7 ,
49
100 ). The initial partition is as indicated in Figure 7.1, with (1

2 ,
1
2 ) being

the newest vertex of all 4 triangles.
Following the discussion from subsection 7.1, we take wx̄1 = ψwx̄0 , and thus wx̄ =

(1−ψ)wx̄0 , with ψ being a sufficiently smooth function, 1 outside some neighborhood
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Fig. 7.1. Initial partition τ0 corresponding to Example 7.2.

 0
 0.5

 1
 0

 0.5

 1

-80

 0
 80

Fig. 7.2. Right-hand side of the dual problem corresponding to Example 7.2.

of x̄ inside Ω, and 0 on some smaller neighborhood of x̄. Proposition 7.1 shows that
∂u
∂x1

(x̄) =
∫
Ω
u�(−ψwx̄0 ) +

∫
Ω
(1 − ψ)wx̄0f . Writing (θ, r) for the polar coordinates

around x̄, we chose

(7.2) ψ(θ, r) :=
∫ r

0

ψ∗(s)ds /
∫ ∞

0

ψ∗(s)ds,

with ψ∗ a spline function of order 6, with support [0.1, 0.45].
We evaluated

∫
Ω(1 − ψ)wx̄0f using the adaptive quadrature routine Cuhre. To

obtain precision of 10−12 it needed 216515 integrand evaluations. On current off-the-
shelf hardware, it takes only a few seconds.

To approximate
∫
Ω u�(−ψwx̄0 ) we used GOAFEM. Since the right-hand sides

1 and �(−ψwx̄0 ) of primal and dual problems are smooth, their solutions are in
Ap/n = A1, so that the error in the functional is O([#τ −#τ0]−2). We compared the
results with those obtained with the corresponding non-goal-oriented adaptive finite
element routine AFEM for minimizing the error in energy norm, which is obtained
by applying refinements always because of the markings at primal side.

The solutions of the primal and dual problems are in H3−ε(Ω) for any ε > 0,
but, because the right-hand sides do not vanish at the corners, they are not in H3(Ω).
Recalling that we use quadratic elements, as a consequence (fully) optimal conver-
gence rates with respect to ‖ ‖E are not obtained using uniform refinements. On the
other hand, since the (weak) singularities in the primal and dual solutions are solely
caused by the shape of the domain, the same local refinements near the corners are
appropriate for both primal and dual problem. Therefore, in view of (1.1), we may
expect that also with AFEM the error in the functional is O([#τ −#τ0]−2). On the
other hand, since quantitatively the right-hand side, and so the solution of the dual
problem, are not that smooth (see Figure 7.2), we may hope that the application of
GOAFEM yields quantitatively better results.

In Figure 7.3, we show errors in
∫
Ω
u�(−ψwx̄0 ) as a function of #τ−#τ0. The re-
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Fig. 7.3. Error in the functional vs. #τ −#τ0 using GOAFEM (solid) and AFEM (dashed)
corresponding to Example 7.2, and a curve C[#τ − #τ0]−2.
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Fig. 7.4. Partitions produced by AFEM and GOAFEM with nearly equal number of triangles
for Example 7.2.

sults confirm that for both GOAFEM and AFEM, these errors areO([#τ−#τ0]−2),
where on average for GOAFEM the errors are smaller. In Figure 7.4, we show parti-
tions produced by GOAFEM and AFEM. With AFEM local refinements are made
only towards the corners, whereas with GOAFEM additional local refinements are
made in areas where quantitatively the dual solution is nonsmooth due to oscillations
in its right-hand side.

Example 7.3. As in Example 7.2, we consider Poisson’s problem on the unit
square. We now take as initial partition the one that is obtained from the partition
from Figure 7.1 by 2 uniform refinements. We define the right-hand sides f and g of
primal and dual problems by

f(v) = −
∫
Tf

∂v

∂x1
, g(v) = −

∫
Tg

∂v

∂x1
,(7.3)
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Fig. 7.5. Initial partition τ0 corresponding to Example 7.3, and Tf (left bottom), Tg (right top).
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Fig. 7.6. Primal solution corresponding to Example 7.3.

10-10

10-8

10-6

10-4

102 103 104

Fig. 7.7. Error in the functional vs. #τ −#τ0 using GOAFEM (solid) and AFEM (dashed)
corresponding to Example 7.3, and a curve C[#τ − #τ0]−2.

where Tf and Tg are the simplices {(0, 0), (1
2 , 0), (0, 1

2 )} and {(1, 1), (1
2 , 1), (1, 1

2 )}, re-
spectively; see Figure 7.5. That is, with χf being the characteristic function of Tf ,
f = div[χf 0]T . So in view of (4.3), here we write f as f1 + divf2 with vanishing
f1, and benefit from the fact that f2 ∈ [V ∗τ0 ]

2. Similarly for g.
The primal solution has a singularity along the line connecting the points (1

2 , 0)
and (0, 1

2 ) (see Figure 7.6), and similarly the dual solution has one along the line con-
necting (1, 1

2 ) and (1
2 , 1). Since the non-goal-oriented adaptive finite element routine

AFEM does not see the latter singularity, it behaves much worse than GOAFEM, as
seen in Figure 7.7. For GOAFEM we observe an error O([#τ−#τ0]−2), which, since
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Fig. 7.8. Partitions produced by AFEM and GOAFEM with nearly equal number of triangles
for Example 7.3.

p/n = 1, is equal to the best possible rate predicted by Theorem 6.4. In Figure 7.8,
we show partitions produced by AFEM and GOAFEM, respectively.
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Abstract. The well-known variance reduction methods—the method of importance sampling
and the method of control variates—can be exploited if an approximation of the required solution
is known. Here we employ conditional probabilistic representations of solutions together with the
regression method to obtain sufficiently inexpensive (although rather rough) estimates of the solution
and its derivatives by using the single auxiliary set of approximate trajectories starting from the initial
position. These estimates can effectively be used for significant reduction of variance and further
accurate evaluation of the required solution. The developed approach is supported by numerical
experiments.
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1. Introduction. The stochastic approach to solving problems of mathematical
physics is based on probabilistic representations of their solutions by making use of
the weak-sense numerical integration of stochastic differential equations (SDEs) and
the Monte Carlo (MC) technique. In this approach we have two main errors: the error
of SDE numerical integration and the MC error. The first error essentially depends
on the choice of a method of numerical integration, and the second one depends on
the choice of the probabilistic representation (it is understood that the first error for
a chosen method can be reduced by decreasing the step of discretization, and the
MC error for a selected probabilistic representation can be reduced by increasing the
number of independent trajectories). While the error of numerical integration is well
studied in the systematic theory of numerical integration of SDEs, which allows us
to propose suitable effective methods for a lot of typical problems (see, e.g., [16]),
in connection with the MC error there is a lack of constructive variance reduction
methods.

The well-known variance reduction methods (see [12, 16, 21] and the references
therein) of importance sampling and of control variates can be exploited only in the
case when an approximation of the required solution u(t, x) is known. However, in
general even rough approximations of the desired solution u(t, x) and its derivatives
∂u/∂xi(t, x), i = 1, . . . , d, are unknown beforehand. At first sight, it seems that ap-
proximating them roughly is not difficult since they can be found by the MC technique
using a comparatively small number of independent trajectories. But this presupposes
evaluating them at many points (tk, xk). Computing u(tk, xk) and ∂u/∂xi(tk, xk) by
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the MC technique requires different auxiliary sets of approximate trajectories because
of the different starting points (tk, xk). This is too expensive, i.e., as a rule, such a pro-
cedure is more expensive than simple increase of the number of trajectories starting
from the initial position (t0, x0), at which we aim to find the value of the solution u.

So, a suitable method of constructing u(tk, xk) and ∂u/∂xi(tk, xk) should be com-
paratively inexpensive. Therefore we cannot require a considerable accuracy of the es-
timates for u(tk, xk) and ∂u/∂xi(tk, xk) because there is a trade-off between accuracy
and computational expenses. Our proposition is to exploit conditional probabilistic
representations. Their employment together with the regression method allows us
to evaluate u(tk, x) and ∂u/∂xi(tk, x) using the single auxiliary set of approximate
trajectories starting from the initial position (t0, x0) only. This plays a crucial role in
obtaining sufficiently inexpensive (but at the same time useful for variance reduction)
estimates û(tk, x) and ∂̂u/∂xi(tk, x). The construction of û and ∂̂u/∂xi is accompa-
nied by a number of errors of a different nature. Although it is impossible to evaluate
these errors satisfactorily, the suitability of û(tk, x) and ∂̂u/∂xi(tk, x) for variance
reduction can be directly verified during computations since the MC error can always
be estimated. We emphasize that the obtained (even rather rough) estimates can
effectively be used for accurately evaluating the function u not only at the position
(t0, x0) but at many other positions as well.

This paper is most closely connected with [6, 12, 13, 14] (see also the [16]) and with
the works [21, 20] by N. Newton. The method of importance sampling from [6, 12]
is exploited in [25] for some specific physical applications. Various other aspects of
variance reduction related to simulating diffusions are considered, e.g., in [2, 4, 9, 10,
24] (see also the references therein). An extended list of works devoted to variance
reduction of MC simulations can be found in [7].

In section 2 we recall some known facts concerning the MC technique for linear
parabolic equations and the general scheme of regression method for estimating condi-
tional expectations. Section 3 is devoted to conditional probabilistic representations of
solutions of parabolic equations and their derivatives. These representations together
with regression approach play a decisive role in the economical estimating of u and
∂u/∂xi at all points (t, x), given the only set of trajectories starting from the initial
point (t0, x0). In section 3.2 we obtain the estimate û(s, x) and propose to estimate
the derivatives ∂u/∂xi(s, x) by ∂û/∂xi(s, x). This estimation of derivatives is inex-
pensive from the computational point of view, but they are rather rough. Section 3.3
is devoted to the more accurate way of estimating derivatives using a linear regression
method directly to find ∂̂u/∂xi(tk, x). In section 3.4, we obtain ∂̂u/∂xi(tk, x) in the
case of nonsmooth initial data exploiting probabilistic representations for ∂u/∂xi(s, x)
which rest on the Malliavin integration by parts. To this aim, we derive a conditional
version of the Malliavin integration-by-parts formula adapted to our context. It should
be noted that if the dimension d is large, the procedures of sections 3.3 and 3.4 are
computationally very demanding since they require integration of the d2-dimensional
system of first-order variation equations whose solution is present in the probabilistic
representations for ∂u/∂xi(s, x). Therefore, in practice, the inexpensive procedure
of section 3.2 is preferable if d is large. In section 4 we give a simple, analytically
tractable example to illustrate the benefits of the proposed variance reduction proce-
dure, and we also test it on a one-dimensional array of stochastic oscillators and on
the Black–Scholes pricing model for a binary asset-or-nothing call option. Section 5
gives a summary of the proposed approach to variance reduction.
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2. Preliminaries. In this section we recall some known facts concerning proba-
bilistic representations of the solutions of parabolic partial differential equations and
the regression method of estimating conditional expectations in the form suitable for
our purposes.

2.1. Probabilistic representations. Let us consider the Cauchy problem for
the linear parabolic equation

∂u

∂t
+

1
2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
(2.1)

+ c(t, x)u+ g(t, x) = 0, t0 ≤ t < T, x ∈ Rd,

with the initial condition

(2.2) u(T, x) = f(x), x ∈ Rd.

The matrix a(t, x) = {aij(t, x)} in (2.1) is symmetric and at least positive semidefinite.
Let σ(t, x) be a matrix obtained from the equation

a(t, x) = σ(t, x)σ�(t, x).

Let (Ω,F ,Ft, P ), t0 ≤ t ≤ T, be a filtered probability space. The solution to
the problem (2.1)–(2.2) has the following probabilistic representation (the well-known
Feynman–Kac formula):

(2.3) u(s, x) = E[f(Xs,x(T ))Ys,x,1(T ) + Zs,x,1,0(T )],

where Xs,x(t), Ys,x,y(t), Zs,x,y,z(t), t ≥ s, is the solution of the Cauchy problem for
the system of SDEs

dX = b(t,X)dt+ σ(t,X)dw(t), X(s) = x,(2.4)

dY = c(t,X)Y dt, Y (s) = y,

dZ = g(t,X)Y dt, Z(s) = z.

Here w(t) = (w1(t), . . . , wd(t))� is a d-dimensional {Ft}t≥t0-adapted standard Wiener
process, and Y and Z are scalars. If y = 1, z = 0, we shall use the notation Ys,x(t) :=
Ys,x,1(t), Zs,x(t) := Zs,x,1,0(t) (analogous notation will be used later for some other
variables). So,

(2.5) u(s, x) = E[f(Xs,x(T ))Ys,x(T ) + Zs,x(T )].

There are various sets of sufficient conditions ensuring connection between the
solutions of the Cauchy problem (2.1)–(2.2) and their probabilistic representations
(2.5)–(2.4). For definiteness, we shall keep the following assumptions.

We assume that the coefficients b, σ, c, and g have bounded derivatives up to some
order, and additionally c and g are bounded on [t0, T ]×Rd. Further, we assume that
the matrix a(t, x) is positive definite and, moreover, the uniform ellipticity condition
holds: there exists σ0 > 0 such that

‖ a−1(t, x) ‖ = ‖ (σ(t, x)σ�(t, x))−1 ‖ ≤σ−1
0 , t0 ≤ t ≤ T, x ∈ Rd.
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As for function f(x), it is assumed to grow at infinity not faster than a polynomial
function. It can be both smooth and nonsmooth.

We note that the results of this paper can be used under other sets of conditions.
For instance, one can consider situations with nonglobally Lipschitz coefficients [18]
or with matrix a(t, x) which is positive semidefinite. For example, in section 4.2
we consider a numerical example with nonglobally Lipschitz coefficients and positive
semidefinite matrix a(t, x), and the example from section 4.3 has a discontinuous f(x).

The value u(s, x) from (2.5) can be evaluated using the weak-sense numerical
integration of the system (2.4) together with the MC technique. More specifically, we
have

u(s, x) ≈ E[f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T )](2.6)

≈ 1
M

M∑
m=1

[f(mX̄s,x(T ))mȲs,x(T ) + mZ̄s,x(T )] ,

where the first approximate equality involves an error due to replacing X , Y , Z by
X̄, Ȳ , Z̄ (the error is related to the approximate integration of (2.4)) and the error in
the second approximate equality comes from the MC technique; mX̄s,x(T ), mȲs,x(T ),
mZ̄s,x(T ), m = 1, . . . ,M, are independent realizations of X̄s,x(T ), Ȳs,x(T ), Z̄s,x(T ).
While the weak-sense integration of SDEs is developed sufficiently well and a lot
of different effective weak-sense numerical methods have been constructed (see, e.g.,
[16]), the methods of reducing the second error in (2.6) are more intricate.

The error of the MC method is evaluated by

ρ̄ = c
(var[f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T )])1/2

M1/2 ,

where, e.g., the values c = 1, 2, 3 correspond to the fiducial probabilities 0.68, 0.95,
0.997, respectively. Introduce

Γ = Γs,x := f(Xs,x(T ))Ys,x(T ) + Zs,x(T ),(2.7)

Γ̄ = Γ̄s,x := f(X̄s,x(T ))Ȳs,x(T ) + Z̄s,x(T ).(2.8)

Since varΓs,x is close to varΓ̄s,x, we can assume that the error of the MC method is
estimated by

(2.9) ρ = c
(varΓs,x)1/2

M1/2 .

2.2. Variance reduction. If varΓs,x is large, then to achieve a satisfactory
accuracy we have to simulate a very large number of independent trajectories. Clearly,
variance reduction is of crucial importance for effectiveness of any MC procedure. To
reduce the MC error, one usually exploits some other probabilistic representations of
solutions to considered problems. To obtain various probabilistic representations of
the solution to the problem (2.1)–(2.2), we introduce the system (see [13, 14, 16])

dX = b(t,X)dt− σ(t,X)μ(t,X)dt+ σ(t,X)dw(t), X(s) = x,(2.10)

dY = c(t,X)Y dt+ μ�(t,X)Y dw(t), Y (s) = 1,

dZ = g(t,X)Y dt+ F�(t,X)Y dw(t), Z(s) = 0,
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where μ and F are column-vector functions of dimension d satisfying some regularity
conditions (e.g., they have bounded derivatives with respect to xi up to some order).
We should note that X , Y , Z in (2.10) differ from X , Y , Z in (2.4); however, this
does not lead to any ambiguity. The formula (2.5), i.e.,

(2.11) u(s, x) = EΓs,x,

remains valid under the new X , Y , Z. While the mean EΓ does not depend on the
choice of μ and F, the variance varΓ = EΓ2 − (EΓ)2 does. Thus, μ and F can be
used to decrease the variance varΓ and, consequently, the MC error can be reduced.
The following theorem is proved in [14] (see also [13, 16]).

Theorem 2.1. Let μ and F be such that for any x ∈ Rd there exists a solution
to the system (2.10) on the interval [s, T ]. Then the variance varΓ is equal to

(2.12) varΓ = E

∫ T

s

Y 2
s,x(t)

d∑
j=1

(
d∑
i=1

σij
∂u

∂xi
+ uμj + F j

)2

dt,

provided that the expectation in (2.12) exists. In (2.12) all the functions σij , μj , F j ,
u, ∂u/∂xi have (t,Xs,x(t)) as their argument.

In particular, if μ and F are such that

(2.13)
d∑
i=1

σij
∂u

∂xi
+ uμj + F j = 0, j = 1, . . . , d,

then varΓ = 0, i.e., Γ is deterministic.
We recall that if we put here F = 0, then we obtain the method of importance

sampling (first considered in [6, 12, 24]), and if we put μ = 0, then we obtain the
method of control variates (first considered in [21]). Theorem 2.1 establishes the
combining method of variance reduction proved in [13]; see also [16].

Obviously, μ and F satisfying (2.13) cannot be constructed without knowing
u(t, x), s ≤ t ≤ T, x ∈ Rd. Nevertheless, the theorem claims a general possibility
of variance reduction by a proper choice of the functions μj and F j , j = 1, . . . , d.
Theorem 2.1 can be used, for example, if we know a function û(t, x) connected with
an approximating problem and which is close to u(t, x). In this case we take any μ̂j ,
F̂ j , j = 1, . . . , d, satisfying

(2.14)
d∑
i=1

σij
∂û

∂xi
+ ûμ̂j + F̂ j = 0,

and then the variance var Γ, though not zero, is small.
Let us emphasize that (2.13) serves only as a guidance for getting suitable μ and

F (recall that the mean EΓ does not depend on the choice of μ and F ). In particular,
the derivative estimate ∂̂u/∂xi can differ from ∂û/∂xi. In such cases, instead of (2.14)
we use

(2.15)
d∑
i=1

σij
∂̂u

∂xi
+ ûμ̂j + F̂ j = 0.

It might seem that the problem of at least rough approximation of the functions
u(t, x) and ∂u/∂xi(t, x) is not difficult since they can be found approximately due to
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the Feynman–Kac formula, numerical integration of SDEs, and the MC technique.
But then numerical integration of the system (2.10) presupposes evaluating u(tk, X̄k)
and ∂u/∂xi(tk, X̄k) at many points (tk, X̄k). Their evaluation by the MC method
requires different sets of auxiliary approximate trajectories because of the different
starting points (tk, X̄k). This is too expensive; i.e., as a rule, such a procedure is more
expensive than simple increase of M in (2.6).

Our aim is to propose a systematic method of approximating the functions u
and ∂u/∂xi, i = 1, . . . , d, relatively cheaply, and hence obtain systematic methods of
variance reduction. To this end, we exploit the regression method of evaluating u(tk, x)
and ∂u/∂xi(tk, x), which allows us to use only one set of approximate trajectories
starting from the initial position (t0, x0).

2.3. Pathwise approach for derivatives ∂u/∂xi(s, x). The probabilistic
representation for the derivatives

∂i(s, x) :=
∂u(s, x)
∂xi

, i = 1, . . . , d,

can be obtained by the straightforward differentiation of (2.11) (see, e.g., [7, 13]):

∂i(s, x) = E

⎛
⎝ d∑
j=1

∂f(Xs,x(T ))
∂xj

δis,xX
j(T )Ys,x(T )(2.16)

+ f(Xs,x(T ))δis,xY (T ) + δis,xZ(T )

⎞
⎠ ,

where

δiXj(t) := δis,xX
j(t) :=

∂Xj
s,x(t)
∂xi

, δiY (t) := δis,xY (t) :=
∂Ys,x(t)
∂xi

,

δiZ(t) := δis,xZ(t) :=
∂Zs,x(t)
∂xi

, s ≤ t ≤ T, i, j = 1, . . . , d,

satisfy the system of variational equations associated with (2.10):

dδiX =
d∑
j=1

∂(b(t,X)− σ(t,X)μ(t,X))
∂xj

δiXjdt+
d∑
j=1

∂σ(t,X)
∂xj

δiXj dw(t) ,(2.17)

δiXj(s) = 0 if j �= i, and δiX i(s) = 1 ,

dδiY =
d∑
j=1

Y
∂c(t,X)
∂xj

δiXjdt+ c(t,X)δiY dt(2.18)

+
d∑
j=1

Y
∂μ�(t,X)

∂xj
δiXjdw(t) + μ�(t,X)δiY dw(t), δiY (s) = 0,

dδiZ =
d∑
j=1

Y
∂g(t,X)
∂xj

δiXjdt+ g(t,X)δiY dt(2.19)

+
d∑
j=1

Y
∂F�(t,X)

∂xj
δiXjdw(t) + F�(t,X)δiY dw(t), δiZ(s) = 0.
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Introduce a partition of the time interval [t0, T ], for simplicity the equidistant
one: t0 < t1 < · · · < tN = T with step size h = (T − t0)/N. Let us apply a
weak scheme (see, e.g., [16]) to the systems of SDEs (2.10), (2.17)–(2.19) to obtain
independent approximate trajectories (tk, mX̄(tk)), m = 1, . . . ,M, all starting from
the point (t0, x), and mȲ (tk), mZ̄(tk), mδ̄iX(tk), mδ̄iY (tk), mδ̄iZ(tk) with mȲ (t0) =
1, mZ̄(t0) = 0, mδ̄iXj(t0) = 0 if j �= i, and mδ̄

iX i(t0) = 1, mδ̄iY (t0) = 0, mδ̄iZ(t0) =
0. Then we obtain the following MC estimates of the derivatives ∂u/∂xi(t0, x) from
(2.16) with (s, x) = (t0, x):

∂̂i(t0, x) =
1
M

M∑
m=1

⎡
⎣ d∑
j=1

∂f(mX̄(T ))
∂xj

mδ̄
iXj(T ) mȲ (T )(2.20)

+ f(mX̄(T )) mδ̄iY (T ) + mδ̄
iZ(T )

⎤
⎦ .

Clearly, the estimates ∂̂i(tk, x) for derivatives ∂u/∂xi(tk, x) can be obtained analo-
gously.

Theorem 2.1 asserts that the variance in evaluating u by (2.11) can reach zero
value for some μ and F . In [13] it is proved that for the same μ and F the variance
in evaluating ∂i by (2.16) is equal to zero as well (we pay attention that not only μ
and F but also their derivatives are present in (2.18) and (2.19)).

2.4. Regression method of estimating conditional expectation. Let us
recall the general scheme of the linear regression method (see, e.g., [8]). Consider
a sample (mX, mV ), m = 1, . . . ,Mr, from a generic member (X,V ) of the sample,
where X is a d-dimensional and V is a one-dimensional random variable. We pay
attention that we denote by Mr the size of the sample used in the regression, while M
is the number of realizations used for computing the required quantity u(t0, x0) (see
(2.6)). Let the values of X belong to a domain D ⊂ Rd. It is of interest to estimate
the regression function

(2.21) c(x) = E(V |X = x).

Let {ϕl(x)}Ll=1 be a set of basis functions each mapping D to R. As an estimate ĉ(x)
of c(x), we choose the function of the form

∑L
l=1 αlϕl(x) that minimizes the empirical

risk:

(2.22) α̂ = arg min
α∈RL

1
Mr

Mr∑
m=1

(
mV −

L∑
l=1

αlϕl(mX)

)2

.

So

(2.23) ĉ(x) =
L∑
l=1

α̂lϕl(x),

where α̂l satisfy the system of linear algebraic equations

a11α1 + a12α2 + · · ·+ a1LαL = b1(2.24)

· · · · · · · · · · ·
aL1α1 + aL2α2 + · · ·+ aLLαL = bL



894 G. N. MILSTEIN AND M. V. TRETYAKOV

with

(2.25) aln =
1
Mr

Mr∑
m=1

ϕl(mX)ϕn(mX), bl =
1
Mr

Mr∑
m=1

ϕl(mX) mV, l, n = 1, . . . , L.

Thus, the usual base material in the field of regression is a sample (mX, mV ), m =
1, . . . ,Mr, from a generic member (X,V ) of the sample.

Remark 2.2. Although in this paper we use linear regression, in principle other
regression methods (see, e.g., [3, 8]) can be exploited as well.

3. Conditional probabilistic representations and methods of evaluating
u(s, x) and ∂u/∂xi(s, x) by regression. The routine (unconditional) probabilis-
tic representations are ideal for the MC evaluation of u(t0, x0) by using a set of
trajectories starting from the point (t0, x0). To find u(s, x) by this approach, we need
to construct another set of trajectories which starts from (s, x). However, we can use
the previous set starting from (t0, x0) to compute u(s, x), s > t0, if we make use of
conditional probabilistic representations. In this section we introduce the conditional
probabilistic representations for solutions of parabolic equations and for derivatives
of the solutions.

3.1. Conditional probabilistic representations for u(s, x) and ∂u/∂xi

(s, x). Along with the unconditional probabilistic representation (2.11), (2.7), (2.10)
for u(s, x), we have the following conditional one:

u(s, x) = E (f(Xs,x(T ))Ys,x(T ) + Zs,x(T ))(3.1)

= E (f(Xs,X(T ))Ys,X(T ) + Zs,X(T ) with X := Xt0,x0(s)|Xt0,x0(s) = x) .

This formula can be considered as the conditional version of the Feynman–Kac
formula.

Analogously to (3.1), we get for ∂i(s, x) = ∂u/∂xi(s, x) (see (2.16))

∂i(s, x) = E

⎛
⎝ d∑
j=1

∂f(Xs,x(T ))
∂xj

δis,xX
j(T )Ys,x(T ) + f(Xs,x(T ))δis,xY (T ) + δis,xZ(T )

⎞
⎠

= E

⎛
⎝ d∑
j=1

∂f(Xs,X(T ))
∂xj

δis,XX
j(T )Ys,X(T )(3.2)

+ f(Xs,X(T ))δis,XY (T ) + δis,XZ(T )|X := Xt0,x0(s) = x

⎞
⎠ .

So, we have two different probabilistic representations both for u(s, x) and ∂i(s, x):
the first one is in the form of unconditional expectation (see section 2), and the second
one (i.e., (3.1) and (3.2)) is in the form of conditional expectation. The first form
can be realized naturally by the MC approach and the second one by a regression
method. As we discussed before, it is too expensive to run sets of trajectories starting
from various initial points (s, x), and we do have the set of trajectories (t, mXt0,x0(t)).
Taking this into account, the second way (which relies on the conditional probabilistic
representations and regression) is more preferable although it is less accurate.

A proof of (3.1) and (3.2) relies on the following assertion: if ζ is F̃ -measurable,
f(x, ω) is independent of F̃ , and Ef(x, ω) = φ(x), then E(f(ζ, ω)|F̃) = φ(ζ) (see,
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e.g., [11]). From this assertion, for any measurable g it holds (with ζ = Xt0,x0(s), F̃ =
σ{Xt0,x0(s)}, f(x, ω) = g(Xs,x(T ))) that

E(g(Xs,X(T ))|Xt0,x0(s) = x) = Eg(Xs,x(T )) with X := Xt0,x0(s),

hence (3.1) and (3.2).

3.2. Evaluating u(s, x). In evaluating u(s, x) by regression, the pairs (X,V )
and (mX,m V ) have the form

(X,V ) ∼ (Xt0,x0(s), f(Xs,X(T ))Ys,X(T ) + Zs,X(T )) ,(3.3)

(mX, mV ) ∼ (mXt0,x0(s), f(mXs,mX(T )) mYs,mX(T ) + mZs,mX(T )) .

To realize a regression algorithm, we construct the set of trajectories (t, mXt0,x0(t)).
Of course, we construct them approximately at the time moments s = tk and store
the obtained values. So, in reality we have (tk, mX̄t0,x0(tk)). The time s in (3.3) is
equal to that of tk. We note that

(3.4) Xs,X(t) = Xs,Xt0,x0 (s)(t) = Xt0,x0(t), t ≥ s;
i.e., Xs,X(t) is a continuation of the base solution starting at the moment t0 and
Xs,X(T ) in (3.3) is equal to Xt0,x0(T ). It is not so for Y :

Ys,X(T ) �= Yt0,x0(T ).

Let us recall that Ys,X(t) is the solution of the equation (see (2.10))

(3.5) dYs,X = c(t,Xs,X(t))Ys,Xdt+ μ�(t,Xs,X(t))Ys,Xdw(t), Y (s) = 1.

Clearly,

(3.6) Ys,X(t) =
Yt0,x0(t)
Yt0,x0(s)

, s ≤ t ≤ T,

hence storing Yt0,x0(t), we can get Ys,X(T ) in (3.3).
Analogously, Zs,X(T ) �= Zt0,x0(T ). It is not difficult to find that

(3.7)

Zs,X(t) =
1

Yt0,x0(s)
(Zt0,x0(t)−Zt0,x0(s)), Zs,X(T ) =

1
Yt0,x0(s)

(Zt0,x0(T )−Zt0,x0(s)).

Therefore

u(s, x) = E

(
f(Xt0,x0(T ))

Yt0,x0(T )
Yt0,x0(s)

+
1

Yt0,x0(s)
(Zt0,x0(T )− Zt0,x0(s)) |Xt0,x0(s) = x

)
.

Thus, storing mXt0,x0(t), mYt0,x0(t), mZt0,x0(t), t0 ≤ t ≤ T (in fact, storing mX̄, mȲ ,

mZ̄ at tk), we get the pairs (mX, mV ) from

(X,V ) ∼
(
Xt0,x0(s), f(Xt0,x0(T ))

Yt0,x0(T )
Yt0,x0(s)

+
1

Yt0,x0(s)
(Zt0,x0(T )− Zt0,x0(s))

)
.

Having this sample, one can obtain û(s, x) by the linear regression method (see sec-
tion 2.4):

(3.8) û(s, x) =
L∑
l=1

α̂lϕl(x).
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From (3.8) it is straightforward to obtain a very simple estimate ∂̂i(s, x) for ∂i(s, x) =
∂u/∂xi(s, x):

(3.9) ∂̂i(s, x) =
∂û(s, x)
∂xi

=
L∑
l=1

α̂l
∂ϕl(x)
∂xi

.

Then from (2.14) we find some μ̂(s, x), F̂ (s, x) for any t0 < s < T (in reality for
any tk) and construct the variate Γ̂(t0, x0) (see (2.5) and (2.7)) for u(t0, x0) due to
the system (2.10) with μ = μ̂ and F = F̂ . We repeat that the variate Γ̂(t0, x0)
is unbiased for any μ̂ and F̂ . We note that it is sufficient to have rather rough (in
comparison with the required accuracy in evaluating u(t0, x0)) approximations μ̂(s, x)
and F̂ (s, x) of some optimal μ and F from (2.13). Therefore, it is natural to use a
coarser discretization and fewer MC runs in the regression part of evaluating û(s, x)
due to (3.8), i.e., to take Mr in (2.22) smaller than M and to construct samples mX in
(2.25) with a comparatively rough discretization. Then in computing u(t0, x0) with a
finer discretization, the necessary values of μ̂ and F̂ at the intermediate points can be
obtained after, e.g., linear interpolation of û with respect to time. The success of any
regression-based approach clearly depends on the choice of basis functions. This is
known to be a rather complicated problem, both in practice and theory. In fact, it is
necessary to use a special basis tailored to each particular problem. Fortunately, the
variance can easily be evaluated during simulation. Therefore, it is not very expensive
from the computational point of view to check the quality of a given basis if we take
coarse discretizations both in the regression part and in the main part of evaluating
u(t0, x0) and if we take not too large numbers Mr and M of MC runs. This can help
in choosing a proper basis.

Remark 3.1. Clearly, α̂l depend on s (on tk). Let us note that the number L and
the set {ϕl(x)}Ll=1 may depend on tk as well.

Remark 3.2. It is obvious that in practice we use (2.10) with different μ and
F in the implementation of the regression and in computing the required quantity
u(t0, x0). Indeed, in the regression part of the procedure we can take arbitrary μ and
F (e.g., both zero), while in computing u(t0, x0) we choose μ and F according to
(2.14) with û obtained via the regression or according to (2.15) with û and ∂̂u/∂xi

obtained via the regression.
Remark 3.3. At s = t0 the system (2.24) degenerates into the single equation (we

suppose that not all of ϕl(x0) are equal to zero)

(3.10)

ϕ1(x0)α1 + · · ·+ ϕL(x0)αL =
1
Mr

Mr∑
m=1

[f(mX̄t0,x0(T )) mȲt0,x0(T ) + mZ̄t0,x0(T )].

Therefore, the coefficients α1(t0), . . . , αL(t0) cannot be found from (3.10) uniquely.
At the same time, the linear combination α1(t0)ϕ1(x0) + · · ·+αL(t0)ϕL(x0), i.e., the
estimate

û(t0, x0) =
1
Mr

Mr∑
m=1

[f(mX̄t0,x0(T )) mȲt0,x0(T ) + mZ̄t0,x0(T )],

is defined uniquely. Clearly, when tk is close to t0 (for instance, at t1), the system
(2.24), though not degenerate, is ill-conditioned. Nevertheless, for such tk and for x
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close to x0, the estimate

û(tk, x) = α1(tk)ϕ1(x) + · · ·+ αL(tk)ϕL(x)

can be found sufficiently accurate. However, since it is not possible to satisfactorily de-
termine the coefficients α1(tk), . . . , αL(tk), we cannot get the derivatives ∂û(tk, x)/∂xi

by direct differentiation as α1(tk)∂ϕ1(x)/∂xi + · · ·+ αL(tk)∂ϕL(x)/∂xi. In addition,
let us emphasize that such difficulties are not essential for the whole procedure of vari-
ance reduction because the variance is equal to the integral (2.12), and unsatisfactory
knowledge of u and ∂u/∂xi on short parts of the interval [t0, T ] does not significantly
affect the value of the integral.

3.3. Evaluating ∂u/∂xi(s, x). The problem of evaluating ∂u/∂xi(s, x) is of
independent importance due to its connection with numerical computation of Greeks
in finance. Many articles are devoted to pathwise methods of estimating Greeks (see
[7] and the references therein; see also [13]). In [17] the finite-difference-based method
is developed, and [5, 4] suggest using Malliavin calculus for computing Greeks. Several
pathwise and finite-difference-based methods for calculating sensitivities of Bermudan
options using regression methods and MC simulations are considered in [1] (see also
the references therein). In this section we propose a conditional version of the pathwise
method, and in section 3.4 we present a conditional version of the approach based on
the Malliavin integration by parts for evaluating ∂u/∂xi(s, x).

As mentioned previously, differentiating the equality (3.8) gives an estimate for
∂i(s, x) = ∂u/∂xi(s, x) (see (3.9)); however, in general, it is rather rough. A more
accurate way is to use the linear regression method directly.

In evaluating ∂i(s, x) by regression, the pair (X,V i) has the form (see (3.2))

(3.11)
X = Xt0,x0(s),

V i =
d∑
j=1

∂f(Xs,X(T ))
∂xj

δis,XX
j(T )Ys,X(T ) + f(Xs,X(T ))δis,XY (T ) + δis,XZ(T ).

We already have expressions forXs,X(T ), Ys,X(T ), Zs,X(T ) viaXt0,x0(t), Yt0,x0(t),
Zt0,x0(t), with t being equal to s and T (see the formulas (3.4), (3.6), (3.7)). Our near-
est aim is to express δis,XX

j(T ), δis,XY (T ), δis,XZ(T ) via Xt0,x0(t), Yt0,x0(t), Zt0,x0(t),
δit0,x0

Xj(t), δit0,x0
Y (t), δit0,x0

Z(t).
We begin with δis,XX

j(t). The column-vector δis,XX(t) is the solution of the lin-
ear homogeneous stochastic system (2.17) whose coefficients depend on Xs,X(t) =
Xt0,x0(t). Let the matrix

Φs,X(t) := {δis,XXj(t)}
be the fundamental matrix of solutions of (2.17) normalized at time s, i.e., Φs,X(s) =
I, where I is the identity matrix. Its element on the jth row and ith column is equal
to δis,XX

j(t). Clearly,

(3.12) Φs,X(t) = Φt0,x0(t)Φ
−1
t0,x0

(s).

Now let us turn to the column-vector δs,XY (t), consisting of components δis,XY (t).
We have (see (2.18))

dδs,XY = Ys,X(t)Φ�s,X(t) ∇c(t,Xs,X(t))dt+ c(t,Xs,X(t))δs,XY dt(3.13)

+Ys,X(t)Φ�s,X(t) ∇[μ�(t,Xs,X(t))dw(t)] + δs,XY μ
�(t,Xs,X(t))dw(t), δs,XY (s) = 0.
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Due to the equality Xs,X(t) = Xt0,x0(t) and (3.6) and (3.12), we get from (3.13)

dδs,XY =
Yt0,x0(t)
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�t0,x0
(t) ∇c(t,Xt0,x0(t))dt + c(t,Xt0,x0(t))δs,XY dt

(3.14)

+
Yt0,x0(t)
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�t0,x0
(t) ∇[μ�(t,Xt0,x0(t))dw(t)]

+ δs,XY μ
�(t,Xt0,x0(t))dw(t), δs,XY (s) = 0.

Taking into account the equality

dδt0,x0Y (t) = Yt0,x0(t)Φ
�
t0,x0

(t) ∇c(t,Xt0,x0(t))dt + c(t,Xt0,x0(t))δt0,x0Y (t)dt

+Yt0,x0(t)Φ
�
t0,x0

(t) ∇[μ�(t,Xt0,x0(t))dw(t)] + δt0,x0Y (t)μ�(t,Xt0,x0(t))dw(t),

it is not difficult to verify that

(3.15) δs,XY (t) =
1

Yt0,x0(s)
[Φ−1
t0,x0

(s)]�
(
δt0,x0Y (t)− Yt0,x0(t)

Yt0,x0(s)
δt0,x0Y (s)

)
.

In the similar way we obtain

δs,XZ(t) =
1

Yt0,x0(s)
[Φ−1
t0,x0

(s)]� (δt0,x0Z(t)− δt0,x0Z(s))(3.16)

− 1
Y 2
t0,x0

(s)
[Φ−1
t0,x0

(s)]�δt0,x0Y (s) (Zt0,x0(t)− Zt0,x0(s)) .

Hence the column-vector ∂(s, x) with the components ∂i(s, x) is equal to

∂(s, x) = E

(
Yt0,x0(T )
Yt0,x0(s)

[Φ−1
t0,x0

(s)]�Φ�t0,x0
(T ) ∇f(Xt0,x0(T ))(3.17)

+ f(Xt0,x0(T ))δs,XY (T ) + δs,XZ(T ) |Xt0,x0(s) = x

)
,

where δs,XY (T ) and δs,XZ(T ) are from (3.15) and (3.16).
Thus, storing mXt0,x0(t), mYt0,x0(t), mZt0,x0(t), mΦt0,x0(t), mδt0,x0Y (t), mδt0,x0

Z(t), t0 ≤ t ≤ T , we get the corresponding samples

(mX, mV i) =

(
mXt0,x0(s),

(
mYt0,x0(T )
mYt0,x0(s)

[mΦ−1
t0,x0

(s)]� mΦ�t0,x0
(T ) ∇f(mXt0,x0(T ))

(3.18)

+ f(mXt0,x0(T )) mδs,mXY (T ) + mδs,mXZ(T )
)i)

,

where mΦt0,x0(s) is a realization of the fundamental matrix Φt0,x0(s) which corre-
sponds to the same elementary event ω ∈ Ω as the realization mXt0,x0(t). We use
(mX, mV i) for evaluating ∂i(s, x), i = 1, . . . , d, by the linear regression method:

(3.19) ∂̂i(s, x) =
L∑
l=1

β̂ilψl(x).
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Remark 3.4. This paper is most closely connected with [6, 12, 13, 14] (see also
[16]) and with the works [21, 20] by N. Newton. In [21, 20], both the method of con-
trol variates and the method of importance sampling for calculating solutions u(t, x)
of parabolic partial differential equations by the MC method are considered. In both
cases, a perfect variate (i.e., one which is unbiased and has zero variance) is con-
structed based on the Funke–Shevlyakov–Haussmann formula (see the corresponding
reference and details in [21]; such a formula is usually called as the Clark–Ocone–
Haussmann formula). Then some approximation methods of simulating the variates
are proposed in [21, 20] to yield unbiased estimators for the desired solution u(t, x)
with reduced variances. If the dimension d is large, the most labor-consuming cal-
culations are connected with integration of the d2-dimensional system of first-order
variation equations. This is required to construct the estimators. In this paper, we
use variates in the form (2.11), (2.10) with μ and F satisfying (2.13). Due to The-
orem 2.1, these variates are perfect if u and ∂u/∂xi are exact. We evaluate u and
∂u/∂xi based on conditional probabilistic representations and construct unbiased es-
timators for u(t, x) using (2.15) or (2.14). We note that (2.14) allows us to avoid
estimating ∂u/∂xi (see (3.8)–(3.9)) and hence to avoid integration of the equations
of first-order variation. In addition, the obtained estimator by (2.14) remains unbi-
ased. In spite of the fact that our approach and that of N. Newton clearly differ, they
undoubtedly have profound connections. For example, the Clark–Ocone–Haussmann
formula, being the basis for Newton’s approach, can fairly easily be derived using the
conditional probabilistic representations (3.1), (3.2).

3.4. Evaluating ∂u/∂xi(s, x) using the Malliavin integration by parts.
If f(x) is an irregular function, one can use the procedure recommended in section 3.2,
where we do not need direct calculations of derivatives ∂u/∂xi. Another way consists
in approximating f by a smooth function with the consequent use of the procedure
from section 3.3. Because we do not pursue a high accuracy in estimating u and
∂u/∂xi, such approximation of f can be quite satisfactory. For direct calculation
of derivatives ∂u/∂xi without smoothing f, we can use the conditional version of
the integration-by-parts (Bismut–Elworthy–Li) formula. This formula is successfully
applied for evaluating deltas in the case of an irregular f (see, e.g., [5, 4, 22]).

For calculating ∂u/∂xi in the case of u given by

u(s, x) = EΓs,x = E[f(Xs,x(T ))Ys,x(T ) + Zs,x(T )],

where Xs,x(T ), Ys,x(T ), Zs,x(T ) satisfy system (2.10), the following variant of the
integration-by-parts formula can be derived:

∂i(s, x) =
1

T − sEΓs,x
∫ T

s

[
σ−1 ∂Xs,x(s′)

∂xi

]�
dw(s′)(3.20)

− 1
T − sEΓs,x

∫ T

s

μ�σ−1 ∂Xs,x(s′)
∂xi

ds′ +
1

T − sE
∫ T

s

Zs,x(s′)μ�σ−1 ∂Xs,x(s′)
∂xi

ds′

+
1

T − sEΓs,x
∫ T

s

1
Ys,x(s′)

∂Ys,x(s′)
∂xi

ds′ − 1
T − sE

∫ T

s

Zs,x(s′)
Ys,x(s′)

∂Ys,x(s′)
∂xi

ds′

− 1
T − sE

∫ T

s

Ys,x(s′)F�σ−1 ∂Xs,x(s′)
∂xi

ds′ +
1

T − sE
∫ T

s

∂Zs,x(s′)
∂xi

ds′ := Di(s, x),

where μ�, σ−1, and F� have (s′, Xs,x(s′)) as their arguments. In particular, if c =
0, g = 0, μ = 0, F = 0, we get the well-known integration-by-parts formula (see,
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e.g., [22]):

(3.21) ∂i(s, x) =
1

T − sEf(Xs,x(T ))
∫ T

s

[
σ−1(s′, Xs,x(s′))

∂Xs,x(s′)
∂xi

]�
dw(s′).

As in section 3.1, together with the unconditional probabilistic representation
(3.20) for ∂i(s, x), we have the following conditional one:

(3.22) ∂i(s, x) = E(Di(s,X)|X := Xt0,x0(s) = x).

Again, the formula (3.20) is natural for the MC approach and (3.22) for a regression
method. An implementation of the regression method is based upon the corresponding
approximation (mX, mV i) of the pair (X,V i) = (Xt0,x0(s), D

i(s,Xt0,x0(s))) follow-
ing the ideas of section 3.3.

3.5. Two-run procedure. The straightforward implementation of evaluating
u(s, x) and ∂u/∂xi(s, x) by regression as described in sections 3.2 and 3.3 requires
storing

mΛ(tk) := (mXt0,x0(tk), mYt0,x0(tk), mZt0,x0(tk), mΦt0,x0(tk), mδt0,x0Y (tk),

mδt0,x0Z(tk))

(or, more precisely, their approximations mΛ̄(tk)) at all tk, k = 1, . . . , N, in the main
computer memory (RAM) until the end of the simulation. This puts a requirement
on the RAM size that is too demanding and limits the practicality of the proposed
approach since in almost any practical problem a relatively large number of time steps
is needed. However, this difficulty can be overcome and we can avoid storing mΛ̄(tk)
at all tk by implementing the two-run procedure described below.

First, we recall that, as a rule, pseudorandom number generators used for MC
simulations have the property that the sequence of random numbers obtained by them
is easily reproducible (see, e.g., [16] and the references therein). Let us fix a sequence
of pseudorandom numbers. The two-run procedure can schematically be presented as
follows.

First run:
• simulate Mr number of independent trajectories mΛ̄(tk), k = 1, . . . , N, with

an arbitrary choice of μ and F (e.g., μ = 0 and F = 0);
• compute and store the values mΓ̄ to form the component V needed for the

regression in the second run and compute and store the values

mȲ (T )mΦ̄�t0,x0
(T ) ∇f(mX̄(T )) + f(mX̄(T )) mδY (T ) +m δZ(T )

and mȲ (T ) to form the components V i in the second run.
Second run:
• reinitialize the random number generator so that it produces the same se-

quence as for the first run;
• for k = 1, . . . , N

– simulate the same mΛ̄(tk), m = 1, . . . ,Mr, as in the first run (i.e., they
correspond to the same sequence of pseudorandom numbers as in the
first run), keeping only the current mΛ̄(tk) in RAM;

– use the values stored in RAM during the first run and mΛ̄(tk) from this
run to find ū(tk, x) and ∂u/∂xi(tk, x) by regression (mΛ̄(tk) and mΛ̄(T )
form the pairs (mX, mV ) and (mX, mV i) needed for the regression);
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– use the found ū(tk, x) and ∂u/∂xi(tk, x) to obtain μ̄(tk, x) and F̄ (tk, x)
required for variance reduction (see section 2.2);

– simulate (2.10) with μ = μ̄ and F = F̄ on this step and thus obtain M
independent triples

(mX̃t0,x0(tk), mỸt0,x0(tk), mZ̃t0,x0(tk)) = (mX̃tk−1,mX̃(tk−1)(tk),

mỸ
tk−1 ,mX̃(tk−1),mỸ (tk−1)(tk),m Z̃tk−1 ,mX̃(tk−1),mỸ (tk−1),mZ̃(tk−1)(tk)),

which we keep in RAM until the next step;
• use the obtained (mX̃t0,x0(T ), mỸt0,x0(T ), mZ̃t0,x0(T )) to get the required
u(t0, x0) (see (2.6)).

We emphasize that in the two-run procedure at each time moment s = tk we
need to keep in memory only the precomputed values stored at the end of the first
run and the values mΛ̄(tk) and (mX̃t0,x0(tk), mỸt0,x0(tk), mZ̃t0,x0(tk)) (only at the
current time step k), which is well within RAM limits of a PC.

We note that the two-run realization of the procedure from section 3.2 based on
using regression for estimating u only is less computationally demanding (both on
processor time and RAM and especially for problems of large dimension d) than the
procedures of sections 3.3 and 3.4 which estimate the derivatives of u via regression.

The two-run procedure was used in the numerical experiments of sections 4.2
and 4.3.

4. Examples. The first example is partly illustrative and partly theoretical.
The second and third examples are numerical.

4.1. Heat equation. Consider the Cauchy problem

∂u

∂t
+
σ2

2
∂2u

∂x2 = 0, t0 ≤ t < T, x ∈ R,(4.1)

u(T, x) = x2.

Its solution is

(4.2) u(t, x) = σ2(T − t) + x2.

The probabilistic representation (2.10), (2.11) with μ = 0 takes the form

u(s, x) = E
[
X2
s,x(T ) + Zs,x(T )

]
= EΓs,x,(4.3)

dX = σdw(t), X(s) = x,(4.4)

dZ = F (t,X)dw(t), Z(s) = 0.(4.5)

Due to Theorem 2.1, we have varΓs,x = var
[
X2
s,x(T ) + Zs,x(T )

]
= 0 for the optimal

choice of the function F (t, x) = −σ∂u/∂x = −2σx. We note that in this example
∂u/∂x and the optimal F do not depend on time t.

For the purpose of this illustrative example, we evaluate u(0, 0) = EΓ0,0. Let us
simulate (4.4) exactly (i.e., we have no error of numerical integration):

(4.6) X0 = x, Xk+1 = Xk + σΔkw, k = 0, . . . , N − 1, Δkw := w(tk+1)− w(tk).

For F ≡ 0, we have u(0, 0) = EΓ0,0 ≈ û(0, 0) = 1
M

∑M
m=1 mX

2
N , where mXN

are independent realizations of XN obtained by (4.6). Further, varΓ0,0 = 2σ4T 2, and
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hence the MC error is equal to (see (2.9))

(4.7) ρ = c

√
2σ2T√
M

.

For instance, to achieve the accuracy ρ = 0.0001 for c = 3 (recall that there is no
error of numerical integration here) in the case of σ = 1 and T = 10, one needs to
perform M = 18× 1010 MC runs.

To reduce the MC error, we estimate ∂u/∂x by regression to get F̂ (tk, x) close
to the optimal F = −2σx. As the basis functions for the regression, we take the first
two Hermite polynomials:

(4.8) ψ1(x) = 1, ψ2(x) = 2x.

We note that in this example the required derivative ∂u/∂x can be expanded in the
basis (4.8); i.e., here we do not have any error due to the cut-off of a set of basis
functions. In the construction of the estimate for ∂u/∂x, we put F = 0 in (4.5).

The variational equation associated with (4.4) has the form (see (2.17)) dδX = 0,
δX(s) = 1, and hence δX(t) = 1, t ≥ s. Thus, the sample from (3.18) takes the form
(mX, mV ) = (mXt0,x0(s), 2 mXt0,x0(T )) and the estimator ∂̂(tk, x) for ∂u/∂x(tk, x)
is constructed as

(4.9) ∂̂(tk, x) = α̂1(tk) + 2α̂2(tk)x, k = 1, . . . , N,

where α̂1(tk) and α̂2(tk) satisfy the system of linear algebraic equations (see (2.24)–
(2.25))

a11α1 + a12α2 = b1,(4.10)

a21α1 + a22α2 = b2,

a11 = 1, a12 = a21 := a12(tk) =
1
Mr

Mr∑
m=1

2× mX(tk),(4.11)

a22 := a22(tk) =
1
Mr

Mr∑
m=1

4× (mX(tk))
2
,

b1 := b1(tk) =
1
Mr

Mr∑
m=1

2× mX(T ), b2 := b2(tk) =
1
Mr

Mr∑
m=1

4× mX(tk)× mX(T ).

Here mX(tk), m = 1, . . . ,Mr, k = 1, . . . , N, are independent realizations of X(tk)
obtained by (4.6). Hence

(4.12) α̂1(tk) =
b1a22 − b2 a12

a22 − (a12)
2 , α̂2(tk) =

b2 − b1 a12

a22 − (a12)
2 .

We define

F̂ (0, x) = − σ

Mr

Mr∑
m=1

2× mX(T ),(4.13)

F̂ (t, x) = −σ (α̂1(tk) + 2α̂2(tk)x) for t ∈ (tk−1, tk], k = 1, . . . , N.
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We simulate (4.5) with F = F̂ (t, x) exactly (i.e., again we have no error of numerical
integration):

Z0 = 0,(4.14)

Zk+1 = Zk − σα̂1(tk+1)Δkw − 2σ2α̂2(tk+1)w(tk)Δkw − σ2α̂2(tk+1)
[
(Δkw)2 − h

]
.

The increments Δkw are the same both in (4.6) and in (4.14) and are independent of
the ones used to estimate α̂1 and α̂2.

We simulate

(4.15) u(0, 0) = EΓ0,0 = E
(
X2
N + ZN

) ≈ û(0, 0) =
1
Mr

Mr∑
m=1

(
mX

2
N + mZN

)
,

where mXN and mZN are independent realizations of XN and ZN obtained according
to (4.6) and (4.14). We note that the approximation (4.15) does not have the numer-
ical integration error or the error due to the cut-off of the basis; it has the MC error
only.

Using Theorem 2.1, one can evaluate varΓ0,0 in the case of F = F̂ defined in
(4.13) and obtain varΓ0,0 ≈ 4σ4T 2/Mr. Then the MC error ρ in this case is equal to
(compare with (4.7))

(4.16) ρ ≈ c 2σ2T√
MMr

.

This example illustrates that in the absence of the error due to the cut-off of a set of
basis functions used in regression and of the numerical integration error, the MC error
is reduced ∼ 1/

√
Mr times by the proposed variance reduction technique. This is,

of course, a significant improvement. Indeed, let us return to the example discussed
after (4.7). The estimate (4.16) implies that to achieve the accuracy ρ = 0.0001 for
c = 3 in the case of σ = 1 and T = 10, one can take, e.g., M = Mr = 6 × 105;
i.e., one can run about 105 times fewer trajectories than when the variance reduction
was not used (see the discussion after (4.7)). The gain of computational efficiency
is significant in spite of the fact that there is an overhead cost of solving the linear
system (4.10) in the “regression’s runs.”

Remark 4.1. In the above analysis we assumed that “regression’s runs” and
the MC runs for computing the desired value u(0, 0) are independent. In practice,
this assumption can be dropped, and we can use the same paths X(t) for both the
“regression’s runs” and the MC runs. Then, as a rule, we choose Mr ≤M.

Remark 4.2. We are expecting (see also experiments in section 4.2) that in the
general case the MC error after application of this variance reduction technique has
the form

(4.17) ρ = O

(
1√
MMr

+
hp/2√
M

+
errB√
M

)
,

where the first term has the same nature as in this illustrative example (see (4.16));
the second term is due to the error of numerical integration (it is assumed that a
method of weak order p is used); and the third one arises as a result of the use of
a finite set of functions as the basis in the regression, while the solution u(t, x) is
usually expandable in a basis consisting of an infinite number of functions (i.e., this
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error is due to the cut-off of the basis). We note that finding an appropriate basis for
regression in applying this variance reduction approach to a particular problem can be
a difficult task and requires some knowledge of the solution u(t, x) of the considered
problem. Roughly speaking, in the proposed implementation of the variance reduction
methods (the method of importance sampling, the method of control variates, or the
combining method) we substitute the task of finding an approximate solution to the
problem of interest with the task of finding an appropriate basis for the regression.

For complicated systems of SDEs, it is preferable to use regression to approxi-
mate the solution u(t, x) and then differentiate this approximation to approximate
the derivatives ∂u/∂xi. In the case of this illustrative example we take the first three
Hermite polynomials,

(4.18) ψ1(x) = 1, ψ2(x) = 2x, ψ3(x) = 4x2 − 2,

as the basis functions for the regression. In this example the required function u(t, x)
can be expanded in the basis (4.18). We construct the estimator û(tk, x) for u(tk, x):

(4.19) û(tk, x) = α̂1(tk) + 2α̂2(tk)x+ α̂3(tk) ·
(
4x2 − 2

)
, k = 1, . . . , N,

where α̂1(tk), α̂2(tk), α̂3(tk) satisfy the system of linear algebraic equations (2.24) with
the corresponding coefficients. Further, we approximate the derivative ∂u/∂x(tk, x),

(4.20)
∂u

∂x
(tk, x) ≈ 2α̂2(tk) + 8α̂3(tk)x,

with α̂2(tk) and α̂3(tk) from (4.19), and we define

(4.21) F̂ (t, x) := −σ (2α̂2(tk) + 8α̂3(tk)x) for t ∈ [tk−1, tk), k = 1, . . . , N,

which we use for variance reduction by putting F = F̂ in (4.5). In the experiments
we simulate (4.5) with F = F̂ (t, x) exactly (see (4.14)). The new estimator for u(0, 0)
has the form (4.15) again but with the new ZN corresponding to the choice of F̂ (t, x)
from (4.21).

Table 1

Heat equation. Simulation of u(0, 0) for σ = 1 and T = 10 by (4.15) with the corresponding
choice of the function F and for various M . The time step h = 0.1 and Mr = M . The exact value
is u(0, 0) = 10. The value after “±” equals two standard deviations of the corresponding estimator
and gives the confidence interval for the corresponding value with probability 0.95 (i.e., c = 2).

M F = 0 F = F̂ from (4.13) F = F̂ from (4.21)

103 9.67 ± 0.85 9.993 ± 0.045 9.999 ± 0.101

104 9.92 ± 0.28 9.9970 ± 0.0058 9.999 ± 0.012

105 9.970 ± 0.089 10.0000 ± 0.0003 10.0014 ± 0.0014

Table 1 gives some results of simulating u(0, 0) by (4.15) with F = 0, F = F̂ from
(4.13), and F = F̂ from (4.21). We see that for F = 0 the MC error is consistent with
(4.7); i.e., it decreases ∼ 1/

√
M. When the variance reduction is used, the results in

Table 1 approve the MC error estimate (4.16). It is quite obvious that F̂ from (4.13)
is a more accurate estimator for the exact F = −2σx than F̂ from (4.21), and then
the MC error in the first case should usually be less than in the second case, which is
observed in the experiments as well.

We also did similar experiments in the case of the terminal condition u(T, x) = x4

in (4.1). To estimate ∂u/∂x by regression, we took the basis consisting of the first
four Hermite polynomials. The results were analogous to those given above for the
case x2.
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4.2. Ergodic limit for one-dimensional array of stochastic oscillators.
Consider the one-dimensional array of oscillators [23, 19]:

dP i = −V ′(Qi) dt− λ · (2Qi −Qi+1 −Qi−1) dt− νP i dt+ σ dwi(t), P i(0) = pi,

(4.22)

dQi = P i dt, Qi(0) = qi, i = 1, . . . , n,

where periodic boundary conditions are assumed, i.e., Q0 := Qn and Qn+1 := Q1;
wi(t), i = 1, . . . , n, are independent standard Wiener processes; ν > 0 is a dissipation
parameter; λ ≥ 0 is a coupling constant; σ is the noise intensity; and V (z), z ∈ R, is
a potential.

The SDEs (4.22) are ergodic with the Gibbs invariant measure μ. We are inter-
ested in computing the average of the potential energy with respect to the invariant
measure associated with (4.22):

EμU(Q) = Eμ

n∑
i=1

(
V (Qi) +

λ

2
· (Qi −Qi+1)2

)
.

To this end (see further details in [19]), we simulate the system (4.22) on a long time
interval and approximate the ergodic limit EμU(Q) by EU(Q(T )) for a large T. To
illustrate variance reduction via regression, we simulate

(4.23) u(0, p, q) = EU(Qp,q(T )) = E [U(Qp,q(T )) + Zp,q(T )] ,

where Z(t), 0 ≤ t ≤ T, satisfies

(4.24) dZ = F�(t, P,Q)dw(t), Z(0) = 0.

We choose the n-dimensional vector function F (t, p, q) to be equal to (see (2.14))

(4.25) F i(t, p, q) = −σ ∂û
∂pi

, i = 1, . . . , n,

where û = û(t, p, q) is an approximation of the function

u(t, p, q) := EU(Qt,p,q(T )).

We simulate (4.22) using the second-order weak quasi-simplectic integrator from
[15, 16]:

P0 = p, Q0 = q ,(4.26)

P i1,k = e−νh/2P ik, Qi1,k = Qik +
h

2
P i1,k ,

P i2,k = P i1,k + h
{
−V ′(Qi1,k) − λ · (2Qi1,k −Qi+1

1,k −Qi−1
1,k )

}
+ h1/2σξik ,

P ik+1 = e−νh/2P i2,k , Qik+1 = Qi1,k +
h

2
P i2,k , i = 1, . . . , n, k = 0, . . . , N − 1 ,

where ξik are independent and identically distributed random variables with the law

(4.27) P (ξ = 0) = 2/3, P (ξ = ±
√

3) = 1/6.
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And we approximate (4.24) by the standard second-order weak method (see [16,
p. 103]):

Z0 = 0,

(4.28)

Zk+1 = Zk + h1/2
n∑
i=1

F i(tk, Pk, Qk)ξik + σh

n∑
r=1

n∑
i=1

∂

∂pi
F r(tk, Pk, Qk)ξirk

+
1
2
h3/2

n∑
i=1

LF i(tk, Pk, Qk)ξik,

ξirk =
1
2
ξikξrk − 1

2
γirζikζrk, γir =

{ −1, i < r,

1, i ≥ r ,

L :=
∂

∂t
+

1
2

n∑
i=1

n∑
j=1

∂2

∂pi∂pj
+

n∑
i=1

(−V ′(qi)− λ · (2qi − qi+1 − qi−1)− νpi) ∂

∂pi

+
n∑
i=1

pi
∂

∂qi
,

where ξik and ζjk are mutually independent random variables, ξik are distributed by
the law (4.27), and the ζik are distributed by the law P (ζ = ±1) = 1/2.

We consider two potentials: the harmonic potential

(4.29) V (z) =
1
2
z2, z ∈ R,

and the hard anharmonic potential

(4.30) V (z) =
1
2
z2 +

1
2
z4, z ∈ R.

We define the approximation û(t, p, q) used in (4.25) at t = tk, k = 0, . . . , N − 1 ,
as follows. First, it is reasonable to put ∂û/∂pi(t, p, q) = 0 for 0 ≤ t ≤ T0 with
some relatively small T0 since for large T the function u(t, p, q), 0 ≤ t ≤ T0, is almost
constant due to the ergodicity (the expectation in (4.23) is almost independent of the
initial condition).

Further, let T0, T, h, N, and a nonnegative integer κ be such that T0 = N0h,
T = Nh, N − N0 = κN ′, where N0 and N ′ are integers. Introduce θk′ = tN0+k′κ ,
k′ = 1, . . . , N ′.

In the case of harmonic potential the required function u(t, p, q) can be expanded
in the basis consisting of the finite number of functions

(4.31) ϕl ∈ {1, pi, qi, pipj, qiqj , piqj , i, j = 1, . . . , n}.
In our experiments we deal with three oscillators (n = 3); the basis (4.31) in this case
has 28 functions.

We use the set of functions (4.31) as a set of basis functions for regression in
both cases of harmonic and hard anharmonic potentials. Namely, using regression as
described in section 3.2, we construct the estimator û(θk′ , p, q) for u(θk′ , p, q) as

(4.32) û(θk′ , p, q) =
L∑
l=1

α̂l(θk′)ϕl(p, q),
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where ϕl are defined in (4.31) and α̂l(θk′) satisfy the system of linear algebraic equa-
tions (2.24). The matrix formed from α̂l(θk′ ) is positive definite, and we solve the
system of linear algebraic equations by Cholesky decomposition. To find the estimator
û, we use Mr independent trajectories.

Then for T0 < tk < T we put û(tk, p, q) = û(θk′ , p, q) with θk′ ≤ tk < θk′+1. The
recalculation of the estimator û once per a few number of steps κ reduces the cost of
the procedure.

We note that for the basis (4.31) the corresponding function F from (4.25) is such
that some terms in the scheme (4.28) are canceled; in particular, it is not required to
simulate the ζik in this case.

We compute u(0, p, q) in the usual way,

u(0, p, q) = E [U(Qp,q(T )) + Zp,q(T )] ≈ E [U(QN ) + ZN ](4.33)

≈ 1
M

M∑
m=1

[U(mQN ) + mZN ] ,

by simulating M independent realizations of QN , ZN from (4.26), (4.28). In these
experiments the two-run procedure described in section 3.5 was used.

Suppose we would like to compute u(0, p, q) for the particular set of parameters
n = 3, λ = 1, ν = 1, σ = 1, T = 10 and the potentials (4.29) and (4.30) with accuracy
of order 10−3. Since we are using the scheme of order two, we can take h = 0.02.

Let us first consider the case of harmonic potential (4.29). Without variance
reduction (i.e., for F = 0), we obtain 0.7500 ± 0.0010 with the fiducial probability
95% by simulating M = 1.4×106 trajectories, taking ∼541 sec on a PC. When we use
the variance reduction technique as described above, it is sufficient to take T0 = 2,
κ = 2, Mr = 2× 104, M = 3× 104 to get 0.7496± 0.0010 in ∼64 sec. In this example
the procedure with variance reduction requires an eighth of the computational time.
All the expenses are taken into account, including the time required for the first run
of the two-run procedure, which is less than 10% of the total time. We recall that
in this case the required function u(t, p, q) can be expanded in the finite basis (4.31),
unlike the case of hard anharmonic potential when such a basis is infinite.

Now consider the case of hard anharmonic potential (4.30). Without variance
reduction (i.e., for F = 0), we obtain 0.6491 ± 0.0011 with the fiducial probability
95% by simulating M = 106 trajectories, taking ∼403 sec on a PC. With variance
reduction, we reach the same level of accuracy 0.6491±0.0011 in ∼98 sec by choosing,
e.g., T0 = 2, κ = 2, Mr = 2.5×104, M = 5.5×104. Thus, the procedure with variance
reduction requires a quarter of the computational time.

Some other results of our numerical experiments are presented in Tables 2 and 3.
They show dependence of the MC error on M and Mr. The numerical integration
error is relatively small here and does not essentially affect the results. The case
Mr = 0 means that the simulation was done without variance reduction. We observe
that in both tables for a fixed Mr the MC error decreases ∼1/

√
M. Further, we see

from Table 2 that the MC error is ∼1/
√
Mr for fixed M (for Mr > 0, of course), and,

consequently, it is ∼1/
√
MMr when the variance reduction is used (we recall that the

time step is relatively small here). As noted before, the basis used in the variance
reduction is such that the function u(t, x) can be expanded in it in the case of harmonic
potential; i.e., errB in (4.17) is equal to 0. These observations are consistent with the
MC error estimate (4.17). For the anharmonic potential, errB is not equal to zero, and
we see in Table 3 that the increase ofMr has less impact on the MC error in this case.
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Table 2

Harmonic potential. Two standard deviations of the estimator (4.33) in the case of potential
(4.29) for different M and Mr. Mr = 0 means that variance reduction was not used. The other
parameters are n = 3, λ = 1, ν = 1, σ = 1, T = 10 and h = 0.01, T0 = 2, κ = 1.

Mr = 0 Mr = 103 Mr = 104 Mr = 105

M = 103 4.0 × 10−2 2.6 × 10−2 −− −−
M = 104 1.2 × 10−2 7.8 × 10−3 2.3 × 10−3 −−
M = 105 3.9 × 10−3 2.3 × 10−3 7.9 × 10−4 2.5 × 10−4

M = 106 1.2 × 10−3 8.2 × 10−4 2.4 × 10−4 7 × 10−5

Table 3

Hard anharmonic potential. Two standard deviations of the estimator (4.33) in the case of
potential (4.30) for different M and Mr. The other parameters are the same as in Table 2.

Mr = 0 Mr = 103 Mr = 104 Mr = 105

M = 103 3.3 × 10−2 2.3 × 10−2 −− −−
M = 104 1.1 × 10−2 7.4 × 10−3 3.0 × 10−3 −−
M = 105 3.5 × 10−3 2.4 × 10−3 9.5 × 10−4 6.7 × 10−4

M = 106 1.1 × 10−3 7.4 × 10−4 2.9 × 10−4 2.2 × 10−4

4.3. Pricing a binary asset-or-nothing call option. Consider the Black–
Scholes equation for pricing a binary asset-or-nothing call option:

∂u

∂t
+
ν2

2
x2 ∂

2u

∂x2 + rx
∂u

∂x
− ru = 0, 0 ≤ t < T, x ∈ R,(4.34)

u(T, x) = f(x) =
{

0 if x < K,

x if x ≥ K.

The solution of this problem for x > 0 and K > 0 is

(4.35) u(t, x) = xΦ (y∗) ,

where

y∗ =
1

ν
√
T − t

[
ln
x

K
+
(
r +

ν2

2

)
(T − t)

]
and Φ(y) =

1√
2π

∫ y

−∞
e−z

2/2dz .

The probabilistic representation (with μ = 0) of the solution to (4.34) takes the form

u(s, x) = E
[
f(Xs,x(T ))e−r(T−s) + Zs,x(T )

]
,(4.36)

dX = rXdt+ νXdw(t), X(s) = x,(4.37)

dZ = F (t,X)e−r(t−s)dw(t), Z(s) = 0.(4.38)

The purpose of this example is to illustrate that the approach to evaluating u(s, x)
introduced in section 3.2 works, in principle, in the case of discontinuous initial con-
ditions f(x). We use, as a set of basis functions for regression, the set consisting of
three functions:

ϕ1(x) =
K

π
(arctan(α(x −K)) + arctan(αK),(4.39)
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ϕ2(x) =
x

2
+

x(x − 2K)
4(
√

(x −K)2/4 + β +
√
K2/4 + β)

, ϕ3(x) =
x

γ + x2 ,

where α > 0, β > 0, and γ > 0 are parameters, which can change from one time layer
to another. We note that the functions are chosen so that ϕl(0) = 0, l = 1, 2, 3, and
the payoff f(x) is well approximated by ϕ1(x) + ϕ2(x) with large α and small β.

In the experiments, we take the volatility ν = 0.2, the interest rate r = 0.02,
and the maturity time T = 3 and approximate the option price u(0, 1), whose exact
value due to (4.35) is u(0, 1) ≈ 0.635 48. We define the time-dependent α = α(t) and
β = β(t) via linear interpolation:

α(t) =
10t
T

+
0.01(T − t)

T
, β(t) =

0.0001t
T

+
0.005(T − t)

T
,

and we choose γ = 8. We simulate (4.37)–(4.38) using the weak Euler scheme with
time step h = T/N = 0.001. In the first run (see section 3.5 for the description of
the algorithm), we put F = 0 and store the values f(mX̄(T ))e−rT , which are needed
for the regression in the second run. In the second run, using regression with the
set of basis functions (4.39), we construct the estimator û(θk′ , x) for u(θk′ , x), where
θk′ = κk′h, k′ = 1, . . . , N ′; κ and N ′are nonnegative integers such that κN ′h = T .
We use here κ = 5; i.e., we recalculate the estimator û only once per five time layers to
reduce the computational cost. Further, û(tk, x) is set equal to zero for 0 ≤ tk < 0.01.
In the second run we put F (t, x) = −ν∂û/∂x. In both runs we simulate M = 4 · 104

independent trajectories. As a result, we get u(0, 1) ≈ ū(0, 1) = 0.6358± 0.0018 with
the fiducial probability 95%. To achieve a similar result without variance reduction,
namely, ū(0, 1) = 0.6342 ± 0.0019, one has to simulate M = 5 · 105 independent
trajectories, which requires at least three times more computational time than the
procedure with variance reduction. This experiment demonstrates that the simple
and cheap estimation of ∂u/∂x by ∂û/∂x works even in the case of discontinuous
initial conditions.

5. Conclusions. Starting an MC simulation, first of all we have to estimate the
number of trajectories required to reach a prescribed accuracy. Fortunately, we can
easily do this because a reliable estimate of the variance can be obtained by a prelim-
inary numerical experiment using a relatively small set of trajectories. If the required
number of trajectories is too large, we run inevitably into the problem of variance re-
duction. The known variance reduction methods (the method of importance sampling,
the method of control variates, and the combining method) are based on the assump-
tion that approximations of the solution u(t, x) of the considered problem and its spa-
tial derivatives ∂u(t, x)/∂xi are known. In this paper we proposed to construct such
approximations as a part of the MC simulation using conditional probabilistic repre-
sentations together with the regression method and thus make the variance reduction
methods practical. The basis used in the regression method can be chosen using some
a priori knowledge of the considered problems, as illustrated in the examples.

As is known (see, e.g., [16]), the variance reduction methods are applicable in the
case of boundary value problems for parabolic and elliptic equations as well. Although
here we illustrated the proposed implementation of these variance reduction methods
for the Cauchy problems for parabolic equations, the approach is straightforwardly
applicable to boundary value problems.

We also note that the proposed technique of conditional probabilistic repre-
sentations together with regression can be used for evaluating different Greeks for
American- and Bermudan-type options (see [1]).
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Abstract. A domain decomposition method for solving large bivariate scattered data fitting
problems with bivariate minimal energy, discrete least-squares, and penalized least-squares splines is
described. The method is based on splitting the domain into smaller domains, solving the associated
smaller fitting problems, and combining the coefficients to get a global fit. Explicit error bounds
are established for how well our locally constructed spline fits approximate the global fits. Some
numerical examples are given to illustrate the effectiveness of the method.

Key words. computation of bivariate splines, scattered data fitting

AMS subject classifications. 41A63, 41A15, 65D07

DOI. 10.1137/070710056

1. Introduction. Suppose f is a smooth function defined on a domain Ω in
R

2 with polygonal boundary. Given the values {fi := f(xi, yi)}nd

i=1 of f at some set
of scattered points in Ω, we consider the problem of computing a function s that
interpolates the data, or in the case of noisy data or large sets of data, approximates
rather than interpolates f . There are many methods for solving this problem, but
here we will focus on three methods based on bivariate splines, namely,

• the minimal energy (ME) method,
• the discrete least-squares (DLS) method,
• the penalized least-squares (PLS) method.

These three variational methods have been extensively studied in the literature;
see [1, 6, 7, 8, 12] and the references therein. It is well known that all three do a good
job of fitting smooth functions. But they are global methods, which means that the
coefficients of a fitting spline are computed from a single linear system of equations,
which can be very large if the dimension of the spline space is large. This would appear
to limit the applicability of variational spline methods to moderately sized problems.
However, as we shall show in this paper, it is possible to efficiently compute ME-,
DLS-, and PLS-splines, even with spline spaces of very large dimension.

Suppose that � is a triangulation of Ω, and that S(�) is a spline space defined
on �. Throughout this paper we assume that S(�) has a stable local minimal deter-
mining set M; see section 4 or the book [10]. This means that each spline s ∈ S(�)
is uniquely determined by a set of coefficients {cξ}ξ∈M, where each cξ is associated
with a unique (domain) point ξ of �.

The idea of our method is simple. Instead of finding all of the coefficients {cξ}ξ∈M
at once, this algorithm reduces the problem to a collection of smaller problems. To
state our algorithm formally, we need some additional notation. If ω is a subset of Ω,
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we set star0(ω) = ω̄, and for all � ≥ 1, recursively define

star�(ω) :=
⋃
{T ∈ � : T ∩ star�−1(ω) �= ∅}.

Algorithm 1.1 (domain decomposition method).
1) Choose a decomposition of Ω into disjoint connected sets {Ωi}mi=1.
2) Choose k > 0. For each i = 1, . . . ,m, let ski ∈ S(�)|Ωk

i
be the spline fit based

on data in Ωki := stark(Ωi). Let {cki,ξ} be the set of all coefficients of ski .
3) For each i = 1, . . . ,m, set

cξ = cki,ξ for all ξ ∈ M∩ Ωi.

We call a spline s produced by this algorithm a domain decomposition (DDC)
spline. We emphasize that this domain decomposition method is very different from
domain decomposition methods used in classical numerical algorithms for partial dif-
ferential equations and in the application of radial basis functions to scattered data
fitting and meshless methods for PDE’s; see Remark 1. As we shall see, our method

• is easy to implement,
• allows the solution of very large data fitting problems,
• with appropriately chosen m and k, produces a spline which is very close to

the globally defined spline,
• is amenable to parallel processing,
• produces a spline s in the space S(�), i.e., with the same smoothness as the

global fit,
• does not make use of blending functions.

The paper is organized as follows. In section 2 we review the basics of minimal
energy, discrete least-squares, and penalized least-squares spline fitting. Then in
section 3 we present some numerical experiments to illustrate the performance of our
domain decomposition method. There we also explore the following questions:

• How does the time required to compute a domain decomposition spline s
compare with that required for finding a global spline fit sg from S(�)?
• How does ‖s−sg‖ behave as we choose different decompositions and different

values for the parameter k?
• How well does the shape of s match that of sg?

In section 4 we review some Bernstein–Bézier tools needed to analyze our method and
present two lemmas needed later. In section 5 we show that for the variational spline
methods described in the following section, ‖s − sg‖ = O(σk) for some 0 < σ < 1.
We conclude the paper with remarks and references.

2. Three variational spline fitting methods. Given d > r ≥ 1 and a trian-
gulation � of a domain Ω ∈ R

2, let

Srd(�) := {s ∈ Cr(Ω) : s|T ∈ Pd, all T ∈ �}

be the associated space of bivariate splines of smoothness r and degree d. Here Pd
is the

(
d+2
2

)
dimensional space of bivariate polynomials of degree d. Such spaces,

along with various subspaces of so-called supersplines, have been intensely studied
in the literature; see the book [10] and references therein. There are many spline-
based methods for interpolation and approximation. Here we are interested in three
particular methods.
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2.1. Minimal energy interpolating splines. Suppose we are given values
{fi}nd

i=1 associated with a set of nd ≥ 3 abscissae A := {(xi, yi)}nd

i=1 in the plane. The
problem is to construct a smooth function s that interpolates this data in the sense
that

s(xi, yi) = fi, i = 1, . . . , nd.

To solve this problem, suppose � is a triangulation with vertices at the points of A.
Let S(�) be a spline space defined on � with dimension n ≥ nd, and let

Λ(f) = {s ∈ S(�) : s(xi, yi) = fi, i = 1, . . . , nd}.
Let

(2.1) E(s) =
∫

Ω

[(sxx)2 + 2(sxy)2 + (syy)2]dxdy

be the well-known thin-plate energy of s. Then the minimal energy (ME) interpolating
spline is the function sE in Λ such that

(2.2) E(sE) = min
s∈Λ(f)

E(s).

Assuming Λ(f) is nonempty, it is well known (see, e.g., [1, 6, 12]) that there exists
a unique ME-spline characterized by the property

(2.3) 〈sE , g〉E = 0, all g ∈ Λ(0),

where

(2.4) 〈φ, ψ〉E :=
∫

Ω

[φxxψxx + 2φxyψxy + φyyψyy]dxdy.

Moreover, its Bernstein–Bézier coefficients can be computed by solving an appropriate
linear system of equations. For details on two different approaches to this computa-
tion, see [1] and [12].

Assuming the data come from a smooth function, i.e.,

(2.5) fi = f(xi, yi), i = 1, . . . , nd,

then it is possible to give an error bound for how well the corresponding minimal
energy interpolating spline se approximates f . To state the result, suppose the trian-
gulation � is β-uniform, i.e.,

(2.6)
|�|
ρ�
≤ β <∞,

where |�| is the length of the longest edge in �, and ρ� is the minimum of the
inradii of the triangles of �. Let θ� be the smallest angle in �. Then it was shown
in Theorem 6.2 of [6] that for all f ∈ W 2

∞(Ω),

(2.7) ‖f − sE‖Ω ≤ C|�|2|f |2,Ω,
where ‖ · ‖Ω is the supremum norm on Ω, and | · |2,Ω is the corresponding Sobolev
semi-norm. C is a constant depending only on d, �, β, and θ� if Ω is convex. If Ω is
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nonconvex, the constant C may also depend on the Lipschitz constant of the boundary
of Ω.

Now suppose skE is a DDC ME spline computed using Algorithm 1.1 with pa-
rameter k ≥ �. Then since the analog of (2.7) holds for each subdomain Ωi of Ω, we
have

(2.8) ‖sE − skE‖Ω ≤ C|�|2|f |2,Ω.
This shows that the DDC ME spline skE interpolating a given function f is close to the
global minimal energy spline sE whenever f is smooth and |�| is small. The estimate
(2.8) does not depend on k, and so gives no information on how the difference behaves
with increasing k. In section 5.1 we show that ‖sE − skE‖Ω = O(σk) with 0 < σ < 1.

2.2. Discrete least-squares splines. When the set of data is very large or the
measurements {fi}nd

i=1 are noisy, it is often better to construct an approximation from
a spline space S(�) of dimension n < nd. Some or all of the vertices of � may be at
points in A := {(xi, yi)}nd

i=1, but they may also be completely different. The solution
of the variational problem of minimizing

‖s− f‖2A :=
nd∑
j=1

[s(xj , yj)− fj ]2

over all s in S(�) is called the discrete least-squares (DLS) spline sL. It is well known
(see, e.g., [1, 12]) that if S(�) satisfies the property

(2.9) s(xi, yi) = 0, i = 1, . . . , nd, implies s ≡ 0,

then there is a unique DLS spline sL fitting the data. It is characterized by the
property

(2.10) 〈sL − f, g〉A = 0, all g ∈ S(�),

where

(2.11) 〈φ, ψ〉A :=
nd∑
i=1

φ(xi, yi)ψ(xi, yi).

The Bernstein–Bézier coefficients of sL can be computed by solving an appropriate lin-
ear system of equations. For details on two different approaches to this computation,
see [1] and [12].

Assuming the data come from a smooth function, it is possible to give an error
bound for how well the least-squares spline sL approximates f . To state the result,
suppose as before that the triangulation � is β-uniform. In addition, suppose that
the data is sufficiently dense that for some constant K1 > 0,

(2.12) K1‖s‖T ≤
⎛
⎝ ∑

(xj,yj)∈T
s(xj , yj)2

⎞
⎠

1/2

for all s ∈ S(�) and all T ∈ �.

Let

K2 := max
T∈�

#(A ∩ T ).
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Then for all f ∈Wm+1
∞ (Ω) with 0 ≤ m ≤ d,

(2.13) ‖f − sL‖Ω ≤ C|�|m+1|f |m+1,Ω;

see the remark following Theorem 8.1 in [7]. If Ω is convex, the constant C depends
only on d, �, β,K2/K1, and θ�. If Ω is nonconvex, C may also depend on the Lipschitz
constant of the boundary of Ω.

Now suppose skL is a DDC least-squares spline computed using Algorithm 1.1 with
parameter k ≥ �. Then the same error bound holds for each subdomain Ωi of Ω, and
combining with (2.13) gives

(2.14) ‖sL − skL‖Ω ≤ C|�|m+1|f |m+1,Ω.

This shows that the DDC least-squares spline skL fitting measurements of a given
function f is close to the global least squares spline sL whenever f is smooth and |�|
is small. The estimate (2.14) does not depend on k, and so gives no information on
how the difference behaves with increasing k. In section 5.2 we show that it is O(σk)
with 0 < σ < 1.

2.3. Penalized least-squares splines. Suppose A := {xi, yi}nd

i=1 and S(�)
are as in the previous subsections. Fix λ ≥ 0. Then given data values {fi}nd

i=1, the
corresponding penalized least-squares (PLS) spline is defined to be the spline sλ in
S(�) that minimizes

Eλ(s) := ‖s− f‖A + λE(s),

where E(s) is defined in (2.1). It is well known (cf. [1, 12]) that if S is a spline space
such that (2.9) holds, then there exists a unique PLS spline sλ minimizing Eλ(s) over
s ∈ S(�). Moreover, sλ is characterized by

(2.15) 〈sλ − f, s〉A + λ〈sλ, s〉E = 0, all s ∈ S(�).

As with the other two methods, the Bernstein–Bézier coefficients of sλ can be com-
puted by solving an appropriate linear system of equations. For details on two different
approaches to this computation, see [1] and [12]. It is known [8] that for all f ∈Wm+1

Ω

with 0 ≤ m ≤ d,

(2.16) ‖f − sλ‖Ω ≤ C
(|�|m+1|f |m+1,Ω + λ|f |2,Ω

)
for λ sufficiently small compared to |�|. The constant C depends only on d, �, β, θ�,
K2/K2, and the area of Ω. If Ω is nonconvex, C may also depend on the Lipschitz
constant of the boundary of Ω.

Now suppose skλ is a DDC PLS spline computed using Algorithm 1.1 with pa-
rameter k ≥ �. Then since the analog of (2.16) holds for each subdomain Ωi of Ω, we
have

(2.17) ‖sλ − skλ‖Ω ≤ C
(|�|m+1|f |m+1,Ω + λ|f |2,Ω

)
.

This shows that the DDC PLS spline skλ fitting a given function f is close to the
global PLS spline sλ whenever f is smooth and |�| is small. The estimate (2.17)
does not depend on k, and so gives no information on how the difference behaves with
increasing k. In section 5.3 we show that it is O(σk) with 0 < σ < 1.
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Fig. 1. A minimal determining set for S1,2
5 (�).

3. Numerical examples. In this section we illustrate the domain decomposi-
tion method by applying it to compute minimal energy and discrete least-squares fits
of scattered data. All of our examples are based on the superspline space

S1,2
5 (�) := {s ∈ S1

5 (�) : s ∈ C2(v) for all vertices v ∈ �}.

Here s ∈ C2(v) means that all polynomial pieces of s on triangles sharing the vertex
v have common derivatives up to order 2 at v. It is well known that the dimension
of this space is 6nV + nE , where nV , nE are the number of vertices and edges of
�, respectively. The computations in this section are based on the algorithms in
[12] which make use of a stable local minimal determining setM for S1,2

5 (�) and the
associated stable localM-bases defined in [10]. Figure 1 shows a minimal determining
set for S1,2

5 (�), where points in the set are marked with black dots and triangles.

3.1. Example 1. Let H be the unit square, and let

F (x, y) = 0.75 exp(−0.25(9x− 2)2 − 0.25(9y− 2)2)(3.1)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10)

+ 0.5 exp(−0.25(9x− 7)2 − 0.25(9y− 3)2)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2)

be the well-known Franke function defined on H ; see Figure 2. Let �1087 be the
triangulation shown in Figure 3. This triangulation has 1087 vertices, 3130 edges,
and 2044 triangles. The dimension of the space S1,2

5 (�1087) is 9652, and the total
number of Bernstein–Bézier coefficients of a spline in this space is 25,871.

First we compute the minimal energy spline fit sE of f from S1,2
5 (�1087). This

requires solving a linear system of 8565 equations with 322,989 nonzero entries. Al-
though the largest element in the corresponding matrix is O(107), its condition num-
ber is of order O(104). For comparison purposes we computed the maximum error e∞
over a 160× 160 grid, along with the RMS error e2 over the same grid. These errors
are shown in the first line of Table 1, along with the computational time in seconds.

To explore the performance of our DDC technique, we computed approximations
of sE by decomposing Ω into squares {Ωi}m2

i=1 of width 1/m. In Table 1 we list the
results where k is the parameter controlling the size of the sets Ωki in Algorithm 1.1.
In addition to the errors e∞ and e2 measuring how well sE fits f , we also tabulate the
maximum difference ec∞ between the coefficients of our DDC spline and the coefficients
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Fig. 2. The Franke function.

Fig. 3. A triangulation of 1087 vertices.

Table 1

DDC ME fits to Franke’s function from S1,2
5 (�1087).

m k e∞ e2 ec∞ ec
2 time

1 0 9.1(−4) 7.7(−5) 25
4 1 3.0(−3) 2.1(−4) 8.5(−3) 9.1(−5) 9
4 2 9.3(−4) 8.6(−5) 3.4(−3) 1.9(−5) 15
4 3 9.1(−4) 7.8(−5) 3.4(−4) 3.0(−6) 21
4 4 9.1(−4) 7.7(−5) 5.4(−5) 4.4(−7) 30
8 1 3.1(−3) 2.7(−4) 8.6(−3) 1.6(−4) 7
8 2 9.2(−4) 9.4(−5) 1.9(−3) 3.5(−5) 16
8 3 9.1(−4) 7.8(−5) 3.4(−4) 7.0(−6) 29
8 4 9.1(−4) 7.7(−5) 8.9(−5) 1.3(−7) 50
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Fig. 4. stark(Ω64) for k = 1, 2, 3.

of the global ME spline sE . We also compute the RMS difference ec2 for the coefficients,
and list the computational time in seconds. We now comment on these results.

• Accuracy of fit: The table shows that in this experiment, the DDC splines
with k = 1 do not fit f as well as the ME spline, but as soon as k ≥ 2, the
errors are virtually identical. From the standpoint of accuracy of fit, there is
no need to use values of k larger than 2 or 3.
• Accuracy of coefficients: The table shows that the DDC fits also provide very

good approximations of the coefficients of the global minimal energy spline
sE . Both ec∞ and ec2 decrease as k increases, as predicted by the theoretical
results in section 5.1.
• Time: The main use of the DDC algorithm is to make it possible to solve

large variational spline problems which could not be solved at all without
using the method. For small problems, it often takes more time to solve for
a DDC ME spline than for the global ME spline itself. For this moderately
sized problem, we see that some of the DDC splines took less time to compute
than the global fit, even for the same accuracy. For example, the DDC spline
with m = 8 and k = 2 delivers virtually the same accuracy as the global ME
spline, but in only about one half the computing time. For larger problems,
the time required to compute DDC ME splines is substantially less than for
the global splines; see Example 2.
• Condition numbers: Since the entries in the matrix of the linear systems

depend on integrals of squares of second derivatives over triangles, when the
triangles are of sizeO(h), the entries are of sizeO(h−4) and even larger if some
triangles are very thin. In this example the largest entries are of the order
O(107). For very regular triangulations (for example type-I triangulations),
the condition numbers of the matrices are of size O(103), independent of
how many triangles there are. For less regular triangulations, they can be
much larger. However, for the matrices associated with the triangulations in
Figure 4, they are of order O(104).
• Shape of stark: Figure 4 shows stark(Ω64) for k = 1, 2, 3, where Ω64 :=

[.875, 1]× [.875, 1], shown in dark grey in the figure. The white triangles are
the triangles added to form the stars.
• Shape of the surface: We have compared 3D plots of the global minimal

energy fit of f with the DDC ME fits for the parameters in Table 1. For
k = 1 we noticed slight deviations in shape, but for all higher values of k we
got excellent shapes.

3.2. Example 2. We repeat Example 1 with a type-I triangulation of the unit
square with 4225 vertices. This triangulation includes 12,416 edges and 8192 triangles.
The dimension of the space S1,2

5 (�4225) is 37,776, and the total number of Bernstein–
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Table 2

DDC ME fits to Franke’s function from S1,2
5 (�4225).

m k e∞ e2 ec∞ ec
2 time

1 0 1.2(−4) 7.6(−6) 326
8 1 9.9(−4) 4.7(−5) 2.2(−3) 2.3(−5) 37
8 2 2.9(−4) 1.5(−5) 6.8(−4) 5.7(−6) 65
8 3 1.8(−4) 9.9(−6) 1.7(−4) 1.4(−6) 97
16 1 9.8(−4) 6.9(−5) 2.3(−3) 4.4(−5) 29
16 2 2.9(−4) 1.9(−5) 7.6(−4) 1.0(−5) 66
16 3 1.8(−4) 1.0(−5) 1.6(−4) 2.5(−6) 128

Bézier coefficients of a spline in this space is 103,041. We again fit the Franke function.
First we compute the minimal energy spline fit sE of f from S1,2

5 (�4225). This
requires solving a linear system of 33,541 equations with 1,282,073 nonzero entries.
Although the largest element in this matrix is O(107), its condition number is O(104).
Our program took 326 seconds to compute s. For comparison purposes, we computed
the maximum error e∞ over a 160× 160 grid, along with the RMS error e2 over this
grid. These errors are shown in the first line of Table 2, along with the computational
time (in seconds).

We computed approximations of sE using the same decompositions of Ω as in
Example 1 based on m2 squares of width 1/m. In Table 2 we list the results. Here
we see that using the DDC method results in substantial time savings. We also see
that the errors ec∞ and ec2 behave like O(σk) with σ ≈ 1/4, confirming the theoretical
results in section 5.2.

3.3. Example 3. In this example we work with elevation heights measured at
15,585 points in the Black Forest of Germany. The corresponding DeLaunay triangu-
lation �BF is shown in Figure 5, although the triangulation is so fine in many areas
that it is impossible to see the individual triangles without zooming in. This triangu-
lation has 47,333 edges and 31,449 triangles. The dimension of the space S1,2

5 (�BF )
is 142,643, and the total number of Bernstein–Bézier coefficients of a spline in this
space is 393,911.

The computation of the minimal energy spline fit sE would require solving a
linear system of 126,758 equations, which is beyond the capability of our software. So
instead we computed a DDC approximation of the ME spline using the decomposition
of Example 1 based on 100 squares. The computation took 288 seconds, and Figure 6
shows the resulting surface.

3.4. Example 4. In this example we again work on the unit square H . This
time we approximate Franke’s function by least squares based on measured data at
62,500 grid points in H . We approximate from the space S1,2

5 (�1087), where �1087 is
the same triangulation as in Example 1; see Figure 3. We choose this triangulation
since it is big enough to illustrate how the DDC method works, but small enough so
that we can compute the global least square spline for comparison purposes. This
function can of course fit very well with much smaller spline spaces and much less
data. For example, with a type-I triangulation with 81 vertices and 1089 grid data,
the errors for the least-squares spline fit are e∞ = 5.2(−4) and e2 = 5.0(−5). The
results of our experiments are shown in Table 3. Note that the times of computation
for least-squares splines are significantly greater than for the ME splines reported in
Table 1. This is due to the fact that a large part of the computation is taken up with
finding the triangles containing the various data points. These times can be reduced
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Fig. 5. Triangulation of 15, 585 points in the Black Forest.

Fig. 6. The minimal energy interpolant of the Black Forest data.
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Table 3

DDC least-squares fits to Franke’s function from S1,2
5 (�BF ).

m k e∞ e2 ec∞ ec
2 time

1 0 4.5(−7) 2.3(−8) 42
4 1 4.7(−6) 7.1(−8) 1.9(−5) 2.1(−8) 44
4 2 3.8(−6) 5.3(−8) 5.6(−6) 1.0(−8) 62
4 3 9.9(−7) 3.2(−8) 1.7(−6) 5.5(−9) 82
8 1 5.5(−6) 1.1(−7) 2.0(−5) 4.3(−8) 48
8 2 3.8(−6) 8.0(−8) 1.1(−5) 2.2(−8) 93
8 3 1.7(−6) 6.8(−8) 3.9(−6) 1.7(−8) 151
10 2 2.5(−6) 9.8(−8) 5.3(−6) 2.8(−8) 113

by incorporating standard techniques for reducing the time required for these search
operations.

• Accuracy of fit: Table 3 shows that in this experiment the DDC least-squares
splines with k = 1 do not fit f quite as well as the global least-squares spline,
but with increasing k they come very close. As with the minimal energy case,
it appears that a good choice might be k = 2.
• Accuracy of coefficients: The table shows that the DDC fits also provide

very good approximations of the coefficients of the global least-squares spline.
Both ec∞ and ec2 decrease as k increases. Indeed, for m = 4, the error of ec∞
behaves like O(σk) with σ ≈ 1/4, while for m = 8, σ ≈ 1/2. There is a
similar effect for e2, confirming the theoretical results in section 5.2.
• Time: The main use of the DDC algorithm is to make it possible to solve large

variational spline problems which could not be solved at all without using the
method. For small problems, it can take more time to solve for a DDC least-
squares spline than for the global least-squares spline itself. However, even
for this moderately sized problem, we see that most of the DDC splines took
less time to compute for nearly the same accuracy.
• Condition numbers: The condition numbers of the Gram matrix arising in

DLS fitting with splines is dependent on a number of things. The size of
β (which reflects whether there are skinny triangles in �) plays a role, but
not as large a role as in the ME case (since here we are not working with
second derivatives). What seems more critical in the least-squares case is
the distribution of data over the triangles—if there are triangles with barely
enough data to ensure a nonsingular system, the condition number tends to
be high. For this particular example, the condition numbers of the matrices
arising in the subproblems lie in the range of 105 to 106.
• Shape of the surface: We have compared 3D plots of the global least-squares

fit of f with the DDC least-squares fits for the parameters in Table 3. For
k = 1 we noticed slight deviations in shape, but for all higher values of k we
got excellent shapes.

4. Analytical tools. In this section we set the stage for the proofs in section 5
of our main results.

4.1. Bernstein–Bézier techniques. We make use of the Bernstein–Bézier rep-
resentation of splines. Given d and �, let Dd,� := ∪T∈�Dd,T be the corresponding
set of domain points, where for each T := 〈v1, v2, v3〉,

Dd,T :=
{
ξTijk :=

iv1 + jv2 + kv3
d

}
i+j+k=d

.
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Then every spline s ∈ S0
d(�) is uniquely determined by its set of coefficients

{cξ}ξ∈Dd,� , and

s|T :=
∑

ξ∈Dd,T

cξB
T
ξ ,

where {BTξ } are the Bernstein basis polynomials associated with the triangle T .
Suppose now that S(�) is a subspace of S0

d(�). Then a setM⊆ Dd,� of domain
points is called a minimal determining set (MDS) for S(�) provided it is the smallest
set of domain points such that the corresponding coefficients {cξ}ξ∈M can be set
independently, and all other coefficients of s can be consistently determined from
smoothness conditions, i.e., in such a way that all smoothness conditions are satisfied
(see p. 136 of [10]). The dimension of S(�) is then equal to the cardinality of M.
Clearly, M = Dd,� is a minimal determining set for S0

d(�), and thus the dimension
of S0

d(�) is nV + (d− 1)nE +
(
d−1
2

)
nT , where nV , nE , nT are the number of vertices,

edges, and triangles of �.
For each η ∈ Dd,� \M, let Γη be the smallest subset of M such that cη can be

computed from the coefficients {cξ}ξ∈Γη by smoothness conditions. ThenM is called
�-local provided there exists an integer � not depending on � such that

(4.1) Γη ⊆ star�(Tη), all η ∈ Dd,� \M,

where Tη is a triangle containing η. M is said to be stable provided there exists a
constant K3 depending only on � and the smallest angle in the triangulation � such
that

(4.2) |cη| ≤ K3 max
ξ∈Γη

|cξ|, all η ∈ Dd,� \M.

SupposeM is a stable local MDS for S(�). For each ξ ∈ M, let ψξ be the spline
in S(�) such that cξ = 1 while cη = 0 for all other η ∈M. Then the splines {ψξ}ξ∈M
are clearly linearly independent and form a basis for S(�). This basis is called the
M-basis for S(�); see section 5.8 of [10]. It is stable and �-local in the sense that for
all ξ ∈M,

(4.3) ‖ψξ‖Ω ≤ K4,

and

(4.4) suppψξ ⊆ star�(Tξ),

where Tξ is a triangle containing ξ. Here � is the integer constant in (4.1), and the
constant K4 depends only on � and the smallest angle in �.

There are many spaces with stable local bases. For example, the spaces S0
d(�)

have stable local bases with � = 1. The same is true for the superspline spaces
Sr,2r4r+1(�) for all r ≥ 1. There are also several families of macroelement spaces defined
for all r ≥ 1 with the same property; see [10].

4.2. Two lemmas. For convenience we recall a lemma from [3].
Lemma 4.1. Suppose a0, a1, . . . , are nonnegative numbers such that

(4.5) γ
∑
j≥ν

aj ≤ aν for all ν = 0, 1, 2, . . . ,
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for some 0 < γ < 1. Then aν ≤ 1
γσ

νa0, where σ := 1− γ.
We now establish a key lemma whose proof is modelled on the proof of Theo-

rem 3.1 in [7]. Let W be a space of spline functions defined on a triangulation � of
Ω with inner product 〈f, g〉W and norm ‖f‖2W := 〈f, f〉W . Suppose that {Bξ}ξ∈M is
a 1-local basis for W such that for some constants C1, C2,

(4.6) C1

∑
ξ∈M

|cξ|2 ≤
∥∥∥∥∥
∑
ξ∈M

cξBξ

∥∥∥∥∥
2

W
≤ C2

∑
ξ∈M

|cξ|2

for all coefficient vectors c := {cξ}ξ∈M.
Lemma 4.2. Let ω be a cluster of triangles in �, and let T ∈ ω. Then there

exists constants 0 < σ < 1 and C depending only on the ratio C2/C1 such that if g is
a function in W with

(4.7) 〈g, w〉W = 0 for all w ∈ W with supp(w) ⊆ stark(ω),

for some k ≥ 1, then

(4.8) ‖g · χT ‖W ≤ Cσk‖g‖W .
Proof. For each ν ≥ 0, let

Mω
ν := {ξ ∈ M : supp(Bξ) ⊆ starν(R2 \ stark(ω))}.

Define Nω
0 :=Mω

0 , and let Nω
ν :=Mω

ν \Mω
ν−1, for ν ≥ 1. Given g :=

∑
ξ∈M cξBξ,

let

gν :=
∑
ξ∈Mω

ν

cξBξ, uν := g − gν , aν :=
∑
ξ∈Nω

ν

c2ξ .

By (4.6),

(4.9)
∑
j≥ν+1

aj =
∑
ξ �∈Mω

ν

c2ξ ≤
‖uν‖2W
C1

,

while (4.7) implies 〈g, uν〉W = 0. Since supp(uν) ∩
⋃
ξ∈Mω

ν−1
supp(Bξ) = ∅ for

ν ≥ 1, it follows that

‖uν‖2W = 〈g − gν, uν〉W = −〈gν , uν〉W(4.10)

= −
〈 ∑
ξ∈Nω

ν

cξBξ, uν

〉
W

≤
∥∥∥∥∥
∑
ξ∈Nω

ν

cξBξ

∥∥∥∥∥
W
‖uν‖W .

Dividing by ‖uν‖W and squaring, then using (4.6), we get

‖uν‖2W ≤
∥∥∥∥∥
∑
ξ∈Nω

ν

cξBξ

∥∥∥∥∥
2

W
≤ C2aν .

Combining (4.9) and (4.10) gives

(4.11)
∑
j≥ν

aj ≤ C1 + C2

C1
aν , ν ≥ 1.
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Then applying Lemma 4.1 gives

aν ≤ (C1 + C2)
C1

σν−1a1,

with σ := C2/(C1 + C2). On the other hand,

a1 ≤
∑
j≥0

aj =
∑
ξ∈M

c2ξ ≤
1
C1
‖g‖2W .

Now let q be the smallest integer such that there is a basis function Bξ in Mω
q with

T ⊆ supp(Bξ). Then by (4.6),

‖g · χT ‖2W =

∥∥∥∥∥
∑

Bξ|T �=0

cξBξ

∥∥∥∥∥
2

W
≤ C2

∑
ξ �∈Mω

q−1

c2ξ = C2

∑
j≥q

aj

≤ C2

C1

(C1 + C2

C1

)2

σq−1‖g‖2W .

Since q ≥ k + 1, we have (4.8).

5. Dependence of the errors on the parameter k. In this section we exam-
ine the difference between global splines and their DDC approximations as a function
of the parameter k. We give separate results for ME, DLS, and PLS splines. Through-
out the section we assume that � is a β-uniform triangulation, and that S(�) is an
associated spline space with a stable localM-basis.

5.1. Minimal energy interpolating splines. Given a set of measurements
{fi}nd

i=1 of a function f at the vertices of a triangulation�, let sE be the corresponding
minimal energy interpolating spline. Let skE be the DDC ME spline computed using
Algorithm 1.1 with parameter k. In (2.8) we showed that if f ∈W 2

∞(Ω), then ‖sE −
skE‖Ω = O(|�|2). In this section we discuss the dependence of this difference on k.

Theorem 5.1. There exists σ ∈ (0, 1) such that for all f ∈W 2
∞(Ω)

(5.1) ‖Dα
xD

β
y (sE − skE)‖Ω ≤ Cσk|�|1−α−β |f |2,Ω

for all 0 ≤ α+β ≤ 1. When Ω is convex, C is a constant depending only on d, �, β, θ�,
and the area of Ω. When Ω is nonconvex, C also depends on the Lipschitz constant
of the boundary of Ω.

Proof. Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sE is defined, it suffices to estimate ‖sE−skE‖Ωi . Let�ki be the subtriangulation
obtained by restricting � to Ωki := stark(Ωi). Fix k ≥ 1. We make use of Lemma 4.2
applied to

W = {s ∈ S(�)|Ωk
i

: s(v) = 0 for all vertices v of �ki },

with the inner product

(5.2) 〈φ, ψ〉E,Ωk
i

:=
∫

Ωk
i

[φxxψxx + 2φxyψxy + φyyψyy]dxdy.
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Let sE,Ωk
i

:= sE |Ωk
i

be the global ME interpolant of f restricted to Ωki , and let skE,i
be the ME interpolant of f in the space S(�)|Ωk

i
. Let {Bξ}ξ∈Mk

i
be a stable 1-local

basis for S(�)|Ωk
i
. It was shown in Corollary 5.3 of [6] that

(5.3) C1|�|−2
∑
ξ∈Mk

i

|cξ|2 ≤
∥∥∥∥∥
∑
ξ∈Mk

i

cξBξ

∥∥∥∥∥
E,Ωk

i

≤ C2|�|−2
∑
ξ∈Mk

i

|cξ|2,

where C1 and C2 depend only on d, �, and β. Writing g := sE,Ωk
i
− skE,i ∈ W , and

using the characterization of ME splines, we have

(5.4) 〈g,Bξ〉E,Ωk
i

= 0, all Bξ with supp(Bξ) ⊆ Ωki .

Now suppose T is a triangle in Ωi where |g| takes its maximum. Since g is a
polynomial on T , we can use Lemma 6.1 of [6] and Theorem 1.1 of [10] to get

(5.5) ‖g‖Ωi = ‖g‖T ≤ 12|T |2 |g|2,∞,T ≤ C3|�||g|2,2,T ≤ C3|�|‖g·χT ‖E,Ωk
i
,

where C3 depends only on d. In view of (5.3) and (5.4), we can apply Lemma 4.2 to
get

(5.6) ‖g·χT ‖E,Ωk
i
≤ C4σ

k‖g‖E,Ωk
i
≤ C4A

1/2σk|g|2,∞,Ωk
i
,

where A is the area of Ωki . Note that C4 does not depend on |�| since the constant
in Lemma 4.2 depends on the ratio C2|�|−2/C1|�|−2. Now let τ be a triangle where
|g|2,∞,Ωi takes its maximum. Then using the Markov inequality, we have

(5.7) |g|2,∞,Ωi = |g|2,∞,τ ≤ C5

|τ |2 ‖g‖τ ≤
C5

|τ |2
(‖f − sE‖τ + ‖f − skE,i‖τ

)
.

Combining the inequalities (5.5)–(5.7) with the error bound (2.7), we get (5.1) for
α = β = 0. To get the result for derivatives, we apply the Markov inequality on a
triangle where ‖Dα

xD
β
y g‖Ω takes its maximum value.

5.2. DLS splines. Given a set of measurements {fi}nd

i=1 of a function f and a
triangulation �, let sL be the DLS spline fit of f from S(�). Let skL be the DDC
least-squares spline produced by Algorithm 1.1 with parameter k. In (2.14) we showed
that if f ∈ Wm+1

∞ (Ω), then ‖sL − skL‖Ω = O(|�|m+1). In this section we discuss the
dependence of this difference on k. The following result gives results for the derivatives
of the difference. As is customary in spline theory, the norm here is to be interpreted
as the maximum of the supremum norms over the triangles in � since the splines sL
and skL may not have derivatives at every point in Ω.

Theorem 5.2. There exists σ ∈ (0, 1) such that if f ∈Wm+1
∞ (Ω) with 0 ≤ m ≤ d,

then

(5.8) ‖Dα
xD

β
y (sL − skL)‖Ω ≤ Cσk|�|m−α−β |f |m+1,Ω.

for all 0 ≤ α + β ≤ m. When Ω is convex, C is a constant depending only on
d, �, β,K1,K2, and θ�. When Ω is nonconvex, C also depends on the Lipschitz con-
stant of the boundary of Ω.

Proof. Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sL is defined, it suffices to estimate the norm of sL − skL on Ωi. Let �ki be the
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subtriangulation obtained by restricting � to Ωki := stark(Ωi). Fix k ≥ 1. We make
use of Lemma 4.2 applied to W = S(�)|Ωk

i
with the inner product

(5.9) 〈φ, ψ〉Ak
i

:=
∑

(xi,yi)∈Ωk
i

φ(xi, yi)ψ(xi, yi).

Let sL,Ωk
i

:= sL|Ωk
i

be the restriction to Ωki of the global least-squares spline fit sL
of f from S(�), and let skL,i be the least-squares spline fit of f from the space S(�)|Ωk

i
.

Let {Bξ}ξ∈Mk
i

be a stable 1-local basis for S(�)|Ωk
i
. It was shown in Lemma 5.1 of

[7] that

(5.10) C1

∑
ξ∈Mk

i

|cξ|2 ≤
∥∥∥∥∥
∑
ξ∈Mk

i

cξBξ

∥∥∥∥∥
Ak

i

≤ C2

∑
ξ∈Mk

i

|cξ|2.

Writing g := sL,Ωk
i
−skL,i ∈ W , and using the characterization of least-squares splines,

we have

(5.11) 〈g,Bξ〉Ak
i

= 0, all Bξ with supp(Bξ) ⊆ Ωki .

Now suppose T is a triangle in Ωi where |g| takes its maximum. Then using (2.12)
and Lemma 4.2 we get

(5.12) ‖g‖Ωi = ‖g‖T ≤ 1
K1
‖g·χT ‖Ak

i
≤ C3

K1
σk‖g‖Ak

i
≤ C3

√
NK2

K1
σk‖g‖Ωk

i
,

where N is the number of triangles in Ωki . Note that
√
N ≤ C4/|�|, where C4 depends

on the area of Ωki and the constant β. On the other hand,

(5.13) ‖g‖Ωk
i
≤ ‖f − sL‖Ωk

i
+ ‖f − skL,i‖Ωk

i
.

Combining the last two inequalities with the error bound (2.13), we get (5.8) for
α = β = 0. To get the result for the derivativeDα

xD
β
y , we apply the Markov inequality

to a triangle where ‖Dα
xD

β
y g‖Ω takes its maximum.

5.3. PLS splines. Given a set of measurements {fi}nd
i=1 of a function f and a

triangulation�, let sλ be the PLS spline fit of f from S(�) with smoothing parameter
λ > 0. Let skλ be the DDC PLS spline produced by Algorithm 1.1 with parameter k.
In (2.17) we showed that if f ∈Wm+1

∞ (Ω), then ‖sλ − skλ‖Ω = O(|�|m+1) +O(λ). In
this section we discuss the dependence of this difference on k.

Theorem 5.3. There exists σ ∈ (0, 1) such that if f ∈Wm+1
∞ (Ω) with 1 ≤ m ≤ d,

then

(5.14) ‖sλ − skλ‖Ω ≤ Cσk
(

1 +

√
λ

|�|

)(
|�|m|f |m+1,Ω +

λ

|�| |f |2,Ω
)

if λ is sufficiently small compared to |�|. When Ω is convex, C is a constant depending
only on d, �, β,K1,K2, θ�, and the area of Ω. When Ω is nonconvex, C also depends
on the Lipschitz constant of the boundary of Ω.

Proof. Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sλ is defined, it suffices to estimate the norm of sλ − skλ on Ωi. Let �ki be the
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subtriangulation obtained by restricting � to Ωki := stark(Ωi). Fix k ≥ 1. We make
use of Lemma 4.2 applied to W := S(�)|Ωk

i
with the inner product

(5.15) 〈φ, ψ〉λ := 〈φ, ψ〉Ak
i

+ λ〈φ, ψ〉E,Ωk
i
,

where the inner-products in this definition are as in (5.2) and (5.9). Let sλ,Ωk
i

:= sλ|Ωk
i

be the restriction to Ωki of the global PLS spline fit sλ of f from S(�), and let skλ,i
be the PLS spline fit of f from the space S(�)|Ωk

i
using data in Ωki . Let {Bξ}ξ∈Mk

i

be a stable 1-local basis for S(�)|Ωk
i

as in the proof of Theorem 5.2. Combining (5.3)
and (5.10), we see that

(5.16) C1

(
1 +

λ

|�|2
) ∑
ξ∈Mk

i

|cξ|2 ≤
∥∥∥∥∥
∑
ξ∈Mk

i

cξBξ

∥∥∥∥∥
λ

≤ C2

(
1 +

λ

|�|2
) ∑
ξ∈Mk

i

|cξ|2.

Writing g := sλ,Ωk
i
− skλ,i ∈ W , and using the characterization of PLS splines, we have

(5.17) 〈g,Bξ〉λ = 0, all Bξ with supp(Bξ) ⊆ Ωki .

Now suppose T is a triangle in Ωi where |g| takes its maximum. Then by (2.12),

‖g‖T ≤ 1
K1
‖g·χT ‖Ak

i
≤ 1
K1

(‖g·χT ‖2Ak
i

+ λ‖g·χT ‖2E,Ωk
i

)1/2 =
1
K1
‖g·χT ‖λ.

Using Lemma 4.2, we get

‖g‖T ≤ C3

K1
σk‖g‖λ ≤ C3

K1
σk
(‖g‖2Ak

i
+ λ‖g‖2E,Ωk

i

)1/2 ≤ C3

K1
σk
(‖g‖Ak

i
+
√
λ‖g‖E,Ωk

i

)
,

where C3 depends only on the ratio C2/C1. Following the proofs of Theorems 5.1
and 5.2, we see that

‖g‖E,Ωk
i
≤ C4

|�|2 ‖g‖Ωk
i
, ‖g‖Ak

i
≤ C5

|�|‖g‖Ωk
i
,

which gives

‖g‖T ≤ C6σ
k

(
1
|�| +

√
λ

|�|2
)
‖g‖Ωk

i
.

Now

‖g‖Ωk
i
≤ ‖f − sλ‖Ωk

i
+ ‖f − skλ,i‖Ωk

i
,

and using (2.16) we get (5.14).

6. Remarks.
Remark 1. DDC methods have been studied for more than 150 years in the

literature on the numerical solution of boundary value problems, going back at least
to Schwarz’s alternating method; see, e.g., [11]. For a comprehensive treatment and an
extensive list of references, see [13]. The idea of domain decomposition has recently
been adapted to the problem of fitting scattered data with radial basis functions
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(see [2]) as well as to meshless methods (based on radial basis functions) for solving
boundary-value problems, see [4] and the book [5].

Remark 2. Many authors have tried to solve global fitting problems by dividing
the domain into subdomains, computing fits on each subdomain, and then blending
the resulting surface patches together with some kind of blending functions. In most of
these methods the use of blending functions changes the form of the final approximant
and produces a fit which may not be close to the global fit. Our DDC method is not
based on blending functions, and our theorems ensure that the DDC-spline is close
to the global fit.

Remark 3. As observed in [12], in computation with M-bases it is important to
exercise some care in choosing the MDS M. Thus, for example in Figure 1, for each
vertex v, the six black dots should be chosen in the triangle with largest angle at v.
This means that the minimal determining sets for the subspaces S(�)|Ωk

i
may not be

subsets of the MDS for the full space.
Remark 4. For convenience, the results of section 5 assume that we are working

with a spline space with a 1-local stable basis. However, the same analysis can be
carried out with spline spaces with �-local stable bases under the assumption that
k ≥ �.

Remark 5. The computations reported here were done on a Macintosh G5 com-
puter using Fortran. The codes have not been optimized for storage or computational
speed. We report computational times to give a feeling for how quickly DDC-spline
fits can be computed, and to provide a basis for comparing various algorithms. Since
the local fits in the DDC method can be computed independently, the actual run times
can be greatly reduced by working on a multiprocessor machine (or on a cluster).
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Abstract. In this article, we analyze the flow of a fluid through a coupled Stokes–Darcy domain.
The fluid in each domain is non-Newtonian, modeled by the generalized nonlinear Stokes equation in
the free flow region and the generalized nonlinear Darcy equation in the porous medium. A flow rate
is specified along the inflow portion of the free flow boundary. We show existence and uniqueness
of a variational solution to the problem. We propose and analyze an approximation algorithm and
establish a priori error estimates for the approximation.

Key words. generalized nonlinear Stokes flow, coupled Stokes and Darcy flow, defective bound-
ary condition
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1. Introduction. The coupling of Stokes and Darcy flow problems has received
significant attention over the past several years due to its importance in modeling
problems such as surface fluid flow coupled with flow in a porous media (see, for
instance, [4, 9, 12, 14, 16, 20, 21]). As in [12], the investigation in this paper is moti-
vated by industrial filtering applications where a non-Newtonian fluid passes through
a filter to remove unwanted particulates. The lifetime of the filter is dictated by the
increase in pressure drop across the porous medium. This pressure drop increase oc-
curs as debris, transported into the filter by the free flowing fluid, deposits into the
filter. Models of the coupled system are necessary to develop simulators that can aid
in the design of filters with extended lifetimes and minimize release of debris into the
downstream flow.

In these applications, flow rates are typically specified at the inflow of the filter-
ing apparatus. Our first step in modeling the filtration problem is to consider the
case of the coupled nonlinear Stokes–Darcy flow problem with defective boundary
conditions. Namely, we assume that only flow rates are specified along the inflow
boundary. In [12], the authors use the Darcy equation as a boundary condition for
the Stokes problem in the free-flow region. We couple the flows across the internal
boundary by using conservation of mass and balance of forces across the interface, as in
[9, 14, 20, 21].

For Newtonian fluids the extra stress tensor, τ , is proportional to the deformation
tensor, d(u), with the constant of proportionality being the value of the dynamic vis-
cosity, ν. Our model problem uses generalized power law fluids, which are an extension
of Newtonian fluids. Generalized power law fluids have a nonconstant viscosity that
is a function of the magnitude of the deformation tensor. Models for such viscosity
functions include the following [3, 17]:
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Carreau model.

(1.1) ν(d(u)) = ν∞ + (ν0 − ν∞)/(1 +K|d(u)|2)(2−r)/2,

where r > 1, ν0, ν∞, and K > 0 are constants.
Cross model.

(1.2) ν(d(u)) = ν∞ + (ν0 − ν∞)/(1 +K|d(u)|(2−r)),

where r > 1, ν0, ν∞, and K > 0 are constants.
Power law model.

(1.3) ν(d(u)) = K|d(u)|r−2,

where r > 1 and K > 0 are constants.
Many generalized Newtonian fluids exhibit a sheer thinning property; that is, the

viscosity decreases as the magnitude of d(u) increases. For the above models this
corresponds to a value for r between 1 and 2. Generalized power law viscosity models
have been used in modeling the viscosity of biological fluids, lubricants, paints, and
polymeric fluids. In the analysis below we assume a general function for ν(d(u)) that
satisfies particular continuity and monotonicity properties. (See (2.16), (2.17).)

For non-Newtonian fluid flow in a porous medium, various models for the effective
viscosity νeff have been proposed in the literature. (See, for example, [15, 18] and the
references cited therein.) Based upon dimensional analysis most models assume that
νeff is a function of |up|/(√κmc), where κ denotes the permeability of the porous
medium, up the Darcy velocity, and mc a constant related to the internal structure
of the porous media. Models for νeff include the following [15, 18]:

Cross model.

(1.4) νeff(up) = ν∞ + (ν0 − ν∞)/(1 +K |up|2−r),

where r > 1, ν0, ν∞, and K > 0 are constants.
Power law model.

(1.5) νeff(up) = K
(|up|/(√κmc)

)r−2
,

where r > 1 and K > 0 are constants.
Again, in the analysis below we assume a general function for νeff(up) that satisfies

particular continuity and monotonicity properties. (See (2.16), (2.17).)
Remark. In this work we ignore the influence of pressure on viscosity.
The variational formulation presented below for the coupled nonlinear flow prob-

lem (ignoring the defective boundary conditions) is analogous to that for the linear
coupled problem studied in [9, 14, 20, 21]. However, as the function setting for the lin-
ear problem is in Hilbert spaces (H1(Ω), L2(Ω)) compared to Banach spaces (W1,r(Ω),
Lr

′
(Ω)) for the nonlinear problem, the analysis used herein is considerably different

than that in [9, 14, 20, 21].

2. Modeling equations. Let Ω ⊂ R
n, n = 2 or 3, denote the flow domain

of interest. Additionally, let Ωf and Ωp denote bounded Lipschitz domains for the
nonlinear generalized Stokes flow and nonlinear generalized Darcy flow, respectively.
The interface boundary between the domains we denote by Γ := ∂Ωf ∩ ∂Ωp. Note
that Ω := Ωf ∪ Ωp ∪ Γ. The outward-pointing unit normal vectors to Ωf and Ωp are
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denoted nf and np, respectively. The tangent vectors on Γ are denoted by t1 (for
n = 2), or tl, l = 1, 2 (for n = 3).

We assume that there is an inflow boundary Γin, a subset of ∂Ωf\Γ, which is
separated from Γ, and an outflow boundary Γout, a subset of ∂Ωp\Γ, which is also
separated from Γ. See Figure 2.1 for an illustration of the domain of the problem.
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Fig. 2.1. Illustration of flow domain.

Define Γf := ∂Ωf\(Γ ∪ Γin), and Γp := ∂Ωp\(Γ ∪ Γout).
Velocities are denoted by uj : Ωj → R

n, j = f, p, and pressures are denoted by
pj : Ωj → R, j = f, p.

In Ωf , we assume that the flow is governed by the nonlinear generalized Stokes
flow, subject to a specified flow rate, −fr, across Γin and no-slip condition on Γf :

−∇ · (σ − pfI) = ff in Ωf ,(2.1)

∇ · uf = 0 in Ωf ,(2.2)

σ = gf (d(uf ))d(uf ) in Ωf ,(2.3)

uf = 0 on Γf ,(2.4) ∫
Γin

uf · nf ds = −fr,(2.5)

where σ denotes the fluid’s extra stress tensor and d(v) := 1
2 (∇v + ∇Tv) is the

deformation tensor. The particular form for the nonlinear viscosity function gf (·) is
discussed in section 2.2. For simplicity we consider here the case of a single inflow
boundary Γin. Multiple inflow boundary segments with separately specified flow rates
can also be modeled [6, 7, 11].

We assume that the flow in the porous domain Ωp is governed by a generalized
Darcy’s equation subject to a specified flow rate, fr, across Γout and a nonpenetration
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condition on Γp:

up = − κ

νeff
∇pp in Ωp,(2.6)

∇ · up = 0 in Ωp,(2.7)

up · np = 0 on Γp,(2.8) ∫
Γout

up · nf ds = fr.(2.9)

In general κ denotes a symmetric, positive definite tensor. For simplicity, we will
assume κ is a positive (scalar) constant.

2.1. Interface conditions. The flows in Ωf and Ωp are coupled across the
interface Γ. Conditions describing the coupling of the flows are discussed below.

Conservation of mass across Γ: The conservation of mass across Γ imposes the
constraint

(2.10) uf · nf + up · np = 0 on Γ.

Balance of the normal forces across Γ: The balance of the normal forces across Γ
imposes the constraint

(2.11) pf − (σnf ) · nf = pp on Γ.

Balance of the forces on Γ: For the tangential forces on Γ we use the Beavers–
Joseph–Saffman condition [1, 13, 22]

(2.12) uf · tl = −csrl (σnf ) · tl on Γ, l = 1, . . . , n− 1,

where csrl, l = 1, . . . , n − 1, denote frictional constants that can be determined ex-
perimentally.

2.2. Variational formulations. Given r ∈ R, r > 1, we denote its unitary
conjugate by r′, satisfying r−1 + (r′)−1 = 1.

For Ωf , define

Xf :=
{
v : v ∈ (W 1,r(Ωf ))n, v|Γf

= 0
}

and Mf := Lr
′
(Ωf ).

For v ∈ Xf , q ∈Mf , define ‖v‖Xf
:= ‖v‖(W 1,r(Ωf ))n , and ‖q‖Mf

:= ‖q‖Lr′(Ωf ).
For Ωp, define

Lr(div,Ωp) := {v : v ∈ (Lr(Ωp))n and ∇ · v ∈ Lr(Ωp)} ,
Xp :=

{
v : v ∈ Lr(div,Ωp), v · n|Γp = 0

}
, and Mp := Lr

′
(Ωp).

Similarly, for v ∈ Xp, q ∈ Mp, define ‖v‖Xp := ‖v‖(Lr(Ωp))n + ‖∇ · v‖Lr(Ωp) and
‖q‖Mp := ‖q‖Lr′(Ωp).

We also use the spaces X and M defined on Ω by

X := Xf ×Xp and M :=
{
q ∈Mf ×Mp |

∫
Ω

q dA = 0
}

and denote the dual space of X by X∗.
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For v = (vf ,vp) ∈ X and q = (qf , qp) ∈M ,

‖v‖X := ‖vf‖Xf
+ ‖vp‖Xp and ‖q‖M :=

(
‖qf‖r′Lr′(Ωf )

+ ‖qp‖r′Lr′(Ωp)

)1/r′

.

Also, for f, k : Ω→ R
m, (f, k) :=

∫
Ω f · k dA.

Let g(x) : R
N −→ R

+ ∪ {0} and G(x) : R
N −→ R

N be given by G(x) := g(x)x.
Further for x,h ∈ R

N , let G(·) satisfy (for constants C1, C2, C3 > 0, and c ≥ 0)

A1: |G(x + h)−G(x)| |h| ≤ C1 (G(x + h)−G(x)) ·h,(2.13)

A2:
|h|2

c+ |x|2−r + |x + h|2−r ≤ C2 (G(x + h)−G(x)) ·h,(2.14)

A3: |G(x + h)−G(x)| ≤ C3
|h|

c+ |x|2−r + |x + h|2−r ,(2.15)

with the convention that G(x) = 0 if x = 0, and |h|/(c+ |x| + |h|) = 0 if c = 0 and
x = h = 0.

From A1, A2, and A3 it follows (see [23]) that there exist constants C4, C5 > 0
such that for s, t,w ∈ (Lr(Ω))N

(2.16)
∫

Ω

(G(s)−G(t))·(s− t) dA

≥ C4

(∫
Ω

|G(s)−G(t)||s− t| dA+
‖s− t‖2Lr(Ω)

c+ ‖s‖2−rLr(Ω) + ‖t‖2−rLr(Ω)

)
,

(2.17)
∫

Ω

(G(s)−G(t))·w dA

≤ C5‖ |s− t|
c+ |s|+ |t| ‖

2−r
r∞

(∫
Ω

|G(s)−G(t)||s− t| dA
)1/r′

‖w‖Lr(Ω).

In Ωp, with x,h in (2.13)–(2.15) denoting vectors in R
n and · the usual vector

dot product, we assume that gp(up) := νeff/κ, and let Gp(v) = gp(v)v.
In Ωf we assume that σ = gf (d(uf ))d(uf ), and let Gf (τ ) := gf(τ )τ , where

we interpret x,h in (2.13)–(2.15) as tensors in R
n×n and · as the usual tensor scalar

product.
Remark. For ν∞ = 0, conditions (2.13)–(2.15) are satisfied for Gf (τ ) and Gp(v),

with gf (d(u)) = 2ν(d(u)) described in (1.1)–(1.3) and gp(up) = νeff(up) described in
(1.4) and (1.5) (see [23]). Different functions spaces from the setting studied herein
are required for ν∞ > 0.

Multiplying (2.1) through by v1 ∈ Xf , integrating over Ωf , and using (2.3) and
the fact that {nf , tl, l = 1, . . . , n− 1} form an orthonormal basis along Γ, we have∫

Ωf

ff · v1 dA =
∫

Ωf

σ : d(v1) dA−
∫

Ωf

pf∇ · v1 dA−
∫

Γ∪Γin

((−pfI + σ)nf ) · v1 ds

=
∫

Ωf

gf(d(uf ))d(uf ) : d(v1) dA−
∫

Ωf

pf∇ · v1 dA

+
n−1∑
l=1

∫
Γ

−nTf σtl v1 · tl ds

+
∫

Γ

(pf − nTf σnf )v1 · nf ds−
∫

Γin

((−pfI + σ)nf ) · v1 ds.(2.18)
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Also, multiplying (2.6) through by v2 ∈ Xp and integrating over Ωp, we obtain

(2.19) 0 =
∫

Ωp

gp(up)up · v2 dA−
∫

Ωp

pp∇ · v2 dA

+
∫

Γout

pp v2 · np ds+
∫

Γ

pp v2 · np ds.

The coupling of the Stokes and Darcy flows occurs through the interface conditions
(2.10) and (2.11). Following [14], we introduce a new variable λ representing

(2.20) λ := pf − (σnf ) · nf = pp

and incorporate (2.11) into (2.18) and (2.19). Equation (2.10) is imposed weakly in a
separate equation. (See (2.32) below.)

Note that using the Beavers–Joseph–Saffman condition (2.12),

n−1∑
l=1

∫
Γ

−nTf σtl v1 · tl ds =
n−1∑
l=1

∫
Γ

csr−1
l (uf · tl) (v1 · tl) ds.

To incorporate the specified flow rate conditions into the mathematical formula-
tion, we use a Lagrange multiplier approach. In (2.18) and (2.19)

∫
Γin

((−pfI + σ)nf ) · v1 ds is replaced by βin

∫
Γin

v1 · nf ds(2.21)

∫
Γout

pp v2 · np ds is replaced by βout

∫
Γout

v2 · np ds,(2.22)

where βin, βout ∈ R are undetermined constants. We comment below on the implicit
assumptions induced by using the Lagrange multiplier approach.

For v ∈W 0,r(div,Ωp), we have that v · np ∈W−1/r,r(∂Ωp) (see [8, p. 47]).
For v ∈ Xp and λ ∈W 1/r,r′(Γ) we define the operator v · np ∈W−1/r,r(Γ) as

(2.23) 〈v · np, λ〉Γ := 〈v · np, Er′Γ λ〉∂Ωp ,

with Er
′

Γ λ defined as in Lemma A.1 in Appendix A (with the association p = r′,
Ω = Ωp, Γ = Γ, Γb = Γp, Γd = Γout).

Note that for v ∈ Xp sufficiently smooth,

〈v · np, λ〉Γ = 〈v · np, Er′Γ λ〉∂Ωp =
∫

Γ

v · np λds.

For v ∈ (W 1,r(Ωf ))n we have that v · nf ∈ W 1/r′,r(∂Ωf ); hence
∫
Γ
v · nf λds is

well defined.
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In order to compactly write the mathematical formulation, we introduce the fol-
lowing bilinear forms:

af(u,v) :=
∫

Ωf

gf (d(u))d(u) : d(v) dA +
n−1∑
l=1

∫
Γ

csr−1
l (u · tl) (v · tl) ds,(2.24)

ap(u,v) :=
∫

Ωp

gp(u)u · v dA,(2.25)

bf(v, q, β) :=
∫

Ωf

q∇ · v dA+ β

∫
Γin

v · nf ds,(2.26)

bp(v, q, β) :=
∫

Ωp

q∇ · v dA+ β

∫
Γout

v · np ds.(2.27)

With the above notation, the modeling equations in Ωf may be written as

af (uf ,v1)− bf (v1, pf , βin) +
∫

Γ

v1 · nf λds = (ff ,v1)Ωf
∀v1 ∈ Xf ,(2.28)

bf (uf , q1, β1) = −β1 fr ∀(q1 × β1) ∈Mf × R,(2.29)

and in Ωp as

ap(up,v2)− bp(v2, pp, βout) + 〈λ,v2 · np〉Γ = 0 ∀v2 ∈ Xp,(2.30)

bp(up, q2, β2) = β2 fr ∀(q2 × β2) ∈Mp × R.(2.31)

Together with (2.28)–(2.31) we have the interface condition (2.10). We impose
this constraint weakly using

(2.32)
∫

Γ

uf · nf ζ ds+ 〈up · np, ζ〉Γ = 0 ∀ζ ∈ W 1/r,r′(Γ).

Introduce f := (ff ,0), bI(·, ·) : X ×W 1/r,r′(Γ)→ R as

(2.33) bI(v, ζ) :=
∫

Γ

vf · nf ζds+ 〈vp · np, ζ〉Γ,

and a(·, ·) : X ×X → R, b(·, ·, ·) : X ×M × R
2 → R as

a(u,v) := af (uf ,vf ) + ap(up,vp) and

b(v, q,γ) := bf(vf , qf , γ1) + bp(vp, qp, γ2).
(2.34)

We then state the coupled fluid flow problem as follows: Given f ∈ X∗, fr ∈ R,
determine (u, p, λ,β) ∈ X ×M ×W 1/r,r′(Γ)× R

2 such that

a(u,v)− b(v, p,β) + bI(v, λ) = (f ,v) ∀v ∈ X,(2.35)

b(u, q,γ)− bI(u, ζ) = γ ·
[ −1

1

]
fr ∀(q, ζ,γ) ∈M ×W 1/r,r′(Γ)× R

2.(2.36)

The unique solvability of (2.35)–(2.36) hinges upon showing two inf-sup condi-
tions: one for b(·, ·, ·) and the other for bI(·, ·).
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Equivalence of the differential equations and variational formulations.
As demonstrated above, the variational formulation (2.35)–(2.36) was obtained by
multiplying the differential equations by sufficiently smooth functions, integrating over
the domain, and, where appropriate, applying Green’s theorem. We also used (2.21)–
(2.22) to impose the specified flow rate boundary conditions. For a smooth solution,
the steps used in deriving the variational equations can be reversed to show that equa-
tions (2.1)–(2.5), (2.6)–(2.9) are satisfied. In addition we have that a smooth solution
of (2.35)–(2.36) satisfies the following additional boundary conditions (see [7]).

For nf , the outward normal on Γin, express the extra stress vector on Γin, σnf ,
as

σnf = snnf + sT ,

where sn = (σnf ) ·nf and sT = σnf −snnf . The scalar sn represents the magnitude
of the extra stress in the outward normal direction to Γin, and sT the component of
the extra stress vector which lies in the plane of Γin.

Lemma 2.1. Any smooth solution of (2.35), (2.36) satisfies the following bound-
ary conditions:

on Γin, −pf + sn = −βin and sT = 0;(2.37)

on Γout, pp = −βout.(2.38)

Proof. The proof follows as in [7].
Remark. Equations (2.1)–(2.5), (2.6)–(2.9), (2.10)–(2.12) do not uniquely define

a solution, but rather a set of solutions. The variational formulation (2.35)–(2.36)
chooses a solution from the solution set. Specifically, (2.35)–(2.36) chooses the solution
which satisfies (2.37)–(2.38). A different variational formulation may result in the
selection of a different solution from the solution set. (See, for example, [7].)

3. Existence and uniqueness of the variational formulation. In order to
show the existence and uniqueness of the variational formulation, we introduce the
following subspaces of X :

V := {v ∈ X : bI(v, ζ) = 0 ∀ζ ∈W 1/r,r′(Γ)},(3.1)

Z := {v ∈ V : b(v, q,γ) = 0 ∀(q,γ) ∈M × R
2}.(3.2)

Consider b(·, ·, ·) : X ×M × R
2 → R defined in (2.34). Using Hölder’s inequality

together with the definition (2.23), we have that b(·, ·, ·) is continuous. In addition,
b(·, ·, ·) satisfies the following inf-sup condition.

Lemma 3.1. There exists CMRV > 0 such that

(3.3) inf
(0,0) �=(q,γ)∈M×R2

sup
u∈V

b(u, q,γ)
‖u‖X‖(q,γ)‖M×R2

≥ CMRV ,

where ‖(q,γ)‖M×R2 := ‖q‖M + ‖γ‖R2 .
Proof. Fix (q,γ) ∈M × R

2 and let

(3.4) q̂ :=
|q|r′/r−1q

‖q‖r′−1
M

, γ̂ :=
γ

‖γ‖R2
.

Note that
∫
Ω
q q̂ dΩ = ‖q‖M , ‖q̂‖Lr(Ω) = 1, and γ · γ̂ = ‖γ‖R2 , ‖γ̂‖R2 = 1.
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Let Γmi ⊂ Γi such that meas(Γmi ) > 0 and dist(Γmi , ∂Ω\Γi) > 0 for i = in, out.
Let h ∈ C(∂Ω) ⊂W 1/r′,r(∂Ω) be given by

h|Γm
i

:= γ̂i/meas(Γmi ), i = in, out,

h|∂Ω\(Γin∪Γout) := 0,

and on Γi\Γmi h is either a strictly increasing or strictly decreasing function.
Also, let δ ∈ R be given by

δ :=
(∫

∂Ω

h ds−
∫

Ω

q̂ dA

)
/meas(Ω).

From [8, p. 127], given f ∈ Lr(Ω), a ∈W 1−1/r,r(∂Ω), 1 < r <∞, satisfying

(3.5)
∫

Ω

f dA =
∫
∂Ω

a · n ds,

there exists v ∈ W 1,r(Ω) such that

∇ · v = f in Ω,(3.6)

v = a on ∂Ω,(3.7)

with ‖v‖W 1,r(Ω) ≤ C
(‖f‖Lr(Ω) + ‖a‖W 1−1/r,r(∂Ω)

)
.(3.8)

Let f = q̂ + δ, and for {n, ti, i = 1, . . . , n − 1} denoting an orthonormal system
on ∂Ω, let a be defined by{

a · n = h,

a · ti = 0, i = 1, . . . , n− 1.

Remark. The choice of the constant δ guarantees that the compatibility condition∫
Ω f dΩ =

∫
∂Ω a · n ds is satisfied.

Note that ‖a‖W 1/r′,r(∂Ω) ≤ C1 and ‖γ̂‖Rm = C1. Also,∫
Ω

q̂ dA ≤ ‖q̂‖Lr(Ω) ‖1‖Lr′(Ω) = C2,(3.9)

∫
∂Ω

h ds ≤ ‖γ̂‖R2 ‖1‖R2 = C3,(3.10)

and thus ‖δ‖Lr(Ω) ≤ C4.
Let vf = v|Ωf

, vp = v|Ωp
, where v denotes the solution of (3.6)–(3.7). From

(3.8) we have

(3.11) ‖v‖X ≤ C (1 + C4 + C1) ≤ C5.

Also, note that vf ∈ W 1/r′,r(∂Ωf ), vp ∈ W 1/r′,r(∂Ωp), and vf = vp on Γ. Thus,
for λ ∈W 1/r,r′(Γ),∫

Γ

vf · nf λds+ 〈vp · np, λ〉Γ =
∫

Γ

vf · nf λds+
∫

Γ

vp · np λds = 0,

i.e., v ∈ V .
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Now,

b(v, q,γ) =
∫

Ω

q∇ · vdA + γ1

∫
Γin

v · nf ds+ γ2

∫
Γout

v · np ds

≥
∫

Ω

q (q̂ + δ) dA+ γ̂ · γ

= ‖q‖M + ‖γ‖R2

= ‖(q,γ)‖M×R2 ,

as
∫
Ω
q δ dA = 0 for q ∈M . Thus,

sup
u∈V

b(u, (q,γ))
‖(q, β)‖M×Rm‖u‖X ≥

b(v, (q,γ))
‖(q, β)‖M×Rm‖v‖X ≥

1
C5
,

from which (3.3) directly follows.
The required inf-sup condition for bI(·, ·) may be stated as follows.
Lemma 3.2. The bilinear form bI(·, ·) : X × W 1/r,r′(Γ) → R is continuous.

Moreover, there exists CXΓ > 0 such that

(3.12) inf
0�=λ∈W 1/r,r′ (Γ)

sup
u∈X

bI(u, λ)
‖u‖X ‖λ‖W 1/r,r′(Γ)

≥ CXΓ.

Proof. The continuity of bI(·, ·) follows from the continuity of the trace operator
and definition (2.23).

The proof of this inf-sup condition requires a suitable extension of a functional
from W−1/r,r(Γ) to W−1/r,r(∂Ωp) be defined. Some of the notation used in this proof
is defined in the appendix, where suitable extension operators from Γ to ∂Ωp are
discussed.

To show (3.12), let λ ∈ W 1/r,r′(Γ). Then, from the definition of the norm, there
exists fΓ ∈ W−1/r,r(Γ), ‖fΓ‖W−1/r,r(Γ) = 1, such that

(3.13) 〈fΓ, λ〉Γ ≥ 1
2
‖λ‖W 1/r,r′(Γ).

Given fΓ ∈ W−1/r,r(Γ) we can extend it to a functional f in W−1/r,r(∂Ωp) by

(3.14) 〈f, ξ〉∂Ωp := 〈fΓ, ξ|Γ〉Γ for ξ ∈W 1/r,r′(∂Ωp).

Note that for η ∈W 1/r,r′
00 (∂Ωp\Γ)

〈f,Er′00,∂Ωp\Γη〉∂Ωp = 〈fΓ, Er′00,∂Ωp\Γη|Γ〉Γ = 〈fΓ, 0〉Γ = 0.

Thus, from Definition A.3 (see Appendix A), f |∂Ωp\Γ = 0.
Also,

‖f‖W−1/r,r(∂Ωp) = sup
ξ∈W 1/r,r′ (∂Ωp)

〈f, ξ〉∂Ωp

‖ξ‖W 1/r,r′(∂Ωp)

= sup
ξ∈W 1/r,r′ (∂Ωp)

〈fΓ, ξΓ〉Γ
‖ξ‖W 1/r,r′(∂Ωp)

≤ sup
ξ∈W 1/r,r′ (∂Ωp)

‖fΓ‖W−1/r,r(Γ) ‖ξΓ‖W 1/r,r′(Γ)

‖ξ‖W 1/r,r′(∂Ωp)

≤ ‖fΓ‖W−1/r,r(Γ) = 1.(3.15)
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Let φ ∈ W 1,r′(Ωp) be given by the weak solution of

−∇ · |∇φ|r′−2∇φ+ |φ|r′−2φ = 0 in Ωp,(3.16)

|∇φ|r′−2∇φ · np = f on ∂Ωp,(3.17)

i.e., φ satisfies

(T (φ), w) :=
∫

Ωp

(
|∇φ|r′−2∇φ · ∇w + |φ|r′−2φw

)
dA

=
∫
∂Ωp

fw ds ∀w ∈W 1,r′(Ωp).
(3.18)

Existence and uniqueness of φ follow from the strong monotonicity of T : W 1,r′(Ωp)
−→ (

W 1,r′(Ωp)
)∗.

Note that

(T (φ), φ) = ‖φ‖r′
W 1,r′ (Ωp)

≤ ‖f‖W−1/r,r(∂Ωp)‖φ‖W 1/r,r′(∂Ωp)

≤ C1‖f‖W−1/r,r(∂Ωp)‖φ‖W 1,r′ (Ωp)

=⇒ ‖φ‖r′
W 1,r′ (Ωp)

≤ C∗‖f‖rW−1/r,r(∂Ωp) ≤ C∗,(3.19)

as ‖f‖W−1/r,r(∂Ωp) ≤ 1.
Now, let v := |∇φ|r′−2∇φ. Note from (3.16) that ∇ · v = |φ|r′−2φ, and

(3.20) ‖v‖rW 0,r(div,Ωp) = ‖φ‖r′
W 1,r′ (Ωp)

≤ C∗,

i.e., v ∈W 0,r(div,Ωp) and v · np ∈W−1/r,r(∂Ωp).
Finally, let w = (0,v) ∈ X . Then, in view of (2.23),

sup
u∈X

bI(u, λ)
‖u‖X ≥ bI(w, λ)

‖w‖X =
0 + 〈v · np, λ〉Γ
‖v‖W 0,r(div,Ωp)

≥ 〈v · np, E
r′
Γ λ〉∂Ωp

C
1/r
∗

=
1

C
1/r
∗
〈f,Er′Γ λ〉∂Ωp

=
1

C
1/r
∗
〈fΓ, λ〉Γ as f |∂Ωp\Γ = 0 (see (A.7))

≥ 1

2C1/r
∗
‖λ‖W 1/r,r′(Γ) from (3.13).

We are now in a position to prove the existence and uniqueness of the solution.
Theorem 3.3. There exists a unique solution (u, p, λ,β) ∈ X×M×W 1/r,r′(Γ)×

R
2 satisfying (2.35)–(2.36). In addition, there exists a constant C > 0 such that

(3.21) ‖u‖X ≤ C
(
‖ff‖X∗

f
+ |fr|

)
.
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Proof. For v = (v1,v2) ∈ Z, note that ∇ · v1 = 0 a.e. in Ωf and ∇ · v2 = 0 a.e.
in Ωp. Hence, for v ∈ Z, ‖v2‖Xp = ‖v2‖Lr(Ωp) and ‖v‖X = ‖v1‖Xf

+ ‖v2‖Lr(Ωp).
From the continuity and inf-sup condition for b(·, ·, ·) [10, Remark 4.2, p. 61] there

exists u0 ∈ V such that

b(u0, q,γ) = γ ·
[ −1

1

]
fr ∀(q,γ) ∈M × R

2,

with ‖u0‖X ≤ C|fr|.(3.22)

Together with the continuity and inf-sup condition of bI(·, ·), the existence and
uniqueness of the solution to (2.35)–(2.36) can be equivalently stated as follows: Given
f ∈ X∗, determine ũ ∈ Z, u = ũ + u0, such that

(3.23) a(ũ + u0,v) = (f ,v) ∀v ∈ Z.
The existence and uniqueness of the solution to (3.23) follows from the continuity and
strict monotonicity of a(·, ·) on Z × Z, which follows from assumptions (2.16)–(2.17)
and the restriction that for Ω ⊂ R

2, 4/3 < r ≤ 2, and for Ω ⊂ R
3, 3/2 < r ≤ 2. This

restriction arises in applying the Sobolev embedding theorem to verify the continuity
of a(·, ·). Specifically,

n−1∑
l=1

∫
Γ

csr−1
l ((uf −wf ) · tl) (vf · tl) ds

≤ C‖uf −wf‖L2(Γ) ‖vf‖L2(Γ)

≤ C‖uf −wf‖W 1−1/r,r(∂Ωf ) ‖vf‖W 1−1/r,r(∂Ωf )

≤ C‖u−w‖X ‖v‖X .
Also, it follows from (2.16), (2.17), and (3.22) that

‖ũ‖X ≤ C (‖f‖X∗ + |fr|) = C
(
‖ff‖X∗

f
+ |fr|

)
,

and therefore the estimate

‖u‖X ≤ C
(
‖ff‖X∗

f
+ |fr|

)
.

4. Finite element approximation. In this section we discuss the finite ele-
ment approximation to the coupled generalized nonlinear Stokes–Darcy system (2.35),
(2.36). We focus our attention on the conforming approximating spaces

Xf,h ⊂ Xf , Mf,h ⊂Mf , Xp,h ⊂ Xp, Mp,h ⊂Mp, Lh ⊂W 1/r,r′(Γ),

where Xf,h, Mf,h denote velocity and pressure spaces typically used for fluid flow
approximations, and Xp,h,Mp,h denote velocity and pressure spaces typically used
for (mixed formulation) Darcy flow approximations.

We begin by describing the finite element approximation framework used in the
analysis. Let Ωj ⊂ R

n (n = 2, 3), j = f, p, be a polygonal domain and let Tj,h
be a triangulation of Ωj made of triangles (in R

2) or tetrahedra (in R
3). Thus, the

computational domain is defined by

Ω = ∪K; K ∈ Tf,h ∪ Tp,h.
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We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,
where hK is the diameter of triangle (tetrahedron) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = maxK∈Tf,h∪Tp,h

hK .
For simplicity, we assume that the triangulations on Ωf and Ωp induce the same

partition on Γ, which we denote TΓ,h.
Let Pk(A) denote the space of polynomials on A of degree no greater than k.

Also, for x = [x1, . . . , xn]T ∈ R
n, let RTk(A) := (Pk(A))n + xPk(A) denote the kth

order Raviart–Thomas elements. Then we define the finite element spaces as follows:

Xf,h :=
{
v ∈ Xf ∩ C(Ωf )2 : v|K ∈ Pm(K) ∀K ∈ Tf,h

}
,(4.1)

Mf,h :=
{
q ∈Mf ∩ C(Ωf ) : q|K ∈ Pm−1(K) ∀K ∈ Tf,h

}
,(4.2)

Xp,h := {v ∈ RTk(K) ∀K ∈ Tp,h} ,(4.3)

Mp,h := {q ∈Mf : q|K ∈ Pk(K) ∀K ∈ Tf,h} ,(4.4)

Lh :=
{
ζ ∈W 1/r,r′(Γ) ∩ C(Γ) : ζ|K ∈ Pl(K) ∀K ∈ TΓ,h

}
.(4.5)

Note that as we are assuming 1 < r < 2, then 1/r > 1/2, which implies that,
for Ω ⊂ R

2, λ ∈ W 1/r,r′(Γ) is continuous. For m = 2, Xf,h and Mf,h denote the
Taylor–Hood spaces.

Below we assume that m ≥ 2, k ≥ 1, and l ≤ k.
Let

X0
f,h :=

{
v ∈ Xf,h : v|∂Ωf \Γin = 0

}
and X0

p,h :=
{
v ∈ Xp,h : v · np|∂Ωp\Γout = 0

}
.

Lemma 4.1. There exist constants Cf,h, Cp,h > 0, such that

inf
0�=qh∈Mf,h

sup
vh∈X0

f,h

∫
Ωf
qh∇ · vh dA

‖qh‖Mf
‖vh‖Xf

≥ Cf,h,(4.6)

inf
0�=qh∈Mp,h

sup
vh∈X0

p,h

∫
Ωp
qh∇ · vh dA

‖qh‖Mp ‖vh‖Xp

≥ Cp,h.(4.7)

Proof. For the case of the pressure spaces having mean value equal to zero, the
inf-sup conditions (4.6) and (4.7) are well established. As mentioned in [14], one
can extend the inf-sup conditions to the above pressure spaces via a local projector
operator argument. (See [2, section VI.4].)

Remark. There are several other suitable choices of approximation spaces. (See
discussions in [14, 9].)

Discrete approximation problem. Given f ∈ X∗, fr ∈ R, determine (uh, ph, λh,
βh) ∈ Xh ×Mh × Lh × R

2 such that

a(uh,vh)− b(vh, ph,βh) + bI(vh, λh) = (f ,vh) ∀vh ∈ Xh,(4.8)

b(uh, qh,γh)− bI(uh, ζh) = γh ·
[ −1

1

]
fr ∀(qh,γh, ζh) ∈Mh × R

2 × Lh(Γ).

(4.9)
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A more general inf-sup condition than that given by (4.6), (4.7) is needed for the
analysis. This is established using the following two lemmas. (See also [24].)

Corresponding to V and Z as defined in (3.1) and (3.2), we have the discrete
counterparts

Vh := {v ∈ Xh | bI(vh, ζ) = 0 ∀ζ ∈ Lh},(4.10)

Zh := {v ∈ Vh | b(v, q,γ) = 0 ∀(q,γ) ∈Mh × R
2}.(4.11)

Lemma 4.2. There exists CRXh > 0 such that for h sufficiently small

(4.12) inf
0 �=β∈R2

sup
wh∈Vh

∫
Γin

β1 wf,h · nf ds+
∫
Γout

β2 wp,h · np ds
‖wh‖X ‖β‖R2

≥ CRXh.

Proof. We use (3.5)–(3.8) to construct a suitable function v. Then using a linear
interpolant for v we obtain the stated result.

Assume β = [β1, β2]T ∈ R
2 is given.

For i ∈ {in, out}, let si(x) denote an arc length parameter on Γi, and define
φi : ∂Ω→ R by

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

2
|Γi|si(x), x ∈ Γi, 0 ≤ si(x) ≤ |Γi|

2 ,

2
|Γi| (|Γi| − si(x)), x ∈ Γi,

|Γi|
2 < si(x) ≤ |Γi|,

0 otherwise.

Further, let a ∈W 1−1/r,r(∂Ω) and f ∈ Lr(Ω) be given by

(4.13) a(x) = (β1 φin(x) + β2 φout(x))n, f(x) =
1

|Ω|1/r
∫
∂Ω

a · n ds,

where n denotes the outward-pointing unit normal to Ω. Note that

‖a‖W 1−1/r,r(∂Ω) ≤ |β1| ‖φinn‖W 1−1/r,r(∂Ω) + |β2| ‖φoutn‖W 1−1/r,r(∂Ω) ≤ C‖β‖R2

and

‖f‖Lr(Ω) ≤ (|β1| |Γin|+ |β2| |Γout|) /2 ≤ C‖β‖R2 .

With a and f given by (4.13), let v be given by (3.6), (3.7), and vf,h = Ih(v)|Ωf
,

vp,h = Ih(v)|Ωp
, where Ih(v) denotes a continuous linear interpolant of v with respect

to Tf,h ∪ Tp,h.
Note that vh = (vf,h,vp,h) ∈ Vh and

‖v − vh‖W s,r(Ω) ≤ Ch1−s‖v‖W 1,r(Ω), s = 0, 1,

‖v − vh‖W 0,r(∂Ω) ≤ Chr
′‖v‖W 1,r(Ω).
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Then, for h sufficiently small,

sup
wh∈Xh

∫
Γin

β1 wf,h · nf ds+
∫
Γout

β2 wp,h · np ds
‖wh‖X

≥
∫
Γin

β1 vf,h · nf ds+
∫
Γout

β2 vp,h · np ds
‖vh‖X

≥

∫
Γin

β1vf · nf ds+
∫
Γout

β2vp · np ds+
∫
Γin

β1(vf,h − vf )
· nf ds+

∫
Γout

β2(vp,h − vp) · np ds
C ‖v‖X

≥ C1‖β‖R2 − C2h
r′‖β‖R2 ,

from which (4.12) follows.
Lemma 4.3. For h sufficiently small, there exists Cbh > 0 such that

(4.14) inf
(0,0) �=(qh,β)∈Mh×R2

sup
vh∈Vh

b(vh, (qh,β))
‖vh‖X ‖(q,β)‖M×R2

≥ Cbh.

Proof. Let (ph,β) ∈Mh × R
2. From Lemma 4.2, there exists ûh ∈ Xh such that

(4.15)

‖ûh‖X = ‖β‖Rm and

∫
Γin

β1 vf,h · nf ds+
∫
Γout

β2 vp,h · np ds
‖ûh‖X ≥ CRXh‖β‖R2 .

Consider the following two problems.
Problem 1. Discrete power law problem in Ωf . Determine ũf,h ∈ X0

f,h, p̃f,h ∈Mf,h

such that

(|d(ũf,h)|r−2d(ũf,h),d(v)) − (p̃f,h,∇ · v) = 0 ∀v ∈ X0
f,h,(4.16)

(q,∇ · ũf,h) = (q, ‖pf,h‖1−r
′/r

Mf
|pf,h|r′/r−1 pf,h −∇ · ûf,h) ∀q ∈Mf,h.(4.17)

Problem 2. Modified Darcy problem in Ωp. Determine ũp,h ∈ X0
p,h, p̃p,h ∈ Mp,h

such that

(|ũp,h|r−2ũp,h,v) − (p̃p,h,∇ · v) = 0 ∀v ∈ X0
p,h,(4.18)

(q,∇ · ũp,h) = (q, ‖pp,h‖1−r
′/r

Mp
|pp,h|r′/r−1 pp,h −∇ · ûp,h) ∀q ∈Mp,h.(4.19)

Note that

‖pj,h‖1−r
′/r

Mj
|pj,h|r′/r−1 pj,h −∇ · ûj,h ∈ Lr(Ωj), j = f, p.

Existence and uniqueness of ũf,h ∈ X0
f,h, p̃f,h ∈ Pf,h and ũp,h ∈ X0

p,h, p̃p,h ∈
Pp,h satisfying (4.16), (4.17) and (4.18), (4.19), respectively, follow from the inf-sup
conditions (4.6), (4.7) and the strong monotonicity of T : X −→ X∗, (T (φ), ψ) :=∫ |φ|r−2φ · ψ dA.
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From (4.16) and (4.17), choosing v = ũf,h and q = p̃f,h,

‖ũf,h‖rXf
= (|d(ũf,h)|r−2d(ũf,h),d(ũf,h))

= (p̃f,h,∇ · ũf,h)
= (p̃f,h, ‖pf,h‖1−r

′/r
Mf

|pf,h|r′/r−1 pf,h −∇ · ûf,h)

≤ ‖p̃f,h‖Mf

(
‖pf,h‖1−r

′/r
Mf

‖ |pf,h|r′/r−1 pf,h‖Lr + ‖∇ · ûf,h‖Lr

)
≤ ‖p̃f,h‖Mf

(‖pf,h‖Mf
+ C ‖ûf,h‖Xf

)
≤ C ‖p̃f,h‖Mf

(‖pf,h‖Mf
+ ‖β‖R2

)
.(4.20)

Also, from the inf-sup condition for spaces X0
f,h and Mf,h we have

c ‖p̃f,h‖Mf
≤ sup

v∈X0
f,h

(p̃f,h,∇ · v)
‖v‖Xf

= sup
v∈X0

f,h

(|d(ũf,h)|r−2d(ũf,h),d(v))
‖v‖Xf

≤ sup
v∈X0

f,h

(‖ |d(ũf,h)|r−2d(ũf,h)‖Lr′ ‖d(v)‖Lr

‖v‖Xf

= ‖ |d(ũf,h)|r−2d(ũf,h)‖Lr′

= ‖ũf,h‖r/r
′

Xf
.(4.21)

Combining (4.20) and (4.21) we have the estimate

(4.22) ‖ũf,h‖Xf
≤ C (‖pf,h‖Mf

+ ‖β‖R2

)
.

Proceeding in a similar fashion for ũp,h satisfying Problem 2 leads to the estimate

(4.23) ‖ũp,h‖Xp ≤ C
(‖pp,h‖Mp + ‖β‖R2

)
.

Let uj,h = ũj,h + ûj,h, j = f, p. Note that as uf,h = 0 on Γ and up,h · np = 0 on
Γ, uh ∈ Vh.

Then, using (4.17), (4.19), and (4.12),

b(uh, (ph,β)) =
∫

Ωf

pf,h∇ · uf,h dA+
∫

Ωp

pp,h∇ · up,h dA+ β1

∫
Γin

uf,h · nf ds

+ β2

∫
Γout

up,h · np ds

=
∫

Ωf

pf,h ‖pf,h‖1−r
′/r

Mf
|pf,h|r′/r−1 pf,h dA

+
∫

Ωp

pp,h ‖pp,h‖1−r
′/r

Mp
|pp,h|r′/r−1 pp,h dA

+ β1

∫
Γin

ûf,h · nf ds+ β2

∫
Γout

ûp,h · np ds

≥ c (‖ph‖2M + ‖β‖2
R2

)
.(4.24)
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Thus, using (4.24), (4.22), and (4.23), we have

sup
vh∈Xh

b(vh, (ph,β))
‖vh‖X ≥ b(uh, (ph,β))

‖uh‖X
≥ C (‖ph‖P + ‖β‖R2) ,

from which (4.14) immediately follows.
The discrete inf-sup condition for bI(·, ·) follows from the continuous inf-sup condi-

tion and the existence of a bounded interpolation operator Ip,h : Xp → Xh,p satisfying,
for some α > 0,

(4.25)
‖w− Ip,h(w) · np‖W−1/r,r(∂Ωp) ≤ Caphα‖w‖Xp and ‖Ip,h(w)‖Xp ≤ Cip ‖w‖Xp .

Lemma 4.4. There exists CXΓh > 0 such that for h sufficiently small

(4.26) inf
0�=λh∈Lh

sup
uh∈Xh

bI(uh, λh)
‖uh‖X ‖λh‖W 1/r,r′(Γ)

≥ CXΓh.

Proof. With λ = λh, let vp ∈ W 0,r(div,Ωp) be as defined by (3.16)–(3.20), and
let vp,h = IR−T (vp) ∈ Xp,h denote the Raviart–Thomas interpolant of vp. Further,
let vh = (0,vp,h) ∈ Xh. Then

sup
uh∈Xh

bI(uh, λh)
‖uh‖X ≥ bI(vh, λh)

‖vh‖X

=
0 + 〈vp,h · np, λh〉Γ
‖vp,h‖W 0,r(div,Ωp)

=
〈vp · np, λh〉Γ
‖vp,h‖W 0,r(div,Ωp)

+
〈(vp,h − vp) · np, λh〉Γ
‖vp,h‖W 0,r(div,Ωp)

≥ 〈vp · np, λh〉Γ
C ‖vp‖W 0,r(div,Ωp)

+
〈(vp,h − vp) · np, Er′Γ λh〉∂Ωp

‖vp,h‖W 0,r(div,Ωp)

≥ 1
2C
‖λ‖W 1/r,r′(Γ) +

〈(vp,h − vp) · np, Er′Γ λh〉∂Ωp

‖vp,h‖W 0,r(div,Ωp)
.

With λ = λh let ϕ be given by (A.1)–(A.3), and let ϕh = I(ϕ) denote a continuous
linear interpolant of ϕ with respect to Tp,h. Note that λh = ϕh on Γ and Γout.

Now,

〈(vp,h − vp) · np, Er′Γ λh〉∂Ωp = 〈(vp,h − vp) · np, ϕh〉∂Ωp

+ 〈(vp,h − vp) · np, (Er′Γ λh − ϕh)〉∂Ωp

= 0 + 〈vp,h · np, (Er′Γ λh − ϕh)〉∂Ωp

− 〈vp · np, (Er′Γ λh − ϕh)〉∂Ωp .

As Er
′

Γ λh−ϕh = 0 on ∂Ωp\Γp and vp ·np|Γp = 0, then 〈vp ·np, (Er′Γ λh−ϕh)〉∂Ωp = 0.
Further, as vp,h · np = 0 on Γp, 〈vp,h · np, (Er′Γ λh − ϕh)〉∂Ωp = 0, from which (4.26)
then follows.

We now state and prove the existence and uniqueness of solutions to (4.8)–(4.9).
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Theorem 4.5. There exists a unique solution (uh, ph, λh,βh) ∈ Xh×Mh×Lh×
R

2 satisfying (4.8)–(4.9). In addition, there exists a constant C > 0 such that

(4.27) ‖uh‖X ≤ C
(
‖ff‖X∗

f
+ |fr|

)
.

Proof. With the inf-sup conditions given in (4.14) and (4.26), the existence and
uniqueness follows exactly as for the continuous problem in Theorem 3.3. The norm
estimate for uh follows in a similar manner to that for u and uses the property that
∇ ·Xp,h ⊂Mp,h.

4.1. A priori error estimate. Next we investigate the error between the solu-
tion of the continuous variational formulation and its discrete counterpart.

Theorem 4.6. Let

E(u,uh) =
∥∥∥∥ |d(uf )− d(uf,h)|
c+ |d(uf )|+ |d(uf,h)|

∥∥∥∥
2−r

r

L∞(Ωf )

+
∥∥∥∥ |up − up,h|
c+ |up|+ |up,h|

∥∥∥∥
2−r

r

L∞(Ωf )

and

G(u,uh) =
∫

Ωf

|gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)||d(uf )− d(uf,h)| dA

+
∫

Ωp

|gp(up)up − gp(up,h)up,h||up − up,h| dA.

Then for (u, p, λ,β) satisfying (2.35)–(2.36) and (uh, ph, λh,βh) satisfying (4.8)–(4.9),
and h sufficiently small, there exists a constant C > 0 such that

(4.28) ‖u− uh‖2X + G(u,uh) ≤ C
{

inf
vh∈Xh

(‖u− vh‖2X + E(u,uh)r‖u− vh‖rX
)

+ inf
qh∈Mh

‖p− qh‖2M + inf
ζh∈Lh

‖λ− ζh‖W 1/r,r′(Γ)

}
,

‖p− ph‖M + ‖β − βh‖R2 + ‖λ− λh‖W 1/r,r′(Γ)

≤ C
{
E(u,uh)G(u,uh)1/r′ + inf

qh∈Mh

‖p− qh‖M + inf
ζh∈Lh

‖λ− ζh‖W 1/r,r′(Γ)

}
.(4.29)

Note that the constant C in Theorem 4.6 may depend upon ‖u‖X .
The following combined inf-sup condition is used in the proof of Theorem 4.6.
Lemma 4.7. There exists a constant Cc > 0 such that

(4.30)
inf

(0,0,0) �=(qh,ζh,γh)∈Mh×Lh×R2
sup

vh∈Xh

b(vh, qh,γh)− bI(vh, ζh)
(‖qh‖M + ‖ζh‖W 1/r,r′(Γ) + ‖γh‖R2)‖vh‖X ≥ Cc.

Proof. As b(·, ·, ·) and bI(·, ·) are continuous and satisfy inf-sup conditions (4.14)
and (4.26), the inf-sup condition (4.30) follows immediately. (See Theorem B.1 in
Appendix B.)

Proof of Theorem 4.6. Introduce the affine subspace Z̃h defined by

Z̃h := {(qh, ζh,γh) ∈Mh × Lh × R
2 : −b(vh, qh,γh) + bI(vh, ζh)

= (f ,vh)− a(uh,vh) ∀vh ∈ Xh}.
Note that (ph, λh, βh) ∈ Z̃h.
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For uf,h, from (2.16)

‖d(uf )− d(uf,h)‖2Lr(Ωf )

c+ ‖d(uf)‖2−rLr(Ωf ) + ‖d(uf,h)‖2−rLr(Ωf )

+
∫

Ωf

|gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)||d(uf )− d(uf,h)| dA

≤ C
∫

Ωf

(gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)) : (d(uf )− d(uf,h)) dA

= C

∫
Ωf

(gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)) : (d(uf )− d(vf,h)) dA

+ C

∫
Ωf

(gf(d(uf ))d(uf )− gf(d(uf,h))d(uf,h)) : (d(vf,h)− d(uf,h)) dA

= I1 + I2.

To estimate I1 we use (2.17).∫
Ωf

(gf(d(uf ))d(uf )− gf(d(uf,h))d(uf,h)) : (d(uf )− d(vf,h)) dA

≤ C
(∫

Ωf

|gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)| |d(uf )− d(uf,h)| dA
)1/r′

·
∥∥∥∥ |d(uf )− d(uf,h)|
c+ |d(uf )|+ |d(uf,h)|

∥∥∥∥
2−r

r

∞
‖d(uf )− d(vf,h)‖Lr(Ωf )

≤ ε1
∫

Ωf

|gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)| |d(uf )− d(uf,h)| dA

+ C

∥∥∥∥ |d(uf )− d(uf,h)|
c+ |d(uf )|+ |d(uf,h)|

∥∥∥∥
2−r

r r

∞
‖d(uf )− d(vf,h)‖rLr(Ωf ) .

Thus we have that

‖d(uf )− d(uf,h)‖2Lr(Ωf )

c+ ‖d(uf )‖2−rLr(Ωf ) + ‖d(uf,h)‖2−rLr(Ωf )

+
∫

Ωf

|gf (d(uf ))d(uf )− gf (d(uf,h))d(uf,h)||d(uf )− d(uf,h)| dA

≤ C
∥∥∥∥ |d(uf )− d(uf,h)|
c+ |d(uf )|+ |d(uf,h)|

∥∥∥∥
2−r

∞
‖d(uf )− d(vf,h)‖rLr(Ωf ) + I2.(4.31)

Similarly, we obtain that for vp,h ∈ Xp,h

‖up − up,h‖2Lr(Ωp)

c+ ‖up‖2−rLr(Ωp) + ‖up,h‖2−rLr(Ωp)

+
∫

Ωp

|gp(up)up − gp(up,h)up,h| |up − up,h| dA

≤ C
∥∥∥∥ |up − up,h|
c+ |up|+ |up,h|

∥∥∥∥
2−r

∞
‖up − vp,h‖rLr(Ωp) + I4,(4.32)
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where I4 is given by

I4 := C

∫
Ωp

(gp(up)up − gp(up,h)up,h) : (vp,h − up,h) dA.

Note that with vh = (vf,h,vp,h), I2 + I4 = a(u,vh − uh) − a(uh,vh − uh), and for
(qh, ζh,γh) ∈ Z̃h,

a(u,vh − uh)− a(uh,vh − uh)

= b(vh − uh, p,β)− bI(vh − uh, λ)− b(vh − uh, ph,βh)

+ bI(vh − uh, λh)

= b(vh − uh, p,β)− bI(vh − uh, λ) ( as (ph, λh,βh) ∈ Z̃h)
= b(vh − uh, p− qh,β − γh)− bI(vh − uh, λ− ζh)
= b(u− uh, p− qh,β − γh)− b(u− vh, p− qh,β − γh)
− bI(u− uh, λ− ζh) + bI(u− vh, λ− ζh)

≤ ε‖u− uh‖2X
+ C

(
‖u− vh‖2X + ‖p− qh‖2M + ‖λ− ζh‖2W 1/r,r′(Γ)

)
.(4.33)

In the last step of (4.33) we use the continuity of the operators b(·, ·, ·) and bI(·, ·).
Combining (4.31)–(4.33) and the fact that∇·Xp,h ⊂Mp,h, we obtain the estimate

(4.28) for (qh, ζh,γh) ∈ Z̃h. The inf-sup condition (4.30) then enables (qh, ζh,γh) to
be lifted from Z̃h to Mh × Lh × R

2. (See [5] for details.)
To establish (4.29) we begin with the inf-sup condition (4.30).

‖ph − qh‖M + ‖βh − γh‖R2 + ‖λh − ζh‖W 1/r,r′(Γ)

≤ C b(vh, (ph − qh), (βh − γh))− bI(vh, λh − ζh)‖vh‖X

≤ C
(
b(vh, (p− qh), (β − γh))− bI(vh, λ− λh)

‖vh‖X

− b(vh, (p− ph), (β − βh))− bI(vh, λ− ζh)
‖vh‖X

)

≤ C
(
‖p− qh‖M + ‖β − γh‖R2 + ‖λh − ζh‖W 1/r,r′(Γ) −

a(u,vh)− a(uh,vh)
‖vh‖X

)

≤ C
(
‖p− qh‖M + ‖β − γh‖R2 + ‖λh − ζh‖W 1/r,r′(Γ) + E(u,uh)G(u,uh)1/r′

)
.

(4.34)

Combining (4.34) with the triangle inequality, we obtain (4.29).

Appendix A. Extension operator from Γ to ∂Ω. Let Ω be a bounded
Lipschitz domain in R

n (n = 2 or 3), and let ∂Ω = Γ̄ ∪ Γ̄b ∪ Γ̄d, where Γ, Γb, and Γd
are pairwise disjoint and dist(Γ,Γd) > 0. Additionally, let Γc = ∂Ω\Γ.
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We use standard notation to denote the function spaces used, for example,W s,p(Ω),
W l,p(∂Ω), etc., with W−l,q00 (∂Ω) denoting the dual space of W l,p

00 (∂Ω), where q is the
unitary conjugate of p, i.e., 1/q := 1− 1/p.

The expression A � B is used to denote the inequality A ≤ (constant) ·B.
Next we investigate a suitable extension of a function λ defined on Γ to a function

defined on ∂Ω.
Assume that p ≥ 2.
Lemma A.1. Given λ ∈ W 1/q,p(Γ) define EpΓλ := γ0ϕ, where γ0 is the trace

operator from W 1,p(Ω) to W 1/q,p(∂Ω), and ϕ ∈W 1,p(Ω) is the weak solution to

−∇ · |∇ϕ|p−2∇ϕ = 0 in Ω,(A.1)

ϕ =
{
λ on Γ,
0 on Γd,

(A.2)

|∇ϕ|p−2∂nϕ = 0 on Γb.(A.3)

Then EpΓλ ∈ W 1/q,p(∂Ω), and ‖EpΓλ‖W 1/q,p(∂Ω) � ‖λ‖W 1/q,p(Γ).
Proof. The proof follows from the strong monotonicity [19] of the operator

L : X −→ X∗, L(u) := −∇ · |∇u|p−2∇u, where X = {f ∈ W 1,p(Ω) : f |Γ∪Γd
=

0} [23].
For λ ∈ W 1/q,p(Γ), let Ep00,Γλ denote the extension of λ by zero on Γc.

Remark. Note that Ep00,Γλ ∈ W 1/q,p(∂Ω) if and only if λ ∈W 1/q,p
00 (Γ).

Lemma A.2 (see [9]). For ζ ∈ W 1/q,p(∂Ω) there exist ζΓ ∈ W 1/q,p(Γ) and
ζΓc ∈ W 1/q,p

00 (Γc) such that ζ = EpΓζΓ + Ep00,ΓcζΓc . Moreover, this decomposition is
unique.

Proof. Let ζ ∈ W 1/q,p(∂Ω). Define, ζΓ := ζ|Γ and ζΓc := ξ|Γc , where ξ :=
ζ − EpΓζΓ. Note that ζ|Γ ∈ W 1/q,p(Γ) and

‖EpΓζΓ‖W 1/q,p(∂Ω) � ‖ζΓ‖W 1/q,p(Γ) ≤ ‖ζ‖W 1/q,p(∂Ω),

and hence ξ ∈ W 1/q,p(∂Ω). Also, Ep00,ΓcζΓc = ξ as ζ and EpΓζΓ agree on Γ. Thus,

from the remark above, ζΓc ∈ W 1/q,p
00 (Γc).

To show uniqueness of the decomposition, observe that if 0 = EpΓζΓ + Ep00,ΓcζΓc ,
then ζΓ is the trace of the weak solution of (A.1)–(A.3) for λ = 0. Hence ζΓ = 0.

Next we introduce the concept of the restriction of an operator in W−1/q,q(∂Ω)
to be equal to zero.

Definition A.3 (see [9]). If f ∈W−1/q,q(∂Ω), then f |Γc = 0 means by definition
that

(A.4) 〈f,Ep00,Γcξ〉∂Ω = 0 ∀ξ ∈ W 1/q,p
00 (Γc).

The following lemma describes how an operator in W−1/q,q(∂Ω) can be decom-
posed into an operator in W−1/q,q(Γ) and an operator in W−1/q,q(Γc).

Lemma A.4 (see [9]). For f ∈ W−1/q,q(∂Ω) there exists fΓ ∈ W−1/q,q(Γ) and
fΓc ∈ W

−1/q,q
00 (Γc) such that for ζ ∈ W 1/q,p(∂Ω), with ζ = EpΓζΓ + Ep00,ΓcζΓc , as

defined in Lemma A.2, we have

(A.5) 〈f, ζ〉∂Ω = 〈fΓ, ζΓ〉Γ + 〈fΓc , ζΓc〉Γc .

Proof. For ζΓ ∈W 1/q,p(Γ) and ζΓc ∈W 1/q,p
00 (Γc), define

(A.6) 〈fΓ, ζΓ〉Γ := 〈f,EpΓζΓ〉∂Ω and 〈fΓc , ζΓc〉Γc := 〈f,Ep00,ΓcζΓc〉∂Ω.
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Then

〈fΓ, ζΓ〉Γ ≤ ‖f‖W−1/q,q(∂Ω)‖EpΓζΓ‖W 1/q,p(∂Ω) � ‖f‖W−1/q,q(∂Ω)‖ζΓ‖W 1/q,p(Γ),

and thus fΓ ∈W−1/q,q(Γ). Analogously, fΓc ∈W−1/q,q
00 (Γc). Additionally,

〈fΓ, ζΓ〉Γ + 〈fΓc , ζΓc〉Γc = 〈f,EpΓζΓ〉∂Ω + 〈f,Ep00,ΓcζΓc〉∂Ω = 〈f, ζ〉∂Ω.

Note that for f ∈ W−1/q,q(∂Ω) with f |Γc = 0 (see Definition A.3), from (A.6),

(A.7) 〈f, ζ〉∂Ω = 〈fΓ, ζΓ〉Γ ∀ζ ∈W 1/q,p(∂Ω).

Thus functionals in W−1/q,q(∂Ω) which are zero when restricted to ∂Ω\Γ can be
identified with functionals in W−1/q,q(Γ).

Appendix B. Combined inf-sup conditions. In deriving a priori error es-
timates for mixed methods, whose analysis relies on several inf-sup conditions, com-
bined inf-sup conditions are needed. In this section we show that the required inf-sup
conditions follow readily from the continuity of the bilinear forms and the individual
inf-sup conditions.

Theorem B.1. Let V,Q1, Q2 be Banach spaces, and let b1(·, ·) : V ×Q1 −→ R,
b2(·, ·) : V ×Q2 −→ R, and Z1 := {v ∈ V | b1(v, q) = 0 ∀q ∈ Q1}. Assume that b2(·, ·)
is continuous and there exist β1, β2 > 0 such that

sup
v∈V,‖v‖V =1

b1(v, q1) ≥ β1‖q1‖Q1 ∀q1 ∈ Q1,

sup
v∈Z1,‖v‖V =1

b2(v, q2) ≥ β2‖q2‖Q2 ∀q2 ∈ Q2.

Then there exists β > 0 such that

sup
v∈V,‖v‖V =1

(b1(v, q1) + b2(v, q2)) ≥ β (‖q1‖Q1 + ‖q2‖Q2) ∀(q1, q2) ∈ Q1 ×Q2.

Proof. By the continuity of b2(·, ·), there exists C2 > 0 such that

b2(v, q2) ≤ C2‖v‖V ‖q2‖Q2 ∀(v, q2) ∈ V ×Q2.

Let (q1, q2) ∈ Q1×Q2 be given, and choose v1 ∈ V with ‖v1‖V = 1 and v2 ∈ Z1 with
‖v2‖V = 1, satisfying

b1(v1, q1) ≥ β1

2
‖q1‖Q1 , b2(v2, q2) ≥ β2

2
‖q2‖Q2 .

Then for u = v1 + (1 + 2C2/β2)v2 we have

b1(u, q1) = b1(v1, q1) ≥ β1

2
‖q1‖Q1 ,

b2(u, q2) = b2(v1, q2) +
(

1 +
2C2

β2

)
b2(v2, q2) ≥ β2

2
‖q2‖Q2 .
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Finally, as ‖u‖V ≤ 2(1 + 2C2/β2), with u0 = u/‖u‖V
b1(u0, q1) + b2(u0, q2) ≥ β (‖q1‖Q1 + ‖q2‖Q2) ,

where β = min{β1, β2}/(4(1 + C2/β2)).
Corollary B.2. Let Z0, Qi, i = 1, . . . , n, be Banach spaces, and let bi(·, ·) : Z0×

Qi −→ R, i = 1, . . . , n, and Zi := {v ∈ Zi−1 | bi(v, q) = 0 ∀q ∈ Qi}, i = 1, . . . , n − 1.
Assume that bi(·, ·) is continuous and there exist βi such that

sup
v∈Zi−1,‖v‖Z0=1

bi(v, q) ≥ βi‖q‖Qi ∀q ∈ Qi, i = 1, . . . , n.

Then there exists β > 0 such that
(B.1)

sup
v∈Z0,‖v‖Z0=1

n∑
i=1

bi(v, qi) ≥ β (‖q1‖Q1 + · · ·+ ‖qn‖Qn) ∀(q1, . . . , qn) ∈ Q1 × · · · ×Qn.

Proof. The proof of (B.1) follows from Theorem B.1 and by induction.
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Abstract. We solve an electromagnetic frequency domain induction problem in R3 for a fre-
quency interval using rational Krylov subspace (RKS) approximation. The RKS is constructed by
spanning on the solutions for a certain a priori chosen set of frequencies. We reduce the problem of the
optimal choice of these frequencies to the third Zolotaryov problem in the complex plane, having an
approximate closed form solution, and determine the best Cauchy–Hadamard convergence rate. The
theory is illustrated with numerical examples for Maxwell’s equations arising in 3D magnetotelluric
geophysical exploration.
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1. Introduction. Many boundary value problems can be reduced to computa-
tion of

u = f(A)ϕ,

where A is an operator in a Hilbert space, and u and ϕ are elements of the same space.
In practice A can be a large ill-conditioned matrix obtained after discretization of a
PDE operator, which is why it is convenient to consider A as an unbounded operator.

The resolvent

f(λ) =
1

λ+ s

is one of the most commonly used functions appearing in the solution of linear non-
stationary equations in the frequency domain.

As an important practical application, we consider the direct problem of electro-
magnetic frequency sounding arising in geophysical prospecting. It can be reduced to
the magnetic field formulation of the frequency-domain Maxwell equations in R3 in
the low frequency regime (displacement currents are assumed to be negligible)

(1.1) ∇× (μσ)−1∇×H + iωH = ∇× σ−1J

with zero boundary conditions at infinity. Here H is the vector magnetic field induced
by an external current J , ω is a frequency, μ is the magnetic permeability (which is
assumed to be constant throughout the whole domain), and c1 ≤ σ ≤ c2 is variable
electrical conductivity distribution, where c1 and c2 are positive constants. We solve
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the resolvent problem with s = iω, A = A∗ = ∇ × (μσ)−1∇× and ϕ = ∇ × σ−1J .
Maxwell’s operator ∇× (μσ)−1∇× in unbounded domains has a continuum (without
holes) spectrum supported on the entire R+ = [0,+∞] [33, section 9].

Usually, the electromagnetic field is measured on for ω ∈ [ωmin, ωmax]; i.e., the
resolvent must be computed for multiple values of s corresponding to this interval.

Two of the authors solved these problems using the so-called spectral Lanczos
decomposition method (SLDM), which is Galerkin method on a Krylov subspace
Km(A,ϕ) [6]. Similar approaches (with different names) were used in, e.g., [27, 26,
35, 9, 18]; however, the basic idea first appeared in the classical work of Hestenes and
Stiefel [17]. The SLDM allows one to compute the resolvent for many frequencies with
the cost of a single frequency problem using unpreconditioned conjugate gradients,
and the time domain solution converges even asymptotically faster than the frequency
domain solution [6]. However, the SLDM convergence was strongly affected by the
condition number of the discrete problem and frequency range.

Spectral adaptation of Krylov methods and efficiency of rational approximation
can be combined in the so-called rational Krylov subspaces (RKS) [30]. The approxi-
mate solution is projected onto an RKS, which is a span of different rational functions
of A applied to ϕ. Let us consider a subdiagonal RKS in the generic form:

(1.2) Un = span{b, Ab, . . . , An−1b}, b =
n∏
j=1

(A+ sjI)−1ϕ.

Obviously, (A+ sjI)−1ϕ ∈ Un; i.e., the solution of the resolvent problem with s = sj
is exactly approximated on Un, so the shifts sj are also called interpolating points.
We assume that the RKS is computed using iterative methods for which there are
no computational advantages to solving multiple linear systems with the same shifts
(because of extensive memory requirements for the discretization of large scale electro-
magnetic problems in geophysics); i.e., we assume that sj do not coincide. The RKS
is widely used in model reduction, in particular for computation of transfer functions
of linear problems; see reviews [3, 8] for details.

The question is, what is the optimal convergence rate with such an approach,
and how do we choose sj to achieve it? For unbounded frequency intervals the in-
terpolating frequencies can be obtained using the H2-optimality conditions [23] by
computing a sequence of Krylov subspaces [15]. In this work we consider bounded
intervals, for which we compute optimal rates and corresponding interpolating points
using the L∞-optimality condition.

The key of our approach is presenting the Galerkin solution as a particular case
of the so-called skeleton approximation fskel(A, s)ϕ, where fskel(λ, s) is a rational
function of λ and s introduced in [34, 28]. The optimization of the error of the
skeleton approximation can be reduced to the famous third Zolotaryov problem with
asymptotically optimal sj computed in terms of elliptic integrals. Given a bounded
positive frequency interval, the computed interpolation points provide convergence
with the optimal Cauchy–Hadamard rate for the class of operators with continuum
spectrum supported on entire R+ and with a regular enough spectral measure.

2. Formulation of the problem. RKS Galerkin method. We compute
action of the resolvent operator

(2.1) u = (A+ sI)−1ϕ, A ≥ 0,

where A is a self-adjoint nonnegative definite operator acting in a Hilbert space H
equipped with an inner product 〈., .〉, and ϕ is a normalized vector from this space.



ON OPTIMAL CONVERGENCE RATE OF RKS REDUCTION 955

We assume that A has a continuum (without holes) spectrum supported on the entire
R+.

We assume that s ∈ S, where S is a compact subset of the complex plain not
intersecting the real negative semiaxis. Should we have a solution us for a complex
parameter s, we automatically also have the solution for the conjugate parameter s
as us, so without loss of generality we can assume that S is symmetric with respect
to the real axis.

Choose noncoinciding parameters sj ∈ S, symmetric with respect to the real axis,
1 ≤ j ≤ n, and construct RKS (1.2). Due to the continuity of the A’s spectrum the
corresponding spectral measure has infinite number of increase points, so dimUn = n.
To approximately solve (2.1), we will use Galerkin approximation on Un. The Galerkin
solution ũ ∈ Un satisfies the equalities

(2.2) 〈(A+ sI)ũ, v〉 = 〈ϕ, v〉 ∀v ∈ Un.

We construct a well-conditioned basis Gn = {g1, . . . , gn} of Un with the help of
a recursive algorithm. There are many ways to construct Gn. They are known
generically by the name rational Arnoldi method (see, e.g., [30, 14]). In our numerical
experiments we implement the following well-known simple variant of rational Arnoldi.
Set

g1 =
(A+ s1I)−1ϕ

‖(A+ s1I)−1ϕ‖ .

Let 2 ≤ l ≤ n and g1, . . . , gl−1 have been calculated. Then the vector gl is obtained
by the Gram–Schmidt orthogonalization of (A + slI)−1gl−1 to gj , j = 1, . . . , l − 1.
Usually, the most computationally expensive part of rational Arnoldi is the solution
of shifted linear systems.

3. RKS Galerkin method and the third Zolotaryov problem in the
complex plane.

3.1. RKS Galerkin method and skeleton approximants. Let μ(λ) be the
spectral measure, associated with the couple (A,ϕ). Using Parseval’s identity, we
obtain 〈f(A)ϕ, g(A)ϕ〉 = 〈f, g〉μ, where

〈f, g〉μ =
∫ +∞

0

g(λ)f(λ) dμ(λ).

Scalarizing the problem, i.e., considering it in the spectral coordinates, we will
seek the Galerkin approximant w̃ ∈ Vn to the function

1
λ+ s

, λ ∈ R, λ ≥ 0, s ∈ S,

where Vn is the spectral counterpart of Un from (1.2) defined as

Vn = span
{

1
qn
,
λ

qn
, . . . ,

λn−1

qn

}
, qn(λ) =

n∏
l=1

(λ+ sl).

The Galerkin solution ṽ ∈ Vn satisfies the equation

(3.1) 〈v, (λ + s)ṽ − 1〉μ = 0 ∀v ∈ Vn.
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Problem (3.1) has a unique solution. Obviously, (λ + slI)−1ϕ ∈ Vn, so they are the
solutions of (3.1) for s = sl, the points sl being the interpolation ones of ṽ as a
function of s.

Let θj and Zj ∈ Vn, j = 1, . . . , n, be, respectively, the Ritz values and (normal-
ized) Ritz “vectors” (which are actually functions of λ) satisfying

(3.2) 〈v, (λ − θj)Zj〉μ = 0 ∀v ∈ Vn.
This problem (for the operator of multiplication by λ in L2,μ and the trial subspace
Vn) is Hermitian, so θj are positive and Zj are orthonormal. The Galerkin solution
can be presented via spectral decomposition as

(3.3) ṽ =
n∑
j=1

(θj + s)−1〈Zj, 1〉μZj.

By construction sl are either real positive or have a complex conjugate counterpart
in S, and thus qn(λ) > 0 for λ ∈ R+, i.e., on the A’s spectrum. So (3.1), (3.2), (3.3)
can be equivalently considered as the polynomial problem with respect to qnṽ instead
of ṽ on the subspace Kn = span{1, λ, . . . , λn−1} instead of Vn and spectral measure
ρ instead of μ, where dρ(λ) = qn(λ)−2dμ(λ). This allows us to apply to our rational
approximant the known results from the theory of orthogonal polynomials (see [5]).
First, we note that θj are the nodes of a Gaussian quadrature, and as such they don’t
coincide. Also, (3.3) can be viewed as the Lagrange polynomial interpolating qn

λ+s at
θj (with respect to λ).

So, we can summarize the interpolation properties of ṽ as a function of λ and s
in the following lemma.

Lemma 3.1. We have(
ṽ − 1

λ+ s

)∣∣∣∣
s=sl

= 0, λ ≥ 0, l = 1, . . . , n,

and (
ṽ − 1

λ+ s

)∣∣∣∣
λ=θl

= 0, s ∈ S, l = 1, . . . , n.

The so-called skeleton approximation of functions of two variables was introduced
in [34] and then used in [12, 16]. This approximation for the function 1/(x+ y) was
investigated in [28]. This function is defined as

(3.4) fskel(λ, s) =
(

1
λ+ s1

, . . . ,
1

λ+ sn

)
M−1

⎛
⎜⎝

1
s+λ1

,
...
1

s+λn

⎞
⎟⎠ ,

where M = (Mkl) is the n× n matrix with the entries Mkl = 1/(λk + sl).
Theorem 3 from [28] for our case can be written as

(3.5) δ =
[

1
λ+ s

− fskel(λ, s)
]/ 1

λ+ s
=

n∏
j=1

λ− λj
λ+ sj

·
n∏
j=1

s− sj
s+ λj

;

i.e., λj and sj are interpolating points. Both ṽ and fskel are (n−1)/n rational functions
of λ and of s, so from Lemma 3.1 and (3.5) we obtain the following proposition.
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Proposition 3.2. If θj = λj, j = 1, . . . , n, then

ṽ ≡ fskel.

The relative interpolation error, i.e., the left-hand side of (3.5), can be written as

δ =
r(λ)
r(−s) , r(z) =

n∏
j=1

z − λj
z + sj

.

Introduce the quantity

(3.6) σn(R+,−S) ≡ min
λ1,...,λn,s1,...,sn

maxλ≥0 |r(λ)|
minz∈−S |r(z)| .

As will be discussed in detail later, minimization problem (3.6) is a partial case of the
third Zolotaryov problem in the complex plane, and it has an asymptotically (in the
Cauchy–Hadamard sense) best solution with λj ∈ R+ and sj ∈ S, such that λl �= λj
and sl �= sj if l �= j.

We will use sj obtained from (3.6) to construct the Galerkin subspace U . Optimal
λj may differ from the Ritz values θj , but the Galerkin error can still be estimated
via σn(R+,−S).

Proposition 3.3. We have an estimate

(3.7)
∥∥∥∥ 1
λ+ s

− ṽ
∥∥∥∥
μ

≤ 2
σn(R+, S)
dist(R+, S)

.

Proof. For any λj and sj (j = 1, . . . , n) obtained from the solution of Zolotaryov
problem (3.6), fskel(λ, s) ∈ V and

(λ + s)fskel(λ, s) = 1− δ(λ, s),

so fskel(λ, s) is the solution of the modified Galerkin problem

〈v, (λ + s)fskel(λ, s)− 1 + δ(λ, s)〉μ = 0 ∀v ∈ V.

Obviously,

fskel(λ, s) = (λ+ s)−1[1− δ(λ, s)],

so ∥∥∥∥ 1
λ+ s

− fskel
∥∥∥∥
μ

= ‖(λ+ s)−1δ(λ, s)‖μ ≤ ‖(λ+ s)−1‖μ‖δ(λ, s)‖μ.

From the identities ‖ϕ‖ = ‖1‖μ =
∫∞
0 dμ = 1 we get

‖δ(λ, s)‖μ ≤ max
λ∈R+

|δ(λ, s)|.

For the optimal δ obtained with the help of (3.6) we obtain

(3.8) ‖δ(λ, s)‖μ ≤ σn(R+,−S)
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and

(3.9)
∥∥∥∥ 1
λ+ s

− fskel
∥∥∥∥
μ

≤ σn(R+,−S)
dist(R+, S)

.

Again, for any λj and sj the spectral decomposition gives

‖fskel − ṽ‖μ =

∥∥∥∥∥∥
n∑
j=1

(θj + s)−1〈Zj , δ〉μZj

∥∥∥∥∥∥ =

√√√√ n∑
j=1

∣∣(θj + s)−2〈Zj , δ〉2μ
∣∣.

So, with the optimal δ obtained with the help of (3.6), using (3.8) and real positivity
of θj , we infer

‖fskel − ṽ‖μ ≤ σn(R+,−S)
dist(R+, S)

.

Using this estimate, (3.9), and the triangle inequality, we obtain (3.7).
Obviously, the error of the Galerkin approximate cannot be smaller than the

optimal error measured in the same norm, so we have a lower bound for the relative
error of the Galerkin approximant in spectral coordinates as

‖(λ+ s)ṽ − 1‖L∞(R+) ≥ σn(R+,−S).

Thus, we have both the upper L2 and lower L∞ error norms of order σn(R+,−S).
So it is natural to expect that Proposition 3.3 gives a sharp bound in the Cauchy–
Hadamard sense and that ωj are close to optimal in the same sense.

It follows from Parseval’s identity that the Galerkin error in the L2 norm can be
computed as

‖u− ũ‖ =
∥∥∥∥ 1
λ+ s

− ṽ
∥∥∥∥
μ

=

√∫ ∞
0

|ṽ − (λ+ s)−1|2 dμ(λ).

The Galerkin method can improve the convergence speed due to adaptation to the
nonuniformity of μ. However, for the class of operators with regular enough spectral
measures, supported on the entire R+, the spectral adaptation cannot improve the
Cauchy–Hadamard convergence rate.

3.2. The third Zolotaryov problem in the complex plane. Minimization
problem (3.6) is a partial case of the third Zolotaryov problem in the complex plane
(see [10] or [36, section 8.7]). This problem in relation to the alternating direction
implicit (ADI) method was investigated in [22, 7, 20, 32]. Generally this problem can
be solved numerically with the use of the Remez algorithm. In particular, we are
interested in cases when

S = −S = D = i[ωmin, ωmax] ∪ (−i)[ωmin, ωmax].

Such a problem arises in geophysical prospecting with low frequency electromagnetic
sources (see the numerical examples). For these cases we shall calculate the asymp-
totical convergence factor and give a closed form approximate solution.

Let ωmin
ωmax

= 1− κ2, 0 < κ < 1.
Introduce the full elliptic integral of modulus κ,

K(κ) =
∫ 1

0

dt√
(1− t2)(1 − κ2t2)

.
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Theorem 3.4. With the number

(3.10) ρ = exp

[
−πK(

√
1− κ2)

2K(κ)

]

the following assertions are valid:

σn(R+, D) ≥ ρn, n ∈ N,(3.11)

lim
n→∞

n
√
σn(R+, D) = ρ.(3.12)

We shall give a proof of Theorem 3.4 in the appendix.
Later on we assume that the number of frequencies n is even. In practice, we

work with functional spaces over C, the operator A, and the right-hand-side vector
ϕ being real. In such a situation, should we obtain the solution u for a frequency ω,
the solution for the frequency −ω is just ū. Thus we can reckon that frequencies ω
and −ω belong to the compact D simultaneously. In this case D is symmetric with
respect to R.

The proof of [36, section 8.7, Theorem 9] in conjunction with the maxim from
[10, section 5, paragraph 1] says how parameters ωj and λj should be asymptotically
distributed on D and R+, respectively, for approximation (3.4) to be optimal in the
Cauchy–Hadamard sense. Since the measure β (see (A.12)) is equilibrium on D to Ω,
we have taken

(3.13)
ωj
ωmax

= 1− (1− κ2) sn
(

2j − 1
n

, κ

)2

, ωn
2 +j = −ωj , j = 1, . . . ,

n

2
,

so on each connected component of D the parameters ωj are asymptotically dis-
tributed as interpolation nodes of corresponding Zolotaryov approximants.

Remark 1. Optimal (in the Cauchy–Hadamard sense) parameters λj/ωmax can
be found as the roots U of the equations

1
2K(κ)

∫ 1

1−κ2

[
arctan

(√
2U
v
− 1

)
+ arctan

(√
2U
v

+ 1

)]
dv√

(v − 1 + κ2)v(1 − v)

=
(j − 0.5)π

n
, j = 1, . . . , n.(3.14)

But these parameters are not exploited in our reduced order models since we use
Galerkin formulation (2.2) and its Ritz values may differ from optimal λj .

Conjecture 1. Given (3.13) and (3.14), one can explicitly (in the Zolotaryov
style) present the quantities maxz∈D |r(z)−1| and maxλ≥0 |r(λ)| in terms of elliptic
functions and obtain the upper bound

σn(R+, D) = O (ρn) ,

where ρ is defined by formula (3.10).
For the case when κ→ 1− 0 it is possible to obtain an asymptotical formula for

ρ containing only elementary functions. In fact, in this case κ < 1 tends to 1 and the
formulae

K(κ) =
1
2

log
16

1− κ2
+ o(1)
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Fig. 1. 0.001 ≤ ω ≤ 1, n = 40, the error
maxλ≥0 |r(λ)|

|r(iω)| .

(see [1, (17.3.26)]) and

K(
√

1− κ2) =
π

2
+ o(1)

enable us to transform (3.10) into the expression

(3.15) ρ = exp

[
−

π2

2 + o(1)
log ωmax

ωmin
+ log 16

]
.

In Figures 1 and 2 we show the plots of the error maxλ≥0 |r(λ)|
|r(iω)| for Zolotaryov

approximants as functions of ω for n = 40 and 60, respectively. The error graphs show
almost equal ripples on the prescribed spectral interval, which, by analogy with the
Chebyshev real approximation theory, enables us to conjecture that our approximants
are almost the best.

4. Numerical experiments. We consider the direct problem of magnetotelluric
geophysical exploration. The electromagnetic field excited by the Sun propagates into
the Earth. Using the Fourier transform (transfer function) of the measured field,
geophysicists determine underground distribution of conductivity σ, and the direct
problem constitutes in the solution of (1.1) for a given frequency interval. In the
geophysical exploration the problem is considered in the conductive inhomogeneous
half-space with horizontal plane source at +∞. We deal with the plane electric wave
polarized along a horizontal (x) direction for the frequency interval from 0.01 Hz to
15 Hz. The measurements are the ratios of x-component of electric and y-component
of magnetic fields (impedances) taken at the plane z = 300 m. In our experiments we
estimated the relative L2 norm of the error on the plane.

As was already mentioned, the most computationally expensive part of rational
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Fig. 2. 0.001 ≤ ω ≤ 1, n = 60, the error
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Fig. 3. Medium for test 1: A homogeneous conductive half-space.

Arnoldi is the solution of shifted linear systems. We used for this purpose a precon-
ditioned Krylov subspace (QMR) solver [37].

In the first test we consider the homogeneous half-space shown in Figure 3. Fig-
ure 4 shows the comparison of frequency distribution of the errors for geometric and
Zolotaryov grids for test 1 with n = 16. The geometric grid is the most common ad
hoc grid used in applications. Indeed, Zolotaryov’s grids are superior. However, for
large ωmax/ωmin � n the zeros of a Zolotaryov approximant’s error are visually close
to a geometric progression, and the convergence rate of the approximant, based on the
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Fig. 4. Test 1: Error distribution for the geometric and Zolotaryov grids, ωmin = 0.01, ωmax = 15.

Fig. 5. Medium for test 2.

geometric progression grids, approaches that of the optimal (Zolotaryov’s) one [19].
However, as we see from the graphs, the error distribution for the Zolotaryov grid is
more uniform than the one for the geometric grid on [ωmin, ωmax], which results in
slightly better accuracy in the L∞[ωmin, ωmax] norm.

In test 2 we consider a more complicated medium consisting of a resistive target
(oil reservoir) embedded under the sea bottom of variable depth (see Figure 5). The
spectral distribution for this problem varies more than for the previous one (though
still without holes in the spectral measure’s support), so both Zolotaryov and geomet-
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Fig. 7. Convergence for Zolotaryov and geometric grids (test 1) and comparison with theoretical
results.

ric progression exhibit more nonuniform error distribution, but the Zolotaryov error
remains more uniform and smaller in the L∞[ωmin, ωmax] norm (see Figure 6).

In Figures 7 and 8 we show the errors (for both the grids) in the L∞[ωmin, ωmax]
norm as functions of n for tests 1 and 2, respectively. For both tests the Zolotaryov
grid slightly overperforms the geometric one, and the average slopes of the Zolotaryov
error curves are in good agreement with the asymptotic estimate determined by (3.15).
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Fig. 8. Convergence for Zolotaryov and geometric grids (test 2) and comparison with theoretical
results.

The asymptotic estimate is computed as

c exp

(
−n

π2

2

log ωmax
ωmin

+ log 16

)
,

with a constant c chosen to fit the actual Zolotaryov error.
For n = 32 it took 35 minutes of computer time on a PC with a Pentium IV 2 GHz

processor to solve the problem from test 2 (our preconditioner allows us to obtain the
exact solution after just one QMR iteration for test 1) with 6 digits of accuracy. For
comparison, the same task took 32450 steps and 252 minutes of computer time for the
SLDM. So the RKS reduction significantly overperforms the SLDM, but not without
drawbacks. The RKS reduction requires additional memory to store Gn and a priori
knowledge of the Krylov subspace dimension n.

5. Conclusive remarks.
• The problem of optimization of rational Krylov subspaces (RKS) for compu-

tation of the resolvent of self-adjoint operators can be reduced to the third
Zolotaryov problem in the complex plane.
• This problem can be asymptotically solved in a closed form for a bounded

positive frequency interval.
• The numerical experiments confirm the theoretical results for the models from

geophysical applications.
• We are looking into possibilities of extension of the developed approach to

non-Hermitian operators and the computation of exponentials and other func-
tions of operators.
• A drawback of the developed approach is that the dimension of the rational

Krylov subspace should be known a priori. We are planning to address this
issue in our future research.



ON OPTIMAL CONVERGENCE RATE OF RKS REDUCTION 965

Appendix. Proof of Theorem 3.4 and auxiliary assertions. In subsec-
tion A.1 we shall establish properties of the Green function for the domain C \R−;
the relation between values on R+ and on iR is the key point. In subsection A.2 we
shall compare the corresponding potentials of two measures supported, respectively,
on R and iR. This will enable us to express the asymptotical convergence factor of
our (complex) third Zolotaryov problem through that of the classical (real) problem
studied by Zolotaryov himself.

A.1. Green’s function.
Remark 2. Due to technical reasons, we prefer to handle the condenser (R−, D)

instead of (R+, D). Of course, σn(R−, D) = σn(R+, D) because of the symmetry.
Removing from the complex plane the support R− of the measure, generating

the Markov function

(A.1) z−1/2 =
∫ 0

−∞

1
π
√−x(z − x)−1 dx, z �∈ R−

(see [4, part 1, section 2.2, p. 47]), we obtain the domain Ω = C \R−.
According to a definition from [25, Chapter 5, section 5] or [31, section A.V],

Green’s function (of two variables) for Ω

gΩ(z, x), z, x ∈ Ω,

is the one satisfying the following conditions: (1) the function gΩ(z, x) as a function
of z is harmonic in the domain Ω\{x}; (2) the function

gΩ(z, x)− log
1

z − x
is bounded in some vicinity of a point x; (3) the limit value of gΩ(z, x) as z tends to
a point from R− is zero.

Lemma A.1. Green’s function (of two variables) for the domain Ω is expressed
by the formula

(A.2) gΩ(z, x) = log
∣∣∣∣
√
z +
√
x̄√

z −√x
∣∣∣∣ , z, x ∈ Ω.

Proof. It is known [25, Chapter 5, section 5] that

(A.3) gΩ(z, x) = log |φ(z, x)|, z, x ∈ Ω,

where with a fixed argument x the slice z �→ φ(z, x) conformally maps Ω ∪ {∞} onto
the exterior to the unit circle in C in such a way that φ(x, x) =∞. We shall build φ
as a composition of the following conformal mappings:

(A.4) z �→
√
z − 1√
z + 1

transforms [21, p. 428] Ω into the open unit circle;

(A.5) z �→ z − a
1− āz , |a| < 1,
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transforms [24, p. 104] the open unit circle into itself; the inversion

(A.6) z �→ 1
z

transforms the open unit circle into the exterior to the open unit circle. We shall
choose the parameter value

a =
√
x− 1√
x+ 1

,

so that

(A.7)
1 + a

1− a =
√
x+ 1 +

√
x− 1√

x+ 1−√x+ 1
=
√
x.

Composing the mappings (A.4)–(A.6) and accounting (A.7), we obtain

φ(z, x) =
1− ā

√
z−1√
z+1√

z−1√
z+1
− a

=
√
z + 1− ā(√z − 1)√
z − 1− a(√z + 1)

=
(1 − ā)√z + (1 + ā)
(1 − a)√z − (1 + a)

=
1− ā
1− a ·

√
z +
√
x̄√

z −√x,

which in conjunction with (A.3) follows (A.2).
Remark 2. Notwithstanding that representation (A.2) is unsymmetric, it is easy

to see that the symmetry property

gΩ(z, x) = gΩ(x, z), z, x ∈ Ω,

holds.
Lemma A.2. If u, v ∈ R, u, v > 0, then

(A.8) gΩ(ui, vi) + gΩ(ui,−vi) = gΩ(u, v).

Proof. Indeed, we derive from (A.2)

gΩ(ui, vi) + gΩ(ui,−vi) = log

∣∣∣∣∣
√
ui+

√−vi√
ui−√vi

∣∣∣∣∣ + log

∣∣∣∣∣
√
ui+

√
vi√

ui−√−vi

∣∣∣∣∣
= log

∣∣∣∣
√
u+ i

√
v√

u−√v
∣∣∣∣ + log

∣∣∣∣
√
u+
√
v√

u− i√v
∣∣∣∣ = log

∣∣∣∣
√
u+
√
v√

u−√v
∣∣∣∣ = gΩ(u, v).

Lemma A.3. The following differential relations hold:

∂gΩ(−u+ εi, v)
∂ε

∣∣∣∣
ε=+0

=
√
v√

u(u+ v)
,(A.9)

∂gΩ(−u+ εi, vi)
∂ε

∣∣∣∣
ε=+0

=
√
v

√
2u

[
v
2 +

(√
u−√

v
2

)2
] ,(A.10)

∂gΩ(−u+ εi,−vi)
∂ε

∣∣∣∣
ε=+0

=
√
v

√
2u

[
v
2 +

(√
u+

√
v
2

)2
] ,(A.11)

u, v ∈ R, u, v > 0.
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Proof. The symbol .= will denote an equality up to an o(ε) addend.
The limit values of gΩ(z, x) are zero, when z or x tends to a point from R−.
First, we have

log
∣∣∣∣
√−u+ εi+

√
v√−u+ εi−√v

∣∣∣∣ = log

∣∣∣∣∣
√−1 + ε

u i+
√

v
u√−1 + ε

u i−
√

v
u

∣∣∣∣∣ .= log

∣∣∣∣∣ i+
ε
2u +

√
v
u

i+ ε
2u −

√
v
u

∣∣∣∣∣
.= log

√
1 + v

u + ε
u

√
v
u

1 + v
u − ε

u

√
v
u

.=
1
2

log

(
1 + 2

ε
u

√
v
u

1 + v
u

)
.=

ε
u

√
v
u

1 + v
u

,

which gives (A.9).
Second, we obtain

log
∣∣∣∣
√−u+ εi+

√−vi√−u+ εi−√vi

∣∣∣∣ .= log

∣∣∣∣∣
√
u i

(
1− εi

2u

)
+
√
v 1−i√

2√
u i

(
1− εi

2u

)−√v 1+i√
2

∣∣∣∣∣
= log

∣∣∣∣∣∣
(

ε
2
√
u

+
√

v
2

)
+

(√
u−√

v
2

)
i(

ε
2
√
u
−√

v
2

)
+

(√
u−√

v
2

)
i

∣∣∣∣∣∣
=

1
2

log

(
ε

2
√
u
−√

v
2

)2

+ 4 ε
2
√
u

√
v
2 +

(√
u−√

v
2

)2

(
ε

2
√
u
−√

v
2

)2

+
(√
u−√

v
2

)2

.=
1
2

log

[
1 +

2ε√
u

√
v
2

v
2 +

(√
u−√

v
2

)2

]
.=

ε
√

v
2u

v
2 +

(√
u−√

v
2

)2 ;

this leads to (A.10).
Third, we analogously derive

log

∣∣∣∣∣
√−u+ εi+

√
vi√−u+ εi−√−vi

∣∣∣∣∣ .= log

∣∣∣∣∣
√
u i

(
1− εi

2u

)
+
√
v 1+i√

2√
u i

(
1− εi

2u

)−√v 1−i√
2

∣∣∣∣∣
= log

∣∣∣∣∣∣
(

ε
2
√
u

+
√

v
2

)
+

(√
u+

√
v
2

)
i(

ε
2
√
u
−√

v
2

)
+

(√
u+

√
v
2

)
i

∣∣∣∣∣∣
=

1
2

log

(
ε

2
√
u
−√

v
2

)2

+ 4 ε
2
√
u

√
v
2 +

(√
u+

√
v
2

)2

(
ε

2
√
u
−√

v
2

)2

+
(√
u+

√
v
2

)2

.=
1
2

log

[
1 +

2ε√
u

√
v
2

v
2 +

(√
u+

√
v
2

)2

]
.=

ε
√

v
2u

v
2 +

(√
u+

√
v
2

)2 ;

this justifies (A.11).

A.2. Two measures and their potentials. It follows from the explicit formu-
lae [2, section 39] for the extremal error points of diagonal Zolotaryov approximants
to the function z−1/2 on the segment [1 − κ2, 1] that, as the approximant’s degree
tends to infinity, the interpolation points are, in the limit, distributed according to
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the probability measure α on [1− κ2, 1], defined by the equality

α′(x) =
1

2K(κ)
√

(x + κ2 − 1)x(1 − x) .

Since Zolotaryov approximants are optimal (though with a weight), the measure α is
equilibrium with respect to Ω.

Without loss of generality we can assume that ωmax = 1. Now introduce the
following probability measure β on the compact D:

(A.12) β(iX) = β(−iX) =
α(X)

2
, X a measurable subset of [1− κ2, 1].

Define the two potentials

(A.13) g(α,Ω; z) =
∫ 1

1−κ2
gΩ(z, x) dα(x), g(β,Ω; z) =

∫
D

gΩ(z, x) dβ(x).

Proposition A.4. The measure β is the equilibrium one for the compact D
with respect to the domain Ω. The (common) value of g(α,Ω; z) on D equals the half
(common) value of g(α,Ω; z) on [1− κ2, 1].

Proof. The two potentials on the corresponding supports owing to (A.8), (A.12),
and (A.13) are related by

g(β,Ω;ui) =
1
2

∫ 1

1−κ2
gΩ(ui, vi) dα(v) +

1
2

∫ 1

1−κ2
gΩ(ui,−vi) dα(v)

=
1
2

∫ 1

1−κ2
gΩ(u, v) dα(v) =

1
2
g(α,Ω;u),

u ∈ R, 1− κ2 ≤ u ≤ 1.

It remains to recall that the potential g(α,Ω;u) is constant on [1− κ2, 1].
Lemma A.5. The two potentials satisfy the equality

(A.14)
∫ +∞

0

∂g(α,Ω;−u)
∂νu

du =
∫ +∞

0

∂g(β,Ω;−u)
∂νu

du (= π),

where ν is the upward (or, which is the same due to the symmetry, downward) nor-
mal.

Proof. On the one hand, in view of (A.1) and (A.9)

∫ +∞

0

∂g(α,Ω;−u)
∂νu

du =
∫ +∞

0

∫ 1

1−κ2

∂gΩ(−u, v)
∂νu

du dα(v)

=
∫ 1

1−κ2

∫ +∞

0

du√
u(u+ v)

√
v dα(v) = π

∫ 1

1−κ2
dα(v) = π.(A.15)

On the other hand, making at a suitable moment the change of variables u = vt2 and
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exploiting formulae (A.10), (A.11) and [13, item 2.172], derive

∫ +∞

0

∂g(β,Ω;−u)
∂νu

du =
∫ +∞

0

∫ 1

1−κ2

1
2

[
∂gΩ(−u, vi)

∂νu
+
∂gΩ(−u,−vi)

∂νu

]
du dα(v)

=
1
2

∫ 1

1−κ2

∫ +∞

0

[
1√

2u(u+ v −√2uv)
+

1√
2u(u+ v +

√
2uv)

]
du
√
v dα(v)

=
1
2

∫ 1

1−κ2

[∫ +∞

0

2vt dt√
2vt2(vt2 + v −

√
2v2t2)

+
∫ +∞

0

2vt dt√
2vt2(vt2 + v +

√
2v2t2)

]
√
v dα(v)

=
1√
2

∫ 1

1−κ2

[∫ +∞

0

dt

t2 −√2t+ 1
+

∫ +∞

0

dt

t2 +
√

2t+ 1

]
dα(v)

=
∫ 1

1−κ2

⎛
⎝arctan

2t−√2√
2

∣∣∣∣∣
t=+∞

t=0

+ arctan
2t+

√
2√

2

∣∣∣∣∣
t=+∞

t=0

⎞
⎠ dα(v)

=
π

2
+
π

4
+
π

2
− π

4
= π.

(A.16)

Comparing (A.15) and (A.16), we get (A.14).

A.3. Proof of Theorem 3.4.
Proof. It follows from [11, section 1] that the Riemann modulus of the condenser

(R−, [1− κ2, 1]) equals ρ2. This implies (see [10, section 3]) that

lim
n→∞

n
√
σn(R−, [1− κ2, 1]) = ρ2.

Take into account that potentials (A.13), divided by their values on the compacts
[1 − κ2, 1] and D, respectively, solve the Dirichlet problems with the zero boundary
condition on R− and unity boundary condition on [1 − κ2, 1] or D (these harmonic
functions are called harmonic measures; see [29, section 4.3]). Formula (27) from [36,
section 8.7, Theorem 9] and the definition of the quantity τ from that theorem’s proof
show how the quantities

lim
n→∞

n
√
σn(R−, D) and lim

n→∞
n
√
σn(R−, [1− κ2, 1])

are expressed in terms of the harmonic measures: the asymptotic convergence factors’
logarithms are inversely proportional to the integral over R− of the normal derivative
of harmonic measures (it is sufficient to know the integrals over one of the two edges
of the slit R−). Assertion (3.12) is a consequence of Lemma A.5 and Proposition A.4.

Assertion (3.11) then follows from [10, Theorem 1].
Remark 3. The proof of the mentioned Theorem 9 from [36, section 8.7] shows

that solutions that are optimal in the Cauchy–Hadamard sense can be taken with
ωj ∈ D and λj ∈ R−.
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[22] V. I. Lebedev, On Zolotarev problems in the alternating direction method. II, in Trudy Semin.

S. L. Sobolev 1, Novosibirsk, Nauka, 1976, pp. 51–59 (in Russian).
[23] L. Meier and D. Luenberger, Approximation of linear constant systems, IEEE Trans. Au-

tomat. Control, 12 (1967), pp. 585–588.
[24] Z. Nehari, Conformal Mapping, Dover, New York, 1975.
[25] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka,

Moscow, 1988 (in Russian); English translation in Transl. Math. Monogr., AMS, Provi-
dence, RI, 1991.

[26] B. Nour-Omid, Lanczos method for heat conduction analysis, Internat. J. Numer. Methods
Engrg., 24 (1987), pp. 251–262.

[27] B. Nour-Omid and R. W. Clough, Dynamic analysis of structure using Lanczos co-ordinates,
Earthquake Eng. and Struct. Dynamics, 12 (1984), pp. 565–577.

[28] I. V. Oseledets, Lower bounds for separable approximations of the Hilbert kernel, Mat. Sb.,
198 (2007), pp. 425–432 (in Russian; translated into English).

[29] T. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts 28,
Cambridge University Press, Cambridge, UK, 1995.

[30] A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex
shifts for real matrices, BIT, 34 (1994), pp. 165–176.



ON OPTIMAL CONVERGENCE RATE OF RKS REDUCTION 971

[31] H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia Math. Appl. 43,
Cambridge University Press, Cambridge, UK, 1992.

[32] G. Starke, Optimal alternating direction implicit parameters for nonsymmetric systems of
linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431–1445.

[33] M. E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations,
Springer, New York, 1991.

[34] E. E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo, 33 (1996), pp. 47–57.
[35] H. A. Van der Vorst, An iterative solution method for solving f(A)x = b using Krylov

subspace information obtained for the symmetric positive definite matrix, J. Comput. Appl.
Math., 18 (1987), pp. 249–263.

[36] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain,
AMS, Providence, RI, 1960.

[37] M. Zaslavsky, S. Davydycheva, V. Druskin, A. Abubakar, T. Habashy, and L. Knizh-

nerman, Finite-difference solution of the 3D electromagnetic problem using divergence-free
preconditioners, in Proceedings of SEG Annual Meeting, New Orleans, 2006, pp. 775–778.



SIAM J. NUMER. ANAL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 47, No. 2, pp. 972–996

HARDY SPACE INFINITE ELEMENTS FOR SCATTERING AND
RESONANCE PROBLEMS∗

THORSTEN HOHAGE† AND LOTHAR NANNEN†

Abstract. This paper introduces a new type of infinite element for scattering and resonance
problems that is derived from a variant of the pole condition as radiation condition. This condition
states that a certain transform of the exterior solution belongs to the Hardy space of L2 boundary
values of holomorphic functions on the unit disc if and only if the solution is outgoing. We obtain
a symmetric variational formulation of the problem in this Hardy space. Our infinite elements
correspond to a Galerkin discretization with respect to the standard monomial orthogonal basis of
this Hardy space and lead to simple element matrices. Hardy space infinite elements are particularly
well suited for solving resonance problems since they preserve the eigenvalue structure of the problem.
We prove superalgebraic convergence for a separated problem. Numerical experiments exhibit fast
convergence over a wide range of wave numbers.
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1. Introduction. For solving a time-harmonic wave equation on an unbounded
domain by finite element methods, appropriate boundary conditions have to be im-
posed on the artificial boundary of the necessarily finite computational domain. These
boundary conditions should be chosen in such a way that the solution of the boundary
value problem on the computational domain is a good approximation to the restriction
of the solution of the wave equation posed on the unbounded domain. Such condi-
tions are called transparent boundary conditions and replace the radiation condition
at infinity.

The method proposed in this paper works well for scattering problems, but a par-
ticular advantage over numerous competing transparent boundary conditions is the
ability to easily treat resonance problems. Such problems appear in molecular physics,
acoustics, lasers, and numerous other areas of engineering, natural sciences, and math-
ematics (cf. [22, 14, 13, 7, 25]). A typical resonance problem for the Neumann–
Laplacian in the complement of a smooth, compact domain K ⊂ R

d such that R
d \K

is connected consists in finding a nontrivial eigenpair (u, λ) ∈ H2
loc(R

d \K)× C such
that

−Δu = λu in R
d \K,(1.1a)

∂u

∂ν
= 0 on ∂K,(1.1b)

u satisfies a radiation condition.(1.1c)

∂u
∂ν denotes the outward normal derivative. For other equivalent definitions of res-
onances we refer to [23, 25]. In the scattering problem corresponding to (1.1), the
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number λ ∈ (0,∞) is given and the homogeneous boundary condition (1.1b) is re-
placed by an inhomogeneous boundary condition. In the following let λ = κ2 with
�(κ) > 0 and assume that K is contained in the ball Ba := {x : ‖x‖ < a} of radius
a > 0. One of a several equivalent formulations of the radiation condition (1.1c) is
that u has an expansion in terms of Hankel functions H(1)

n of the first kind,

(1.2) u(x) =
∞∑
l=0

Ml∑
m=0

αl,m (κ|x|)1−d/2H(1)
l−1+d/2(κ|x|)Yl,m

(
x

|x|
)
, |x| > a,

where {Yl,0, . . . , Yl,Ml
} is an orthonormal basis of the i-th eigenspace of the Laplace–

Beltrami operator on Sd−1. (Yl,m are spherical harmonics d = 3 and trigonometric
monomials for d = 2.) A solution u to (1.1a) satisfying (1.2) is called outgoing,
whereas a solution with a corresponding expansion in terms of Hankel functions of
the second kind is called incoming. It can be shown that all resonances κ =

√
λ,

�κ > 0 of (1.1) satisfy �(κ) < 0 (cf. [23]). For such values of κ, it follows from the
asymptotic behavior of Hankel functions,

(1.3)

|H(1)
l (z)| = |eiz|√|z|

(
1 +O

(
1
|z|
))

, |H(2)
l (z)| = |e

−iz|√|z|
(

1 +O
(

1
|z|
))

, |z| → ∞,

that outgoing solutions are exponentially increasing at infinity, and incoming solu-
tions are exponentially decreasing. This implies in particular that incoming, but not
outgoing, solutions satisfy the Sommerfeld radiation condition

(1.4) r(d−1)/2

(
∂u

∂r
− iκu

)
→ 0 as r = |x| → ∞

for �(κ) < 0 since condition (1.4) (as well as the conjugate condition with −i replaced
by i) selects exponentially decaying solutions. Hence the Sommerfeld condition does
not characterize outgoing waves for �(κ) < 0.

The fact that (1.4) is not valid for �(κ) < 0 rules out the simple transparent
boundary condition ∂u/∂r = iκu on ∂Ba for resonance problems as well as higher
order local conditions [11, 6]. Standard infinite elements are based on the series
expansion (1.2) or the Wilcox expansion [3, 4]. Since κ appears in (1.2) in a very
nonlinear way inside the argument of the Hankel functions, standard infinite elements
destroy the eigenvalue structure of problem (1.1). The same holds true for boundary
element methods. On the other hand, the perfectly matched layer (PML) method
preserves the eigenvalue structure, and has been used under the name complex scaling
for the theoretical study and the numerical computation of resonances in molecular
physics since the 1970s [14, 22]. Despite the name, Hardy space infinite elements are
actually closer to PML than to classical infinite elements (cf. [10]).

In this paper we will use the pole condition as radiation condition (cf. [18, 9, 10]).
The formulation used in this paper states that a function u is outgoing if and only if a
certain transform of u in a radial direction belongs to the Hardy space H+(S1) on the
complex unit circle S1. Analogously u is incoming if and only if the same transform
of u belongs to the orthogonal complement of H+(S1) in L2(S1). Therefore, we apply
the above transform to the variational formulation of the exterior Helmholtz equation
and incorporate the radiation condition by restricting L2(S1) to the correct Hardy
space. Hardy space infinite elements correspond to the Galerkin method applied to
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this variational problem using the standard monomial orthogonal basis of the Hardy
space H+(S1). For one-dimensional time-dependent problems a similar approach has
been studied in [16].

The rest of this paper is organized as follows: We first present a complete treat-
ment of Hardy space infinite elements for one-dimensional problems in section 2. In
the following section 3 we derive analogous Hardy space infinite elements in arbitrary
space dimensions. Then the convergence of this method is analyzed using separation
arguments in section 4. Numerical results are described in section 5 before we end this
paper by some conclusions, including a discussion of pros and cons of the proposed
method.

2. One-dimensional Helmholtz equation. In this section we will consider
the one-dimensional time-harmonic wave equation

−u′′(r)− κ2p(r)u(r) = 0, r ≥ 0,(2.1a)

u′(0) = f ′0,(2.1b)

u outgoing,(2.1c)

with a given complex wave number κ ∈ C with positive real part, a boundary value
f ′0 ∈ C, and a positive potential p ∈ L∞((0,∞)) satisfying p(r) = 1 for r ≥ a. We
will split u into an interior part uint := u|[0,a] and an exterior part uext(r) := u(r+a),
r > 0. Actually, in one space dimension the Sommerfeld-type transparent boundary
condition u′(a) = iκu(a) is exact even for �(κ) < 0, and (2.1) reduces to the simple
boundary value problem

(2.2) −u′′int − pκ2uint = 0, u′int(0) = f ′0, u
′
int(a) = iκuint(a).

To explain the basic ideas, we will apply Hardy space infinite elements to problem (2.1)
even though this is more complicated than solving (2.2) and requires more degrees of
freedom. Note, however, that for the corresponding resonance problem, (2.2) leads to
a quadratic eigenvalue problem, whereas Hardy space infinite elements will lead to a
linear eigenvalue problem.

2.1. Pole condition and Hardy spaces. Since we assumed p ≡ 1 on [a,∞),
the exterior part of all solutions to (2.1a) is of the form

(2.3) uext(r) = C1e
iκr + C2e

−iκr, r ≥ 0.

The term C1e
iκr corresponds to an outgoing wave, and C2e

−iκr to an incoming wave.
The pole condition distinguishes these two solutions with the help of the Laplace
transform (Lf)(s) :=

∫∞
0
e−srf(r)dr. Due to the explicit form (2.3), û := Luext is

given by

(2.4) û(s) =
C1

s− iκ +
C2

s+ iκ
, �(s) > |�(κ)|.

This function has a holomorphic extension to C \ {iκ,−iκ}. u is outgoing if and only
if û has no pole in the lower complex half-plane and incoming if and only if û has no
pole in the upper complex half-plane. This motivates the use of the following Hardy
spaces.

Definition 2.1 (H−(R) and H+(R)). The Hardy space H±(R) is the set of all
functions f ∈ L2(R) that are L2 boundary values of a function v, which is holomorphic
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in C
± := {s ∈ C : �(±s) > 0} and for which the integrals

∫
R
|v(x ± iε)|2dx are

uniformly bounded for ε > 0.
u is outgoing if and only if û|R ∈ H−(R) and incoming if and only if û|R ∈ H+(R).
Equipped with the standard L2 inner product, H±(R) are Hilbert spaces (cf. [5]).

Moreover, by the Paley–Wiener theorem these spaces are characterized by

(2.5) H±(R) = {û ∈ L2(R) : F−1û(±t) = 0 for almost all t > 0}

in terms of the inverse Fourier transform (F−1f)(t) = 1
2π

∫∞
−∞ e

istf(s) ds. This yields
the orthogonal decomposition L2(R) = H+(R) ⊕ H−(R). The function v in Defini-
tion 2.1 is uniquely determined by f and can be recovered by the Cauchy integral

(2.6) v(s) =
1

2πi

∫
R

f(s̃)
s̃− s ds̃, s ∈ C

±.

Since we are interested in outgoing solutions, we will mainly deal with the space
H−(R). Because of the lack of a convenient orthonormal basis of H−(R) we will
apply a further transform to another closely related Hardy space.

Definition 2.2 (H+(S1)). The Hardy space H+(S1) is the set of all functions
F ∈ L2(S1) that are L2 boundary values of a function V , which is holomorphic in
the unit disk D := {z ∈ C : |z| < 1} and for which the integrals

∫ 2π

0
|V (reiθ)|2dθ are

uniformly bounded for r ∈ [0, 1).
Equipped with the L2 scalar product, H+(S1) is a Hilbert space, and a simple

complete orthogonal system of H+(S1) is given by the monomials zk, k = 0, 1, . . . .
A family of unitary operators identifying the Hilbert spaces H−(R) and H+(S1)

can be defined with the help of the Möbius transformations ϕκ0(z) := iκ0
z+1
z−1 , κ0 > 0,

which map the unit disc D to the half-space C
−. The parameter κ0 will act as a

tuning parameter in the algorithms to be discussed below. Since
∫∞
−∞ |f(t)|2 dt =∫ 2π

0

∣∣(f ◦ ϕκ0)(eiθ)
√
ϕ′κ0

(eiθ)
∣∣2dθ and ϕ′κ0

(z) = −2iκ0
(z−1)2 , the mappings

(2.7) (Mκ0f)(z) := (f ◦ ϕκ0)(z)
1

z − 1

are isometric from L2(R) to L2(S1) up to the factor
√−2iκ0, and it can be shown

that Mκ0(H
−(R)) = H+(S1) (see [5]). Hence,

√−2iκ0Mκ0 : H−(R) → H+(S1) is
unitary.

Many of the operators on H+(S1) which will appear in our analysis are of the
following form.

Definition 2.3 (Toeplitz operator). Let f ∈ L∞(S1) be a complex-valued func-
tion and let P : L2(S1) → H+(S1) denote the orthogonal projection. Then the
Toeplitz operator Tf : H+(S1)→ H+(S1) with symbol f is defined by TfU := P (fU).

We will need the following classical results on Toeplitz operators: If f : S1 → C is
continuous and has no zeros, then Tf is a Fredholm operator, and ind(Tf ) = −wn(f)
where wn(f) denotes the winding number of f around 0 [1, Theorem 2.42]. Moreover,
if ind(Tf ) = 0, then Tf is injective and hence boundedly invertible [1, Corollary 2.40].

Let us consider the explicit form of the transform Û := Mκ0 û of the outgoing
solution u of (2.1). With u0 := u(a) we have

(2.8) uext(r) = u0e
iκr L|R�−→ û(s) =

u0

s− iκ
Mκ0�−→ Û(z) =

u0

iκ0(z + 1)− iκ(z − 1)
.
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Note that Û(1) = u0/(2iκ0). This will be convenient for coupling the transformed
exterior to the interior problem. To take advantage of this fact we decompose

(2.9) Û(z) =
1

2iκ0
(u0 + (z − 1)U(z)) with U(z) :=

2iκ0Û(z)− u0

z − 1
.

Since the only singularities of the holomorphic extensions of Û and U are simple poles
at κ0+κ

κ0−κ and since κ0+κ
κ0−κ /∈ D for �(κ/κ0) > 0, both Û and U are analytic on S1 and

belong to H+(S1).

2.2. Variational formulation. The formal variational formulation of the dif-
ferential equation (2.1a) is

(2.10)
∫ a

0

(u′intv
′
int − κ2puintvint)dr +

∫ ∞
0

(u′extv
′
ext − κ2uextvext)dr = −f ′0vint(0).

The basic identities for transforming the exterior variational problem to the Hardy
space are

(2.11)
∫ ∞

0

f(r)g(r)dr = − i

2π

∫ ∞
−∞

f̂(−s)ĝ(s)ds =
−iκ0

π

∫
S1
F̂ (z)Ĝ(z)|dz|,

with f̂ = (Lf)|R, ĝ = (Lg)|R, F̂ = Mκ0 f̂ , and Ĝ = Mκ0 ĝ. They will be derived in
Lemma A.1 for the more general case κ0 ∈ C (cf. Remark 2.8 below). Introducing
the bilinear form

A(F,G) :=
∫
S1
G(z)F (z)|dz|, F,G ∈ H+(S1),(2.12)

we have in particular that
∫∞
0 fgdr = −iκ0

π A
(
F̂ , Ĝ

)
.

Theorem 2.4. Let κ0,�(κ) > 0 and X := H1([0, a]) ⊕ H+(S1). If u ∈
H2

loc([0,∞)) is a solution to (2.1), then (uint, U)� with U defined in (2.9) belongs
to X and satisfies the variational equation

(2.13) B

((
uint

U

)
,

(
vint

V

))
= −f ′0vint(0),

with

B

((
uint

U

)
,

(
vint

V

))
:=
∫ a

0

(u′intv
′
int − κ2p uintvint)dr

− iκ0

4π
A(u0 + (z + 1)U, v0 + (z + 1)V )− iκ2

4πκ0
A(u0 + (z − 1)U, v0 + (z − 1)V )

for all (vint, V ) ∈ X and v0 := vint(a). Conversely, if (uint, U)� ∈ X is a solution of
(2.13), then uint belongs to H2([0, a]) and is the restriction of a solution u to (2.1).

Proof. Assume first that u is a solution to (2.1). It suffices to show that (2.13)
holds for all (vint, V ) in a dense subset of X . Hence, we start with a test function
v ∈ C([0,∞)) ∩H1([0, a]) for which vext has the form

vext(r) = v0e
ikr, �(k) > −�(κ), �(k) > 0.
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For such test functions, the product u · v and products of derivatives decay expo-
nentially, and (2.10) can be derived by partial integration. Moreover, for these test
functions the identity (2.11) holds both for f = uext, g = vext and for f = u′ext,
g = v′ext. In the second case we apply the identities

(Lf ′)(s) = s(Lf)(s)− f0,(2.14)

(Mκ0L|Rf ′)(z) = iκ0
z + 1
z − 1

f0 + (z − 1)F (z)
2iκ0

− f0
z − 1

=
1
2

(f0 + (z + 1)F (z)) ,

where f0 and F are defined in analogy to u0 and U , to finally arrive at (2.13) with

(2.15) V (z) =
2iκ0(Mκ0L|Rvext)(z)− v0

z − 1
= v0

k − κ0

(κ0 − k)z + (κ0 + k)
.

Since by virtue of Lemma A.2 the span of such functions is dense in H+(S1) and B
is continuous on X ×X , (2.13) holds for all (vint, V )� ∈ X .

Conversely, let (uint, U)� ∈ X be a solution to (2.13). For vint = 0 it follows after
multiplication by −4πiκ0 that

(2.16)∫
S1
V (z)

{
−κ2

0(z + 1) [u0 + (z + 1)U(z)]− κ2(z − 1) [u0 + (z − 1)U(z)]
}
|dz| = 0

for all V ∈ H+(S1). Due to (2.20) below, the orthogonal projection P : L2(S1) →
H+(S1) applied to the expression in braces vanishes. Since Pz = 0, we obtain

(2.17) P {mU} = P
{
(κ2

0 − κ2) + (κ2
0 + κ2)z

}
u0 = (κ2

0 − κ2)u0,

with m(z) := −κ2
0|z + 1|2 − κ2|z − 1|2.

The left-hand side of (2.17) is the Toeplitz operator Tm with symbol m applied
to U . Since m(z) = −2(κ2 + κ2

0) + 2(κ2 − κ2
0)�(z), the graph of m is the straight

line connecting −4κ2 and −4κ2
0. Therefore, Tm is boundedly invertible by the results

quoted after Definition 2.3. Hence, (2.17) has a unique solution. By the derivation of
(2.13), this solution is given by (2.8) and (2.9), or explicitly U(z) = u0

κ−κ0
(κ0−κ)z+(κ0+κ) .

Plugging this into (2.13) and using (2.16), we obtain the variational formulation of
the boundary value problem (2.2):

(2.18)
∫ a

0

(v′intu
′
int − κ2p vintuint)dr = iκu0v0 − vint(0)f ′0.

By elliptic regularity results uint belongs to H2([0, a]) and solves (2.2). Hence, it is
also part of a solution to (2.1).

2.3. G̊arding-type inequality. It is obvious that the bilinear form B in The-
orem 2.4 is bounded and symmetric. Moreover, the interior part Bint(uint, vint) :=∫ a
0 (u′intv

′
int − κ2puintvint)dr satisfies the standard G̊arding inequality

(2.19) �{Bint (uint, uint)}+ β‖uint‖2L2 ≥ ‖uint‖2H1 ,

with β := (|κ|2 + 1)‖p‖L∞ ≥ 0. We want to derive a similar inequality for the whole
bilinear form B. Note that we cannot simply choose V = U since U /∈ H+(S1) for
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U ∈ H+(S1) in general. However, a useful conjugation on the Hilbert space H+(S1)
is given by the mapping C : H+(S1)→ H+(S1) defined by

(CF )(z) := F (z).

It is easy to check that C is well-defined, antilinear, and isometric, C2 = I; i.e., C is
indeed a conjugation. Moreover, it has the useful property that

(2.20) A(F, CG) = 〈F, G〉L2(S1).

Theorem 2.5. Let �(κ2), κ0 > 0. Then there exist constants α, β, γ > 0, such
that

�
{

(i+ γ)B
((

uint

U

)
,

(
uint

CU
))}

+ β‖uint‖2L2 ≥ α
∥∥∥∥
(
uint

U

)∥∥∥∥
2

X

.

Proof. For the exterior part of the bilinear form Bext := B−Bint we obtain from
the identity (2.20) that

�
{

(i+ γ)Bext

((
uint

U

)
,

(
uint

CU
))}

= �
(
κ0(1− γi)

4π

)
‖u0 + (z + 1)U)‖2L2(S1)

+�
(
κ2(1− γi)

4πκ0

)
‖u0 + (z − 1)U‖2L2(S1)

for any γ ∈ R. Due to the assumption �(κ2) > 0, we may choose a γ > 0 such that
�(κ2(1−γi)) > 0. Using the inequality ‖x‖2+‖y‖2 ≥ 1

2‖x−y‖2 with x := u0+(z+1)U
and y := u0 + (z − 1)U we obtain

(2.21) �
{

(i+ γ)Bext

((
uint

U

)
,

(
uint

CU
))}

≥ α̃‖U‖2L2,

with α̃ := min
(�(κ0(1−γi)

2π

)
,�(κ2(1−γi)

2πκ0

))
. This together with (2.19) yields the asser-

tion with β := γ(|κ|2 + 1)‖p‖L∞ > 0 and α := min(α̃, γ).
Using standard arguments, we obtain the following corollary.
Corollary 2.6. If the variational equation (2.13) has only the trivial solution

for f ′0 = 0, then it has a unique solution for all f ′0 ∈ R, and the solution depends
continuously on f ′0.

By virtue of Theorem 2.4, the variational equation (2.13) is uniquely solvable if
and only if κ is not a resonance.

2.4. Galerkin approximation. In the following we will consider the Galerkin
approximations to (2.13) using a finite element subspace Vh of H1([0, a]) and the
subspace ΠN := span{1, z, . . . , zN} of H+(S1). This leads to the discrete variational
problems

(2.22) B

((
uh

UN

)
,

(
vh

VN

))
= −f ′0vh(0),

(
vh

VN

)
∈ Xh,N := Vh ⊕ΠN .

Using Theorem 2.5 and the compactness of the embedding H1([0, a]) ↪→ L2([0, a]), we
obtain the following convergence result (cf. [12, Theorem 13.7]).
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Theorem 2.7. Let �(κ2), κ0 > 0, and assume that κ is not a resonance.
Let (uint, U)� ∈ X denote the unique solution to (2.13). Then there exist con-
stants C,N0, h0 > 0 such that the variational problems (2.22) have a unique solution
(uh, UN)� ∈ Xh,N for N ≥ N0 and h ≤ h0, and

‖u− uh‖2H1 + ‖U − UN‖2L2(S1) ≤ C inf
(vh,VN )�∈Xh,N

(
‖u− vh‖2H1 + ‖U − VN‖2L2(S1)

)
.

Since U is analytic, we have exponential convergence in N , i.e., for some constants
c, C̃ > 0

inf
VN∈ΠN

‖U − VN‖L2(S1) ≤ C̃e−cN .

Although the derivation of the exterior part of (2.13) is nonstandard, its imple-
mentation is rather simple: For F (z) =

∑∞
j=0 αjz

j and G(z) =
∑∞
j=0 βjz

j , we have
A(F,G) = 2π

∑∞
j=0 αjβj . With respect to the monomial basis of ΠN the operators

(2.23) T± : C⊕H+(S1)→ H+(S1),
(
f0

F

)
�→ 1

2
(f0 + (• ± 1)F )

occurring in (2.13) are approximately represented by the bidiagonal matrices

(2.24) TN,± :=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ±1
1 ±1

. . . . . .
1 ±1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(N+1)×(N+2).

The Galerkin approximation (2.22) corresponds to the introduction of an “infinite
element” with N + 2 degrees of freedom, which couples to the interior domain via
the unknown u0. The local element matrix of this infinite element is given by
−2iκ0

{T �N,+TN,+ + (κ/κ0)2T �N,−TN,−
}
.

In the space domain the monomial basis functions correspond to the functions
uj := (L|R)−1

{M−1
κ0
T−(u0, z

j)
}
, which are given by

(2.25) uj(r) = eiκ0r

{
u0 +

j∑
n=0

(
j

n

)
(2iκ0r)n+1

(n+ 1)!

}
.

From this formula it is clear that if the sum over the uj converges at some points
in the exterior domain, the convergence will be slow, in particular far away from the
coupling boundary. If the exterior solution is of interest, it can be computed from u0

by Green’s formula, which for one space dimension reduces to u(r) = u0 exp(iκ(r−a)).
For inhomogeneous exterior domains without explicitly known Green’s function other
numerical realizations of the pole condition can be used to compute the exterior
solution (see [19]).

Remark 2.8 (choice of κ0). It follows from (2.8) and (2.9) or from (2.25) that for
scattering problems the optimal choice of κ0 is κ0 = κ since in this case U ≡ 0, and
we obtain the exact transparent boundary condition even with no degrees of freedom
in H+(S1). For resonance problems, κ0 should be chosen in the region of the complex
plane where resonances are of interest. In this case it is advantageous to choose κ0
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as a complex number with �(κ0) < 0 and �(κ0) > 0. All results of this section can
be generalized to this case: u is outgoing if and only if Lu|κ0R belongs to the space
H−(κ0R) := {f(κ−1

0 •) : f ∈ H−(R)}.Mκ0 maps H−(κ0R) bijectively to H+(S1). In
Theorems 2.4, 2.5, 2.7 and Corollary 2.6 we have to replace the conditions on κ and
κ0 by �(κ/κ0) > 0 and �(κ2/κ0) > 0. These are reasonable assumptions, since κ0

should be chosen close to the resonances κ of interest anyway.

3. Helmholtz equation in higher dimensions. In this section we will treat
the Helmholtz equation in higher dimensions in a manner similar to that in the previ-
ous section for one dimension. Besides the resonance problem (1.1) we will also study
the scattering problem

−Δu− κ2u = 0 in R
d \K,(3.1a)

∂u

∂ν
= f on ∂K,(3.1b)

u satisfies a radiation condition(3.1c)

for given κ ∈ C with �(κ) > 0 and f ∈ H−1/2(∂K). This will be done by considering
the Laplace transform of the scaled exterior solution

(3.2) uext(r, x̂) := (r + 1)(d−1)/2u((r + 1)x̂), r > 0, x̂ ∈ Γ := ∂Ba,

with respect to the radial variable r, i.e.,

(3.3) (Luext)(s, x̂) :=
∫ ∞

0

e−sruext(r, x̂) dr, �(s) > |�(κ)|, x̂ ∈ Γ.

The radial variable is scaled such that uext(r, x̂) ∼ exp(ikar)u∞(x̂) as r → ∞. This
scaling is not essential, but simplifies the computations. In particular, we will be able
to use part of the analysis of the previous section.

3.1. Pole condition in terms of Hardy spaces. Recall that for Riemannian
manifolds A,B the spaces

L2(A;L2(B)) ∼ L2(A×B) ∼ L2(A) ⊗ L2(B)

are isometrically isomorphic. Consequently, H−(R) ⊗ L2(Γ) can be considered as a
closed subspace of L2(R × Γ). It consists of all functions f ∈ L2(R × Γ) for which
there exists a measurable function v : C

− × Γ→ C, which is holomorphic in the first
variable such that supε>0

∫
R

∫
Γ |v(s− iε, x̂)|2 dx̂ds <∞ and∫

R

∫
Γ

|f(s, x̂)− v(s− iε, x̂)|2 dx̂ ds ε→0−→ 0.

If v = Luext, we will shorten this to L|Ruext := f . Again, v can be recovered from f
by a Cauchy integral as in (2.6).

Definition 3.1. Let u be a complex-valued function on R
d \K, and assume that

the Laplace transform (Luext)(s, •) is well defined by (3.2) and (3.3) for all s in some
open region D ⊂ C and belongs to L2(Γ). We say that u satisfies the pole condition if
the function D → L2(Γ), s �→ (Luext)(s, •) has a holomorphic extension to C

−, and
L|Ruext belongs to H−(R)⊗ L2(Γ).

Remark 3.2. It is easy to see that Definition 3.1 without the condition L|Ruext ∈
H−(R)⊗L2(Γ) is equivalent to the formulation in [9, Definition 2.1]. Moreover, it was
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shown in [9, section 9] that the pole condition is equivalent to Sommerfeld’s radiation
condition for solutions to the Helmholtz equation with κ > 0. From the results in that
section in [9], in particular (9.14) and (9.9b), it can can be seen that the condition
L|Ruext ∈ H−(R)⊗ L2(Γ) is also satisfied at least for sufficiently large a.

Remark 3.3. In [9] only the case κ > 0 was considered. However, the pole
condition is also a valid radiation condition for �(κ) �= 0. The singularity of the
Laplace transform Luext of an outgoing wave is still a singularity with a branch cut
located at iκa, and hence in the upper half-plane. As mentioned in the introduction,
Sommerfeld’s radiation condition is not valid for �(κ) < 0, and hence no equivalence
result holds true in this case. However, it is actually much simpler to prove equivalence
of the pole condition and the radiation condition (1.2) since the Hankel function can
be recovered from the pole condition approach (see [9, section 7]).

Note that the pole condition is independent of the differential equation. Solutions
to the Helmholtz equation will belong to spaces of higher regularity with respect to
the second variable.

In analogy to the previous section we consider the Möbius transformMκ0⊗IL2(Γ)

from H−(κ0R)⊗L2(Γ) to H+(S1)⊗L2(Γ) and write Û := (Mκ0 ⊗ IL2(Γ))L|κ0Ruext.
Moreover, we define u0 := u|Γ and

(3.4) U(z, x̂) :=
2iκ0Û(z, x̂)− u0(x̂)

z − 1
, z ∈ S1, x̂ ∈ Γ,

in analogy to (2.9).

3.2. Variational formulation. Assume that u is a solution to the scattering
problem (3.1) and define uint := u|Ωint with Ωint := Ba \K and uext by (3.2). Then
for smooth, rapidly decaying test functions v a straightforward computation yields∫

Ωint

{∇uint · ∇vint − κ2uintvint

}
dx+

d−1
2a

∫
Γ

u0v0 dx̂+
1
a

∫
Γ

∫ ∞
0

∂ruext∂rvext dr dx̂

+ a

∫
Γ

∫ ∞
0

{∇x̂uext · ∇x̂vext

(r + 1)2
− κ2uextvext − Cd

a2

uextvext

(r + 1)2

}
dr dx̂ = −

∫
∂K

fvint ds,

with Cd := (d−1)(3−d)
4 and the surface gradient ∇x̂ on Γ.

We first derive the transformation to the Hardy space formally. Due to (2.9),
(2.14), and (2.23) we have

iκ0(Mκ0 ⊗ I)L|κ0Ruext = (T− ⊗ I)
(
u0

U

)
, (Mκ0 ⊗ I)L|κ0R∂ruext = (T+ ⊗ I)

(
u0

U

)
.

By [9, Theorem 9.3] (I⊗∇x̂)L|κ0Ruext is also analytic with respect to the first variable
s in C

− and decays like |s|−1 as |s| → ∞. In addition we need to recall the identity

(3.5) L
(

f

•+ 1

)
(s) = (ĴLf)(s) with (Ĵ f̂)(s) :=

∫ ∞
s

e−(σ−s)f̂(σ)dσ.

The inverse operator D̂ := Ĵ−1 arises from a multiplication with a factor r + 1, i.e.,
(D̂Lf)(s) = L{(• + 1)f}(s) = (−∂s + 1)Lf(s). The Möbius transformed operators
are defined by D :=Mκ0D̂M−1

κ0
and J :=Mκ0 ĴM−1

κ0
. As∫

Γ

∫ ∞
0

f1f2 dr dx̂ =
−iκ0

π
A#
(
F̂1, F̂2

)
,
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with A#(F1, F2) :=
∫
Γ

∫
S1 F1(z, x̂)F2(z, x̂) d|z| dx̂ for F̂j = (Mκ0 ⊗ I)L|κ0Rfj, we

obtain

(3.6)

∫
Ωint

{∇uint∇vint − κ2uintvint

}
dx+

d− 1
2a

∫
Γ

u0v0 dx̂

− iκ0

aπ
A#

(
(T+ ⊗ I)

(
u0

U

)
, (T+ ⊗ I)

(
v0

V

))

− aiκ2

πκ0
A#

(
(T− ⊗ I)

(
u0

U

)
, (T− ⊗ I)

(
v0

V

))

+
ai

πκ0
A#

tan

(
(JT− ⊗∇x̂)

(
u0

U

)
, (JT− ⊗∇x̂)

(
v0

V

))

− iCd
πκ0a

A#

(
(JT− ⊗ I)

(
u0

U

)
, (JT− ⊗ I)

(
v0

V

))
= −

∫
∂K

fvint|∂K ds.

If L2
tan(Γ) denotes the space of square integrable tangential vector fields on Γ, we

define A#
tan(F1, F2) :=

∫
Γ

∫
S1 F1(z, x̂) · F2(z, x̂) d|z| dx̂.

This bilinear form suggests introducing the space

(3.7a)

X# :=
{(

uint

U

)
∈H1(Ωint)⊕H+(S1)⊗L2(Γ) : (JT−⊗∇x̂)

(
u0

U

)
∈H+(S1)⊗L2

tan(Γ)
}
,

with the inner product

(3.7b)〈(
uint

U

)
,

(
vint

V

)〉
X#

:= 〈uint, vint〉H1(Ωint)
+ 〈U, V 〉H+(S1)⊗L2(Γ)

+
〈

(JT− ⊗∇x̂)
(
u0

U

)
, (JT− ⊗∇x̂)

(
v0

V

)〉
H+(S1)⊗L2

tan(Γ)

.

It is easy to see that the bilinear form in (3.6) is bounded with respect to the norm of
X#. It is shown in Lemma A.3 that X# with this inner product is a Hilbert space,
and for each vint ∈ H1(Ω) there exists a vector in X# containing vint ∈ H1(Ω) as first
component (note that the surface gradient ∇x̂ is not applied to the H1/2(Γ)-function
v0, but to a sum with other functions). Moreover, it is shown in Lemma A.3 that
there exists a dense subset of test functions (vint, V )� ∈ X# for which the transforms
above are justified. Therefore, we obtain the following result.

Theorem 3.4. If u is a solution to the scattering problem (3.1), then (uint, U)
belongs to the space X# and satisfies the symmetric variational equation (3.6).

The converse result will be shown later in Corollary 4.3 using a separation argu-
ment.

3.3. Galerkin discretization. Let Vh ⊂ H1(Ωint) be a finite element subspace
on the computational domain Ωint, and let Vh|Γ denote the set of traces of functions
in Vh on the artificial boundary Γ. Moreover, we use the polynomial subspace ΠN ⊂
H+(S1) as in section 2. We will use a Galerkin method where the space X# in
Theorem (3.4) is approximated by the finite-dimensional subspace

(3.8) X#
h,N := Vh ⊕ΠN ⊗ Vh|Γ.
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Fig. 3.1. Hardy space infinite element corresponding to quadratic Lagrange elements.

For a given finite element basis of Vh let {wj : j = 0, . . . , NΓ} denote the corresponding
set of nonvanishing traces on Γ. Then we choose the functions (z, x̂) �→ znwj(x̂)
(j = 0, . . . , NΓ, n = 0, . . . , N) as the basis of ΠN ⊗ Vh|Γ. The system matrix with
respect to this basis can be assembled elementwise in a finite element fashion as
illustrated in Figure 3.1. Each infinite element couples with the interior finite elements
via common degrees of freedom for the Dirichlet values on Γ. Moreover, there is a
coupling between neighboring infinite elements. Due to the structure of the bilinear
form (3.6), the local element matrices are sums of Kronecker products of matrices.
Let MΓ

el and SΓ
el denote the element mass an stiffness matrix on Γ corresponding

to the bilinear forms
∫
Γ u0v0 dx̂ and

∫
Γ∇x̂u0 · ∇x̂v0 dx̂, respectively. The discrete

representation of the operators T± has already been described in section 2; see (2.24).
It remains to discuss the discretization of the operator J . Recall that J is the inverse
of a differential operator D, which is given explicitly by

(3.9) (DF )(z) =
(z − 1)2

2iκ0
F ′(z) +

(
z − 1
2iκ0

+ 1
)
F (z), F ∈ H+(S1).

To avoid numerical integrations, we use the inverse of the discretization of D

(3.10) DN := id(N+1)×(N+1) +
1

2iκ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
1 −3 2

2 −5 3
. . . . . . . . .

N −2N − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

as the discretization of J . Hence, the element matrix of a Hardy space infinite element
is given by

(3.11) L1 ⊗M el
Γ + L2 ⊗ Sel

Γ − κ2L3 ⊗M el
Γ ,

with

L1 =
d− 1
2a

(
1

0

)
− 2iκ0

a
T �N,+TN,+ −

2Cdi
κ0a
T �N,−D−2

N TN,−,

L2 =
2ai
κ0
T �N,−D−2

N TN,−, and L3 =
2ai
κ0
T �N,−TN,−.

Note that the eigenvalue structure with respect to κ2 is preserved for the discretization
with Hardy space infinite elements.
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Remark 3.5. The Hardy space infinite element method is not restricted to the
case of spherical artificial boundaries Γ = ∂Ba. We have applied the method also to
boundaries Γ = ∂P with convex polyhedrons P using the segmentation of the exterior
domain Ωext := R

d \ P presented in [17, 24]. Although the variational formulation
becomes more complicated, the method still seems to converge superalgebraically
(see [15]).

4. Convergence analysis for the separated problems. In this section we
analyze the convergence of Hardy space infinite elements in the exterior domain (i.e.,
for the special case K = Ba) after a Fourier separation. Implications for the full
problem are discussed in section 4.4.

4.1. The separated equations. For this end, we choose an orthonormal basis
of eigenfunctions Φn ∈ L2(Γ), n ∈ N0, such that −Δx̂Φn = λnΦn for the Laplace–
Beltrami operator Δx̂ on Γ. The functions u0 and U have expansions with respect
to this basis of the form u0(x̂) =

∑∞
n=0 u0,nΦn(x̂), U(z, x̂) =

∑∞
n=0 Un(z)Φn(x̂), and

similarly for v0 and V . Moreover, the Neumann data on ∂K = Γ, which will be
denoted by g instead of f in this section, can be decomposed into the Fourier series
g(x̂) =

∑∞
n=0 gnΦn(x̂). Then the variational problem (3.6) decouples into a series of

variational problems in X̃ := C⊕H+(S1):

(4.1)

B1

((
u0,n

Un

)
,

(
v0

V

))
+
Cd − a2λn

κ2
0a

B2

((
u0,n

Un

)
,

(
v0

V

))
= −gnv0,

(
v0

V

)
∈ X̃,

for the Fourier coefficients, where the bilinear forms B1, B2 on X̃ are given by

B1

((
u0

U

)
,

(
v0

V

))
:=

d− 1
2a

u0v0

− iκ0

aπ
A

(
T+
(
u0

Un

)
, T+

(
v0

Vn

))
− aiκ2

πκ0
A

(
T−
(
u0

U

)
, T−

(
v0

V

))
,

B2

((
u0

U

)
,

(
v0

V

))
:= − iκ0

π
A

(
JT−

(
u0

U

)
, JT−

(
v0

V

))
.

We use the canonical inner product on X̃ given by the sum of the inner products on
C and H+(S1). Defining the operators Kj : X̃ → X̃ (j = 1, 2) implicitly by〈

Kj

(
u0

U

)
,

(
v0

V

)〉
X̃

= Bj

((
u0

U

)
,

(
v0

CV
))

,

(
u0

U

)
,

(
v0

V

)
∈ X̃,

the variational equations (4.1) can be reformulated as operator equations

(4.2) K1

(
u0,n

Un

)
+
Cd − a2λn

aκ2
0

K2

(
u0,n

Un

)
=
(−gn

0

)
.

4.2. Uniqueness and smoothness of solutions. Motivated by the Paley–
Wiener theorem (2.5) we introduce a transform Q : X̃ → L2(R+) by

(4.3)
(
Q
(
f0

F

))
(t) :=

−1
2π

∫ ∞
−∞

eist
(
M−1

κ0
T−
(
f0

F

))
(κ0s) ds, t ≥ 0.
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The following result will be used to show uniqueness, but may also be of independent
interest.

Lemma 4.1. Q is a norm isomorphism from X̃ to the Sobolev space H1(R+),
and f := Q(f0, F )� satisfies f(0) = f0 and

(4.4) f ′(t) =
1
2π

∫ ∞
−∞

eist
(
M−1

κ0
T+
(
f0

F

))
(κ0s) ds, t ≥ 0.

Proof. Let us first show that the range of Q is contained in H1(R+). Due to
(2.5) we have f(t) = 0 for t < 0 if we use definition (4.3) also for t < 0. Therefore we
get f ∈ H1(R+) if we can show that w(t) := f(t) + f(−t), t ∈ R, belongs to H1(R).
Introducing f̃ := (iκ0)−1M−1

κ0
T−(f0, F )� we have f̃(κ0s) = (−iκ0)−1(Ff)(s) and

−iκ0(Fw)(s) = f̃(κ0s) + f̃(−κ0s). Due to (2.14) and the definition (2.23) of T+, the
function •f̃ − f0 =M−1

κ0
T+(f0, F )� belongs to H−(κ0R). Hence, the function

−iκ2
0s(Fw)(s) =

(
κ0sf̃(κ0s)− f0

)
−
(
−κ0sf̃(−κ0s)− f0

)
, s ∈ R,

is square integrable, and therefore
∫∞
−∞(1 + s2)|(Fw)(s)|2 ds <∞. This implies that

w ∈ H1(R). To prove the second assertion first note that

(4.5)
∫ ∞

0

e−istf ′(t) dt = −f(0) + is

∫ ∞
0

e−istf(t) dt, s ∈ R.

Since we have already shown that f ′ ∈ L2(R+), the right-hand side is a square in-
tegrable function of s by Plancherel’s theorem. As •f̃ − f0 = M−1

κ0
T+(f0, F )� also

belongs to L2(κ0R), the constant function f(0)− f0 is square integrable and hence 0.
Therefore, f(0) = f0, and applying the inverse Fourier transform to (4.5) yields (4.4).
Q is injective as a composition of injective operators. To prove that Q is onto,

choose an arbitrary v ∈ H1(R+) and extend it by zero on the negative real axis. Then
(2.5) implies that Fv ∈ H−(R), and hence V̂ := (−iκ0)−1Mκ0(Fv)(κ−1

0 •) belongs to

H+(S1). Moreover,
{Mκ0(Fv′)(κ−1

0 •)
}

(z) = iκ0V̂ (z) + 2iκ0V̂ (z)−v0
z−1 with v0 := v(0)

is an element of H+(S1). Hence, the function V (z) := 2iκ0V̂ (z)−v0
z−1 (cf. (2.9)) belongs

to H+(S1), and we have (Mκ0T−(v0, V )�)(κ0s) = −(Fv)(s), so Q(v0, V )� = v. The
boundedness of Q−1 follows either directly from the construction above or the open
mapping theorem.

Note that the separation index n is the index of an enumeration of the double
indices (l,m) = (l(n),m(n)) in (1.2). Hence, solutions to (4.2) are given by modified
(due to the scaling in (3.2)) and Laplace and Möbius transformed Hankel functions
H(1/2)
n (r) := r1−d/2H(1/2)

l(n)−1+d/2(r).
Proposition 4.2. Let �(κ/κ0) > 0. If H(1)

n

′
(κa) �= 0, then (4.1) has a unique

solution (u0,n, Un)� ∈ X̃ and u0,n = H(1)
n (κa)

κH(1)
n

′
(κa)

gn. If H(1)
n

′
(κa) = 0, then (4.1) has a

solution if and only if gn = 0.
Proof. Using Lemmas 4.1 and A.1 and the Fourier convolution theorem, it can be

shown that (4.1) is equivalent to the variational problem to find un ∈ H1(R+) such
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that

i

aκ0

∫ ∞
0

(
−κ2

0u
′
n(t)v

′(t)− (κa)2un(t)v(t) +
a2λn − Cd
( itκ0

+ 1)2
un(t)v(t)

)
dt

+
d− 1
2a

un(0)v(0) = −gnv(0)

for all v ∈ H1(R+). This is the variational formulation of the exterior boundary value
problem

κ2
0u
′′
n(t)−

(
(κa)2 +

Cd − a2λn

( itκ0
+ 1)2

)
un(t) = 0, t ≥ 0, x̂ ∈ Γ,(4.6a)

u′n(0) =
i

κ0

(
agn +

d− 1
2

un(0)
)
,(4.6b)

un ∈ L2(R+).(4.6c)

The general solution of the differential equation (4.6a) is given by

un(t) =
(
it

κ0
+ 1

)(d−1)/2(
c(1)n H(1)

n

(
κa

(
it

κ0
+ 1

))
+ c(2)n H(2)

n

(
κa

(
it

κ0
+ 1

)))
.

Due to the asymptotic behavior (1.3) of the Hankel functions and the assumption

�(κ/κ0) > 0, (4.6c) implies that c(2)n = 0. If H(1)
n

′
(κa) �= 0, then the boundary condi-

tion (4.6b) implies u0,n =
(H(1)

n (κa)/(κH(1)
n

′
(κa))

)
gn. Otherwise (4.6b) is satisfied if

and only if gn = 0.
As a corollary we obtain the converse of Theorem 3.4.
Corollary 4.3. If (uint, U)� ∈ X# is a solution to the variation problem (3.6)

and H(1)
n

′
(κa) �= 0, then uint is the restriction of a solution to (3.1).

Proof. Let (uint, U)� be a solution to (3.6) and let ∂νu ∈ H−1/2(Γ) denote the
Neumann trace. We rearrange the terms in (3.6) such that only the integrals over
Ωint and ∂K are on the left-hand side to obtain∫

∂K

fvint|∂K ds+Bint(uint, vint) = Bext

((
u0

U

)
,

(
v0

V

))
.

It follows that Bext

(
(u0, U)�, (v0, V )�

)
=
∫
Γ
∂νu v0 ds for all (v0, V )�. Now we

can apply a Fourier separation on Γ and use Proposition 4.2 to obtain the relation
H(1)
n

′
(κa)u0,n = H(1)

n (κa)(∂νu)n for the Fourier coefficients (∂νu)n :=
∫
Γ ∂νuΦn ds.

Therefore, we can define an outgoing exterior solution by (1.2) with the constants

αl(n),m(n) = H(1)
n (κa)

κH(1)
n

′
(κa)

(∂νu)n, which has the same Cauchy data on Γ as uint.

Lemma 4.4. We have Un ∈ H+(S1) ∩ C∞(S1).
Proof. It follows from [9, Proposition 6.6 and Lemma 6.3] that the Fourier co-

efficients of the Laplace transform, ûn(s) := 〈Luext(x, ·),Φn〉L2(Γ), have an integral
representation of the form

ûn(s) = − cn
iκa− s −

∫ ∞
0

cnψn(t)
iκa− t− s dt, s ∈ C \ {iκa− t : t ≥ 0},
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with a constant cn ∈ C and a function ψn(t) decaying exponentially as t →∞. This
implies that ûn|R ∈ H−(R) ∩ C∞(R). Hence, Ûn :=Mκ0(ûn) belongs to H+(S1) ∩
C∞(S1 \ {1}). It remains to study the asymptotic behavior of ûn at infinity, or
equivalently the behavior of Ûn at 1. Expanding the integral kernel in powers of
1/(s − iκ0) and using the exponential decay of ψn, it can be shown that ûn has an
asymptotic expansion

ûn(s) =
J∑
j=1

α
(n)
j

(s− iκ0)j
+ o

(
|s− iκ0|−J

)
, |s| → ∞,

for any J ∈ N. By well-known asymptotic formulas for the Laplace transform we have
u0,n = α

(n)
1 . Since

(Mκ0((• − iκ0)−j)
)
(z) = (z − 1)j−1/(2iκ0)j , it follows that Ûn

satisfies

Ûn(z) =
J∑
j=1

α
(n)
j

(2iκ0)j
(z − 1)j−1 + o

(|z − 1|J−1
)
, as |z − 1| → 0.

Therefore,

Un(z) =
2iκ0Ûn(z)− α(n)

1

z − 1
=

J∑
j=2

αj
(2iκ0)j−1

(z−1)j−2 +o(|z−1|J−2), as |z−1| → 0.

This implies that Un is J − 2 times differentiable at 1. Since J was arbitrary, this
together with the properties of Ûn shows that Un ∈ H+(S1) ∩ C∞(S1).

4.3. Convergence. The bilinear form aB1 essentially coincides with the exterior
part Bext of the bilinear form from the one-dimensional case. As in (2.21) we have

(4.7) �{(i+ γ)B1 ((u0, U), (u0, CU))} ≥ α‖U‖2X
for some α, γ > 0 if �(κ0),�(κ2/κ0) > 0. Therefore, K1 is boundedly invertible.

Lemma 4.5. The operator K2 is compact.
Proof. K2 is a rank-1 perturbation of the operator K3 : H+(S1)→ H+(S1) given

implicitly by

(4.8) (K3U, V )H+(S1) = − iκ0

π

∫
S1

(z − 1)J2(z − 1)U(z)V (z)|dz|.

Here we have used the boundedness of J : H+(S1) → H+(S1) (see (4.9a)) and
the symmetry property A(U, JV ) = A(JU, V ), which follows from the representa-
tion of D = J−1 with respect to the monomial basis. Since the orthogonal pro-
jection P : L2(S1) → H+(S1) and the operator H+(S1) → H+(S1), U �→ J((• −
1)U) are bounded, it suffices to show the compactness of K̃4 : H+(S1) → L2(S1),
(K̃4U)(z) = (z − 1)(JU)(z), or equivalently the compactness of K4 := H−(R) →
L2(R), (K4f)(s) := 2iκ0

s+iκ0
(Ĵf)(s). The following inequalities hold for some constants

C > 0, f ∈ H−(R), and s, s1, s2 ∈ R:

‖Ĵf‖2 ≤ C‖f‖2,(4.9a)

|(K4f)(s)| ≤ C

|s+ iκ0| ‖f‖2,(4.9b)

|(K4f)(s1)− (K4f)(s2)| ≤ C
√
|s1 − s2|‖f‖2.(4.9c)
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The first inequality is a consequence of Plancherel’s theorem, since Ĵf = g ∗ f with
g(t) := e−t for t ≥ 0 and g(t) ≡ 0 for t < 0:

‖Ĵf‖2 = ‖g ∗ f‖2 = 2π‖F(g ∗ f)‖2 =
√

2π‖Fg Ff‖2 ≤
√

2π‖Fg‖∞‖Ff‖2 ≤ C‖f‖2.
For the third inequality we assume without loss of generality that s2 > s1 and write∣∣∣∣∣ (Ĵf)(s1)
s1 + iκ0

− (Ĵf)(s2)
s2 + iκ0

∣∣∣∣∣=
∣∣∣∣
∫ s2

s1

e(s1−σ)

s1 + iκ0
f(σ) dσ +

∫ ∞
s2

(
e(s1−σ)

s1 + iκ0
− e(s2−σ)

s2 + iκ0

)
f(σ) dσ

∣∣∣∣ .
The first integral can be estimated with the Cauchy–Schwarz inequality by

|I1| ≤
√
|s2 − s1| sup

σ∈[s1,s2]

∣∣∣∣ e(s1−σ)

s1 + iκ0

∣∣∣∣
2(∫ s2

s1

|f(σ)|2dσ
)1/2

≤ C
√
|s1 − s2|‖f‖2.

For I2 the mean value theorem and the Cauchy–Schwarz inequality yield

|I2| ≤ C̃|s2 − s1| sup
t∈[0,1]

∣∣∣e(t−1)(s2−s1)
∣∣∣ (∫ ∞

s2

|e(s2−σ)|2dσ
)1/2

‖f‖2,

and we have shown (4.9c). Inequality (4.9b) can be proven in an analogous manner.
In order to show the compactness of K4 we use the Arzelà–Ascoli theorem. Thus

let (wn)n∈N be a sequence in H−(R) with ‖wn‖2 ≤ 1 for all n ∈ N and vn := K4wn.
Due to the Arzelà–Ascoli theorem, there exists a subsequence of (vn) which converges
in the supremum norm of a compact subset I of R, since (vn) is equicontinuous and
bounded in I by (4.9b) and (4.9c). Let Ij := [−j, j] ⊂ R, vn0(l) := vl. Moreover, for
every j ∈ N let

(
vnj(l)

)
be a subsequence of

(
vnj−1(l)

)
converging in the supremum

norm of Ij . Thus the diagonal subsequence vn(l) := vnl(l) converges pointwise in R

and for each Ij in the supremum norm of Ij to a function v. For given ε > 0 it remains
to show that there exists a l0(ε) ∈ N such that ‖vn(l) − v‖2 < ε for all l ≥ l0. This
can be seen with (4.9b) since there exists a j0(ε) ∈ N such that∫

R\Ij0

∣∣vn(l)(s)− v(s)
∣∣2 ds ≤ 2C

∫
R\Ij0

1
|s+ iκ0|2 ds ≤

ε

2
.

Because of the uniform convergence of
(
vn(l)

)
in Ij0 , the subsequence

(
vn(l)

)
of the

image sequence vn = K4wn converges in L2(R) and the proof is done.
With these preparations we easily obtain the following superalgebraic convergence

result.
Theorem 4.6. Assume that κ0, κ/κ0, and κ2/κ0 have positive real part and

that H(1)
n

′
(κa) �= 0; i.e., κ is not a resonance of (4.1). Then there exist constants

N0, Cl > 0 such that for N ≥ N0 there exists a unique solution (u(N)
0,n , U

(N)
n )� in the

space XN := C⊕ΠN to the variational equation

(4.10) B1

((
u

(N)
0,n

U
(N)
n

)
,

(
v
(N)
0

V (N)

))
+
Cd − a2λn

aκ2
0

B2

((
u

(N)
0,n

U
(N)
n

)
,

(
v
(N)
0

V (N)

))
= −gnv(N)

0

for (v(N)
0 , V (N))� ∈ XN . Moreover, for any l ∈ N the error estimate

(4.11)

∥∥∥∥∥
(
u

(N)
0,n

U
(N)
n

)
−
(
u0,n

Un

)∥∥∥∥∥
X̃

≤ C

N l

holds for some constant C depending on l, n, and κ.
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Proof. Due to the coercivity estimate (4.7) the method converges for the bilinear
form B1. Using [12, Theorem 13.7], Proposition 4.2, and Lemma 4.5, it follows that
the whole method (4.10) is stable and convergent. From the approximation properties
of trigonometric polynomials and Lemma 4.4, it follows that the speed of convergence
is superalgebraic.

Since the operators on the left-hand side of (4.2) are compact perturbations of
Toeplitz operators, we could have appealed to more general convergence results for
the finite section method (cf. [1, Chapter 7]) for an alternative proof of Theorem 4.6.

4.4. Discussion. For a fixed finite element subspace of H1/2(Γ), a separation
argument in this subspace and Theorem 4.6 yield superalgebraic convergence to a
transformed outgoing solution as N → ∞. However, our results do not exclude
the possibility that the constants in the convergence estimate explode as the mesh
size tends to 0. To our knowledge this is also the state of the art for usual infinite
elements in the space domain (cf. [3, 4]). Numerical evidence presented in Figure 5.1
suggests that both the discrete bilinear forms are bounded from above, and their
inf-sup constants are bounded from below, both uniformly in the Hardy dimension
N and the separation index n. We have not been able to prove this for the inf-sup
constants so far. With such uniform estimates one would obtain convergence of the
Neumann-to-Dirichlet (or equivalently the Dirichlet-to-Neumann) operators in the
natural operator norms, which easily yields a convergence result for the scattering
problem (3.1) (cf. [11, 10]).

5. Numerical results. We first study the separated equations and decompose
the norm ‖ • ‖X# :=

√〈•, •〉X# into the norms

(5.1)
∥∥∥∥
(
u0,n

Un

)∥∥∥∥
2

Xn

:=
√

1 + λn|u0,n|2 + ‖Un‖2H+(S1) + λn

∥∥∥∥JT−
(
u0,n

Un

)∥∥∥∥
2

H+(S1)

for each Fourier coefficient (u0,n, Un)� such that
∥∥( u0

U

)∥∥2

X# =
∑

n

∥∥( u0,n

Un

)∥∥2

Xn
. If

U (N)
n ∈ C

N denotes the vector of the first N Fourier coefficients of Un, the discrete
counterpart on XN,n := C

N+1 is the norm

(5.2)∥∥∥∥∥
(
u0,n

U (N)
n

)∥∥∥∥∥
2

XN,n

:=

(
u0,n

U (N)
n

)∗((√
1 + λn

1

)
+ λnT �N,−D−
N D−1

N TN,−
)(

u0,n

U (N)
n

)
.

Figure 5.1 show the norms and inf-sup constants with respect to the norm in (5.2) of
the bilinear form in (4.10), which is represented by the matrix T (N)

n := L1 + λnL2 −
κ2L3 (see (3.11)). They were computed using a Cholesky factorization G = L∗L of
the Gramian matrix G in (5.2) as ‖(L�)−1T

(N)
n L−1‖2 and ‖[(L�)−1T

(N)
n L−1]−1‖2,

respectively. Here ‖A‖2 denotes the spectral norm, i.e., the largest singular value of
a matrix A. The results suggest that the norms are bounded from above and the
inf-sup constants are bounded from below, both uniformly in N and n.

Figure 5.2 shows the convergence of the relative errors of the numerical approxi-
mations to the Neumann-to-Dirichlet numbers NtD(n, κ, a) := H

(1)
n (κa)/κH(1)

n

′
(κa).

These numerical approximations are computed by solving (4.10) with gn = 1; they
are given by the negative upper left entry of the matrices [T (N)

n ]−1 defined above.
The results exhibit a fast, almost exponential convergence as N →∞ for each Fourier
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Fig. 5.1. Norms and inf-sup constants of the separated bilinear forms in (4.10) with respect to
the norms defined in (5.2) for κ = κ0 = a = 1 and d = 2.
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Fig. 5.2. Relative error of the Neumann-to-Dirichlet numbers for different Fourier modes n,
different wave numbers κ, a = 1, κ0 = κ, and d = 2.

mode n. The constants deteriorate as n grows, but improve as κ grows. Due to the
stability shown in Figure 5.1, this must be due to the approximation properties of
polynomial subspaces for the transformed Hankel functions.

The error for the full unseparated problem is mainly determined by the conver-
gence behavior of the first Fourier modes as the size |u0,n| of the Fourier coefficients
decays exponentially with n since u0 is analytic. Figure 5.3 shows results for the
scattering of plane incident waves with different wave numbers κ by a kite-shaped do-
main. As a reference solution we computed a pair of Cauchy data on Γ by a Nystroem
integral equation method (cf. [2, section 3.5]). We used the reference Neumann data
on spheres of radius 2 and 3.5 as initial data for the Hardy space method (HSM) and
compared the Dirichlet data computed by the HSM to the reference Dirichlet data. As
basis functions on Γ we used so-called hierarchic shape functions of high polynomial
degrees (see [21, section 3.1.4]) such that the finite element error could be neglected.
The error plot in Figure 5.3 clearly exhibits fast convergence with respect to N both
for the wave number κ = 5 and κ = 25. As for other methods (e.g., PML or standard
infinite elements), the error for a fixed number of degrees of freedom in the exterior do-
main grows smaller as the distance of the coupling boundary to the scatterer increases.

Since a crucial advantage of the HSM is the applicability of the method to reso-
nance problems, we computed as a second example the resonances of a square with
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Fig. 5.3. H1/2(Γ)-error in the Dirichlet data for different wave numbers and radii as a function
of the number N of degrees of freedom in the Hardy space H+(S1).

Fig. 5.4. Eigenfunctions of an open square.

a small opening. This was done using the finite element solver ngsolve, which is
an add-on of the mesh generator netgen [20]. In Figure 5.4 three different eigen-
functions are plotted. Two of them correspond to the real valued eigenvalues of the
Laplace operator in a closed square and the third to an exterior surface resonance,
the location of which depends mainly on the circumference of the obstacle (cf. [25]
and the references therein). In Figure 5.5 the exterior resonances of the sphere were
computed as roots of the Hankel functions of the first kind. Additionally we used
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Fig. 5.5. Resonances of an open square (•: HSM for open square; ♦: PML for open square;
�: eigenvalues for closed square; ◦: exterior resonances of a sphere with the same circumference as
the square).

PML (♦) as reference solution. The HSM resonances in the third quadrant and the
PML resonances in the lower part of the plot are computational artifacts.

6. Conclusions. We have presented a new type of infinite elements based on the
pole condition which are derived by transforming the exterior variational formulation
of the Helmholtz equation to a Hardy space. They can be coupled with finite elements
of arbitrary order in the interior domain and have simple, symmetric element matrices
with a tensor product structure. The convergence with respect to the number of de-
grees of freedom in the transformed radial direction is superalgebraic. Moreover, they
are particularly well suited for resonance problems since they preserve the eigenvalue
structure. As opposed to other numerical realizations of the pole condition (cf. [8, 19])
it is not possible to recover the exterior solution directly by the HSM.

Let us compare Hardy space infinite elements with PML from a practical perspec-
tive: The PML method has the advantage of being easy to implement in standard
software package, whereas the HSM requires the implementation of a new (in)finite
element. The HSM has the advantage that it is a high order method which can eas-
ily be combined with low order codes. Moreover, the only tuning parameter in the
HSM is κ0, and the rule κ0 ≈ κ yields good results, whereas for PML at least the
slope of the path in the complex plane, the width of the layer, and the polynomial
degree have to be chosen. Our preliminary numerical experiments suggest that the
HSM performs at least as good as PML, but for a definite conclusion more thorough
numerical studies optimizing the various PML parameters will be necessary.

The HSM is not restricted to the situation studied in this paper, but can be
extended to other differential equations and other coupling boundaries, which may be
subject of future research.

Appendix. In this appendix we prove the lemmas needed for the transformation
to the Hardy space.

Lemma A.1. Let M ≥ 0 and κ0 ∈ C be given constants with �(κ0) > 0, and
let f, g : R+ → C be two measurable functions such that f exp(−M•) and g exp(M•)
belong to L1([0,∞)) ∩ L2([0,∞)). Moreover, assume that the Laplace transformed
functions f̂ := Lf and ĝ := Lg have holomorphic extensions to the regions sketched
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(a) f̂(s) (b) ĝ(s) (c) f̂(s)ĝ(−s)

Fig. A.1. Regions to which the functions in Lemma A.1 have holomorphic extensions.

in Figure A.1 and that |f̂(s)s|, |ĝ(s)s| are uniformly bounded in these regions. Then

(A.1)
∫ ∞

0

f(r)g(r)dr = − i

2π

∫
κ0R

f̂(s)ĝ(−s)ds =
−iκ0

π

∫
S1
F (z)G(z)|dz|,

with F :=Mκ0(f̂ |κ0R) and G :=Mκ0(ĝ|κ0R). (The orientation of the contour κ0R is
from left to right.)

Proof. We extend f, g by zero to f∗, g∗ : R → C and write the integral as a
Fourier transform (Fϕ)(s) :=

∫∞
−∞ e

−istϕ(t)dt evaluated at s = 0:

∫ ∞
0

f(r)g(r)dr = F {f∗g∗} (0) =
1
2π

∫ ∞
−∞
F {f∗e−M•} (t)F {g∗eM•} (−t)dt.

Here F {f∗e−M•} (t) = f̂(it+M) and F {g∗eM•} (−t) = ĝ(−(it+M)) exist due to
our assumptions. The first equation in (A.1) follows by Cauchy’s integral theorem for
the closed contour γ1 + γ2 − γ3 + γ4 shown in Figure A.1(c), using the fact that the
integrals over γ2 and γ4 vanish as R→∞ due to the assumed decay of f̂ and ĝ:∫ ∞

0

f(r)g(r) dr = − i

2π
lim
R→∞

∫
γ1

f̂(s)ĝ(−s) ds = − i

2π
lim
R→∞

∫
γ3

f̂(s)ĝ(−s) ds.

To prove the second equation we use the substitution of variables s = ϕκ0(z) and the
identities ϕ′κ0

(z) = −2iκ0
(z−1)2 and −ϕκ0(z) = ϕκ0(z) for z ∈ S1 to obtain

− i

2π
lim
R→∞

∫
γ3

f̂(s)ĝ(−s)ds =
−κ0

π

∫
S1,�

f̂(ϕκ0(z))
z − 1

ĝ(−ϕκ0(z))
z − 1

dz

=
−κ0

π

∫
S1,�

F (z)G(z)
z − 1
z − 1

dz.

The symbol � indicates clockwise orientation of the contour S1. Since z−1
z−1 = 1/z−1

z−1 =
− 1
z for z ∈ S1, and dz = −iz|dz|, we obtain the second equation in (A.1).

Lemma A.2. Let κ0 ∈ C\ {0}, let E be an open subset of {k ∈ C : �(k/κ0) > 0},
and define Vk(z) := k−κ0

(κ0−k)z+(κ0+k) for k ∈ E. Then span{Vk : k ∈ E} is dense in
H+(S1).

Proof. A straightforward computation shows that (M−1
1 Vk)(z) = i(k−κ0)

κ0

1
s−ik/κ0

,
with the transformM1 defined in (2.7) (with κ0 = 1, not the κ0 given in the lemma).
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Since M1 : H−(R) → H+(S1) is unitary, the statement is equivalent to the den-
sity of Y := span{1/(• − ik/κ0) : k ∈ E} in H−(R). Assume that f ∈ Y ⊥, i.e.,∫

R
f(s̃)/(s̃− ik/κ0) ds̃ = 0 for all k ∈ E. Then the holomorphic function

w(z) :=
1

2πi

∫
R

f(s̃)
s̃− z ds̃, z ∈ C

−,

vanishes on {ik/κ0 : k ∈ E}, which is an open subset of C
−. Therefore, w vanishes

identically in C
−. Due to Definition 2.1 and (2.6), f are the boundary values of w on

R, and hence f = 0. This shows that Y ⊥ = {0}, i.e., Y is dense in H−(R).
Lemma A.3. Consider the set X# and the inner product defined in (3.7), and

let �(κ),�(κ0) > 0.
(1) X# is a Hilbert space.
(2) For each vint ∈ H1(Ωint) there exists V ∈ H+(S1)⊗L2(Γ), such that (vint, V )�

∈ X#.
(3) There exists a dense subset X̃# ⊂ X#, such that for all (vint, V )� ∈ X̃#

we have vint ∈ C∞(Ωint) and there exists a function vext ∈ C∞([0,∞) × Γ)
such that (iκ0)−1(M−1

κ0
T− ⊗ I)(v0, V )� = L|κ0Rvext and the assumptions of

Lemma A.1 are fulfilled with f(r) := exp(iκr) and g(r) := vext(r, x̂) for all
x̂ ∈ Γ as well as with the first derivatives of vext.

Proof. (1) A straightforward argument using the closedness of the surface gradient
∇x shows that X# is complete.

(2) Let vint ∈ H1(Ωin) and define v0 := uint|Γ. Since v0 ∈ H1/2(Γ), the Fourier
coefficients of v0 satisfy

∑∞
n=0(1+λn)1/2|v0,n|2 <∞. Here and in the following we use

the notation of section 4. Define V (z, x̂) :=
∑∞
n=0 v0,nVkn(z)Φn(x̂) with a sequence

(kn) to be specified later. Since the functions Vk in Lemma A.2 satisfy Vk(z) =(k/κ0+1
k/κ0−1−z

)−1, it follows by radial symmetry that ‖Vk‖2L2(S1) = Ξ
( |k/κ0+1|
|k/κ0−1|−1

)
, with

Ξ(t) :=
∫
S1 |1+ t−z|−2|dz| for t > 0. Setting c :=

∫ 11π/6

π/6
|1−exp(iθ)|−2 dθ, we obtain

Ξ(t) − c ≤
∫ π/6

−π/6

dθ
|1 + t− exp(iθ)|2 ≤

∫ π/6

−π/6

dθ
t2 + θ2/4

=
4 atan(π/12t)

t
≤ 2π

t
,

so Ξ(t) = O(t−1) as t↘ 0. From the identity T−(1, Vk)� = κ0
(κ0−k)Vk it follows that

|k − κ0|2
|κ0|2

∥∥∥∥T−
(

1
Vk

)∥∥∥∥
2

L2(S1)

= ‖Vk‖2L2(S1) = Ξ
( |k/κ0 + 1|
|k/κ0 − 1| − 1

)
= O(k)

as �(k) → ∞. Now choose k0 such that �(k0/κ0) > 0 and kn := k0 +
√
λn for

n = 1, 2, . . . . Then∥∥∥∥
(
vint

V

)∥∥∥∥
2

X#

− ‖vint‖2H1 =
∞∑
n=0

|v0,n|2
{
‖Vkn‖2L2(S1) + λn

∥∥∥∥JT−
(

1
Vkn

)∥∥∥∥
2

L2(S1)

}

≤ C
∞∑
n=0

|v0,n|2|kn|
{

1 + ‖J‖2 λn|κ0|2
|kn − κ0|2

}

≤ C
∞∑
n=0

|v0,n|2|kn| ≤ C
∞∑
n=0

|v0,n|2(1 + λn)1/2 <∞,

with a generic constant C. Hence, (vint, V )� ∈ X#.
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(3) With V as constructed above we have vext(r, x̂) =
∑∞
n=0 v0,n exp(iknr)Φn(x̂)

(cf. (2.8), (2.9), (2.15)). If vint ∈ C∞(Ωint), then the Fourier coefficients v0,n decay
superalgebraically, and the series together with its term-by-term derivatives converges
uniformly on compact subsets. Moreover, r �→ eiκrvext(r, x̂) decays exponentially if
�(kn + κ) = �(k0 + κ) > 0. This can be arranged by an appropriate choice of
k0. Hence, Lemma A.1 can be applied to vext(r, x̂) and also to its first derivatives.
Since everything above remains valid if kn is chosen in a small ball around k0 +√
λn, the density property follows from Lemma A.2 and the density of C∞(Ωint) in

H1(Ωint).

Acknowledgments. The idea to use a transform to the Hardy space H+(S1)
arose from discussions with Frank Schmidt and his group at Zuse Institut in Berlin
within this project.
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ACCELERATED LINE-SEARCH AND TRUST-REGION METHODS∗
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Abstract. In numerical optimization, line-search and trust-region methods are two important
classes of descent schemes, with well-understood global convergence properties. We say that these
methods are “accelerated” when the conventional iterate is replaced by any point that produces at
least as much of a decrease in the cost function as a fixed fraction of the decrease produced by the
conventional iterate. A detailed convergence analysis reveals that global convergence properties of
line-search and trust-region methods still hold when the methods are accelerated. The analysis is
performed in the general context of optimization on manifolds, of which optimization in Rn is a
particular case. This general convergence analysis sheds new light on the behavior of several existing
algorithms.

Key words. line search, trust region, subspace acceleration, sequential subspace method, Rie-
mannian manifold, optimization on manifolds, Riemannian optimization, Arnoldi, Jacobi–Davidson,
locally optimal block preconditioned conjugate gradient (LOBPCG)
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1. Introduction. Let f be a real-valued function defined on a domain M , and
let {xk} be a sequence of iterates generated as follows: for every k, some xk+1/2 ∈M
is generated (possibly implicitly) using a descent method that has global convergence
to stationary points of f ; then xk+1 is chosen arbitrarily in the sublevel set {x ∈
M : f(x) ≤ f(xk+1/2)}. We term “acceleration” the fact of choosing xk+1 rather
than xk+1/2 as the new iterate. The question addressed in this paper is whether
the inclusion of the acceleration step preserves global convergence, i.e., whether {xk}
converges to stationary points. We prove that the answer is positive for a wide class
of methods.

The initial motivation for engaging in this general convergence analysis was to ob-
tain a unifying convergence theory for several well-known eigenvalue algorithms. For
example, the Jacobi–Davidson approach [38] is a popular technique for computing an
eigenpair (eigenvalue and eigenvector) of a matrix A. It is an iterative method where
the computation of the next iterate xk+1 from the current iterate xk can be decom-
posed into two steps. The Jacobi step consists of solving (usually, approximately) a
Newton-like equation to obtain an update vector ηk. Whereas in a classical Newton
method the new iterate xk+1 is defined as xk + ηk, the Davidson step uses the up-
date vector ηk to expand a low-dimensional subspace and selects xk+1 as the “best”
approximation (in some sense) of the sought eigenvector of A within the subspace. A
key to the success of this approach is that the problem of computing xk+1 within the
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subspace can be viewed as a reduced-dimensional eigenvalue problem, which can be
solved efficiently when the dimension of the subspace is small. In certain situations,
notably when xk+1 is chosen as the Ritz vector associated with an extreme Ritz value,
the Davidson step can be interpreted as an acceleration step in the sense given above.

The reader primarily interested in eigenvalue algorithms can thus think of the
purpose of this paper as formulating and analyzing this Jacobi–Davidson concept in
the broad context of smooth optimization, i.e., the minimization of a smooth real-
valued cost function over a smooth domain. The “Jacobi” step, instead of being
restricted to (inexact) Newton methods, is expanded to cover general line-search and
trust-region techniques. The “Davidson” step, or acceleration step, is also made more
general: any iterate xk+1 is accepted provided that it produces a decrease in the cost
function that is at least equal to a prescribed fraction of the decrease produced by the
Jacobi update; minimizing the cost function over a subspace that contains the Jacobi
update is just one way of achieving this goal.

This new analysis, while requiring only rather straightforward modifications of
classical proofs found in the optimization literature, is very general and powerful. In
particular, our global convergence analysis yields novel global convergence results for
some well-known eigenvalue methods. Moreover, the proof technique is less ad hoc
than the proofs and derivations usually found in the numerical linear algebra litera-
ture, since it simply relies on showing that the methods fit in the broad optimization
framework.

What we mean by a smooth domain is a (smooth) manifold. Since the work of
Gabay [17], there has been a growing interest for the optimization of smooth cost
functions defined on manifolds. Major references include [22, 40, 34, 14, 3]. These
differential-geometric techniques have found applications in various areas, such as
signal processing, neural networks, computer vision, and econometrics (see, e.g., [6]).
The concept of a manifold generalizes the notion of a smooth surface in a Euclidean
space. It can thus be thought of as a natural setting for smooth optimization. Roughly
speaking, a manifold is a set that is locally smoothly identified with open subsets of
R
d, where d is the dimension of the manifold. When the manifold is given to us as

a subset of R
n described by equality constraints, the differential-geometric approach

can be viewed as an “informed way” of doing constrained optimization. The resulting
algorithms have the property of being feasible (i.e., the iterates satisfy the constraints).
In several important cases, however, the manifold is not available as a subset of R

n but
rather as a quotient space. Usually, the fundamental reason why the quotient structure
appears is in order to take into account an inherent invariance in the problem. Smooth
real-valued functions on quotient manifolds lend themselves as well to differential-
geometric optimization techniques. We refer the reader to [6] for a recent overview of
this area of research.

The reader solely interested in unconstrained optimization in R
n should bear

in mind that this situation is merely a particular case of the differential-geometric
optimization framework considered here. We frequently mention in the text how
unconstrained optimization in R

n is subsumed.
Line-search and trust-region methods are two major techniques for unconstrained

optimization in R
n (see, e.g., [30]). Line-search techniques were proposed and analyzed

on manifolds by several authors; see, e.g., [33, 34, 22, 40, 41, 6]. A trust-region
framework, based on a systematic use of the concept of retraction, for optimizing
functions defined on abstract Riemannian manifolds was proposed more recently [2,
6, 9]. Under reasonable conditions, which hold in particular for smooth cost functions
on compact Riemannian manifolds, the trust-region method was shown to converge
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to stationary points of the cost function (this is an extension of a well-known result
for trust-region methods in R

n). Furthermore, if the trust-region subproblems are
(approximately) solved using a truncated conjugate gradient (CG) method with a
well-chosen stopping criterion, then the method converges locally superlinearly to the
nondegenerate local minima of the cost function. However, these favorable global and
local convergence properties do not yield any information on the number of iterates
needed, from a given initial point, to reach the local superlinear regime; and, indeed,
problems can be crafted where this number of iterates is prohibitively high. The
same can be said about the retraction-based line-search approach considered here.
Acceleration techniques can be viewed as a way of improving the speed of convergence
of those methods.

The acceleration idea is closely related to the subspace expansion concept in
Davidson’s method for the eigenvalue problem [12] (see also the more recent results
in [38, 16, 15]), but the constraints we impose on the acceleration step are weaker
than in Davidson-type algorithms. Our approach is also reminiscent of the sequential
subspace method (SSM) of Hager [20, 25]. Whereas the latter uses subspace accelera-
tion for the purpose of approximately solving trust-region subproblems, we use it as
an outermost iteration wrapped around line-search and trust-region methods. The
sequential subspace optimization algorithm of Narkiss and Zibulevsky [31] fits in the
same framework.

The paper is organized as follows. In section 2, we define the concept of acceler-
ation. The background in optimization on manifolds is recalled in section 3, with a
particular emphasis on the case where the manifold is simply R

n. We show global con-
vergence properties for accelerated line-search (section 4) and trust-region (section 5)
methods on Riemannian manifolds (of which the classical R

n is a particular case).
Section 6 gives a local convergence result. In section 7, these results are exploited to
show global convergence properties of subspace acceleration methods. In particular,
a conceptually simple accelerated conjugate gradient method, inspired from the work
of Knyazev [26] for the symmetric eigenvalue problem, is proposed, and its global
convergence is analyzed. Applications are mentioned in section 8, and conclusions are
drawn in section 9.

A preliminary version of this paper appeared in the technical report [4], where
the retraction-based line-search scheme and the acceleration concept were introduced.

2. Accelerated optimization methods. In this section, we define the concept
of acceleration and briefly discuss acceleration strategies. An important acceleration
technique, which consists of minimizing the cost function over an adequately chosen
subspace, will be further discussed in section 7.

2.1. Definition. Let f be a cost function defined on an optimization domain
M . Given a current iterate xk ∈M , line-search and trust-region methods generate a
new iterate in M ; call it xk+1/2. Accelerating the method consists of picking a new
iterate xk+1 ∈M that produces at least as much of a decrease in the cost function as
a fixed fraction of the decrease produced by xk+1/2. In other words, xk+1 must satisfy

(1) f(xk)− f(xk+1) ≥ c
(
f(xk)− f(xk+1/2)

)
for some constant c > 0 independent of k.

2.2. Acceleration strategies. This relaxation on the choice of the new iterate
introduces leeway for exploiting information that may improve the behavior of the
method. For example, xk+1 can be determined by minimizing f over some well-
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chosen subset of the domain M , built using information gained over the iterations.
This idea is developed in section 7.

Moreover, a wide variety of “hybrid” optimization methods fit in the framework
of (1). For example, let A be a line-search or trust-region algorithm, and let B be any
descent method. If, for all k, xk+1/2 is obtained from xk by A and xk+1 is obtained
from xk+1/2 by B, then the sequence {xk} is generated by an accelerated line-search
or trust-region algorithm. Likewise, for all k, let xk+1/2 be obtained from xk by A, let
x̃k+1/2 be obtained from xk by B, and let xk+1 = xk+1/2 if f(xk+1/2) ≤ f(x̃k+1/2) and
xk+1 = x̃k+1/2 otherwise; then the sequence {xk} is again generated by an accelerated
line-search or trust-region method.

Note that, until we reach section 7 on subspace acceleration, we make no assump-
tion other than (1) on how xk+1 is chosen from xk+1/2. We also point out that values
of c in the open interval (0, 1) do not correspond to acceleration in the intuitive sense
of the term since f(xk+1) is possibly greater than f(xk+1/2). Actually, all practical
accelerated methods considered in section 8 satisfy (1) with c = 1. However, we
consider the general case c > 0 because it may be useful in some situations and the
global convergence analysis for c > 0 is not significantly more complicated than for
c = 1.

3. Preliminaries on Euclidean and Riemannian optimization. In this pa-
per, we assume that the optimization domain M is a (finite-dimensional) Riemannian
manifold. The particularization to unconstrained optimization in R

n is made explicit
whenever we feel that it improves readability.

Loosely speaking, a manifold is a topological set covered by mutually compatible
local parameterizations. We refer, e.g., to [13, 6] for details. An important type of
manifolds are those subsets of R

n with a tangent space of constant dimension defined
at each point (simple examples are spheres and R

n itself). If the tangent spaces
TxM are equipped with an inner product 〈·, ·〉x that varies smoothly with x, then the
manifold is called Riemannian. In this paper, we consider the problem of minimizing
a real function f (the cost function) defined on a Riemannian manifold M .

Classical unconstrained optimization in R
n corresponds to the case M = R

n.
The tangent space to R

n at any point x ∈ R
n is canonically identified with R

n itself:
TxR

n � R
n. The canonical Riemannian structure on R

n is its usual Euclidean vector
space structure, where the inner product at x ∈ R

n defined by 〈ξ, ζ〉 := ξT ζ for all
ξ, ζ ∈ TxRn � R

n.
The major problem to overcome is that manifolds are in general not flat so that

the sum of two elements of M or their multiplication by scalars is not defined. A
remedy advocated in [2] is to locally “flatten” the manifold onto the tangent space
Txk

M at the current iterate xk. This is done by means of a retraction, a concept
proposed by Shub [32, 3].

Definition 3.1 (retraction). A retraction on a manifold M is a mapping R
from the tangent bundle TM into M with the following properties (let Rx denote the
restriction of R to TxM):

1. R is continuously differentiable.
2. Rx(ξ) = x if and only if ξ = 0x, the zero element of TxM .
3. DRx(0x) = idTxM , where DRx(0x) denotes the differential of Rx(·) at 0x and

idTxM denotes the identity mapping on TxM , with the canonical identification
T0x(TxM) � TxM .

Instead of the third condition, it is equivalent to require that d
dtRx(tξx)

∣∣
t=0

= ξx
for all ξx ∈ TxM .
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We do not necessarily assume that R is defined on the whole tangent bundle TM ,
but we make the blanket assumption that its evaluation never fails in the algorithms.
Note that the third condition implies that Rx is defined on a neighborhood of the
origin of TxM for all x ∈ M ; this guarantees that, given ηx ∈ TxM , Rx(tηx) is
well-defined at least on some nonempty interval −ε < t < ε.

On a Riemannian manifold, it is always possible to choose the retraction R as the
exponential mapping (which is defined everywhere when the manifold is complete).
Using the exponential, however, may not be computationally sensible. The concept
of retraction gives the possibility of choosing more efficient substitutes (see [3, 6]).
Given a cost function f on a manifold M equipped with a retraction R, we define the
lifted cost function at x ∈M as

(2) f̂x : TxM → R : ξ 	→ f(Rx(ξ)).

When M = R
n, the natural retraction is given by

(3) Rx(ξ) := x+ ξ,

and f̂x satisfies f̂x(ξ) = f(x+ ξ) for all x ∈ R
n and all ξ ∈ TxRn � R

n.
Given a current iterate xk on M , any line-search or trust-region method applied

to f̂xk
produces a vector ηk in Txk

M . In a line-search method, ηk is used as a search
direction: a point is sought on the curve t 	→ Rxk

(tηk) that satisfies some conditions
on the cost function (e.g., a line minimizer or the Armijo condition). In a trust-region
method [2], ηk defines a proposed new iterate Rxk

(ηk). In both cases, the optimization
method yields a proposed new iterate xk+1/2 in M . Below we study the convergence
properties of such schemes when they are accelerated in the sense of (1).

4. Accelerated line-search methods. Line-search methods (without acceler-
ation) on a manifold M endowed with a retraction R are based on the update formula

xk+1 = Rxk
(tkηk),

where ηk is in Txk
M and tk is a scalar. The two issues are to select the search direction

ηk and then the step length tk. To obtain global convergence results, some restrictions
have to be imposed on ηk and tk. The following definition concerning ηk is adapted
from [10].

Definition 4.1 (gradient-related). A sequence {ηk}, ηk ∈ Txk
M , is gradient-

related if, for any subsequence {xk}k∈K in M that converges to a nonstationary point,
the corresponding subsequence {ηk}k∈K is bounded and satisfies

lim sup
k→∞, k∈K

〈grad f(xk), ηk〉xk
< 0.

When M = R
n with its canonical Euclidean structure, we have grad f(x) =[

∂1f(x) · · · ∂nf(x)
]T and 〈grad f(x), η〉 = ηT gradf(x), where we used the canon-

ical identification TxRn � R
n. (One must bear in mind that when we use the identi-

fication TxR
n � R

n, we lose the information on the foot x of the tangent vector. In
order to specify the foot, we say that {ηk} ⊆ R

n is gradient-related to {xk}.)
There is a relation between the gradient relatedness of {ηk} and the angle between

ηk and the steepest-descent direction. Let ∠(−grad f(xk), ηk)= arccos 〈−grad f(xk),ηk〉xk

‖grad f(xk)‖xk
‖ηk‖xk

denote the angle between ηk and the steepest-descent direction −gradf(xk). Let {ηk}
be such that c1 ≤ ‖ηk‖xk

≤ c2 for some 0 < c1 < c2 < ∞ and all k. Then the con-
dition ∠(−gradf(xk), ηk) ≥ θ for some fixed θ > π

2 and all k is sufficient for the
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sequence {ηk} to be gradient-related to {xk}. In particular, assume that ηk is ob-
tained by solving a linear system Akηk = −gradf(xk), where Ak is a linear symmetric
positive-definite transformation of Txk

M . Then cos∠(−grad f(xk), ηk) ≥ κ−1(Ak),
where κ(Ak) denotes the condition number of Ak. Hence if the smallest eigenvalue of
Ak is bounded away from zero and the largest eigenvalue of Ak is bounded, then {ηk}
is bounded away from zero and infinity and the condition number of Ak is bounded,
and thus {ηk} is gradient-related. (Note that the condition that the linear operator
A : TxM → TxM is symmetric positive-definite means that 〈u,Av〉x = 〈Au, v〉x for
all u, v ∈ TxM , and 〈u,Au〉x > 0 for all nonzero u ∈ TxM . In the case of R

n en-
dowed with its canonical inner product, this corresponds to the classical definitions
of symmetry and positive definiteness for the matrix representing the operator A.)

The next definition, related to the choice of the step length tk, relies on Armijo’s
backtracking procedure [7] (or see [10]) to find a point at which there is sufficient
decrease of the cost function.

Definition 4.2 (Armijo point). Given a differentiable cost function f on a
Riemannian manifold M with retraction R, a point x ∈M , a nonzero descent vector
η ∈ TxM (i.e., 〈gradf(x), η〉x < 0), a scalar α > 0 such that the segment [0, α]η ⊆
TxM is included in the domain of R, and scalars β ∈ (0, 1) and σ ∈ (0, 1), the Armijo
vector is defined as ηA = βmαη, where m is the first nonnegative integer such that

(4) f(x)− f(Rx(βmαη)) ≥ −σ 〈grad f(x), βmαη〉x.

The Armijo point is Rx(βmαη) ∈M .
It can be shown, using the classical Armijo theory for the lifted cost function f̂x,

that there is always an m such that (4) holds, and hence the definition is legitimate.
A similar definition was proposed in [41] for the particular case where the retraction
is the exponential mapping. When M = R

n with its canonical Euclidean structure,
the definition reduces to the classical situation described, e.g., in [10].

We propose the following accelerated Riemannian line-search algorithm.

Algorithm 1. Accelerated Line Search (ALS)
Require: Riemannian manifold M ; continuously differentiable scalar field f on M ;

retraction R from TM to M as in Definition 3.1; scalars α > 0, c, β, σ ∈ (0, 1).
Input: Initial iterate x0 ∈M .
Output: Sequence of iterates {xk} ⊆M and search directions {ηk} ⊆ TM .
1: for k = 0, 1, 2, . . . do
2: Pick a descent vector ηk in Txk

M such that tηk is in the domain of R for all
t ∈ [0, α].

3: Select xk+1 ∈M such that

(5) f(xk)− f(xk+1) ≥ c
(
f(xk)− f

(
Rxk

(
ηA
)))

,

where ηA is the Armijo vector (Definition 4.2 with x := xk and η := ηk).
4: end for

Observe that Algorithm 1, as well as most other algorithms in this paper, describes
a class of numerical algorithms; one could call it an algorithm model. The purpose
of this analysis paper is to give (strong) convergence results for (broad) classes of
algorithms. For Algorithm 1, we have the following convergence result, whose proof
closely follows [10, Proposition 1.2.1]. The result is, however, more general in three
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aspects. (1) Even when the optimization domain is R
n, the line search is not neces-

sarily done on a straight line, because the choice of the retraction is not restricted to
the natural retraction (3) in R

n. (2) Even in the case of R
n, points other than the

Armijo point can be selected, as long as they satisfy the acceleration condition (5).
(3) Finally, the optimization domain can be any Riemannian manifold.

Theorem 4.3. Let {xk} be an infinite sequence of iterates generated by Algo-
rithm 1 (ALS), and assume that the generated sequence {ηk} of search directions is
gradient-related (Definition 4.1). Then every limit point of {xk} is a stationary point
of f .

Proof. The proof is by contradiction. Suppose that there is a subsequence
{xk}k∈K converging to some x∗ with grad f(x∗) = 0. Since {f(xk)} is nonincreasing,
it follows that {f(xk)} converges to f(x∗). Hence f(xk) − f(xk+1) goes to zero. By
the construction of the algorithm,

f(xk)− f(xk+1) ≥ −cσαk〈grad f(xk), ηk〉xk
,

where αkηk is the Armijo vector. Since {ηk} is gradient-related, it follows that
{αk}k∈K → 0. It follows that for all k greater than some k, αk < α, which means
that αk = βmα for some m ≥ 1, which implies that the previously tried step size
βm−1α = αk/β did not satisfy the Armijo condition. In other words,

f(xk)− f (Rxk
(αk/β)ηk) < −σ(αk/β)〈grad f(xk), ηk〉xk

∀k ∈ K, k ≥ k.

Denoting

(6) η̃k =
ηk
‖ηk‖ and α̃k =

αk‖ηk‖
β

,

the inequality above reads

f̂xk
(0)− f̂xk

(α̃kη̃k)
α̃k

< −σ〈grad f(xk), ηk〉xk
∀k ∈ K, k ≥ k,

where f̂ is defined as in (2). The mean value theorem yields

(7) −〈grad f̂xk
(tη̃k), η̃k〉xk

< −σ〈gradf(xk), ηk〉xk
∀k ∈ K, k ≥ k,

where t is in the interval [0, α̃k]. Since {αk}k∈K → 0 and since ηk is gradient-related,
hence bounded, it follows that {α̃k}k∈K → 0. Moreover, since η̃k has unit norm and
its foot xk converges on the index set K, it follows that {ηk}k∈K is included in some
compact subset of the tangent bundle TM , and therefore there exists an index set
K̃ ⊆ K such that {η̃k}k∈K̃ → η̃∗ for some η̃∗ ∈ Tx∗M with ‖η̃∗‖ = 1. We now take
the limit in (7) over K̃. Since the Riemannian metric is continuous (by definition),
f ∈ C1, and grad f̂xk

(0) = grad f(xk) (because of point 3 in Definition 3.1, see [6,
equation (4.4)]), we obtain

−〈grad f(x∗), η̃∗〉x∗ ≤ −σ〈grad f(x∗), η̃∗〉x∗ .

Since 0 < σ < 1, it follows that 〈grad f(x∗), η̃∗〉x∗ ≥ 0. On the other hand, from
the fact that {ηk} is gradient-related, one obtains that 〈grad f(x∗), η̃∗〉x∗ < 0, a
contradiction.
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More can be said under compactness assumptions, using a standard topologi-
cal argument. (The purpose of the compactness assumption is to ensure that every
subsequence of {xk} has at least one limit point.)

Corollary 4.4. Let {xk} be an infinite sequence of iterates generated by Al-
gorithm 1 (ALS), and assume that the generated sequence {ηk} of search directions
is gradient-related (Definition 4.1). Assume that there is a compact set C such that
{xk} ⊆ C. (This assumption holds in particular when the sublevel set L = {x ∈ M :
f(x) ≤ f(x0)} is compact: the iterates all belong to the sublevel set since f is nonin-
creasing. It also holds when M itself is compact.) Then limk→∞ ‖gradf(xk)‖ = 0.

Proof. The proof is by contradiction. Assume the contrary; i.e., there is a subse-
quence {xk}k∈K and ε > 0 such that ‖gradf(xk)‖ > ε for all k ∈ K. Since {xk} ⊆ C,
with C compact, it follows that {xk}k∈K has a limit point x∗ in C (Bolzano–Weierstrass
theorem). By continuity of gradf , one has ‖gradf(x∗)‖ ≥ ε, i.e., x∗ is not stationary,
a contradiction with Theorem 4.3.

5. Accelerated trust-region algorithm. We first briefly recall the basics of
the Riemannian trust-region scheme (RTR) proposed in [2]. Let M be a Riemannian
manifold with retraction R. Given a cost function f : M → R and a current iterate
xk ∈M , we use Rxk

to locally map the minimization problem for f on M into a min-
imization problem for the cost function f̂xk

defined as in (2). The Riemannian metric
g turns Txk

M into a Euclidean space endowed with the inner product gxk
(·, ·), which

makes it possible to consider the following trust-region subproblem in the Euclidean
space Txk

M :

(8a) min
η∈Txk

M
mxk

(η) subject to 〈η, η〉xk
≤ Δ2

k,

where

(8b) mxk
(η) ≡ f(xk) + 〈grad f(xk), η〉xk

+
1
2
〈Hxk

η, η〉xk
,

Δk is the trust-region radius, and Hxk
: Txk

M → Txk
M is some symmetric linear

operator, i.e., 〈Hxk
ξ, χ〉xk

= 〈ξ,Hxk
χ〉xk

, ξ, χ ∈ TxM . Note that mxk
need not be

the exact quadratic Taylor expansion of f̂xk
about zero, since Hk is freely chosen.

Next, an approximate solution ηk to the trust-region subproblem (8) is produced.
For the purpose of obtaining global convergence results, the ηk need not be the exact
solution provided it produces a sufficient decrease of the model, as specified later.
The decision to accept or not the candidate Rxk

(ηk) and to update the trust-region
radius is based on the quotient

(9) ρk =
f(xk)− f(Rxk

(ηk))
mxk

(0xk
)−mxk

(ηk)
=

f̂xk
(0xk

)− f̂xk
(ηk)

mxk
(0xk

)−mxk
(ηk)

measuring the agreement between the model decrease and the function decrease at
the proposed iterate.

The following algorithm differs from the RTR algorithm of [2] only below the line
“if ρk > ρ′.” (The specific rules for accepting the proposed new iterate and updating
the trust-region radius come from [30]; they form a particular instance of the rules
given in [11].)

Next, we study the global convergence of Algorithm 2. We show that, under
some assumptions on the cost function, the model and the quality of ηk, it holds
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Algorithm 2. Accelerated Trust Region (ATR)
Require: Riemannian manifold M ; scalar field f on M ; retraction R from TM to M

as in Definition 3.1. Parameters: Δ̄ > 0, Δ0 ∈ (0, Δ̄), and ρ′ ∈ [0, 1
4 ), c ∈ (0, 1),

c1 > 0.
Input: Initial iterate x0 ∈M .
Output: Sequence of iterates {xk}.
1: for k = 0, 1, 2, . . . do
2: Obtain ηk by (approximately) solving (8).
3: Evaluate ρk from (9);
4: if ρk < 1

4 then
5: Δk+1 = 1

4Δk

6: else if ρk > 3
4 and ‖ηk‖ = Δk then

7: Δk+1 = min(2Δk, Δ̄)
8: else
9: Δk+1 = Δk;

10: end if
11: if ρk > ρ′ then
12: Select xk+1 ∈M such that

(10) f(xk)− f(xk+1) ≥ c (f(xk)− f(Rxk
(ηk))) ;

13: else
14: Select xk+1 ∈M such that

(11) f(xk)− f(xk+1) ≥ 0;

15: end if
16: end for

that the gradient of the cost function goes to zero at least on a subsequence of {xk}.
This is done by slightly modifying the corresponding development given in [2] to take
acceleration into account.

We need the following definition.
Definition 5.1 (radially L-C1 function). Let f̂ : TM → R be as in (2). We say

that f̂ is radially Lipschitz continuously differentiable if there exist reals βRL > 0 and
δRL > 0 such that, for all x ∈ M , for all ξ ∈ TM with ‖ξ‖ = 1, and for all t < δRL,
it holds that

(12)
∣∣∣∣ ddτ f̂x(τξ)|τ=t − d

dτ
f̂x(τξ)|τ=0

∣∣∣∣ ≤ βRLt.
For the purpose of Algorithm 2, which is a descent algorithm, this condition needs

only to be imposed in the level set

(13) {x ∈M : f(x) ≤ f(x0)}.
We also require the approximate solution ηk of the trust-region subproblem (8) to
produce a sufficient decrease in the model. More precisely, ηk must produce at least
as much of a decrease in the model function as a fixed fraction of the so-called Cauchy
decrease; see [30, section 4.3]. Since the trust-region subproblem (8) is expressed on
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a Euclidean space, the definition of the Cauchy point is adapted from R
n without

difficulty, and the bound

(14) mk(0)−mk(ηk) ≥ c1‖gradf(xk)‖min
(

Δk,
‖gradf(xk)‖
‖Hk‖

)
,

for some constant c1 > 0, is readily obtained from the R
n case, where ‖Hk‖ is defined

as

(15) ‖Hk‖ := sup{‖Hkζ‖ : ζ ∈ Txk
M, ‖ζ‖ = 1}.

In particular, the Steihaug–Toint truncated CG method (see, e.g., [37, 30, 11]) satisfies
this bound (with c1 = 1

2 , see [30, Lemma 4.5]) since it first computes the Cauchy point
and then attempts to improve the model decrease.

With these things in place, we can state and prove the following global convergence
result.

Theorem 5.2. Let {xk} be a sequence of iterates generated by Algorithm 2
(ATR) with ρ′ ∈ [0, 1

4 ). Suppose that f is C1 and bounded below on the level set (13),
that f̂ is radially L-C1 (Definition 5.1), and that ‖Hk‖ ≤ β for some constant β.
Further suppose that all approximate solutions ηk of (8) satisfy the Cauchy decrease
inequality (14) for some positive constant c1. We then have

lim inf
k→∞

‖gradf(xk)‖ = 0.

Proof. Here is a brief outline of the proof for the reader’s convenience. We will
assume for contradiction that the norm of the gradient is bounded away from zero.
Then a key to reaching a contradiction is that the trust-region does not shrink to
zero (21). This is ensured by showing that ρk is greater than 1

2 whenever Δk is
smaller than a global value (20). This result itself is obtained by imposing that the
discrepancy between the model and the cost function is uniformly quadratic (17) and
that the denominator of ρk is bounded below by a ramp function of Δk (14).

We now turn to the detailed proof. First, we perform some manipulation of ρk
from (9):

|ρk − 1| =
∣∣∣∣∣ (f(xk)− f̂xk

(ηk))− (mk(0)−mk(ηk))
mk(0)−mk(ηk)

∣∣∣∣∣
=

∣∣∣∣∣mk(ηk)− f̂xk
(ηk)

mk(0)−mk(ηk)

∣∣∣∣∣ .(16)

Direct manipulations on the function t 	→ f̂xk
(t ηk

‖ηk‖ ) yield

f̂xk
(ηk) = f̂xk

(0xk
) + ‖ηk‖ d

dτ
f̂xk

(
τ
ηk
‖ηk‖

)
|τ=0

+
∫ ‖ηk‖

0

(
d

dτ
f̂xk

(
τ
ηk
‖ηk‖

)
|τ=t − d

dτ
f̂xk

(
τ
ηk
‖ηk‖

)
|τ=0

)
dt

= f(xk) + 〈grad f(xk), ηk〉xk
+ ε′,

where |ε′| < ∫ ‖ηk‖
0

βRLt dt = 1
2βRL‖ηk‖2 whenever ‖ηk‖ < δRL, and βRL and δRL

are the constants in the radially L-C1 property (12). Therefore, it follows from the
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definition (8b) of mk that∣∣∣mk(ηk)− f̂xk
(ηk)

∣∣∣ =
∣∣∣∣12 〈Hxk

ηk, ηk〉xk
− ε′

∣∣∣∣
≤ 1

2
β‖ηk‖2 +

1
2
βRL‖ηk‖2 ≤ β′‖ηk‖2(17)

whenever ‖ηk‖ < δRL, where β′ = max(β, βRL). Assume for the purpose of contra-
diction that lim infk→∞ ‖gradf(xk)‖ = 0; that is, assume that there exist ε > 0 and
a positive index K such that

(18) ‖gradf(xk)‖ ≥ ε ∀k ≥ K.
From (14) for k ≥ K, we have

(19) mk(0)−mk(ηk) ≥ c1‖gradf(xk)‖min
(
Δk,
‖gradf(xk)‖
‖Hk‖

)
≥ c1εmin

(
Δk,

ε

β′

)
.

Substituting (17) and (19) into (16), we have that

(20) |ρk − 1| ≤ β′‖ηk‖2
c1εmin

(
Δk,

ε
β′

) ≤ β′Δ2
k

c1εmin
(
Δk,

ε
β′

)
whenever ‖ηk‖ < δRL. We can choose a value of Δ̂ that allows us to bound the
right-hand side of the inequality (20) when Δk ≤ Δ̂. Choose Δ̂ as follows:

Δ̂ ≤ min
(
c1ε

2β′
,
ε

β′
, δRL

)
.

This gives us min(Δk,
ε
β′ ) = Δk. We can now write (20) as follows:

|ρk − 1| ≤ β′Δ̂Δk

c1εmin
(
Δk,

ε
β′

) ≤ Δk

2 min
(
Δk,

ε
β′

) =
1
2
.

Therefore, ρk ≥ 1
2 >

1
4 whenever Δk ≤ Δ̂ so that, by the workings of Algorithm 2, it

follows that Δk+1 ≥ Δk whenever Δk ≤ Δ̂. It follows that a reduction of Δk (by a
factor of 1

4 ) can occur in Algorithm 2 only when Δk > Δ̂. Therefore, we conclude that

(21) Δk ≥ min
(
ΔK , Δ̂/4

)
∀k ≥ K.

Consequently, ρk ≥ 1
4 must hold infinitely many times (otherwise {Δk} would go to

zero by the workings of the algorithm). So there exists an infinite subsequence K such
that ρk ≥ 1

4 > ρ′ for k ∈ K. If k ∈ K and k ≥ K, it follows from (19) and (10) that

f(xk)− f(xk+1) ≥ c
(
fxk
− f̂xk

(ηk)
)

≥ c 1
4
(mk(0)−mk(ηk))

≥ c 1
4
c1εmin

(
Δk,

ε

β′

)

≥ c 1
4
c1εmin

(
ΔK ,

Δ̂
4
,
ε

β′

)
.

Since, moreover, f(xk) − f(xk+1) ≥ 0 for all k /∈ K, it follows that f(xk) → −∞, a
contradiction since f is bounded below on the level set containing {xk}.
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The convergence result of Theorem 5.2 is essentially identical to the correspond-
ing result for the non-accelerated Riemannian trust-region method (see [2] or [6]),
which itself is a natural generalization of a convergence result of the classical (non-
accelerated) trust-region method in R

n. In the classical convergence theory of trust-
region methods in R

n (see, e.g., [30, 11]), this result is followed by another theorem
stating that, under further assumptions, limk→∞ ‖gradf(xk)‖ = 0; i.e., the gradient
of the cost function goes to zero on the whole sequence of iterates. This result also
has a natural generalization for the non-accelerated Riemannian trust-region method
(see [2, Theorem 4.4] or [6, Theorem 7.4.4]). It is an open question whether this result
extends verbatim to the accelerated case. At least we can say that the proof cannot
be adapted in a simple way: the condition that there exist μ > 0 and δμ > 0 such that

(22) ‖ξ‖ ≥ μ dist(x,Rx(ξ)) for all x ∈M, for all ξ ∈ TxM, ‖ξ‖ ≤ δμ,
no longer implies that ‖ηk‖ ≥ μ dist(xk, xk+1) when acceleration comes into play. A
simple fix is to require that there exists μ > 0 such that the iterates satisfy

(23) ‖ηk‖ ≥ μ dist(xk, xk+1) for all k.

We then obtain the following result. (We refer to [2, 6] for the concept of Lipschitz
continuous differentiability of f on the Riemannian manifold M ; the definition re-
duces to the classical one when the manifold is R

n. The extension of the proof of [6,
Theorem 7.4.4] to a proof of Theorem 5.3 is left to the reader.)

Theorem 5.3. Let {xk} be a sequence of iterates generated by Algorithm 2
(ATR). Suppose that all of the assumptions of Theorem 5.2 are satisfied. Further
suppose that ρ′ ∈ (0, 1

4 ), that f is Lipschitz continuously differentiable, and that (23)
is satisfied for some μ > 0. It then follows that

lim
k→∞

grad f(xk) = 0.

6. Local convergence. We now briefly comment on how accelerating an op-
timization method may affect its order of convergence. Consider an algorithm that
converges locally with order q to a local minimum v of the cost function f ; that is,

dist(x+, v) ≤ c0 (dist(x, v))q

for some c0 > 0 and all x in some neighborhood of v, where x+ stands for the
next iterate computed from the current iterate x. If the algorithm is accelerated
in the sense of (1), then local convergence to v is no longer guaranteed without
further hypotheses; i.e., the algorithm may converge to stationary points other than
v. However, for sequences of iterates of the accelerated algorithm that converge to v,
we have the following result.

Proposition 6.1. Let v be a nondegenerate minimizer of f ∈ C3(M), where M
is a Riemannian manifold. Consider a descent algorithm that converges locally with
order q > 1 to v. If {xk} is a sequence of iterates of an accelerated version of the
descent algorithm, in the sense of (1) with c = 1, and {xk} converges to v, then it
does so with order q.

Proof. We work in a coordinate system around v. Abusing notation, we use
the same symbols for points of M and their coordinate representations. There is a
neighborhood U of v such that, for all x ∈ U , we have

1
2
λm‖x− v‖2 ≤ f(x)− f(v) ≤ 2λM‖x− v‖2,
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where λM ≥ λm > 0 denote the largest and smallest eigenvalues, respectively, of the
Hessian of f at v (they are positive since v is a nondegenerate minimizer). Since c = 1,
it follows from (1) that f(xk+1) ≤ f(xk+1/2). Moreover, by the equivalence of norms,
there is a neighborhood U1 of v and constants c1 and c2 such that, for all x ∈ U1,
1
c1

dist(x, v) ≤ ‖x − v‖ ≤ c2dist(x, v). Since the original descent algorithm converges
locally with order q to v, there exists a nonempty open ball Bε(v) such that, whenever
xk ∈ Bε(v), it holds that xk+1/2 ∈ Bε(v) with dist(xk+1/2, v) ≤ c0 (dist(xk, v))

q.
Moreover, ε can be chosen such that Bε(v) ⊆ U ∩U1. Since {xk} converges to v, there
is K such that, for all k > K, xk belongs to Bε(v). We have, for all k > K,

(dist(xk+1, v))2 ≤ c21‖xk+1 − v‖2

≤ c21
2
λm

(f(xk+1)− f(v)) ≤ c21
2
λm

(f(xk+1/2)− f(v))

≤ c21
4
λm

λM‖xk+1/2 − v‖2 ≤ c21
4
λm

λMc0c
2
2

(
dist(xk+1/2, v)

)2
≤ c21

4
λm

λMc
2
0c

2
2 (dist(xk, v))

2q
.

7. Sequential subspace optimization methods. We consider sequential sub-
space optimization methods in the form given in Algorithm 3 below. It generalizes the
sequential subspace optimization (SESOP) algorithm of [31] to Riemannian manifolds.

Algorithm 3. SESOP
Require: Riemannian manifold M ; continuously differentiable scalar field f on M ;

retraction R from TM to M as in Definition 3.1.
Input: Initial iterate x0 ∈M .
Output: Sequence of iterates {xk} ⊆M
1: for k = 0, 1, 2, . . . do
2: Select a subspace Sk ⊆ Txk

M .
3: Find ξk = arg minξ∈Sk

f(Rxk
(ξ)).

4: Set xk+1 = Rxk
(ξk).

5: end for

If Sk is chosen in step 2 such that Sk contains ηk, where ηk is as in Algorithm 1
(ALS) (resp., Algorithm 2 (ATR)), then Algorithm SESOP becomes an instance of
Algorithm 1 (resp., Algorithm 2), with c = 1. The SESOP framework thus provides
a strategy for accelerating line-search and trust-region methods.

When M = R
n with its natural retraction, Algorithm 3 becomes Algorithm 4

below, which can be found in [31] in an almost identical formulation. Observe that

Algorithm 4. R
n-SESOP

Require: Continuously differentiable scalar field f on R
n.

Input: Initial iterate x0 ∈ R
n.

Output: Sequence of iterates {xk} ⊆ R
n

1: for k = 0, 1, 2, . . . do
2: Select a real matrix Wk with n rows.
3: Find y∗ = argminy f(x+Wky).
4: Set xk+1 = xk +Wky

∗.
5: end for
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if xk ∈ col(Wk), where col(W ) denotes the subspace spanned by the columns of W ,
then xk+1 admits the expression

(24) xk+1 = arg min
x∈col(Wk)

f(x).

Definition 7.1 (gradient-related sequence of subspaces). A sequence {Sk} of
subspaces of Txk

M is gradient-related if there exists a gradient-related sequence {ηk}
such that ηk ∈ Sk for all k; equivalently, for any subsequence {xk}k∈K that converges
to a nonstationary point, we have

lim sup
k→∞, k∈K

(
inf

η∈Sk, ‖η‖=1
〈grad f(xk), η〉

)
< 0.

When M = R
n, the condition that Sk be a subspace of Txk

M reduces to Sk being a
subspace of R

n (in view of the canonical identification TxRn � R
n).

Proposition 7.2. Let {xk} be an infinite sequence of iterates generated by
Algorithm 3 (SESOP). Assume that the sequence {Sk} produced by Algorithm 3 is
gradient-related (Definition 7.1). Then every limit point of {xk} is a stationary
point of f . Assume further that {xk} is included in some compact set C. Then
limk→∞ ‖gradf(xk)‖ = 0.

Proof. The proof is a direct consequence of the convergence analysis of Algo-
rithm 1 (ALS).

We now discuss a detailed procedure for selecting Sk in Algorithm 3 (SESOP). It
generalizes an idea in [26], which can be traced back to [39]. We denote by P t←t0γ ζ
the vector of Tγ(t)M obtained by parallel transporting a vector ζ ∈ Tγ(t0)M along a
curve γ. We refer, e.g., to [13, 6] for details on parallel translation. In R

n, the natural
parallel translation is simply given by P t←t0γ ζ = ζ (where the ζ on the left-hand side
is viewed as an element of Tγ(0)M and the ζ on the right-hand side is viewed as an
element of Tγ(t)M).

The name conjugate gradient is justified by the following property. Let M be the
Euclidean space R

n with retraction Rx(ξ) := x+ξ. Let f be given by f(x) = 1
2x

TAx,
where A is a symmetric positive-definite matrix. Then Algorithm 5 reduces to the
classical linear CG method. This result is a consequence of the minimizing properties
of the CG method. Again in the Euclidean case, but for general cost functions,
Algorithm 5 can be viewed as a “locally optimal” nonlinear CG method: instead of
computing a search direction ξk as a correction of −gradf(xk) along ξk−1 (as is done
in classical CG methods), the vector ξk is computed as a minimizer over the space
spanned by {−gradf(xk), ξk−1}. For the general Riemannian case, assuming that the
retraction is chosen as the Riemannian exponential, Algorithm 5 can be thought of as
a locally optimal version of the Riemannian CG algorithms proposed by Smith [34]
(see also [14]).

By construction, the sequence {Sk} in Algorithm 5 is gradient-related. The fol-
lowing result thus follows from Proposition 7.2.

Proposition 7.3. Let {xk} be an infinite sequence of iterates generated by Al-
gorithm 5. Then every limit point of {xk} is a stationary point of f . Assume further
that {xk} ⊆ C for some compact set C. Then limk→∞ ‖gradf(xk)‖ = 0.

This result still holds if the parallel transport in Algorithm 5 is replaced by any
vector transport as defined in [6]; indeed, the sequence {Sk} is still gradient-related
by construction. Moreover, we point out that since Algorithm 5 is based on CG, it
tends to display fast local convergence.
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Algorithm 5. Accelerated Conjugate Gradient (ACG)
Require: Riemannian manifold M ; continuously differentiable scalar field f on M ;

retraction R from TM to M as in Definition 3.1.
Input: Initial iterate x0 ∈M .
Output: Sequence of iterates {xk}.
1: ξ0 := 0; x1 := x0;
2: for k = 1, 2, . . . do
3: Compute ξk as a minimizer of f̂xk

over Sk := span
{
P 1←0
γ ξk−1, gradf(xk)

}
where γ(t) := Rxk−1(t ξk−1);

4: Compute xk+1 = Rxk
(ξk);

5: end for

8. Applications. Several occurences of Algorithms 1 (ALS), 2 (ATR), and 3
(SESOP) appear in the literature, e.g., in [20], [31], and in several eigenvalue algo-
rithms. Indeed, it is well-known that subspace acceleration can remarkably improve
the efficiency of eigensolvers; see, for example, the numerical comparison in [6, Fig-
ure 4.3] between a steepest descent algorithm and an accelerated version thereof,
equivalent to locally optimal block preconditioned conjugate gradient (LOBPCG).
Since, moreover, subspace acceleration is easy to perform for the eigenvalue problem,
there are few methods that do not exploit it.

In the context of this analysis paper, we will focus on showing that the theory
developed in the previous sections leads to convergence results for certain well-known
algorithms. Some of these convergence results are new, to the best of our knowl-
edge. In other cases, we recover results that have already been established, but the
acceleration-based proof technique is novel and arguably more streamlined.

8.1. Lanczos algorithm. In a Ritz-restarted Lanczos algorithm for computing
the leftmost eigenpair of a symmetric matrix A, the next iterate xk+1 is chosen as a
minimizer of the Rayleigh quotient over the subspace Km(xk) := span{xk, Axk, A2xk,
. . . , Amxk}, m ≥ 1. Recall that the Rayleigh quotient of A is the function

f : R
n
0 → R : x 	→ xTAx

xTx
.

Its stationary points are the eigenvectors of A, and at those points it takes the value
of the corresponding eigenvalue. (Note, however, that f(x) = λi, where λi is an
eigenvalue of A, does not imply that x is an eigenvector of A, unless λi is an extreme
eigenvalue of A.) Since xk belongs to Km(xk), we are in the situation (24), and
thus the Ritz-restarted Lanczos algorithm is an instance of Algorithm 3 (SESOP)
(specifically, of Algorithm 4 (Rn-SESOP)). The gradient of the Rayleigh quotient at
xk is collinear with Axk − f(xk)xk, which belongs to Km(xk), and hence {Km(xk)}
is gradient-related to {xk}. It follows from Theorem 7.2 that every limit point of
{xk} is an eigenvector of A, regardless of x0. Taking into account the properties of
the Rayleigh quotient f along with the fact that {xk} is a descent sequence for f , it
follows that {xk} converges to the eigenspace associated to an eigenvalue of A. The
same conclusion holds for the Ritz-restarted Krylov method proposed by Golub and
Ye [19] for the symmetric definite generalized eigenvalue problem. In other words, we
recovered [19, Theorem 3.2].

8.2. LOBPCG. Knyazev’s LOBPCG method [26], in combination with a sym-
metric positive-definite preconditioner, is a popular algorithm for computing approx-



1012 P.-A. ABSIL AND K. A. GALLIVAN

imations to the smallest eigenvalues and eigenvectors of the eigenproblem

Au = Buλ,

where A and B are real symmetric positive-definite matrices of order n. Here we
consider LOBPCG as formulated in [21, Algorithm 1] (with some changes in the
notation), and we show, using Theorem 4.3, that the limit points of {col(Xk)} are
invariant subspaces of the pencil (A,B). Moreover, invariant subpaces that do not
correspond to the smallest eigenvalues are “unstable,” in the sense explained below.

The LOBPCG algorithm is described in Algorithm 6. In the algorithm, (Y,Θ) =
RR(S, p) performs a Rayleigh–Ritz analysis where the pencil (STAS, STBS) has
eigenvectors Y and eigenvalues Θ, i.e.,

STASY = STBSYΘ and Y TSTBSY = Ib×b,

where Ib×b is the identity matrix of size b × b. The first p pairs with smallest Ritz
values are returned in Y and in the diagonal matrix Θ in a nondecreasing order. Note
that we consider the formulation [21, Algorithm 1] because it is simple to state and
comprehend. However, it should be kept in mind that the matrix [Xk, Hk, Pk] may
become singular or ill-conditioned [21]. Therefore, in practical implementations, it is
recommended to rely on the robust representation given in [21, Algorithm 2]. The
convergence results obtained below also hold in this case.

Algorithm 6. LOBPCG [26, 21] without soft-locking

Require: Symmetric positive-definite matrices A and B of order n; symmetric
positive-definite preconditioner N ; block-size p.

1: Select an initial guess X̃ ∈ R
n×p.

2: X0 = X̃Y where (Y,Θ0) = RR(X̃, p).
3: Rk = AX0 −MX0Θ0.
4: Pk = [ ].
5: for k = 0, 1, 2, . . . do
6: Solve the preconditioned linear system NHk = Rk.
7: Let S = [Xk, Hk, Pk] and compute (Yk,Θk+1) = RR(S, p).
8: Xk+1 = [Xk, Hk, Pk]Yk.
9: Rk+1 = AXk+1 −MXk+1Θk+1.

10: Pk+1 = [0, Hk, Pk]Yk.
11: end for

In the case p = 1, it takes routine manipulations to check, using Proposition 7.2
with the Rayleigh quotient as the cost function, that all of the limit points of {Xk}
are eigenvectors of the pencil (A,B). We now consider the general case p ≥ 1 in
detail.

Let R
n×p
∗ denote the set of all full-rank n× p real matrices. Observe that R

n×p
∗ is

an open subset of R
n×p (it is thus an open submanifold of the linear manifold R

n×p,
see [6]) and that TXR

n×p
∗ � R

n×p for all X ∈ R
n×p
∗ . In R

n×p
∗ , consider the inner

product defined by

(25) 〈Z1, Z2〉X = 2 trace
((
XTBX

)−1
ZT1 Z2

)
, X ∈ R

n×p
∗ , Z1, Z2 ∈ TXR

n×p
∗ .

(The factor of 2 is included here to prevent factors of 2 from appearing in the formula
of the gradient below. This is still a valid inner product, and it turns R

n×p
∗ into a
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Riemannian manifold.) Consider the cost function

(26) f : R
n×p
∗ → R : X 	→ trace

((
XTBX

)−1
XTAX

)
.

This generalized Rayleigh quotient was studied, e.g., in [6] (when B = I, it reduces to
the extended Rayleigh quotient of [22]). It satisfies the property f(XW ) = f(X) for
all X ∈ R

n×p
∗ and all W invertible of size p× p. A matrix X ∈ R

n×p
∗ is a stationary

point of f if and only if its column space is an invariant subspace of the pencil (A,B).
The value of f at an invariant subspace is the sum of the corresponding eigenvalues.
The stationary points whose column space is the rightmost invariant subspace of
(A,B) (i.e., the one corresponding to the largest eigenvalues) are global maximizers
of f . The stationary points whose column space is the leftmost invariant subspace of
(A,B) (i.e., the one corresponding to the smallest eigenvalues) are global minimizers
of f . All of the other stationary points are saddle points.

The fact that R
n×p
∗ is R

n×p with infinitely many elements excerpted makes it
difficult to view LOBPCG as an instance of Algorithm 3 (SESOP). Instead, we view it
as an instance of Algorithm 1 (ALS). The gradient of f with respect to the Riemannian
metric (25) is

grad f(X) = AX −BX (XTBX
)−1

XTAX ;

see, e.g., [6, equation (6.37)]. Referring to Algorithm 6, we haveHk = N−1gradf(Xk)
and

〈grad f(Xk),−Hk〉Xk
=
∥∥∥N− 1

2 grad f(Xk)
∥∥∥2

F
,

from which it follows that {−Hk} is gradient-related to {Xk} (Definition 4.1). We
consider the retraction given by RX(Z) = X + Z, X ∈ R

n×p
∗ , Z ∈ TXR

n×p
∗ � R

n×p.
The Armijo point along −Hk takes the form

Xk+1/2 = Xk − αkHk

for some αk > 0. Hence

Xk+1/2 = [Xk, Hk, Pk]Y

for some Y . Without preconditioning (N = I), Xk+1/2 is full-rank (i.e., it belongs to
R
n×p
∗ ) for any αk. Indeed, we have that XT

k Xk+1/2 = XT
k (I−αkA)Xk+αkXT

k AXk =
XT
k Xk is full-rank. (Observe that all iterates are B-orthogonal, hence of full rank.)

With the preconditioner, however, this property is no longer guaranteed. Nevertheless,
given A, B and N symmetric positive-definite matrices of order n, it is possible to
find α such that X − αN−1grad f(X) has full rank for all B-orthonormal X and all
α ∈ [0, α]. (This is because {X ∈ R

n×p : XTBX = I} is a compact subset of R
n×p

and R
n×p \ R

n×p
∗ is a closed subset of R

n×p that do not intersect, and hence their
distance does not vanish.) With this α, LOBPCG becomes an instance of Algorithm 1
(ALS), provided we show that the acceleration bound (5) holds for some c > 0. It
does hold for c = 1, as a consequence of the following result.

Lemma 8.1. In the context of Algorithm 6, we have

f(Xk+1) = min
{
f([Xk, Hk, Pk]Y ) : Y ∈ R

3p×p, Y T [Xk, Hk, Pk]TB[Xk, Hk, Pk]Y = I
}

= min{f([Xk, Hk, Pk]Y ) : Y ∈ R
3p×p, [Xk, Hk, Pk]Y full rank},

where f denotes the Rayleigh quotient (26).
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Proof. The three expressions are equal to the sum of the p leftmost eigen-
values of the pencil (UTAU,UTBU), where U is a full-rank matrix with col(U) =
col([Xk, Hk, Pk]).

This yields the following result.
Proposition 8.2. Let {Xk} be a sequence of iterates generated by Algorithm 6

(LOBPCG). Then the following holds.
(a) Every limit point X∗ of {Xk} is a stationary point of f ; i.e., col(X∗) is an

invariant subspace of (A,B);
(b) limk→∞ ‖AXk −BXkΘk‖ = 0, where Θk is as in Algorithm 6 (LOBPCG);
(c) The limit points of {col(Xk)} are p-dimensional invariant subspaces of (A,B);
(d) limk→∞ f(Xk) exists (where f is the generalized Rayleigh quotient (26)), and

thus f takes the same value at all limit points of {Xk}.
(e) Let V be a limit point of {col(Xk)} that is not a leftmost invariant subspace

of (A,B) (“leftmost” means related to the smallest eigenvalues). Then V is unstable
in the following sense: there is ε > 0 such that for all δ > 0 there exists K > 0 and
Z ∈ R

n×p, with ‖Z‖ < δ, such that if XK is perturbed to XK + Z and the algorithm
is pursued from this new iterate, then the new sequence satisfies ∠(col(Xk),V) > ε for
all but finitely many iterates.

Proof. Point (a) follows from Proposition 4.3 as explained above. Point (b)
follows from Corollary 4.4 since all iterates belong to the compact set {X ∈ R

n×p :
XTBX = I}. Note that grad f(Xk) = AXk−BXkΘk. Point (c) involves the topology
of the quotient manifold. The result follows from the fact that the col mapping is
continuous from R

n×p
∗ to the Grassmann manifold of p-planes in R

n. (The topology of
the Grassmann manifolds is precisely the one that makes the col mapping continuous;
see, e.g., [6] for details.) Point (d) holds because LOBPCG is a descent method for
f . Point (e) can be deduced from the fact that the non-leftmost invariant subspaces
of (A,B) are saddle points or maxima for f and from the fact that LOBPCG is a
descent method for f .

8.3. Jacobi–Davidson methods. The Jacobi–Davidson algorithm for comput-
ing the smallest eigenvalue and eigenvector of an n × n symmetric matrix A, as
described in [38, Algorithm 1], clearly fits within Algorithm 3 (SESOP). However,
without further assumptions, it is not guaranteed that {Sk} be gradient-related: it
all depends on how the Jacobi correction equation is “approximately” solved. If the
approximate solution can be guaranteed to be gradient-related, then it follows from
Proposition 7.2 that all limit points are stationary points of the Rayleigh quotient;
i.e., they are eigenvectors.

For example, consider, as in [28], the Jacobi equation in the form

(27)
(
I − xkxTk

)
(A− τI) (I − xkxTk ) ηk = − (I − xkxTk )Axk, xTk ηk = 0,

where τ is some target less than the smallest eigenvalue λ1 of A, and assume that the
approximate solution ηk is obtained with mk steps of the CG iteration (1 ≤ mk < n
for all k). We show that the sequence {ηk} is gradient-related to {xk}, and thus
{Sk} is gradient-related to {xk} when Sk contains ηk for all k. By the workings of
CG (with zero initial condition), ηk is equal to Vmk

yk, where Vmk
is an orthonormal

basis of the Krylov subspace Kmk
generated from −(I−xkxTk )Axk using the operator

(I − xkxTk )(A− τI)(I − xkxTk ) and where yk solves

(28) V Tmk
(A− τI)Vmk

yk = −V Tmk
Axk.

Notice that the Krylov subspace is orthogonal to xk and contains the gradient (I −
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xkx
T
k )Axk, and hence we have the identities (I−xkxTk )Vmk

= Vmk
and Vmk

V Tmk
Axk =

Vmk
V Tmk

(I − xkxTk )Axk = (I − xkxTk )Axk. Since A− τI is positive-definite, it follows
that the condition number of the projected matrix V Tmk

(A− τI)Vmk
is bounded, and

hence in view of (28) the angle between yk and −V Tmk
Axk is bounded away from

π
2 , and so is the angle between Vmk

yk = ηk and −Vmk
V Tmk

Axk = −(I − xkxTk )Axk
because Vmk

is an orthonormal basis. Moreover, {yk} is bounded away from zero and
infinity, and so is {ηk}. We have thus shown that the sequence {ηk} is gradient-related
to {xk} (see the discussion that follows Definition 4.1). Thus Proposition 8.2 holds,
mutatis mutandis, for the Jacobi–Davidson method [38, Algorithm 1] when the Jacobi
equation (27) is defined and solved approximately with CG as in [28].

The result still holds when the CG iteration for (approximately) solving (27) is
preconditioned with a positive-definite preconditioner Nk. Indeed, the preconditioned
CG for solving a linear system Bη = −g amounts to applying the “regular” CG
method to the transformed system B̃η̃ = −g̃, where B̃ = N−1BN−1, η̃ = Nη, and
g̃ = N−1g (see, e.g., [18, section 10.3]). If η̃j is an iterate of the regular CG applied
to B̃η̃ = −g̃ and thus ηj = N−1η̃j is the iterate of the preconditioned CG, then
we have 〈η̃j , g̃〉 = 〈Nηj , N−1g〉 = 〈ηj , g〉. Thus the sequence {η}k, where ηk is the
approximate solution of (27) returned by the preconditioned CG, is gradient-related.

Note that the choice of τ to make (A − τI) positive-definite in (27) is crucial in
the development above. In the frequently encountered case where τ is selected as the
Rayleigh quotient θk at xk, it seems difficult to provide a theoretical guarantee that the
approximate solution ηk of (27) is gradient-related, unless we assume that the iteration
starts close enough to the minor eigenvector so that (I − xkxTk )(A − θkI)(I − xkxTk )
is positive definite as a linear transformation of the orthogonal complement of xk.
(An example of the requirement that the iteration start sufficiently close to the minor
eigenvector is the condition θk <

λ1+λ2
2 in [29, Theorem 4.3].) However, in practice,

it is quite clear that a solver producing a sequence {ηk} that is not gradient-related
would have to be particularly odd. It is thus not surprising that the global convergence
properties stated in Proposition 8.2 have been empirically observed in general for
eigenvalue algorithms that fit in the Jacobi–Davidson framework.

Another example (which does not fit, strictly speaking, in the Jacobi–Davidson
framework, but is closely related) is when, as in [1], the Jacobi equation is solved
approximately using a truncated CG algorithm and the approximate solution is ac-
cepted or rejected using a trust-region mechanism. The method becomes an instance
of Algorithm 2 applied to the Rayleigh quotient cost function, and Proposition 8.2
holds, mutatis mutandis.

8.4. Sequential subspace method. All of the algorithms thus far in this sec-
tion are concerned with the eigenvalue problem; however, the area of application of
the convergence theory developed in this paper is not restricted to eigenvalue solvers.
An example is the SSM of Hager [20] for minimizing an arbitrary quadratic func-
tion over a sphere. This algorithm is an instance of Algorithm 3 (SESOP). In [20],
{Sk} is required to contain gradf(xk); therefore, all limit points are stationary by
Proposition 7.2. This was proven in [25], where stronger global convergence results
are obtained by making additional assumptions on {Sk}.

9. Concluding remarks. If we accelerate, in the sense of (1), an optimization
algorithm that converges globally to stationary points of the cost function, do we
preserve the global convergence result? We have answered this question positively
for a wide class of line-search and trust-region methods. The global convergence of
several eigenvalue algorithms follows from this result, under mild conditions, as shown
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in section 8. We suspect that several other existing methods satisfy the conditions of
the global convergence theorems proven in this paper.

An important practical issue in the design of accelerated algorithms is to strike
a good balance of the workload between the “Jacobi-like” step (i.e., the computation
of an update vector ηk) and the “Davidson-like” step (i.e., the improvement on the
Jacobi update, for example, via a minimization within a subspace containing ηk). For
example, at one extreme, the simplified Jacobi–Davidson in [28] simply turns off the
Davidson step. Note that the algorithm in [8], where the “Jacobi” step consists of
solving approximately a certain trust-region-like problem, shows promising numerical
results even without using a “Davidson” step. At the other extreme, the workings of
the the Jacobi–Davidson approach [38] can be exploited to let the Davidson step com-
pensate for a crude approximation of the Jacobi update. In LOBPCG, the balance of
the workload between the Jacobi-like step (computation of Hk) and the Davidson-like
step (computation of Xk+1 from [Xk, Hk, Pk] by a Ritz process) depends much on the
complexity of the chosen preconditioner; we refer, e.g., to [5, 27] for more informa-
tion on preconditioners in LOBPCG. Note that in an eigenvalue method for a matrix
A, the structure of A and the nature of the preconditioner will affect the computa-
tional burden on the Jacobi-like step, whereas the Davidson-like step, if implemented
efficiently, should require only some orthogonalization routines and be largely inde-
pendent of the cost of the operators. Hence, when the operators are inexpensive, it
becomes more affordable to require a higher accuracy in the Jacobi-like step. We refer
to [35, 24, 23, 36] for further work along these lines.

Finally, we point out that there is not necessarily a unique way of separating the
instructions of an iterative loop into a Jacobi-like step and a Davidson-like step that
satisfy the conditions for the global convergence analysis. For example, the application
of a preconditioner can be considered as part of the Jacobi-like step or as part of the
acceleration step if the preconditioning leads to an acceleration bound (1).
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ON PRECONDITIONED ITERATIVE METHODS FOR CERTAIN
TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS∗

ZHONG-ZHI BAI† , YU-MEI HUANG‡ , AND MICHAEL K. NG§

Abstract. When the Newton method or the fixed-point method is employed to solve the
systems of nonlinear equations arising in the sinc-Galerkin discretization of certain time-dependent
partial differential equations, in each iteration step we need to solve a structured subsystem of linear
equations iteratively by, for example, a Krylov subspace method such as the preconditioned GMRES.
In this paper, based on the tensor and the Toeplitz structures of the linear subsystems we construct
structured preconditioners for their coefficient matrices and estimate the eigenvalue bounds of the
preconditioned matrices under certain assumptions. Numerical examples are given to illustrate the
effectiveness of the proposed preconditioning methods. It has been shown that a combination of
the Newton/fixed-point iteration with the preconditioned GMRES method is efficient and robust
for solving the systems of nonlinear equations arising from the sinc-Galerkin discretization of the
time-dependent partial differential equations.
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1. Introduction. We consider the numerical solution of time-dependent partial
differential equations of the form⎧⎪⎪⎨

⎪⎪⎩
pt(t)

∂u

∂t
(x, t) + px(x)u(x, t)

∂u

∂x
(x, t)− ε∂

2u

∂x2
(x, t) = f(x, t), a < x < b, t ≥ 0,

u(a, t) = γ(t) and u(b, t) = δ(t), t ≥ 0,
u(x, 0) = g(x), a ≤ x ≤ b,

(1.1)

where pz(z), z ∈ {x, t}, are given continuously differentiable functions, f(x, t), γ(t),
δ(t), and g(x) are given bounded functions, and ε is a prescribed small positive pa-
rameter. Note that when pz(z) ≡ 1, z ∈ {x, t}, the partial differential equation (1.1)
reduces to the Burgers equation; see [16] for more details.

When the time-dependent partial differential equation (1.1) is discretized by the
sinc-Galerkin method, in an analogous approach to [5] we can obtain systems of
nonlinear equations of the form

(1.2) F(u) := Bu + CΨ(u)− b = 0,
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where B and C are known n-by-n matrices, b is a given n-vector, and Ψ : R
n → R

n,
with

Ψ(u) = (ψ1(u1), ψ2(u2), . . . , ψn(un))T and u = (u1, u2, . . . , un)T ,

is a continuous diagonal mapping defined on the open ball

Uδ := {u ∈ R
n | ‖u‖ < δ}.

Here, δ is a positive constant. The matrices B and C are given by

B = ε
(
T (2)
x +D(1)

x T (1)
x + T (1)

x D(1)
x +D(2)

x

)
⊗Qt

+ Qx ⊗
(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t +D

(4)
t

)
(1.3)

and

C =
(
D(3)
x T (1)

x + T (1)
x D(3)

x +D(4)
x

)
⊗Qt,(1.4)

and the mapping Ψ is given by

Ψ(u) =
(
u2

1, u
2
2, . . . , u

2
n

)T
,(1.5)

where T (i)
z (i = 1, 2 and z ∈ {x, t}) are (mz + nz + 1)-by-(mz + nz + 1) Toeplitz

matrices, with

T (1)
z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1
2 · · · (−1)mz+nz

mz+nz

1
...

− 1
2

. . . 1
2

... −1
− (−1)mz+nz

mz+nz
· · · − 1

2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(1.6)

T (2)
z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

π2

3 −2 2
22 · · · (−1)mz+nz 2

(mz+nz)2

−2
...

2
22

. . . 2
22

... −2
(−1)mz+nz 2
(mz+nz)2 · · · 2

22 −2 π2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(1.7)

and D
(i)
z and Qz (i = 1, 2, 3, 4 and z ∈ {x, t}) are (mz + nz + 1)-by-(mz + nz + 1)

diagonal matrices, with

D(1)
z =

hz
2
· diag

[{
− φ

′′
z (z)

(φ′
z(z))2

− 2ω
′
z(z)

φ′
z(z)ωz(z)

}nz

z=−mz

]
,(1.8)

D(2)
z =

h2
z

2
· diag

[{
− ω

′′
z (z)

(φ′
z(z))2ωz(z)

}nz

z=−mz

]
,(1.9)
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D(3)
z =

hz
2
· diag

[{−pz(z)ωz(z)}nz

z=−mz

]
,(1.10)

D(4)
z =

h2
z

2
· diag

[{
− (pz(z)ωz(z))

′

φ′
z(z)

}nz

z=−mz

]
,(1.11)

and

Qz = diag

[{
ωz(z)
φ′
z(z)

}nz

z=−mz

]
.(1.12)

Here, mx, nx and mt, nt are positive integers representing the numbers of the bases
used in the spatial and the temporal spaces, respectively, φx(x) and φt(t) are the
restrictions of the conformal mapping φz(z) onto the real intervals (a, b) and (0,+∞),
respectively, with φz(z) a mapping from a simply connected domain D onto

Dd := {z | z = x+ ıy, |y| < d, d > 0},
with ı the imaginary unit; and ωx(x) and ωt(t) are two weighting functions with
respect to the spatial and the temporal variables, respectively. See [16, 5] for a detailed
description about the sinc-Galerkin discretization. We remark that the first and the
second derivatives of φz(z) and ωz(z) with respect to the variable z will be denoted as
φ

′
z(z), ω

′
z(z) and φ

′′
z (z), ω

′′
z (z), respectively, and the matrices T (1)

z , z ∈ {x, t}, defined
in (1.6) are skew-symmetric, while the matrices T (2)

z , z ∈ {x, t}, defined in (1.7) are
symmetric positive definite; see Lemmas 2.1 and 2.2.

The system of nonlinear equations (1.2) is usually termed as a mildly nonlinear
system in literature; see [19, 21] for general backgrounds and applications, [2, 5] for
the basic existence and uniqueness theory about the solution, and [1, 2, 7, 8, 21, 22]
for several splitting iteration methods in the sequential and parallel computing senses.
When the system of mildly nonlinear equations (1.2) is solved by the Newton or the
fixed-point iteration method, at each step we need to solve a subsystem of linear
equations of the form

(1.13) (B + CD)z = r,

where D is a diagonal matrix approximating the Jacobian matrix of the mapping
Ψ : R

n → R
n and r is the current residual vector. Unfortunately, direct methods

such as the Gaussian elimination or the fast Toeplitz algorithms [15, 14] are not
applicable to effectively solve this class of diagonally scaled Toeplitz-plus-diagonal
linear systems due to the considerably high computational complexity; see [9, 10, 11,
12, 13]. However, noticing that the matrix-vector product (B+CD)q can be computed
in O(n log n) operations for any vector q ∈ R

n, we can employ Krylov subspace
iteration methods such as GMRES [20] to iteratively solve the linear subsystem (1.13)
in an economical cost. Usually, in order to accelerate the convergence speeds of the
Krylov subspace iteration methods, we need to precondition the linear subsystem
(1.13) by a good approximating matrix with respect to the coefficient matrix A :=
B + CD. Therefore, in order to solve the original linear subsystem, we turn to
solving the corresponding preconditioned linear subsystem instead; see [6, 5] and the
references therein.

In this paper, we construct a structured preconditioner M for the matrix A by
making use of the tensor-product structure of the original matrix A and the diagonally
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scaled Toeplitz-plus-diagonal structure of the matrix blocks involved. The positive
definiteness of both matrices A and M are discussed in detail, and the eigenvalue
bounds about the preconditioned matrix M−1A are estimated precisely by utilizing
the generalized Bendixson theorem [6]. Theoretical analysis shows that the eigenvalues
of the matrix M−1A are tightly and uniformly bounded in a rectangle on the complex
plane independent of the size of the matrix. Numerical implementations show that the
Newton-GMRES and the fixed-point-GMRES iteration methods, when incorporated
with the structured preconditioner M , are effective and robust nonlinear solvers for
the systems of mildly nonlinear equations arising from the sinc-Galerkin discretization
of the referred time-dependent partial differential equations.

The organization of the paper is as follows. In section 2, we construct a structured
preconditioner for the coefficient matrix of the linear subsystem (1.13) and analyze
basic properties of the original and the preconditioning matrices. In section 3, we
demonstrate several preliminary results associated with the spectral analysis of the
preconditioned matrix. The eigenvalue bounds of the preconditioned matrix are esti-
mated in section 4, and numerical examples are given in section 5 to show the effective-
ness of the proposed preconditioning and the corresponding preconditioned iteration
methods. Finally, in section 6, we end this paper with some concluding remarks.

2. The structured preconditioners. Consider the system of mildly nonlinear
equations (1.2), with the function Ψ(u) being given in (1.5) and the matrices B and
C being given in (1.3) and (1.4), respectively, where T (i)

z (i = 1, 2, z ∈ {x, t}), D(i)
z

(i = 1, 2, 3, 4 and z ∈ {x, t}) and Qz (z ∈ {x, t}) are defined in (1.6)–(1.12). Denote
by I the identity matrix. Let Ω be a positive definite diagonal matrix such that
D := I ⊗ Ω is an approximation to the Jacobian matrix of Ψ(u). Then the target
matrix under consideration is

A = B + CD

= ε
(
T (2)
x +D(1)

x T (1)
x + T (1)

x D(1)
x +D(2)

x

)
⊗Qt

+ Qx ⊗
(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t +D

(4)
t

)
+
(
D(3)
x T (1)

x + T (1)
x D(3)

x +D(4)
x

)
⊗ (QtΩ).(2.1)

By utilizing the special structure of the matrix A, we can construct its preconditioner
M as

M = B̂ + ĈD

= ε
(
B(2)
x +D(1)

x B(1)
x +B(1)

x D(1)
x +D(2)

x

)
⊗Qt

+ Qx ⊗
(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t +D

(4)
t

)
+
(
D(3)
x B(1)

x +B(1)
x D(3)

x +D(4)
x

)
⊗ (QtΩ),(2.2)

where

B̂ = ε
(
B(2)
x +D(1)

x B(1)
x +B(1)

x D(1)
x +D(2)

x

)
⊗Qt

+ Qx ⊗
(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t +D

(4)
t

)
and

Ĉ =
(
D(3)
x B(1)

x +B(1)
x D(3)

x +D(4)
x

)
⊗Qt,
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and, for z ∈ {x, t},

B(1)
z = tridiag [1, 0,−1] and B(2)

z = tridiag [−1, 2,−1](2.3)

are tridiagonal approximations to T (1)
z and T

(2)
z , respectively. Note that the precon-

ditioning matrix M is obtained by replacing only T
(i)
z (i = 1, 2, z ∈ {x, t}) in the

matrix A by B(i)
z (i = 1, 2, z ∈ {x, t}), correspondingly.

We remark that the preconditioner M is a block tridiagonal matrix and is usually
of mild size as, compared with the finite-difference system, the sinc-Galerkin system
needs not be very large and is of mild size in order to achieve the same discretization
accuracy [17, 18, 5]. Therefore, for any given vector r, the generalized residual equa-
tion Mw = r involved in the preconditioned GMRES iteration method can be solved
in O(NxN2

t ) or O(N2
xNt) operations by using a variety of linear solvers such as the

sparse direct methods, where Nz = mz + nz + 1, with z ∈ {x, t}.
It was proved in [16] that the Toeplitz matrix T (2)

x is symmetric positive definite
and its eigenvalues are located in a positive interval. This result, together with some
eigenproperties of the Toeplitz matrices T (1)

z (z ∈ {x, t}), is precisely described in the
following lemma.

Lemma 2.1 (see [16, Theorems 4.18 and 4.19]). Let the matrices T (1)
z (z ∈ {x, t})

and T (2)
x be defined as in (1.6) and (1.7), respectively. Then

(i) for z ∈ {x, t}, T
(1)
z is a skew-symmetric matrix and its eigenvalues

{ıλ(1)
j }nz

j=−mz
satisfy λ(1)

j ∈ [−π, π], −mz ≤ j ≤ nz;
(ii) T (2)

x is a symmetric positive definite matrix and its eigenvalues {λ(2)
j }nx

j=−mx

satisfy λ(2)
j ∈ [4 sin2( π

2(Nx+1) ), π
2], where Nx = mx + nx + 1.

Analogously, the structural properties and the eigenvalue locations about the
matrices B(1)

z (z ∈ {x, t}) and B
(2)
x are precisely described in the following lemma;

see [4].
Lemma 2.2 (see [4, Lemma A.1]). Let the matrices B(1)

z (z ∈ {x, t}) and B(2)
x be

defined as in (2.3). Then
(i) for z ∈ {x, t}, B

(1)
z is a skew-symmetric matrix and its eigenvalues

{ıλ(1)
j }nz

j=−mz
satisfy λ(1)

j ∈ [− cos( π
Nz+1 ), cos( π

Nz+1 )], −mz ≤ j ≤ nz, where
Nz = mz + nz + 1;

(ii) B(2)
x is a symmetric positive definite matrix and its eigenvalues {λ(2)

j }nx

j=−mx

satisfy λ(2)
j ∈ [4 sin2( π

2(Nx+1) ), 4 cos2( π
2(Nx+1) )], where Nx = mx + nx + 1.

Based on these two lemmas, we now demonstrate the positive definiteness of the
matrix A defined in (2.1) and its preconditioning matrix M defined in (2.2).

To this end, in what follows we use (·)∗ to denote the conjugate transpose of
either a vector or a square matrix. For a given square matrix X , we use H(X) and
S(X) to denote, respectively, its Hermitian and skew-Hermitian parts [4] and λ(X)
its spectral set.

Theorem 2.1. Assume that D(2)
x , D(4)

x , and D(4)
t are positive semidefinite diag-

onal matrices and Qz (z ∈ {x, t}) and Ω are positive definite diagonal matrices. Then
both H(A) and H(M) are symmetric positive definite matrices. Hence, A and M are
positive definite 1 and, thus, are nonsingular.

1A matrix is positive definite if its Hermitian part is positive definite. Note that a positive
definite matrix is not necessarily Hermitian; see [4, 3].
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Proof. The Hermitian and the skew-Hermitian parts of A and M are

H(A) =
1
2
(A+A∗)

= ε
(
T (2)
x +D(2)

x

)
⊗Qt +Qx ⊗D(4)

t +D(4)
x ⊗ (QtΩ),

S(A) =
1
2
(A−A∗)

= ε
(
D(1)
x T (1)

x + T (1)
x D(1)

x

)
⊗Qt +Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)

+
(
D(3)
x T (1)

x + T (1)
x D(3)

x

)
⊗ (QtΩ)

and

H(M) =
1
2
(M +M∗)

= ε
(
B(2)
x +D(2)

x

)
⊗Qt +Qx ⊗D(4)

t +D(4)
x ⊗ (QtΩ),

S(M) =
1
2
(M −M∗)

= ε
(
D(1)
x B(1)

x +B(1)
x D(1)

x

)
⊗Qt +Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)

+
(
D(3)
x B(1)

x +B(1)
x D(3)

x

)
⊗ (QtΩ).

Because the diagonal matrices D(2)
x , D(4)

x , and D
(4)
t are positive semidefinite, the

diagonal matrices Qz (z ∈ {x, t}) and Ω are positive definite, and from Lemma 2.1
the Toeplitz matrices T (2)

x are symmetric positive definite, so we know that H(A) is
symmetric positive definite. Therefore, A is a positive definite matrix and, thus, is
nonsingular.

From Lemma 2.2 the matrix B(2)
x is symmetric positive definite. By applying the

same arguments to the preconditioning matrix M , we can immediately show that M
is positive definite and nonsingular, too.

3. Several preliminary lemmas. In this section, we are going to demonstrate
several lemmas that are indispensable for estimating the eigenvalue bounds of the
preconditioned matrix M−1A.

Lemma 3.1. Let Δ = diag(δ1, δ2, . . . , δn) be an n-by-n positive diagonal matrix
and H ∈ C

n×n be a Hermitian positive definite matrix. Then it holds that

v∗(Δ⊗H)v
v∗(H ⊗Δ)v

≤ κ(Δ)κ(H) ∀v ∈ C
n\{0},

where κ(·) denotes the Euclidean condition number of the corresponding matrix.
Proof. Because H ∈ C

n×n is a Hermitian positive definite matrix, there exist a
unitary matrix U ∈ C

n×n and a positive diagonal matrix Λ = diag(λ1, λ2, . . . , λn) ∈
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R
n×n such that H = U∗ΛU . Therefore, for all v ∈ C

n \ {0} we have

v∗(Δ⊗H)v
v∗(H ⊗Δ)v

=
v∗[Δ⊗ (U∗ΛU)]v
v∗[(U∗ΛU)⊗Δ]v

=
v∗[(I ⊗ U)∗(Δ⊗ Λ)(I ⊗ U)]v
v∗[(U ⊗ I)∗(Λ⊗Δ)(U ⊗ I)]v

≤ max1≤�,j≤n{δ�λj}
min1≤�,j≤n{δjλ�}

=
max1≤�≤n δ�
min1≤�≤n δ�

· max1≤�≤n λ�
min1≤�≤n λ�

= κ(Δ)κ(H).

While Lemma 3.1 gives an upper bound about the generalized Rayleigh quotient
with respect to the Hermitian positive definite matrixH , the following lemma presents
an estimate about the generalized Rayleigh quotient with respect to the Hermitian
and the skew-Hermitian matrices H and S.

Lemma 3.2. Let Γ = diag(γ1, γ2, . . . , γn) and Δ = diag(δ1, δ2, . . . , δn) be n-by-n
positive diagonal matrices, H ∈ C

n×n be a Hermitian positive definite matrix, and
S ∈ C

n×n be a skew-Hermitian matrix. Then it holds that∣∣∣∣ v∗(S ⊗ Γ)v
v∗(H ⊗Δ)v

∣∣∣∣ ≤ τ
∣∣∣∣ v∗(S ⊗ Γ)v
v∗(H ⊗ Γ)v

∣∣∣∣ ∀v ∈ C
n\{0},

where τ = max1≤�≤n{ γ�

δ�
}.

Proof. Because H ∈ C
n×n is Hermitian positive definite, there exist a unitary

matrix U ∈ C
n×n and a positive diagonal matrix Λ ∈ R

n×n such that H = U∗ΛU .
Therefore, for all v ∈ C

n \ {0} we have

v∗(H ⊗Δ)v = v∗(U∗ΛU ⊗Δ)v = v∗((U∗ ⊗ I)(Λ⊗Δ)(U ⊗ I))v
≥ 1
τ

(v∗((U∗ ⊗ I)(Λ⊗ Γ)(U ⊗ I))v) =
1
τ
(v∗(H ⊗ Γ)v).

It then follows that ∣∣∣∣ v∗(S ⊗ Γ)v
v∗(H ⊗Δ)v

∣∣∣∣ ≤ τ
∣∣∣∣ v∗(S ⊗ Γ)v
v∗(H ⊗ Γ)v

∣∣∣∣ .
The following generalized Bendixson theorem, established in [6], is essential for

us to derive a rectangular domain for bounding the eigenvalues of the preconditioned
matrix M−1A.

Theorem 3.1 (see [6, Theorem 2.4]). Let A,M ∈ Cn×n be n-by-n complex
matrices, and, for ∀ v ∈ Cn \ {0}, it holds that v∗H(A)v �= 0 and v∗H(M)v �= 0. Let
the functions h(v), fA(v), and fM (v) be defined as

h(v) =
v∗H(A)v
v∗H(M)v

, fA(v) =
1
ı
· v
∗S(A)v
v∗H(A)v

, and fM (v) =
1
ı
· v
∗S(M)v
v∗H(M)v

,

respectively. Assume that there exist positive constants γ1 and γ2 such that

γ1 ≤ h(v) ≤ γ2 ∀ v ∈ Cn \ {0}
and nonnegative constants η and μ such that

−μ ≤ fA(v) ≤ μ and − η ≤ fM (v) ≤ η ∀ v ∈ Cn \ {0}.
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Then, when ημ ≤ 1, we have⎧⎪⎨
⎪⎩

(1− ημ)γ1

1 + η2
≤ Re

(
λ
(
M−1A

)) ≤ (1 + ημ)γ2,

−(η + μ)γ2 ≤ Im
(
λ
(
M−1A

)) ≤ (η + μ)γ2.

Here, Re(·) and Im(·) represent the real and the imaginary parts of the corresponding
complex, respectively.

In order to derive the bounded domain about the eigenvalues of the matrixM−1A
by making use of the generalized Bendixson theorem, we essentially need the bounds
of several generalized Rayleigh quotients with respect to certain parts of the matrices
A and M defined in (2.1) and (2.2). These bounds are precisely stated in the following
two lemmas.

Lemma 3.3 (see [6, Lemma 4.2]). Assume that D(2)
x defined in (1.9) is a positive

semidefinite diagonal matrix. Let T (2)
x be the Toeplitz matrix defined in (1.7) and

B
(2)
x the tridiagonal matrix defined in (2.3), respectively. Then it holds that

1 ≤
v∗
(
T

(2)
x +D

(2)
x

)
v

v∗
(
B

(2)
x +D

(2)
x

)
v
≤ π2

4
∀v ∈ C

n\{0}.

Lemma 3.4. Assume that D(2)
x defined in (1.9) is a positive semidefinite diagonal

matrix, Qt defined in (1.12) is a positive definite diagonal matrix, and D(j)
z (j = 1, 3,

z ∈ {x, t}) are the diagonal matrices defined in (1.8) and (1.10). Let T (1)
z (z ∈ {x, t})

and T
(2)
x be the Toeplitz matrices defined in (1.6) and (1.7) and B

(1)
z (z ∈ {x, t})

and B
(2)
x be the tridiagonal matrices defined in (2.3), respectively. Denote c

(2)
x =

4 sin2( π
2(Nx+1) ). For z ∈ {x, t}, let Nz = mz + nz + 1 and assume N := Nx = Nt.

Define

d̄(j)
z = max

1≤�≤N

{[
D(j)
z

]
��

}
(j = 1, 3, z ∈ {x, t}), d(2)

x = min
1≤�≤N

{[
D(2)
x

]
��

}
and

μ(j)
z =

2πd̄(j)
z√(

c
(2)
x + d

(2)
x

)(
π2 + d

(2)
x

) ,

η(j)
z =

d̄
(j)
z

(√
d
(2)
x + 4−

√
d
(2)
x

)
√
c
(2)
x + d

(2)
x

, j = 1, 3, z ∈ {x, t}.

Then, for j = 1, 3, z ∈ {x, t}, and all v ∈ C
n \ {0}, it holds that

max

⎧⎨
⎩
∣∣∣∣∣∣
v∗
[(
D

(j)
z T

(1)
z + T

(1)
z D

(j)
z

)
⊗Qt

]
v

v∗
[(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ,∣∣∣∣∣∣
v∗
[
Qt ⊗

(
D

(j)
z T

(1)
z + T

(1)
z D

(j)
z

)]
v

v∗
[
Qt ⊗

(
T

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
⎫⎬
⎭ ≤ μ(j)

z
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and

max

⎧⎨
⎩
∣∣∣∣∣∣
v∗
[(
D

(j)
z B

(1)
z +B

(1)
z D

(j)
z

)
⊗Qt

]
v

v∗
[(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ,∣∣∣∣∣∣
v∗
[
Qt ⊗

(
D

(j)
z B

(1)
z +B

(1)
z D

(j)
z

)]
v

v∗
[
Qt ⊗

(
B

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
⎫⎬
⎭ ≤ η(j)

z .

Proof. By making use of Lemma 2.1, following the same arguments as in the
proof of [6, Lemma 4.3] we can obtain these estimates.

4. The spectral analysis. In this section, we will derive precise bounds for the
eigenvalues of the preconditioned matrix M−1A, where the matrices A and M are
defined in (2.1) and (2.2), respectively. To this end, we first estimate the bounds of
the function h(v) defined in Theorem 3.1.

Lemma 4.1. Assume that D(2)
x and D(4)

z (z ∈ {x, t}) defined in (1.9) and (1.11)
are positive semidefinite diagonal matrices and Qz (z ∈ {x, t}) defined in (1.12) and
Ω are positive definite diagonal matrices. Let T (2)

x be the Toeplitz matrix defined in
(1.7) and B(2)

x be the tridiagonal matrix defined in (2.3). Then

1 ≤ v∗H(A)v
v∗H(M)v

≤ π2

4
∀v ∈ C

n \ {0}.(4.1)

Proof. For notational simplicity we denote

Dδ = Qx ⊗D(4)
t +D(4)

x ⊗ (QtΩ) + δI,

where δ > 0 is arbitrary. Evidently, Dδ is a positive definite diagonal matrix. There-
fore, for any v ∈ C

n \ {0}, according to the proof of Theorem 2.1 we have

v∗[H(A) + δI]v
v∗[H(M) + δI]v

=
v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt +Dδ

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt +Dδ

]
v

≤ max

⎧⎨
⎩
v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v
,

v∗Dδv

v∗Dδv

⎫⎬
⎭

= max

⎧⎨
⎩
v∗
[(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

v∗
[(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v
, 1

⎫⎬
⎭ .

The above inequality follows from the basic inequality:

β1 + β2

α1 + α2
≤ max

{
β1

α1
,

β2

α2

}
∀αj , βj > 0, j = 1, 2.

Based on Lemma 3.3, we can demonstrate the validity of the estimate

v∗[H(A) + δI]v
v∗[H(M) + δI]v

≤ π2

4
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in an analogous fashion to [6, Lemma 4.2]. Moreover, as δ > 0 is arbitrary, it then
follows that

v∗H(A)v
v∗H(M)v

≤ π2

4
.

Similarly, the left-hand side of the inequality (4.1) can be verified.
For the bounds of the functions fA(v) and fM (v) defined in Theorem 3.1, we can

give the following estimates.
Lemma 4.2. Assume that D(2)

x and D(4)
z (z ∈ {x, t}) defined in (1.9) and (1.11)

are positive semidefinite diagonal matrices, Qz (z ∈ {x, t}) defined in (1.12) and Ω
are positive definite diagonal matrices, and D(j)

z (j = 1, 3, z ∈ {x, t}) are the diagonal
matrices defined in (1.8) and (1.10). Let T (1)

z (z ∈ {x, t}) and T
(2)
x be the Toeplitz

matrices defined in (1.6) and (1.7) and B(1)
z (z ∈ {x, t}) and B(2)

x be the tridiagonal
matrices defined in (2.3), respectively. Denote c(2)x = 4 sin2( π

2(Nx+1) ). For z ∈ {x, t},
let Nz = mz + nz + 1 and assume N := Nx = Nt. Define

d̄(j)
z = max

1≤�≤N

{[
D(j)
z

]
��

}
(j = 1, 2, 3), d(2)

x = min
1≤�≤N

{[
D(2)
x

]
��

}

and

μ(j)
z =

2πd̄(j)
z√(

c
(2)
x + d

(2)
x

)(
π2 + d

(2)
x

) ,

η(j)
z =

d̄
(j)
z

(√
d
(2)
x + 4−

√
d
(2)
x

)
√
c
(2)
x + d

(2)
x

, j = 1, 3, z ∈ {x, t}.

Let⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ = μ(1)
x +

ε
(
π2 + d̄

(2)
x

)
κ(Qt) max

1≤�≤N
{[
Q−1
t Qx

]
��

}
c
(2)
x + d

(2)
x

μ
(3)
t + max

1≤�≤N
{[Ω]��}μ(3)

x ,

η = η(1)
x +

ε
(
4− c(2)x + d̄

(2)
x

)
κ(Qt) max

1≤�≤N
{[
Q−1
t Qx

]
��

}
c
(2)
x + d

(2)
x

η
(3)
t + max

1≤�≤N
{[Ω]��}η(3)

x .

Then it holds that∣∣∣∣ v∗S(A)v
v∗H(A)v

∣∣∣∣ ≤ μ and
∣∣∣∣ v∗S(M)v
v∗H(M)v

∣∣∣∣ ≤ η ∀v ∈ C
n \ {0}.

Proof. For notational simplicity we denote

D(4) = Qx ⊗D(4)
t +D(4)

x ⊗ (QtΩ).

Because D
(4)
z (z ∈ {x, t}) are positive semidefinite diagonal matrices and Qz (z ∈

{x, t}) and Ω are positive definite diagonal matrices, we see that D(4) is a positive
semidefinite diagonal matrix.
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For any v ∈ C
n \ {0}, according to the proof of Theorem 2.1 we have

∣∣∣∣ v∗S(A)v
v∗H(A)v

∣∣∣∣ ≤
∣∣∣∣∣∣
v∗
[
ε
(
D

(1)
x T

(1)
x + T

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[(
D

(3)
x T

(1)
x + T

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
v∗
[(
D

(1)
x T

(1)
x + T

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[(
D

(3)
x T

(1)
x + T

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣(4.2)

and

∣∣∣∣ v∗S(M)v
v∗H(M)v

∣∣∣∣ ≤
∣∣∣∣∣∣
v∗
[
ε
(
D

(1)
x B

(1)
x +B

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[(
D

(3)
x B

(1)
x +B

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt +D(4)

]
v

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
v∗
[(
D

(1)
x B

(1)
x +B

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
v∗
[(
D

(3)
x B

(1)
x +B

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ .(4.3)

Here in both estimates we have technically split the nominators into three parts
and then used the triangular inequality to obtain the first inequalities. The second
inequalities are directly obtained by using the positive semidefiniteness of the diagonal
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matrix D(4). In addition, we have used the facts that D(2)
x is a positive semidefinite

diagonal matrix and both T
(2)
x and B

(2)
x are positive definite Toeplitz matrices; see

Lemma 2.1.
From Lemma 3.4 we easily see that

∣∣∣∣∣∣
v∗
[(
D

(1)
x T

(1)
x + T

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ μ(1)
x(4.4)

and

∣∣∣∣∣∣
v∗
[(
D

(1)
x B

(1)
x +B

(1)
x D

(1)
x

)
⊗Qt

]
v

v∗
[(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ η(1)
x(4.5)

hold true. It follows from Lemmas 2.1 and 2.2 that

κ
(
T (2)
x +D(2)

x

)
≤ π2 + d̄

(2)
x

c
(2)
x + d

(2)
x

and κ
(
B(2)
x +D(2)

x

)
≤ 4− c(2)x + d̄

(2)
x

c
(2)
x + d

(2)
x

.(4.6)

By making use of Lemma 3.1 and (4.6), we have

v∗
[
ε
(
T (2)
x +D(2)

x

)
⊗Qt

]
v ≥

v∗
[
Qt ⊗ ε

(
T

(2)
x +D

(2)
x

)]
v

κ
(
ε
(
T

(2)
x +D

(2)
x

))
κ(Qt)

≥ c
(2)
x + d

(2)
x

ε
(
π2 + d̄

(2)
x

)
κ(Qt)

· v∗
[
Qt ⊗ ε

(
T (2)
x +D(2)

x

)]
v

=
1
σT
· v∗
[
Qt ⊗ ε

(
T (2)
x +D(2)

x

)]
v(4.7)

and

v∗
[
ε
(
B(2)
x +D(2)

x

)
⊗Qt

]
v ≥

v∗
[
Qt ⊗ ε

(
B

(2)
x +D

(2)
x

)]
v

κ
(
ε
(
B

(2)
x +D

(2)
x

))
κ(Qt)

≥ c
(2)
x + d

(2)
x

ε
(
4− c(2)x + d̄

(2)
x

)
κ(Qt)

· v∗
[
Qt ⊗ ε

(
B(2)
x +D(2)

x

)]
v

=
1
σB
· v∗
[
Qt ⊗ ε

(
B(2)
x +D(2)

x

)]
v,(4.8)

where

σT =
ε
(
π2 + d̄

(2)
x

)
κ(Qt)

c
(2)
x + d

(2)
x

and σB =
ε
(
4− c(2)x + d̄

(2)
x

)
κ(Qt)

c
(2)
x + d

(2)
x

.
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Therefore, according to Lemmas 3.2 and 3.4, as well as (4.7)–(4.8), it holds that∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ σT
∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)]
v

v∗
[
Qt ⊗ ε

(
T

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
≤ σT τQ

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t T

(1)
t + T

(1)
t D

(3)
t

)]
v

v∗
[
Qx ⊗ ε

(
T

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
≤ σT τQμ(3)

t(4.9)

and∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ σB
∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)]
v

v∗
[
Qt ⊗ ε

(
B

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
≤ σBτQ

∣∣∣∣∣∣
v∗
[
Qx ⊗

(
D

(3)
t B

(1)
t +B

(1)
t D

(3)
t

)]
v

v∗
[
Qx ⊗ ε

(
B

(2)
x +D

(2)
x

)]
v

∣∣∣∣∣∣
≤ σBτQη(3)

t ,(4.10)

where τQ = max1≤�≤N{[Q−1
t Qx]��}. In addition, according to Lemmas 3.2 and 3.4 it

holds that∣∣∣∣∣∣
v∗
[(
D

(3)
x T

(1)
x + T

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ τΩ
∣∣∣∣∣∣
v∗
[(
D

(3)
x T

(1)
x + T

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
T

(2)
x +D

(2)
x

)
⊗ (QtΩ)

]
v

∣∣∣∣∣∣
≤ τΩμ(3)

x(4.11)

and∣∣∣∣∣∣
v∗
[(
D

(3)
x B

(1)
x +B

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗Qt

]
v

∣∣∣∣∣∣ ≤ τΩ
∣∣∣∣∣∣
v∗
[(
D

(3)
x B

(1)
x +B

(1)
x D

(3)
x

)
⊗ (QtΩ)

]
v

v∗
[
ε
(
B

(2)
x +D

(2)
x

)
⊗ (QtΩ)

]
v

∣∣∣∣∣∣
≤ τΩη(3)

x ,(4.12)

where τQ = max1≤�≤N{[Ω]��}.
Now, by substituting the inequalities (4.4), (4.5), (4.9), (4.10), (4.11), and (4.12)

into (4.2) and (4.3), we immediately obtain the estimates that we are deriving.
By using Theorem 3.1 and Lemmas 4.1 and 4.2, we can straightforwardly obtain

the main theorem of this paper.
Theorem 4.1. Let the conditions of Lemma 4.2 be satisfied. Without loss of

generality, we make use of scaling on the original system of linear equations such that
μη < 1. Then it holds that

1− μη
1 + η2

≤ Re
(
λ
(
M−1A

)) ≤ π2(1 + μη)
4

and

−π
2(μ+ η)

4
≤ Im

(
λ
(
M−1A

)) ≤ π2(μ+ η)
4

.
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Based on Theorem 4.1, we can immediately obtain a theoretical estimate about
the asymptotic convergence rate of the preconditioned GMRES method with the
preconditioner M in (2.2) for solving the system of linear equations (1.13). Here, we
should suitably scale the partial differential equation (1.1) and appropriately choose
the weighting functions ωx(x) and ωt(t) and the conformal mappings φx(x) and φt(t)
such that μη < 1. For details, we refer to [20, 6].

We remark that, when Theorem 4.1 is specialized to the matrices A and M ,
arising from the sinc-Galerkin discretization of the Burgers equation, much sharper
bounds than those given in [5] about the eigenvalues of the preconditioned matrix
M−1A can be straightforwardly obtained under weaker restrictions. This is one of
the theoretical advantages of our new result.

5. Numerical experiments. In this section, we use two examples of the time-
dependent partial differential equation (1.1) to demonstrate the effectiveness of the
preconditioning and the corresponding preconditioned GMRES iteration method.
Here, both Newton and fixed-point methods are applied to solve the discretized system
of nonlinear equations (1.2).

In our computations, the initial guess is set to be the zero vector and the outer
nonlinear iteration is stopped once the current residual satisfies the criteria∥∥r(k)∥∥

2∥∥r(0)∥∥
2

≤ 10−6.

In each outer iteration step, a preconditioned linear system

M−1Az = M−1r, with A = B + CD and M = B̂ + ĈD,(5.1)

is solved, which forms the inner iteration process for solving the linear subsystems
involved in each step of the Newton or the fixed-point method; see (1.13) and (2.2).
Here, the stopping criteria for the inner iteration, i.e., the preconditioned GMRES
method, is that the relative reduction on the norm of the residual is less than 10−6.
Besides, all codes are written in MATLAB 7.01 and all experiments are implemented
on a personal computer with 2.66GHz central processing unit and 0.99G memory.

For the positive diagonal matrix Ω = diag([Ω]11, [Ω]22, . . . , [Ω]NtNt), we can con-
struct it according to a certain approximating rule. With respect to the Newton
iteration method, we may minimize ‖I ⊗ Ω − Ψ

′
(u(c))‖2 to obtain the Ω, where

u(c) = (u(c)
1 , u

(c)
2 , . . . , u

(c)
n )T is the current Newton iterate. As now Ψ

′
(u) = 2 ·

diag(u1, u2, . . . , un), with u = (u1, u2, . . . , un)T and n = NxNt, by direct compu-
tations we can obtain the formulas for the diagonal elements of Ω as follows:

[Ω]jj =
2
Nx

Nx−1∑
k=0

u
(c)
kNt+j

, j = 1, 2, . . . , Nt.

Analogously, with respect to the fixed-point iteration method, we can choose

[Ω]jj =
1
Nx

Nx−1∑
k=0

u
(c)
kNt+j

, j = 1, 2, . . . , Nt,

where u(c) = (u(c)
1 , u

(c)
2 , . . . , u

(c)
n )T denotes the current fixed-point iterate. Note that

the difference between these two Ω’s is just a factor of 2.
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The following two equations in the form of (1.1) are used to examine the numerical
performance of the new preconditioner M defined in (2.2) and to show the accuracy
of the computed solution.

Example 5.1. The time-dependent partial differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂u
∂t

(x, t) +
u(x, t)
x

∂u

∂x
(x, t)− ε∂

2u

∂x2
(x, t)

= e−π
2t sin (πx)

·
(
π2t− 1 +

πte−π
2t cos (πx)
x

+ επ2t

)
, 0 < x < 1 and t ≥ 0,

u(0, t) = 0 and u(1, t) = 0, t ≥ 0,
u(x, 0) = 0, 0 ≤ x ≤ 1,

with the exact solution being u(x, t) = te−π
2t sin(πx).

Example 5.2. The time-dependent partial differential equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂u
∂t

(x, t) +
u(x, t)
x

∂u

∂x
(x, t) − ε∂

2u

∂x2
(x, t)

= −xe−t(1− x)(1 − t)
+t2e−2t(1 − x)(1 − 2x)− 2εte−t, 0 < x < 1 and t ≥ 0,

u(0, t) = 0 and u(1, t) = 0, t ≥ 0,
u(x, 0) = 0, 0 ≤ x ≤ 1,

with the exact solution being u(x, t) = x(1 − x)te−t.
The conformal mappings are chosen as φ(z) = ln( z

1−z ) and ψ(z) = ln(sinh(z)) so
that their restrictions onto the real intervals (0, 1) and (0,+∞) are φx(x) := φ(x) =
ln( x

1−x ) and φt(t) := ψ(t) = ln(sinh(t)), which are used for the discretizations of x
and t variables, respectively. And the weighting functions are chosen to be ωx(x) =
1/φ

′
x(x) and ωt(t) = 1/φ

′
t(t).

In the numerical tables, the symbol I means that no preconditioner is used when
solving the linear subsystems involved in the nonlinear iterations, while M represents
that the preconditioner M defined in (2.2) is used. We use NIT to denote the number
of the Newton iteration steps, FIT that of the fixed-point iteration steps, GIT the
average number of GMRES iteration steps in each Newton or fixed-point iteration,
CPU the total computing timings, and Se the maximum absolute discretization error
at the sinc grid points and Ue that on the corresponding uniform grid points, while
we use “average Se” and “average Ue” to represent the average absolute errors at all
of the sinc grid points and at all of the uniform grid points, respectively. In addition,
the symbol ∗ is used to denote that the iteration does not satisfy the terminating
criterion within 50 steps of the Newton or the fixed-point iteration while + that the
inner iteration does not satisfy the GMRES terminating criterion within 1000 iteration
steps.

We solve Example 5.1 when ε = 10−3 and ε = 10−4. Tables 5.1–5.2 list the
numbers of iteration steps and the CPU timings required for the convergence of the
Newton iteration, and Tables 5.3–5.4 list those required for the convergence of the
fixed-point iteration, respectively, when they are applied to solve the system of non-
linear equations (1.2) resulting from the sinc-Galerkin discretization of Example 5.1.
Tables 5.5 and 5.6 list iteration numbers and CPU timings when the Newton and
the fixed-point methods are applied, respectively, to Example 5.2, with ε = 10−3. In
all tables, some errors for reflecting the accuracy of the computed solutions are also
shown.
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Table 5.1

Results for Example 5.1. ε = 10−3, and the Newton method is applied.

I M
n NIT GIT CPU NIT GIT Se average Se Ue average Ue CPU

81 4 80 0.33 4 32 2.22 × 10−3 7.73 × 10−4 2.14 × 10−3 6.54 × 10−4 0.33
289 4 282 3.00 4 58 1.21 × 10−3 1.72 × 10−4 1.08 × 10−3 8.70 × 10−5 0.98
1089 4 977 62.36 4 111 1.55 × 10−3 1.60 × 10−4 1.30 × 10−3 1.41 × 10−5 6.48
4225 * + — 4 246 1.69 × 10−3 1.86 × 10−4 1.48 × 10−3 1.05 × 10−5 78.59

Table 5.2

Results for Example 5.1. ε = 10−4, and the Newton method is applied.

I M
n NIT GIT CPU NIT GIT Se average Se Ue average Ue CPU

81 4 80 0.33 4 35 2.36 × 10−3 7.31 × 10−4 2.23 × 10−3 6.22 × 10−4 0.25
289 4 283 3.02 4 68 5.11 × 10−4 8.08 × 10−5 2.61 × 10−4 7.05 × 10−5 1.13
1089 4 963 61.25 4 148 3.70 × 10−4 3.03 × 10−5 1.71 × 10−4 4.31 × 10−6 8.72
4225 * + — 5 359 4.62 × 10−4 2.91 × 10−5 1.85 × 10−4 1.43 × 10−6 170.20

Table 5.3

Results for Example 5.1. ε = 10−3, and the fixed-point method is applied.

I M
n FIT GIT CPU FIT GIT Se average Se Ue average Ue CPU

81 5 65 0.33 5 25 2.22 × 10−3 7.73 × 10−4 2.14 × 10−3 6.54 × 10−4 0.23
289 4 210 2.25 4 40 1.21 × 10−3 1.72 × 10−4 1.08 × 10−3 8.70 × 10−5 0.64
1089 6 824 83.67 6 76 1.54 × 10−3 1.62 × 10−4 1.30 × 10−3 1.41 × 10−5 6.32
4225 * + — 12 140 1.69 × 10−3 1.90 × 10−4 1.47 × 10−3 1.05 × 10−5 111.63

Table 5.4

Results for Example 5.1. ε = 10−4, and the fixed-point method is applied.

I M
n FIT GIT CPU FIT GIT Se average Se Ue average Ue CPU

81 6 68 0.34 6 27 2.36 × 10−3 7.31 × 10−4 2.23 × 10−3 6.22 × 10−4 0.30
289 4 211 2.27 4 46 5.11 × 10−4 8.08 × 10−5 2.60 × 10−4 7.06 × 10−5 0.75
1089 4 711 47.06 3 72 2.04 × 10−4 2.49 × 10−5 1.74 × 10−4 4.30 × 10−6 3.23
4225 * + — 3 123 2.44 × 10−4 2.77 × 10−5 1.99 × 10−4 1.47 × 10−6 25.67

Table 5.5

Results for Example 5.2. ε = 10−3, and the Newton method is applied.

I M
n NIT GIT CPU NIT GIT Se average Se Ue average Ue CPU

289 9 285 7.08 9 87 4.23 × 10−3 1.30 × 10−3 4.27 × 10−3 1.41 × 10−3 3.31
1089 9 996 149.11 9 179 1.82 × 10−3 6.59 × 10−4 1.80 × 10−3 4.87 × 10−4 25.27
4225 * + — 10 508 2.35 × 10−3 5.77 × 10−4 2.17 × 10−3 3.17 × 10−4 653.31

Table 5.6

Results for Example 5.2. ε = 10−3, and the fixed-point method is applied.

I M
n FIT GIT CPU FIT GIT Se average Se Ue average Ue CPU

289 12 246 7.64 11 53 4.23 × 10−3 1.30 × 10−3 4.27 × 10−3 1.41 × 10−3 2.38
1089 16 808 204.30 14 93 1.82 × 10−3 6.60 × 10−4 1.80 × 10−3 4.87 × 10−4 17.98
4225 * + — 33 168 2.35 × 10−3 5.77 × 10−4 2.17 × 10−3 3.17 × 10−4 377.16
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Fig. 5.1. Spectral distribution of Example 5.1. ε = 10−3 and n = 1089; without preconditioning
(left), with the preconditioner M (right); and the Newton method is applied.
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Fig. 5.2. Spectral distribution of Example 5.2. ε = 10−3 and n = 1089; without preconditioning
(left), with the preconditioner M (right); and the fixed-point method is applied.

From these tables, we see that the new preconditioner can considerably improve
the convergence properties of both Newton and fixed-point iteration methods and
greatly reduce the running times. Moreover, with increasing of the problem size n,
the number of the Newton or the fixed-point iteration steps keeps almost the same
or increases slowly if the inner iteration solver, i.e., GMRES, is preconditioned by
the new preconditioner while GMRES cannot achieve the prescribed tolerance within
1000 iteration steps and, therefore, the Newton or the fixed-point iteration cannot
achieve the prescribed tolerance within 50 iteration steps if GMRES without using a
preconditioner is employed as the inner iteration solver. Therefore, the new precondi-
tioning method can substantially improve the convergence behaviors of both Newton
and fixed-point iterations and, consequently, lead to fast convergent nonlinear solvers
for the systems of nonlinear equations (1.2) arising in the sinc-Galerkin discretization
of the time-dependent partial differential equation (1.1).

Figures 5.1 and 5.2 depict the spectral distributions of the original coefficient ma-
trix A and the preconditioned matrix M−1A when the Newton method is applied to
Example 5.1 and the fixed-point method is applied to Example 5.2, respectively. The
figures clearly show that the matrices without preconditioning are very ill-conditioned
and, therefore, the corresponding GMRES method may be convergent very slowly or
even divergent, while the matrices with preconditioning are well-conditioned as they
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solution (right); and the Newton method is applied.

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10
0

0.02

0.04

0.06

0.08

0.1

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10
0

0.02

0.04

0.06

0.08

0.1

Fig. 5.4. Solutions of Example 5.2. ε = 10−3 and n = 1089; exact solution (left), computed
solution (right); and the fixed-point method is applied.

have tightly clustered eigenvalues and, thus, the corresponding preconditioned GM-
RES method may be convergent very quickly to the exact solutions of the subsystems
of linear equations. As a result, the preconditioned GMRES method used as the inner
linear solver may lead to a fast convergent Newton or fixed-point method for solving
the sinc-Galerkin nonlinear systems of the form (1.2).

In Figures 5.3 and 5.4, we plot the exact and the computed solutions of Exam-
ples 5.1 and 5.2 corresponding to the cases shown in Figures 5.1 and 5.2, respectively,
where the computed solution is obtained by using either the Newton or the fixed-point
method. It is clear from Figures 5.3 and 5.4 that the new preconditioned iteration
methods can compute reasonably accurate results.

6. Concluding remarks. We have constructed a structured preconditioner that
can efficiently improve the convergence property of the GMRES iteration employed
to inexactly solve the subsystem of linear equations involved in each Newton or fixed-
point iteration for solving the system of nonlinear equations resulting from the sinc-
Galerkin discretization of the time-dependent partial differential equation (1.1). The
bounds of the eigenvalues of the preconditioned matrix were precisely estimated by
making use of the generalized Bendixson theorem, which, in particular, can lead to
sharper eigenvalue bounds than those derived in [5] for the preconditioned matrix
arising from the sinc-Galerkin discretization of the Burgers equation. Numerical ex-
periments have shown the effectiveness of this new preconditioning method.
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CONVERGENCE ANALYSIS OF A DISCONTINUOUS GALERKIN
METHOD WITH PLANE WAVES AND LAGRANGE MULTIPLIERS

FOR THE SOLUTION OF HELMHOLTZ PROBLEMS∗

MOHAMED AMARA†, RABIA DJELLOULI‡ , AND CHARBEL FARHAT§

Abstract. We analyze the convergence of a discontinuous Galerkin method (DGM) with plane
waves and Lagrange multipliers that was recently proposed by Farhat, Harari, and Hetmaniuk [Com-
put. Methods Appl. Mech. Engrg., 192 (2003), pp. 1389–1419] for solving two-dimensional Helmholtz
problems at relatively high wavenumbers. We prove that the underlying hybrid variational formu-
lation is well-posed. We also present various a priori error estimates that establish the convergence
and order of accuracy of the simplest element associated with this method. We prove that, for

k (k h)
2
3 sufficiently small, the relative error in the L2-norm (resp. in the H1 seminorm) is of order

k (k h)
4
3 (resp. of order (k h)

2
3 ) for a solution being in H

5
3 (Ω). In addition, we establish an a poste-

riori error estimate that can be used as a practical error indicator when refining the partition of the
computational domain.

Key words. acoustic scattering, discontinuous Galerkin, Helmholtz problems, hybrid finite
element, inf-sup condition, plane waves
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Introduction. The discontinuous enrichment method (DEM) was developed in
[1, 2] for the solution of multiscale boundary value problems (BVPs) with sharp
gradients and rapid oscillations. These are problems for which the standard finite
element method (FEM) can become prohibitively expensive. DEM can be described as
a discontinuous Galerkin method (DGM) with Lagrange multiplier degrees of freedom
(DOFs), in which the standard finite element polynomial field is enriched within each
element by free-space solutions of the homogeneous partial differential equation to be
solved. Usually, these are easily obtained in analytical form and are discontinuous
across the element interfaces. The Lagrange multiplier DOFs are introduced at these
interfaces to enforce a weak continuity of the solution. For the Helmholtz equation, the
enrichment field can be constructed with plane waves, as these are free-space solutions
of this equation. In [3], it was shown that for a large class of Helmholtz problems, the
polynomial field is not necessary for efficiently capturing the solution. Hence, for these
applications, the polynomial field was dropped, and the DEM was transformed into a
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DGM with plane wave basis functions. Similar exponential functions were previously
introduced in the weak element method (WEM) [4], the partition of unity method
(PUM) [5], the ultra weak variational method [6], and the least-squares method (LSM)
presented in [7] for the solution of the Helmholtz equation. However, unlike WEM,
the DGM proposed in [3] is based on a variational framework, and unlike PUM, it
is discontinuous. Furthermore, in contrast to LSM, the continuity of the solution at
the interelement boundaries is enforced in DEM by Lagrange multipliers rather than
penalty parameters, which increases the robustness and accuracy of the underlying
framework of approximation.

In [3], two lower-order rectangular DGM elements with four and eight plane waves,
respectively, were constructed and applied to the solution of two-dimensional wave-
guide problems with 10 ≤ kl ≤ 100, where k denotes the wavenumber and l is a
characteristic length of the waveguide. The discretization by these elements of such
Helmholtz problems was found to require five to seven times fewer DOFs than their
discretization by the standard Q2 element, depending on the desired level of accuracy.
In [8], this DGM was extended to exterior Helmholtz problems and was coupled with a
second-order absorbing boundary condition. A lower-order quadrilateral element with
eight Lagrange multiplier DOFs was designed and highlighted with the solution on
unstructured meshes of sample acoustic scattering problems with 20 ≤ kl ≤ 40, where
l denotes a characteristic length of the scatterer. This element was shown to deliver
significant improvement over the performance of the standard and comparable Q2
element. In [9], two higher-order quadrilateral DGM elements with 16 and 32 plane
waves, respectively, were presented. The DGM element with 16 plane waves has a
computational complexity that is comparable to that of the standard Q4 element and
was shown numerically to have the same convergence rate with respect to the mesh
size. However, this DGM element was also shown numerically in [8] to deliver the same
level of accuracy as Q4 using six times fewer DOFs. All of these performance results
highlight the potential of the DGM introduced in [3] and expanded in [8] and [9].

However, no mathematical analysis of this method has been performed yet. The
objective of this paper is to fill this gap in the specific context of the two-dimensional
low-order element with four plane waves in order to set this DGM method on a firm
theoretical basis. The proposed study assumes that the computational domain Ω is
a polygonal-shaped domain that can be partitioned into rectangular elements. Note
that the computational domain Ω may have reentrant corners, and therefore, the
considered acoustic scattered field is in H

5
3 (Ω) only. We partition the computational

domain into rectangular-shaped elements and consider the case of the so-called R-4-1
element, that is, we approximate locally the primal variable by four plane waves and
the dual variable by constants on the edges of interior elements. We must point out
that this study cannot be extended—at this time—to higher-order elements because
it assumes that the normal derivative of the primal variable is constant along the
interior edges. This crucial property is valid only in the case of the R-4-1 element.
We prove that for k (k h)

2
3 small enough, the relative error in the L2-norm (resp. in

the H1 seminorm) is of order k (k h)
4
3 (resp. (k h)

2
3 ). We recall that in the case of

the standard FEM using P1 element (see [10, 11]), it has been established that for
k2h small enough, the relative error in the L2-norm (resp. in the H1 seminorm) is of
order k3 h2 (resp. k h). Moreover, if we assume that k h is small enough, it has been
established in [11] that the relative error for both the L2-norm and the H1 seminorm
are bounded by k (k h)2. However, all these error estimates have been established
assuming that the scattered field is in H2(Ω), which is not a realistic assumption for
most applications. We must also point out that, to the best of our knowledge, no
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error estimates have been derived yet in the particular case of the Q4 finite element
when applied to Helmholtz problems.

We also derive a posteriori error estimate that can be used as a practical error in-
dicator when refining the partition of the computational domain. This error estimate
reveals that the relative error in the L2-norm depends on the errors in the approxi-
mation of the interior and exterior boundary conditions as well as on the jump across
the elements of the partition.

The remainder of this paper is organized as follows. In section 1, we specify
the notations and assumptions used in this paper, state the formulation of a two-
dimensional acoustic scattering problem in a bounded domain, and prove that the
hybrid problem obtained by applying the DGM introduced above to the solution
of the focus Helmholtz problem is well-posed in the sense of Hadamard [12]. More
specifically, we introduce Theorem 1 to address the issues of existence, uniqueness,
and stability of the DGM formulation. Next, we devote section 3 to the analysis of
the discrete solution obtained with a DGM element with four plane waves. More
specifically, we recall in section 3.2 the discrete DGM formulation and announce the
main results of this paper. These are existence and uniqueness results, a priori error
estimates that are stated in Theorem 2, and an a posteriori estimate that is stated
in Theorem 3. The proofs of these three sets of fundamental results are detailed in
sections 3.3 and 3.4. Finally, section 4 concludes this paper.

1. Preliminaries. We consider throughout this paper the acoustic scattering
problem by a sound-hard scatterer [13] formulated in a bounded domain as follows:

(1.1) (BVP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find u ∈ H1(Ω) such that

Δu+ k2u = 0 in Ω,

∂nu = −∂neikx·d on Γ,

∂nu = iku on Σ,

where u is the scattered field and Ω is the computational domain. Ω is a bounded
polygonal-shaped domain that can be partitioned into rectangular elements. Γ is its
interior boundary, and Σ is the exterior boundary. n is the unitary outward normal
vector to the boundaries Γ and Σ, and ∂n is the normal derivative. k is a positive
number representing the wavenumber. d is a unit vector representing the direction
of the incident plane wave. The equation on Γ is the Neumann boundary condition
that characterizes the sound-hard property of the scatterer. We must point out that
the interior Neumann boundary condition on Γ and the exterior condition on Σ are
used only for simplicity. The results presented herein apply to all types of admissible
boundary conditions. In addition, as it is well-known, one should use higher-order
local absorbing boundary conditions for solving practical problems.

2. The continuous hybrid variational formulation.

2.1. Nomenclature and properties. We use throughout this paper the fol-
lowing notations and properties.

• K is a rectangular-shaped element of Ω and ∂K is its boundary. ∂K =⋃4
j=1 T

j
K , where T jK is the jth edge of K with vertices (sKj , s

K
j+1) and nKj its

outward unitary normal vector.
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• hKj is the length of the edge T jK , and hK = max1≤j≤4 h
K
j .

• (Th)h is a regular triangulation of the computational domain Ω into elements
K, i.e.,

∃ ĉ > 0 / ∀h, ∀K ∈ Th ;h2
K ≤ ĉ|K|,

where |K|denotes the area of the element K [14]. Note that (Th)h is a quasi-
uniform triangulation, since its elements K are rectangles.
• h = maxK∈Th

hK . We also assume that kh ≤ π. This condition means that
there is at least two elements per wavelength.
• X is the space of the primal variable. X is given by

X =
{
v ∈ L2(Ω); ∀K ∈ Th, vK = v|K ∈ H1(K)

} ≈ ∏
K∈Th

H1(K)

and is equipped with the following norm:

‖v‖X =

( ∑
K∈Th

‖vK‖2X(K)

) 1
2

∀ v ∈ X,

where

‖vK‖X(K) =
(
|vK |21,K +

1
|K| ‖vK‖

2
0,K

) 1
2

.

‖ · ‖0,K (resp. | · |1,K) is the L2-norm (resp. seminorm) on the element K.
• | · |1,Th

is the seminorm in the space X defined by

|v|1,Th
=

( ∑
K∈Th

|vK |21,K
) 1

2

∀ v ∈ X.

• H 1
2 (∂K) is the space of the traces of elements of H1(K), and H−

1
2 (∂K) is

the dual space of H
1
2 (∂K). H

1
2 (∂K) is equipped with the following norm:

(2.1) ‖λ‖ 1
2 ,∂K

= inf
w∈W (λ)

‖w‖X(K) = ‖Λ‖X(K),

where W (λ) =
{
w ∈ H1(K) ; w|∂K = λ

}
and Λ is the unique element in

W (λ) satisfying

−ΔΛ +
1
|K|Λ = 0 a.e. in K.

It follows from the definition of the norm ‖ · ‖X and (2.1) that

(2.2) ‖v‖ 1
2 ,∂K

≤ ‖v‖X(K) ∀ v ∈ H1(K).

• M is the space of the dual variable defined by

M =

{
μ ∈

∏
K∈Th

H−
1
2 (∂K) ; ∀λ ∈ T,

∑
K∈Th

〈
μK , λK

〉
− 1

2× 1
2 ,∂K

= 0

}
,
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where μK = μ|∂K
and the space T is given by

T =

{
λ ∈

∏
K∈Th

H
1
2 (∂K); ∀K �= K ′ ∈ Th, λK = λK

′
on ∂K ∩ ∂K ′

}
.

The space M is equipped with the following norm:

‖μ‖M =

( ∑
K∈Th

‖μK‖2− 1
2 ,∂K

) 1
2

∀μ ∈M,

where

‖μK‖− 1
2 ,∂K

= sup
λ∈H 1

2 (∂K)

∣∣∣〈μK , λ
〉
− 1

2× 1
2 ,∂K

∣∣∣
‖λ‖ 1

2 ,∂K

= sup
v∈H1(K)

∣∣∣〈μK , v
〉
− 1

2× 1
2 ,∂K

∣∣∣
‖v‖X(K)

(2.3)

and 〈. , .〉− 1
2× 1

2 ,∂K
is the duality product between H−

1
2 (∂K) and H

1
2 (∂K)

[15].
• M is a subspace of M defined by∣∣∣∣∣∣∣∣∣∣

M =

{
μ ∈

∏
K∈Th

L2(∂K);μ = 0 on ∂Ω and ∀K �= K ′ ∈ Th,

μK + μK
′
= 0 on ∂K ∩ ∂K ′

}
.

Therefore, we have

M = M ∩
∏
K∈Th

L2(∂K).

2.2. Formulation and mathematical results. We adopt the following hybrid-
type variational formulation (VP) for solving the BVP. Note that the VP is equivalent
to BVP as indicated in Remark 1.

(2.4) (VP)

⎧⎪⎨
⎪⎩

Find (u, λ) ∈ X ×M such that
a(u , v) + b(v, λ) = F (v) ∀ v ∈ X,
b(u, μ) = 0 ∀μ ∈M,

where the bilinear forms a(· , ·) and b(· , ·) and the function F are given by

a(u , v) =
∑
K∈Th

(∫
K

∇u · ∇v dx− k2

∫
K

uv dx− ik
∫
∂K∩Σ

uv dt

)
∀u , v ∈ X,

b(v, μ) =
∑
K∈Th

〈
μK , v

〉
− 1

2× 1
2 ,∂K

∀ (v, μ) ∈ X ×M,

F (v) = −
∑
K∈Th

∫
∂K∩Γ

v∂ne
ikx·d dt ∀ v ∈ X.
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Note that the bilinear form b(· , ·) also satisfies

b(v, μ) =
∑
K∈Th

∫
∂K

μKv dt ∀ (v, μ) ∈ X ×M.

In addition, the bilinear forms a(· , ·) and b(· , ·) satisfy the following important
properties.

Property 1. The bilinear forms a(. , .) and b(· , ·) are continuous on X ×X
and X ×M , respectively. Furthermore, we have the following:

(i) a(. , .) satisfies the Gärding inequality in H1(Ω)

(2.5) a(v , v) + k2‖v‖20,Ω = |v|21,Th
∀ v ∈ X,

where  designates the real part.
(ii) The null space N corresponding to the bilinear form b(. , .) is given by

(2.6) N = {v ∈ X ; b(v, μ) = 0 ∀μ ∈M} = H1(Ω).

(iii) The bilinear form b(. , .) satisfies the so-called inf-sup condition [21]:

(2.7) ∀μ ∈M , ∃φ ∈ X : sup
v∈X
|b(v, μ)|
‖v‖X =

|b(φ, μ)|
‖φ‖X = ‖μ‖M .

Proof of Property 1. We prove only the third point, since the proof of (2.5) and
(2.6) is straightforward. From the continuity of the bilinear form b(. , .), we deduce
that

(2.8) sup
v∈X

|b(v, μ)|
‖v‖X ≤ ‖μ‖M ∀μ ∈M.

Next, for a fixed μ ∈M , we consider the function φ ∈ X such that, for every K ∈ Th,
φ|K = φK is the unique solution of the following variational problem:

(2.9)
∫
K

∇φK · ∇v dx+
1
|K|

∫
K

φKv dx =
〈
μK , v

〉
− 1

2× 1
2 ,∂K

∀ v ∈ H1(K).

Hence, using (2.2) and (2.9), we have

‖φK‖2X(K) =
〈
μK , φK

〉
− 1

2× 1
2 ,∂K

≤ ∥∥μK∥∥− 1
2 ,∂K

‖φK‖ 1
2 ,∂K

≤ ∥∥μK∥∥− 1
2 ,∂K

‖φK‖X(K).

Thus, we deduce that ‖φK‖X(K) ≤ ‖μK‖− 1
2 ,∂K

and then ‖φ‖X ≤ ‖μ‖M .
Moreover, from (2.3) and (2.9), we have ‖μK‖− 1

2 ,∂K
≤ ‖φK‖X(K).

Therefore, it follows that ‖φ‖X = ‖μ‖M .
On the other hand, from (2.9) and the definition of the bilinear form b(· , ·), we

also have

b(φ, μ) =
∑
K∈Th

‖φK‖2X(K) = ‖φ‖2X = ‖φ‖X‖μ‖M ,

which concludes the proof of the inf-sup condition given by (2.7).
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Remark 1. The problems BVP and VP are equivalent in the following sense:
(i) If the pair (u, λ) is a solution of VP, then it follows from the second equation

of VP that u is in H1(Ω). Moreover, using the first equation of VP with test
functions v ∈ D(Ω), we deduce that u is the solution of the first equation of
BVP. Last, the use of test functions v ∈ H1(Ω) allows us to verify that u
satisfies the boundary conditions on Γ and Σ.

(ii) If u is the solution of BVP, then from the standard regularity results for
Laplace’s operator [22] and due to the possible reentrant corners (with a mea-
sure angle of 3π

2 ), it follows that u ∈ H 5
3 (Ω). Thus, ∂nuK ∈ L2(∂K) ∀K ∈ Th

(∂nuK is even in H
1
6 (∂K)). Then we set

(2.10) λK =

{
−∂nu on ∂K \ ∂Ω,

0 on ∂K ∩ ∂Ω.

Therefore, the dual variable λ satisfies (2.10) in the L2(∂K) sense, which
is the classical sense. Having that in mind, one can multiply BPV by test
functions v ∈ X and deduce that the pair (u, λ) satisfies VP.

Next, we prove that the variational problem (VP) is well-posed in the sense of
Hadamard [12]. This is main result of this section. It is stated in the following
theorem.

Theorem 1. The variational problem (VP) admits a unique solution (u, λ) ∈
X ×M . In addition, u belongs to H

5
3 (Ω) and for all θ ∈ [0, 5

3 ], there is a positive
constant C (C depends on Ω and θ only) such that

|u|θ,Ω ≤ C (1 + k)θ.

The proof of this theorem is based on the following intermediate stability result.
Lemma 1. Let f be in L2(Ω). Then, the following BVP

(2.11)

⎧⎪⎨
⎪⎩

ΔU + k2U = f in Ω,

∂nU = 0 on Γ,

∂nU = ik U on Σ,

has one and only one solution U in H
5
3 (Ω). Moreover, for all θ ∈ [0, 5

3 ], there is a
positive constant C (C depends on Ω and θ only) such that

(2.12) |U |θ,Ω ≤ C (1 + k)θ−1 ‖f‖0,Ω.
Proof of Lemma 1. First, observe that the variational formulation corresponding

to the BVP (2.11) is given by

(2.13)

⎧⎪⎨
⎪⎩

Find U ∈ H1(Ω) such that

a(U , v) = −
∫

Ω

f v dx ∀ v ∈ H1(Ω).

From (2.5), it follows that the bilinear form a(. , .) satisfies the Fredholm alternative
on H1(Ω). Hence, the uniqueness ensures the existence of the solution U in H1(Ω).

Therefore, we need only to prove the uniqueness of the solution of the BVP (2.11).
Let w be the solution of the corresponding homogeneous BVP. The function w satisfies

a(w,w) = 0 then w = 0 on Σ,
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and we deduce that

∂nw = 0 on Γ and w = ∂nw = 0 on Σ.

Therefore, using the continuation theorem [16, 17], we obtain that w = 0 in Ω.
From the standard regularity results for second-order elliptic BVPs [22] and due

to the possible reentrant corners (with a measure angle of 3π
2 ), it follows that the

solution of problem (2.11) satisfies U ∈ H 5
3 (Ω), and there is a positive constant C (C

depends on Ω only) such that

(2.14) ‖U‖ 5
3 ,Ω
≤ C

(
‖ΔU‖− 1

3 ,Ω
+ ‖∂nU‖ 1

6 ,∂Ω

)
.

Moreover, using the results established in [18] and [19], we deduce the existence of a
positive constant C (C depends on Ω only) such that

(2.15) ‖U‖0,Ω ≤ C

1 + k
‖f‖0,Ω and |U |1,Ω ≤ C ‖f‖0,Ω.

Next, we establish the estimate (2.12). To do this, we will use the space interpolation
results in [20]. First, using boundary conditions in BVP (2.11), we deduce that there
is a positive constant C (C depends on Ω only) such that

‖∂nU‖ 1
6 ,∂Ω = ‖∂nU‖ 1

6 ,Σ
= k ‖U‖ 1

6 ,Σ
≤ C k ‖U‖ 2

3 ,Ω
.

Therefore, it follows from the space interpolation results in [20] that there is a positive
constant C (C depends on Ω only) such that

‖∂nU‖ 1
6 ,∂Ω ≤ C k ‖U‖

1
3
0,Ω |U |

2
3
1,Ω.

Finally, it follows from (2.15) that there exists a positive constant C (C depends on
Ω only) such that

(2.16) ‖∂nU‖ 1
6 ,∂Ω ≤ C (1 + k)

2
3 ‖f‖0,Ω.

Furthermore, from the first equation of BVP (2.11), we deduce that

‖ΔU‖0,Ω ≤ k2 ‖U‖0,Ω + ‖f‖0,Ω.
Hence, it follows from (2.15) that there is a positive C (C depends on Ω only) such
that

‖ΔU‖0,Ω ≤ C (1 + k) ‖f‖0,Ω.
In addition, from the norms properties and (2.15), there is a positive C (C depends
on Ω only) such that

‖ΔU‖−1,Ω ≤ |U |1,Ω ≤ ‖U‖1,Ω ≤ C ‖f‖0,Ω.
Consequently, it follows from these equations and the interpolation space results the-
orem (see [20]) that there is a positive constant C (C depends on the domain Ω only)
such that

(2.17) ‖ΔU‖− 1
3 ,Ω
≤ C (1 + k)

2
3 ‖f‖0,Ω.

Estimate (2.12) is then a direct consequence of (2.14), (2.16), and (2.17).
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Proof of Theorem 1. Since H1(Ω) is the null space of the bilinear form b(. , .)
(see (2.6)), the VP is reduced to the variational problem

a(u , v) = F (v) ∀ v ∈ H1(Ω).

From (2.5), it follows that the bilinear form a(. , .) satisfies the Fredholm alternative
on H1(Ω). Hence, the uniqueness ensures the existence of the solution u in H1(Ω).
On the other hand, the uniqueness results readily from the solution of BVP (2.11).
Therefore, the solution u of the reduced variational problem in the null spaceH1(Ω) of
the bilinear form b(. , .) exists and is unique. Therefore, both existence and uniqueness
of the solution of the complete variational problem VP are standard consequences (see,
for example, [21]) of the inf-sup condition given by (2.7).

To prove the stability estimates, we first observe that the pair (u, λ) solution of
the variational formulation (VP) satisfies the following mixed BVP:⎧⎪⎨

⎪⎩
Δu+ k2u = 0 in Ω,

∂nu = −∂neikx·d on Γ,

∂nu = iku on Σ,

and ∀ K ∈ Th, we have

λK =

{
−∂nu on ∂K \ ∂Ω,

0 on ∂K ∩ ∂Ω.

Consequently, if we set

(2.18) U = u+ eikx·d φ

where φ ∈ D(Ω) satisfies

φ = 1 on Γ, ∂nφ = 0 on Γ, φ = ∂nφ = 0 on Σ,

then it is easy to verify that U is the unique solution of BVP (2.11) with the right-hand
side f given by

f = (2ikd · ∇φ+ Δφ) eikx·d,

and there is a positive constant C (C depends on Ω only) such that

‖f‖0,Ω ≤ C (1 + k).

Therefore, the proof of Theorem 1’s estimate is an immediate consequence of estimate
(2.12) in Lemma 1, which concludes the proof of Theorem 1.

3. The discrete formulation.

3.1. Assumptions, notations, and properties. We adopt, throughout this
section, the following notations and properties.

• ∀K ∈ Th, φKj = eik nK
j ·(x−sK

j ); 1 ≤ j ≤ 4.
• Xh is the discrete space for the primal variable. Xh is given by

Xh =
{
vh ∈ X ; ∀K ∈ Th, vh|K ∈ Xh(K)

}
,
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where

Xh(K) =

⎧⎨
⎩vKh ∈ H1(K) ; vKh =

4∑
j=1

αKj φ
K
j , where αKj ∈ C

⎫⎬
⎭ .

Note that Xh ⊆ X , and therefore, Xh is also equipped with the norm ‖.‖X .
• Mh is the discrete space of the dual variable. Mh is defined as follows:

Mh =
{
μh ∈ M; ∀K ∈ Th and ∀TKj ⊂ ∂K : μKj = μ|

T K
j

∈ C, 1 ≤ j ≤ 4
}
.

• For every K ∈ Th, the matrix BK = (BKlj )1≤l,j≤4 represents the elementary
matrix corresponding to the bilinear form b(· , ·). Hence, the entries of the
matrix BK are given by

(3.1) BKlj =
1
hKl

∫
TK

l

φKj dt, 1 ≤ l, j ≤ 4.

• Ĉ designates a generic positive constant. Ĉ is independent of k, Ω, and the
triangulation Th.
• For a given K ∈ Th and ∀ vK ∈ H1(K), we have the following two classical

inequalities [14]:

(3.2)
∥∥vK∥∥

0,∂K
≤ Ĉ

(
1
hK

∥∥vK∥∥2

0,K
+ hK

∣∣vK∣∣2
1,K

) 1
2

,

(3.3)
∥∥∥∥vK − 1

|K|
∫
K

vKdx

∥∥∥∥
0,K

≤ ĈhK
∣∣vK∣∣

1,K
.

In addition, it follows from combining (3.2) (when applied to vK− 1
|K|
∫
K
vKdx)

and (3.3) that

(3.4)
∥∥∥∥vK − 1

|K|
∫
K

vKdx

∥∥∥∥
0,∂K

≤ Ĉh 1
2
K

∣∣vK ∣∣
1,K

.

3.2. Discrete formulation and announcement of the main results. The
discrete variational problem (DVP) corresponding to the variational formulation (VP)
can be formulated as follows:

(3.5) (DVP)

⎧⎪⎨
⎪⎩

Find (uh, λh) ∈ Xh ×Mh such that

a(uh, vh) + b(vh, λh) = F (vh) ∀ vh ∈ Xh,

b(uh, μh) = 0 ∀μh ∈Mh.

The next two theorems summarize the main results of this section.
Theorem 2. The DVP admits a unique solution (uh, λh) ∈ Xh ×Mh.

Moreover, for h0 > 0 such that k (1 + k)
2
3 h

2
3
0 is “sufficiently small” and kh0 � π,

there is a positive constant C (C depends on Ω only) such that for all h ≤ h0, we
have

(3.6)
‖u− uh‖0,Ω ≤ C(1 + k)

7
3h

4
3 ,

|u− uh|1,Th
+ ‖λ− λh‖M ≤ C(1 + k)

5
3h

2
3 ,

where (u, λ) is the solution of the continuous variational problem VP (2.4).
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Theorem 3. Let u be the solution of the continuous variational problem VP
(2.4) and uh be the solution of the DVP. We assume that kh � π, then there exists a
constant C > 0 (C depends on Ω only) such that

(3.7)

‖u− uh‖0,Ω ≤ Ĉ
⎛
⎝
(∑
e⊂Σ

he‖∂nuh − ikuh‖20,e
) 1

2

+

(∑
e⊂Γ

he‖∂nuh + ∂ne
ikx·d‖20,e

) 1
2

+

( ∑
e interior

h−1
e ‖[uh]‖20,e

) 1
2
⎞
⎠ ,

where e is an edge of Th, [uh] is the jump of uh across the edge e, and he is the length
of e.

Remark 2. We must point out that it has been reported in [10, 11] that for a high-
frequency regime, the use of P1 FEM leads to the following estimates: |u− uh|1,Ω ≤
C k2 h and ‖u− uh‖0,Ω ≤ C k3 h2 when k2h is small enough. These estimates were
derived assuming that u ∈ H2(Ω), which is not, however, valid for most problems.

The a posteriori estimate given by (3.7) is a practical tool for a mesh adaptive
strategy. This estimate reveals that the L2 error depends on how well the jump
of the primal variable as well as the interior and exterior boundary conditions are
approximated at the element level. In order to prove Theorems 2 and 3, we need first
to establish intermediate interpolation results. This is accomplished in section 3.3.
Then, we prove in section 3.4.1 the existence and the uniqueness of the solution of
the DVP. This result is established as a direct consequence of Proposition 1 and
Proposition 2. Section 3.4.2 is devoted to the proof of (3.6) and (3.7). The error
estimate given by (3.6) is established in four steps, each step is formulated as a
lemma (see Lemma 7 to Lemma 10). The a posteriori error estimate given by (3.7) is
established at the end of section 3.4.2.

The next result, that can be easily established, shows why the existence and the
uniqueness of the solution of (DVP) is not a direct consequence of the existence and
the uniqueness of the solution of (VP).

Lemma 2. The null space Nh corresponding to the bilinear form b(· , ·) defined
by

Nh = {vh ∈ Xh : b(vh, μh) = 0 ; ∀μh ∈Mh}
satisfies

(3.8) Nh =
{
vh ∈ Xh ;

∫
∂K∩∂K′

vKh dt =
∫
∂K∩∂K′

vK
′

h dt, ∀K �= K ′ ∈ Th
}
.

Remark 3. Lemma 2 states that Nh is not a subspace of N = H1(Ω), which is
the null space of the bilinear form b(. , .). Indeed, the trace of an element of Nh on an
edge of an element K is weakly continuous in the sense given by (3.8), while the trace
of an element of N on an edge of an element K is “continuous” almost everywhere.
Therefore, the inf-sup condition given by (2.7) and then Theorem 1 are no longer
valid if we simply replace X and M by Xh and Mh, respectively.

3.3. Mathematical analysis of the interpolation operators. We establish
in this section intermediate interpolation results that summarize the main properties
of the projection operator Πh from X onto Xh and the projection operator Ph from
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M onto Mh. These results are obtained in the case of a rectangular-shaped partition
of the computational domain Ω.

3.3.1. Interpolation operator in Xh.
Lemma 3. For a fixed K ∈ Th, we have the following two properties:
(i) The normal derivative ∂nφKj is constant on every edge TKl (1 ≤ l, j ≤ 4).
(ii) If khK ≤ π, then the matrix BK is invertible and there is a positive constant

Ĉ such that

(3.9)
∥∥∥(BK)−1

∥∥∥
2
≤ Ĉ

k2h2
K

.

Proof of Lemma 3. It follows from the definition of φKj (see section 3.1) that

∂nφ
K
j = ik nKj · nKl φKj on TKl (1 ≤ l, j ≤ 4).

Therefore, since K is a rectangular-shaped element, a simple calculation shows that

∂nφ
K
j = ik on TKj , ∂nφ

K
j = −ik on TKj+2, and ∂nφ

K
j = 0 on TKj+1 ∪ TKj+3.

In addition, it follows from the definition of the elementary matrix BK (see (3.1))
that

BK =

⎡
⎢⎢⎣

1 b1 a2 b1
b2 1 b2 a1

a2 b1 1 b1
b2 a1 b2 1

⎤
⎥⎥⎦ ,

where aj = e−ikhK
j and bj = 1−e−ikhK

j

ikhK
j

, 1 ≤ j ≤ 4.

We set Δ = (1 + a1)(1 + a2) − 4b1b2. Then, it is easy to verify that Δ �= 0 for
khK ≤ π (which is, in fact, a sufficient but not necessary condition). This ensures
that the matrix BK is invertible, and we have

[
BK
]−1

=
1
2

⎡
⎢⎢⎢⎢⎢⎣

1+a1
Δ + 1

1−a2
−2 b1Δ

1+a1
Δ − 1

1−a2
−2 b1Δ

−2 b2Δ
1+a2

Δ + 1
1−a1

−2 b2Δ
1+a2

Δ − 1
1−a1

1+a1
Δ − 1

1−a2
−2 b1Δ

1+a1
Δ + 1

1−a2
−2 b1Δ

−2 b2Δ
1+a2

Δ − 1
1−a1

−2 b2Δ
1+a2

Δ
1

1−a1

⎤
⎥⎥⎥⎥⎥⎦ .

Finally, one can verify that there is a positive constant Ĉ and k such that

∥∥∥[BK]−1
∥∥∥

2
≤ Ĉ

k2h2
K

.

Next, we introduce the sequence of linear operators (πK)K∈Th
defined as follows:∣∣∣∣∣πK : H1(K) −→ C

4

vK �−→ πKv
K ,

where

(3.10)
(
πKv

K
)
j

=
1
hKj

∫
TK

j

vK dt, 1 ≤ j ≤ 4.
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Then, it follows from (3.2) that, for any hK independent vectorial norm |||.||| in C
4,

there is a positive constant Ĉ such that

(3.11)
∣∣∣∣∣∣πKvK∣∣∣∣∣∣ ≤ Ĉ ∥∥vK∥∥X(K)

∀vK ∈ H1(K).

In addition, we have

(3.12)

∀vKh ∈ Xh(K) , vKh =
4∑
j=1

αKj φ
K
j , where αKj =

([
BK
]−1

πKv
K
h

)
j
, 1 ≤ j ≤ 4.

The next result states that, for a given K ∈ Th, the set of DOFs associated to the
planar waves (φKj )4j=1 is unisolvent.

Lemma 4. For a given K ∈ Th and for any vKh ∈ Xh(K), we have the following
equivalence: (∫

TK
l

vKh dt = 0, 1 ≤ l ≤ 4

)
⇐⇒ (

vKh = 0 on K
)
.

Proof of Lemma 4. Using (3.10) and (3.12), it follows that for a given K ∈ Th,
we have ∫

TK
l

vKh dt = 0, 1 ≤ l ≤ 4 ⇐⇒ πKv
K
h = 0 ⇐⇒ vKh = 0,

which proves Lemma 4.
Consequently, one can construct a sequence of local linear operator (ΠK)K∈Th

as
follows: {

ΠK : H1(K) −→ Xh(K),

vK �−→ ΠKv
K ,

with

(3.13)
∫
TK

j

vK dt =
∫
TK

j

ΠKv
K dt, 1 ≤ j ≤ 4.

Next, we state three properties of the operator ΠK . These properties are immediate
consequences of the definition of ΠK , the inequalities (3.2)–(3.3), property (3.13) of
the operator ΠK , and the characterization of elements of Xh(K) with the elementary
matrix BK (see (3.12)). Note that the second identity of (3.14) is obtained by Green’s
formula using the rectangular shape of K.

Property 2. The operator ΠK satisfies the following three properties:
(i) ∀K ∈ Th and ∀ v ∈ H1(K), we have

(3.14)
∫
∂K

(
vK −ΠKv

K
)
dt = 0,

∫
K

∇ (vK −ΠKv
K
)
dx = 0.

(ii) There is a positive constant Ĉ such that

(3.15)

∀K ∈ Th,
∥∥vK −ΠKv

K
∥∥

0,∂K
≤ Ĉh 1

2
K

∣∣vK −ΠKv
K
∣∣
1,K

∀ vK ∈ H1(K).
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(iii) For a given vK ∈ H1(K), we have

(3.16) πKv
K = πK o ΠKv

K and

ΠKv
K =

4∑
j=1

αKj φ
K
j , with αKj =

([
BK
]−1

πKv
K
)
j
.

Proof of Property 2. We prove only the second property, since the two others are
immediate. Using (3.14) and the definition of the norm ‖.‖0,∂K , we have

∥∥vK −ΠKv
K
∥∥

0,∂K
=
∥∥∥∥vK −ΠKv

K − 1
|∂K|

∫
∂K

(
vK −ΠKv

K
)
dt

∥∥∥∥
0,∂K

≤ inf
β∈C

‖vK −ΠKv
K − β‖0,∂K

≤ ‖vK −ΠKv
K − 1

|K|

∫
K

(
v −ΠKv

K
)
dt‖0,∂K .

We then conclude using (3.4).
In the next two lemmas, we establish a priori estimates on the operator ΠK .
Lemma 5. Assume kh ≤ π. Then, there is a positive constant Ĉ such that

∀K ∈ Th and ∀ vK ∈ H1(K), we have

(3.17)
∥∥vK −ΠKv

K
∥∥

0,K
≤ Ĉ hK

∣∣vK −ΠKv
K
∣∣
1,K

,

(3.18) k
∥∥ΠKv

K
∥∥

0,K
+
∥∥ΠKv

K
∥∥
X(K)

≤ Ĉ ∥∥vK∥∥
X(K)

.

Proof of Lemma 5. We establish the estimate given by (3.17) using the Aubin–
Nitsche argument [23, 24, 25].

More specifically, consider the following auxiliary BVP:{
Find ϕ ∈ H1

0 (K) such that

−Δϕ = vK −ΠKv
K on K.

Since K is a rectangular-shaped element, then ϕ is, in fact, in H2(K)
⋂
H1

0 (K), and
we have

|ϕ|2,K = ‖Δϕ‖0,K =
∥∥vK −ΠKv

K
∥∥

0,K
.

It follows that

∥∥vK −ΠKv
K
∥∥2

0,K
=
∫
K

∇ (vK −ΠKv
K
) · ∇ϕdx− ∫

∂K

(
vK −ΠKv

K
)
∂nϕdt.

Using (3.14), we deduce that∣∣∣∣
∫
K

∇ (vK −ΠKv
K
) · ∇ϕdx∣∣∣∣ =

∣∣∣∣
∫
K

∇ (vK −ΠKv
K
) ·(∇ϕ− 1

|K|
∫
K

∇ϕdx
)
dx

∣∣∣∣ .
Then,∣∣∣∣

∫
K

∇ (vK −ΠKv
K
) · ∇ϕdx∣∣∣∣ ≤ ∣∣vK −ΠKv

K
∣∣
1,K

∥∥∥∥∇ϕ− 1
|K|

∫
K

∇ϕdx
∥∥∥∥

0,K

.
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It follows from (3.3) that there is a positive constant Ĉ such that∣∣∣∣
∫
K

∇ (vK −ΠKv
K
) · ∇ϕdx∣∣∣∣ ≤ ĈhK ∣∣vK −ΠKv

K
∣∣
1,K
|ϕ|2,K .

Moreover, using (3.13) we obtain that∣∣∣∣
∫
∂K

(
vK −ΠKv

K
)
∂nϕdt

∣∣∣∣ =
∣∣∣∣
∫
∂K

(
vK −ΠKv

K
)(∇ϕ− 1

|K|
∫
K

∇ϕdx
)
· nK dt

∣∣∣∣ .
Hence, we have∣∣∣∣

∫
∂K

(
vK −ΠKv

K
)
∂nϕ dt

∣∣∣∣ ≤ ∥∥vK −ΠKv
K
∥∥

0,∂K

∥∥∥∥∇ϕ− 1
|K|

∫
K

∇ϕdx
∥∥∥∥

0,∂K

.

Finally, using inequality (3.4) and (3.15), it follows that there is positive constant Ĉ
such that ∣∣∣∣

∫
∂K

(
vK −ΠKv

K
)
∂nϕdt

∣∣∣∣ ≤ ĈhK |vK −ΠKv
K |1,K |ϕ|2,K .

Therefore, (3.17) results from∥∥vK −ΠKv
K
∥∥2

0,K
≤ ĈhK

∣∣vK −ΠKv
K
∣∣
1,K
|ϕ|2,K

= ĈhK
∣∣vK −ΠKv

K
∣∣
1,K

∥∥vK −ΠKv
K
∥∥

0,K
.

Next, we establish the estimate given by (3.18). To do this, we first note that it
follows from (3.16) that

∀ vK ∈ H1(K) ,
∣∣∣∣∣∣ΠKv

K
∣∣∣∣∣∣ ≤ 4∑

j=1

∣∣αKj ∣∣ ∣∣∣∣∣∣φKj ∣∣∣∣∣∣ ,
where |||.||| is any norm in Xh(K). Hence, using (3.12), (3.11), and (3.9), there is a
positive constant Ĉ such that

∀ vK ∈ H1(K),
∣∣∣∣∣∣ΠKv

K
∣∣∣∣∣∣ ≤ Ĉ

k2h2
K

∥∥vK∥∥
X(K)

max
1≤j≤4

∣∣∣∣∣∣φKj ∣∣∣∣∣∣ .
On the other hand, it is easy to verify that∥∥φKj ∥∥0,K

≤ hK and
∣∣φKj ∣∣1,K ≤ khK .

Consequently, there is a positive constant Ĉ such that

∥∥ΠKv
K
∥∥

0,K
≤ Ĉ

k2hK

∥∥vK∥∥
X(K)

and
∣∣ΠKv

K
∣∣
1,K
≤ Ĉ

khK

∥∥vK∥∥
X(K)

.

Furthermore, using (3.17), we deduce that

∥∥vK −ΠKv
K
∥∥

0,K
≤ Ĉ

(
hK
∣∣vK∣∣

1,K
+ hK

∣∣ΠKv
K
∣∣
1,K

)
≤ Ĉ

(
hK
∣∣vK∣∣

1,K
+
C

k

∥∥vK∥∥
X(K)

)
.
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Thus,

k
∥∥vK −ΠKv

K
∥∥

0,K
≤ Ĉ

(
khK

∣∣vK∣∣
1,K

+
∥∥vK∥∥

X(K)

)
,

and therefore, using the definition of the norm ‖ · ‖X(K), it follows that

k
∥∥ΠKv

K
∥∥

0,K
≤ Ĉ ∥∥vK∥∥

X(K)
,

which concludes the proof of the first part of (3.18).
Finally, we establish the second part of the estimate given by (3.18). To do this,

we observe that ∀ vK ∈ H1(K), we have

∣∣vK −ΠKv
K
∣∣2
1,K

=
∫
K

∇ (vK −ΠKv
K
)
.∇vK dx+

∫
K

(
vK −ΠKv

K
)
ΔΠKv

K dx

=
∫
K

∇ (vK −ΠKv
K
)
.∇vK dx− k2

∫
K

(
vK −ΠKv

K
)
ΠKv

K dx

≤ ∣∣vK −ΠKv
K
∣∣
1,K

∣∣vK∣∣
1,K

+ k2
∥∥vK −ΠKv

K
∥∥

0,K

∥∥ΠKv
K
∥∥

0,K
.

Note that there are no boundary terms in the previous equalities because of Lemma
3 and (3.13).

Using again (3.17), we deduce the existence of a positive constant Ĉ such that

|vK −ΠKv
K |1,K ≤ |vK |1,K + Ĉk2hK‖ΠKv

K‖0,K .

Therefore, using the first part of (3.18), we deduce that∣∣vK −ΠKv
K
∣∣
1,K
≤ ∣∣vK∣∣

1,K
+ ĈkhK

∥∥vK∥∥
X(K)

.

Consequently, there is a positive constant ĉ such that∣∣ΠKv
K
∣∣
1,K
≤ 2
∣∣vK∣∣

1,K
+ ĈkhK

∥∥vK∥∥
X(K)

≤ ĉ ∥∥vK∥∥
X(K)

.

Moreover, using (3.17), we deduce that there is a positive constant Ĉ such that∥∥ΠKv
K
∥∥

0,K
≤ ∥∥vK∥∥

0,K
+ ĈhK

∣∣vK −ΠKv
K
∣∣
1,K

,

and thus, ∥∥ΠKv
K
∥∥

0,K
≤ ĈhK

∥∥vK∥∥
X(K)

,

which concludes the proof of (3.18).
Lemma 6. Assume kh ≤ π. Then for every s ∈ [0, 1], there is a positive constant

Ĉ such that for all K ∈ Th, we have

(3.19) |vK −ΠKvK |1,K ≤ Ĉ2

(
hsK |vK |1+s,K + k2hK‖vK‖0,K + k2h2

K |vK |1,K
)

∀vK ∈ H1+s(K).

Proof of Lemma 6. First, let ϕ be in P1(K), where P1(K) is the space of the affine
polynomial functions. Then, using first (3.14) and the fact that ∇ϕ is constant in
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each triangle, next that functions in Xh satisfy the homogeneous Helmholtz equation
in each triangle, we can write

|ϕ−ΠKϕ|21,K =
∫
K

∇(ϕ −ΠKϕ).∇(ϕ −ΠKϕ) dx = −
∫
K

∇(ϕ−ΠKϕ).∇ΠKϕdx

=
∫
K

(ϕ−ΠKϕ).ΔΠKϕdx−
∫
∂K

(ϕ−ΠKϕ).∂nΠKϕdt

=
∫
K

(ϕ−ΠKϕ).ΔΠKϕdx = −k2

∫
K

(ϕ−ΠKϕ).ΠKϕdx

≤ k2‖ϕ−ΠKϕ‖0,K‖ΠKϕ‖0,K .
From relation (3.17), we obtain

‖ϕ−ΠKϕ‖0,K ≤ ĈhK |ϕ−ΠKϕ|1,K .
Moreover, (3.18) gives

‖ΠKϕ‖0,K ≤ Ĉ(‖ϕ‖0,K + hK |ϕ|1,K).

Hence,

|ϕ−ΠKϕ|1,K ≤ Ĉk2hK(‖ϕ‖0,K + hK |ϕ|1,K).

On the other hand, it follows from (3.18) that for vK ∈ H1(K) and ϕ ∈ P1(K), we
have

|ΠK(ϕ− vK)|1,K ≤ Ĉ
(

1
hK
‖vK − ϕ‖0,K + |vK − ϕ|1,K

)

and then

|vK −ΠKvK |1,K ≤ |vK − ϕ|1,K + |ϕ−ΠKϕ|1,K + |ΠK(ϕ− vK)|1,K

≤ Ĉ
(

1
hK
‖vK − ϕ‖0,K + |vK − ϕ|1,K + k2hK(‖ϕ‖0,K + hK |ϕ|1,K)

)
.

Furthermore, since khK ≤ π, we deduce that

|vK −ΠKvK |1,K
≤ Ĉ

(
1
hK
‖vK − ϕ‖0,K + |vK − ϕ|1,K + k2 hK‖vK‖0,K + k2 h2

K |vK |1,K
)
.

Since vK ∈ H1+s(K) with s ∈ [0, 1], we chose ϕ to be the P1-polynomial approxi-
mation (the Lagrange polynomial interpolation) of v onK if s �= 0 and ϕ = 1

|K|
∫
K
v dx

if s = 0. Therefore, it follows from the standard P1 interpolation results on K (see
[14]) that

|vK −ΠKvK |1,K ≤ Ĉ
(
hsK |vK |1+s,K + k2hK‖vK‖0,K + k2h2

K |vK |1,K
)
.

Next, we introduce the global interpolation linear operator Πh as follows:{
Πh : X −→ Xh,

v �−→ Πhv,
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with

(Πhv)|K = ΠK(v|K ) ∈ Xh(K) ∀K ∈ Th.

Property 3. The global interpolation operator Πh : X −→ Xh satisfies the
following four properties:

(i) ∀v ∈ H1+s(Ω) with s ∈ [0, 1], we have

(3.20) ‖v −Πhv‖0,Ω ≤ Ĉ
(
h1+s|v|1+s,Ω + k2h3|v|1,Ω + k2h2‖v‖0,Ω

)
,

(3.21) |v −Πhv|1,Th
≤ Ĉ (hs|v|1+s,Ω + k2h2|v|1,Ω + k2h‖v‖0,Ω

)
.

(ii) ∀ v ∈ H1(Ω), Πhv ∈ Nh, where Nh is the null space of b(. , .).
(iii) ∀ v ∈ X and ∀ vh ∈ Xh, we have

(3.22)

a(v −Πhv, vh) = −ik
∑
K∈Th

∫
∂K∩Σ

(v −Πhv) vh dt,

a(vh, v −Πhv) = −ik
∑
K∈Th

∫
∂K∩Σ

vh (v −Πhv) dt.

(iv) ∀ v ∈ X and ∀μh ∈Mh, we have

(3.23) b(v, μh) = b(Πhv, μh).

Note that (3.20)–(3.21) are immediate consequences of Lemma 6, while the two
equalities given by (3.22) are obtained by Green’s formula and using the fact that the
plane waves are solutions of the Helmholtz equation.

3.3.2. Interpolation operator in Mh. We introduce here the projection op-
erator Ph for the dual variable λ. Ph is defined as follows:{

Ph : M −→Mh,

μ �−→ Phμ,

where

∀K ∈ Th, Phμ|
TK

j

=
1
hKj

∫
TK

j

μdt, 1 ≤ j ≤ 4 .

Then, the operator Ph satisfies

(3.24) ∀K ∈ Th , ∀μ ∈M,

∫
∂K

μdt =
∫
∂K

Phμdt .

3.4. Proof of Theorem 2. We first prove that the DVP admits a unique solu-
tion (uh, λh) in Xh ×Mh and then we establish the error estimate given by (3.6).

3.4.1. Existence and uniqueness. First, we prove that the bilinear form
b(· , ·) satisfies the inf-sup condition [21]. This result is stated in Proposition 1.
Then, we prove in Proposition 2 the uniqueness of the solution of the homogeneous
problem corresponding to the variational problem (DVP). The existence and unique-
ness of the DVP is then a direct consequence of Proposition 1 and Proposition 2.
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Proposition 1. Assume kh ≤ π. Then, there is a positive constant γ indepen-
dent of k and h such that

γ‖μh‖M ≤ sup
vh∈Xh

|b(vh, μh)|
‖vh‖X ≤ ‖μh‖M ∀μh ∈Mh.

Proof of Proposition 1. From (2.8), we deduce that

∀μh ∈Mh, sup
vh∈Xh

|b(vh, μh)|
‖vh‖X ≤ ‖μh‖M .

In addition, it follows from (2.7) that

∀μh ∈Mh, ∃φ ∈ X, sup
v∈X
|b(v, μh)|
‖v‖X =

|b(φ, μh)|
‖φ‖X = ‖μh‖M .

Therefore, it follows from (3.23) that

‖μh‖M =
|b(Πhφ, μh)|
‖Πhφ‖X

‖Πhφ‖X
‖φ‖X .

Since kh ≤ π, it follows from (3.18) that there is a positive constant Ĉ such that

‖μh‖M ≤ Ĉ sup
vh∈Xh

|b(vh, μh)|
‖vh‖X ,

which concludes the proof of Proposition 1.
Proposition 2. Assume kh ≤ π. Then, the only solution of the following

homogeneous DVP {
Find uh ∈ Nh such that

a(uh , vh) = 0 ∀ vh ∈ Nh,

is the trivial one.
Proof of Proposition 2. Let uh ∈ Nh such that a(uh, vh) = 0 ∀ vh ∈ Nh, then

a(uh, uh) = 0, which implies

uh = 0 on Σ and k ‖uh‖0,Ω = |uh|1,Th
.

In addition, since uh ∈ Xh, then Δuh + k2uh = 0 in every K ∈ Th. Therefore, using
integration by parts, it follows that

a(uh, vh) =
∑
K∈Th

∫
∂K

vh∂nuh dt = 0 ∀vh ∈ Nh.

Then, we also have ∂nuh = 0 on Γ ∪Σ and [∂nuh] = 0 on ∂K ∩ ∂K ′ ∀ K �= K
′ ∈ Th,

where [∂nuh] = ∂nu
K
h + ∂nu

K
′

h is the jump of the normal derivative of uh across
∂K ∩ ∂K ′

.
To conclude the proof of this proposition, we use a discrete continuation result.

We consider first the following property (P).
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Let K ∈ Th and TKl and TKm be two adjacent edges of K such that

∂nu
K
h |TK

l
= ∂nu

K
h |TK

m
=
∫
TK

l

uh dt =
∫
TK

m

uh dt = 0, then uh = 0 in K.

Note that property (P) is easy to establish since uh ∈ Xh (a sum of four plane waves),
and therefore, uh satisfies the Helmholtz equation at the element level K.

Now, since there is at least one element K ∈ Th with two adjacent edges belonging
to the boundary Σ, then using property (P) leads to uh = 0 in K. Then, we obtain
sequentially that uh = 0 in all the quadrilaterals belonging to the first layer adjacent
to the boundary Σ. We repeat this process on the second layer of the quadrilaterals
and so on, until the boundary Γ is reached, which proves the uniqueness of the solution
uh.

3.4.2. A priori error estimates. In the next lemmas, we establish a priori
estimates in order to prove the error estimate (3.6) given in Theorem 2 between the
exact solution (u, λ) and the discrete solution (uh, λh).

We consider the following notations:

(3.25) κh = h(1 + k) and zh = uh −Πhu.

Lemma 7. There is a positive constant Ĉ independent of k and h such that the
solution λ of the variational problem VP (2.4) satisfies

‖λ− Phλ‖M ≤ Ĉκ
2
3
h (1 + k).

Proof of Lemma 7. First, recall that

λK =

{
−∂nu on ∂K \ ∂Ω,

0 on ∂K ∩ ∂Ω.

Therefore, using the definition of the operator Ph along with the fact the normal unit
vector nK is constant on each edge e of K, we deduce that ∀K ∈ Th, we have

‖λ− Phλ‖20,∂K =
∑

e⊂K,e interior

∥∥∥∥∇u.nK − 1
|e|
∫
e

∇u.nK dt
∥∥∥∥

2

0,e

≤
∑

e⊂K,e interior

∥∥∥∥∇u− 1
|e|
∫
e

∇u dt
∥∥∥∥

2

0,e

=
∑

e⊂K,e interior

inf
β∈C2

‖∇u− β‖20,e

≤
∑

e⊂K,e interior

∥∥∥∥∇u− 1
|K|

∫
K

∇u dx
∥∥∥∥

2

0,e

≤
∥∥∥∥∇u− 1

|K|
∫
K

∇u dx
∥∥∥∥

2

0,∂K

.

Finally, using classical interpolation results [14], there is a positive constant Ĉ
such that

(3.26) ∀K ∈ Th , ‖λ− Phλ‖0,∂K ≤ Ĉh
1
6
K |u| 53 ,K .

In addition, we have from (2.3) that

‖λ− Phλ‖
H− 1

2 (∂K)
= sup

v∈H1(K)

∣∣∫
∂K

(λ− Phλ)v dt
∣∣

‖v‖X(K)
.
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On the other hand, from (3.24), we deduce that

∣∣∣∣
∫
∂K

(λ− Phλ)vdt
∣∣∣∣ =
∣∣∣∣
∫
∂K

(λ− Phλ)
(
v − 1
|K|

∫
K

v dx

)
dt

∣∣∣∣ ∀ v ∈ H1(K).

Hence,

∣∣∣∣
∫
∂K

(λ− Phλ)v dt
∣∣∣∣ ≤ ‖λ− Phλ‖0,∂K

∥∥∥∥v − 1
|K|

∫
K

v dx

∥∥∥∥
0,∂K

∀ v ∈ H1(K).

Using the following classical interpolation results [14], it follows that there is a positive
constant Ĉ such that∥∥∥∥v − 1

|K|
∫
K

v dx

∥∥∥∥
0,∂K

≤ Ĉh 1
2
K |v|1,K ≤ Ĉh

1
2
K‖v‖X(K).

We then deduce the existence of a positive constant Ĉ such that

(3.27) ∀K ∈ Th , ‖λ− Phλ‖
H− 1

2 (∂K)
≤ Ĉh 1

2
K ‖λ− Phλ‖0,∂K ∀μ ∈M.

Lemma 7 is the consequence of (3.26)–(3.27) and Theorem 1.
The next lemma can be viewed as a consistency result.
Lemma 8. Assume kh ≤ π. Then, there is a positive constant Ĉ independent of

k and h such that ∀vh ∈ Xh and ∀v ∈ H1(Ω),

|a(zh, vh) + b(vh, λh − Phλ)| ≤ Ĉ (1 + k)κ
2
3
h [κh |vh|1,Th

+ |v − vh|1,Th
] .

Proof of Lemma 8. We have

a(zh, vh) = a(uh − Πhu , vh) = a(u−Πhu , vh)− a(u− uh , vh).

Moreover, since u satisfies VP, we have

a(u, vh) + b(vh, λ) = F (vh),

and since uh satisfies DVP, we have

a(uh, vh) + b(vh, λh) = F (vh).

Consequently, we obtain

a(u− uh , vh) = − b(vh, λ− λh),

which leads to

a(zh, vh) + b(vh, λh − Phλ) = a(u−Πhu , vh) + b(vh, λ− Phλ).
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Hence, it follows from (3.22) that

(3.28)

a(uh−Πhu , vh)+b(vh, λh−Phλ) = −ik
∫

Σ

(u−Πhu)vh dt+b(vh, λ−Phλ) ∀vh ∈ Xh.

Next, using (3.13) and following the same proof of (3.26) in Lemma 7, we obtain∣∣∣∣
∫

Σ

(u −Πhu)vh dt
∣∣∣∣ ≤∑

e⊂Σ

∫
e

|u −Πhu| | vh − 1
|e|
∫
e

vh dt| dt

≤
∑
∂K⊂Σ

‖u−Πhu‖0,∂K
∥∥∥∥vh − 1

|K|
∫
K

vh dx

∥∥∥∥
0,∂K

.

Hence, using (3.4), it follows that there is a positive constant Ĉ such that∣∣∣∣
∫

Σ

(u−Πhu)vh dt
∣∣∣∣ ≤ Ĉ ∑

K∈Th

hK |u−Πhu|1,K |vh|1,K .

Then, it follows from using Theorem 1 and Lemma 6 that there is a positive constant
Ĉ such that ∣∣∣∣

∫
Σ

(u−Πhu)vh dt
∣∣∣∣ ≤ Ĉ (κ 5

3
h + κ2

h + κ3
h

)
|vh|1,Th

,

which implies (assuming kh ≤ π) that

(3.29)
∣∣∣∣
∫

Σ

(u−Πhu)vh dt
∣∣∣∣ ≤ Ĉ κ 5

3
h |vh|1,Th

.

On the other hand, we have ∀v ∈ H1(Ω),

|b(vh, λ− Phλ)| =
∣∣∣∣∣
∑

e interior

∫
e

[vh] (λ− Phλ) dt

∣∣∣∣∣ =
∣∣∣∣∣
∑

e interior

∫
e

[v − vh] (λ− Phλ) dt

∣∣∣∣∣
=

∣∣∣∣∣
∑

e interior

∫
e

(λ− Phλ) .
[
(v − vh)− 1

|e|
∫
e

(v − vh)
]
dt

∣∣∣∣∣
≤
∑
K

‖λ− Phλ‖0,∂K
∥∥∥∥(v − vh)− 1

|K|
∫
K

(v − vh) dx
∥∥∥∥

0,∂K

.

Therefore, it follows from using using (3.4) that there is a positive constant Ĉ
such that

|b(vh, λ− Phλ)| ≤ Ĉ
∑
K∈Th

h
1
2
K |v − vh|1,K ‖λ− Phλ‖0,∂K .

Hence, from (3.26) and Theorem 1, we obtain that there is a positive constant Ĉ such
that

(3.30) |b(vh, λ− Phλ)| ≤ Ĉ κ 2
3
h (1 + k) |v − vh|1,Th

.
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We conclude the proof of Lemma 8 by substituting (3.29) and (3.30) into
(3.28).

Remark 4. We deduce from Lemma 8 that, when kh ≤ π, there is a positive
constant Ĉ such that ∀vh ∈ Nh and ∀v ∈ H1(Ω),

(3.31) |a(zh, vh)| ≤ Ĉ (1 + k)κ
2
3
h [κh|vh|1,Th

+ |v − vh|1,Th
].

Lemma 9. Assume kh ≤ π. Then, there is a positive constant C (C depends on
Ω only) such that

(3.32) ‖zh‖0,Ω ≤ C κ
2
3
h

[
(1 + k)κ

2
3
h + |zh|1,Th

]
.

Proof of Lemma 9. First, observe that zh belongs to Nh and let φ be the solution
of the following BVP (see Lemma 1):

−Δφ− k2φ = zh in Ω,

and

∂nφ = 0 on Γ, ∂nφ = ik φ on Σ.

Hence, it follows from Lemma 1 that φ ∈ H 5
3 (Ω) and (see (2.12)) there is constant

C > 0 (C depends on Ω only) such that, for every s ∈ [0, 5
3 ], we have

(3.33) |φ|s,Ω ≤ C (1 + k)s−1 ‖zh‖0,Ω.
In addition, we have

(3.34) ‖zh‖20,Ω = a(zh, φ)−
∑

e interior

∫
e

[zh]∂nφdt.

Equation (3.34) results from multiplying the BVP introduced in Lemma 9, integrating
by parts on Ω, and using the definition of the bilinear form a. The second term of
this equality is due to the discontinuity of zh along the interior edges. Recall that the
jump [φ] along e ∈ ∂K ∩ ∂K ′ is given by [φ] = φK − φK′

.
On the other hand, we have

|a(zh, φ)| ≤ |a(zh,Πhφ)|+ |a(zh, φ−Πhφ)| .
It follows from (3.22) that

(3.35) |a(zh, φ)| ≤ |a(zh,Πhφ)|+ k

∣∣∣∣
∫

Σ

zh
(
φ−Πhφ

)
dt

∣∣∣∣ .
Since Πhφ ∈ Nh (see property (ii) in Property 3), then it follows from Remark 4 that
there is a positive constant Ĉ such that

|a(zh,Πhφ)| ≤ Ĉ (1 + k)κ
2
3
h [κh|Πhφ|1,Th

+ |φ−Πhφ|1,Th
] .

Moreover, it follows from Lemma 6 that there is a positive constant Ĉ such that

|φ−Πhφ|1,Th
≤ Ĉ

{
h

2
3 |φ| 5

3 ,Ω
+ k2h‖φ‖0,Ω + k2h2|φ|1,Ω

}
.
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Then, using relation (3.33) and the assumption kh ≤ π, we obtain

|φ−Πhφ|1,Th
≤ Ĉκ 2

3
h ‖zh‖0,Ω and |Πhφ|1,Th

≤ Ĉ‖zh‖0,Ω.
We then obtain

|a(zh,Πhφ)| ≤ Ĉ (1 + k)κ
4
3
h ‖zh‖0,Ω.

For the second part of (3.35), we have∣∣∣∣
∫

Σ

zh
(
φ−Πhφ

)
dt

∣∣∣∣ ≤ Ĉ h |φ−Πhφ|1,Th
|zh|1,Th

≤ Ĉhκ 2
3
h |zh|1,Th

‖zh‖0,Ω.

Note that the previous inequality was obtained using the same methodology to prove
Lemma 5. Hence, first we use (3.13) when we add the constant (− 1

|K|
∫
K zh dt) to zh.

Then, we apply Cauchy–Schwarz along with inequalities (3.2) and (3.4).
Finally, it follows that there is a positive constant C (C depends on Ω only) such

that

(3.36) |a(zh, φ)| ≤ C
[
(1 + k)κ

4
3
h + κ

5
3
h |zh|1,Th

]
‖zh‖0,Ω.

Next, we estimate the term |∑e interior

∫
e
[zh]∂nφdt| in (3.34). First, observe that∫

e

zKh dt =
∫
e

zK
′

h dt ∀ e ∈ ∂K ∩ ∂K ′ and K �= K ′ ∈ Th

and ∫
e∈∂K∩∂K′

(
zKh − zK

′
h

)
∂nφdt

=
∫
e

(
zKh −

1
|e|
∫
e

zKh dt

)(
∇φ − 1

|K|
∫
K

∇φdx
)
· nK dt

+
∫
e

(
zK

′
h −

1
|e|
∫
e

zK
′

h dt

)(
∇φ− 1

|K ′|
∫
K′
∇φdx

)
· nK′

dt.

Therefore,∣∣∣∣∣
∑

e interior

∫
e

[zh]∂nφdt

∣∣∣∣∣ ≤
∑
K∈Th

∑
e⊂K

∫
e

∣∣∣∣zh − 1
|e|
∫
e

zh dt

∣∣∣∣
∣∣∣∣∇φ− 1

|K|
∫
K

∇φdx
∣∣∣∣ dt.

Hence, it follows that

(3.37)

∣∣∣∣∣
∑

e interior

∫
e

[zh]∂nφ dt

∣∣∣∣∣ ≤ Ĉ h 2
3 |zh|1,Th

|φ| 5
3 ,Ω
≤ Cκ 2

3
h |zh|1,Th

‖zh‖0,Ω.

We conclude the proof of Lemma 9 by substituting (3.36) and (3.37) into equation
(3.34).

Lemma 10. Let h0 be a positive number such that k h
2
3
0 (1 + k)

2
3 is “sufficiently

small.” Then, there is a positive constant C (C depends on Ω only) such that, for all
h ≤ h0, we have

‖uh −Πhu‖0,Ω ≤ Ĉ(1 + k)κ
4
3
h and |uh −Πhu|1,Th

≤ Ĉ(1 + k)κ
2
3
h .
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Proof of Lemma 10. It follows from the definition of the bilinear form a(., .) that

|a(zh, zh)|2 =
∣∣|zh|21,Th

− k2 ‖zh‖20,Ω
∣∣2 + k2‖zh‖40,Γ.

Moreover, using Remark 4 with vh = zh and v = 0 along with the fact that kh ≤ π,
we obtain

|a(zh, zh)| ≤ Ĉ (1 + k)κ
2
3
h |zh|1,Th

.

Therefore, we deduce that

|zh|21,Th
≤ k2 ‖zh‖20,Ω + Ĉ (1 + k)κ

2
3
h |zh|1,Th

.

Then, using (3.32) along with Young’s inequality, we obtain

|zh|21,Th
≤ C

[
k2(1 + k)2κ

8
3
h + k2κ

4
3
h |zh|21,Th

+ (1 + k)κ
2
3
h |zh|1,Th

]
.

Consequently, we have

|zh|21,Th
≤ C

[
k2(1 + k)2κ

8
3
h + k2κ

4
3
h |zh|21,Th

+ (1 + k)2κ
4
3
h

]
.

Let us consider h0 such that Ck2(1 + k)
4
3h

4
3
0 ≤ 1

2 , then for every h ≤ h0, we have

Ck2κ
4
3
h ≤ 1

2 . We deduce that

|zh|21,Th
≤ C

[
k2(1 + k)2κ

8
3
h + (1 + k)2κ

4
3
h

]
, then |zh|1,Th

≤ Ĉ (1 + k)κ
2
3
h .

In addition, we obtain, from using (3.32), that

‖zh‖0,Ω ≤ Ĉ(1 + k)κ
4
3
h ,

which concludes the proof of Lemma 10.
Proof of the a priori error estimate of Theorem 2. We are now ready to prove the

estimate given by (3.6).
• From Lemmas 6 and 10, it follows that there is a positive constant C (C

depends on Ω only) such that

‖u− uh‖0,Ω ≤ ‖u−Πhu‖0,Ω + ‖uh −Πhu‖0,Ω ≤ C
[
κ

4
3
h + (1 + k)κ

4
3
h

]
and

|u− uh|1,Th
≤ |u−Πhu|1,Th

+ |uh −Πhu|1,Th
≤ C

[
κ

2
3
h + kκh + (1 + k)κ

2
3
h

]
.

Hence, we deduce that

‖u− uh‖0,Ω ≤ C (1 + k)κ
4
3
h and |u− uh|1,Th

≤ C (1 + k)κ
2
3
h .

• Moreover, we deduce from Lemma 8 that there is a positive constant Ĉ such
that

|b(vh, λh − Phλ)| ≤ Ĉ (1 + k)κ
2
3
h |vh|1,Th

+ |a(zh, vh)| ∀vh ∈ Xh.



CONVERGENCE ANALYSIS OF A DG METHOD 1063

On the other hand, it follows from the definition of the bilinear form a(. , .) that

|a(zh, vh)| ≤ |zh|1,Th
|vh|1,Th

+ k2

∣∣∣∣
∫

Ω

zh.vhdx

∣∣∣∣+ k ‖zh‖0,Σ ‖vh‖0,Σ ∀vh ∈ Xh.

Therefore, using the definition of the norm ‖ · ‖X and inverse inequality results, we
deduce that there is a positive constant Ĉ such that

|a(zh, vh)| ≤
(|zh|21,Th

+ k2 h2 ‖zh‖20,Ω
) 1

2 ‖vh‖X + Ĉ k ‖zh‖0,Σ h 1
2 ‖vh‖X ∀vh ∈ Xh.

In addition, it follows from the definition of the bilinear form a(. , .) and from using
(3.31) with vh = zh and v = 0 (see Remark 4) that there is a positive constant Ĉ
such that

k‖zh‖20,Σ ≤ |a(zh, zh)| ≤ Ĉ (1 + k)κ
2
3
h |zh|1,Th

.

Therefore, using Lemma 10, we deduce that there is a positive constant C (C depends
on Ω only) such that

k
1
2 ‖zh‖0,Σ ≤ (1 + k)κ

2
3
h .

Hence, we deduce that there is a positive constant C (C depends on Ω only) such
that

|a(zh, vh)| ≤ C (1 + k)κ
2
3
h ‖vh‖X ∀vh ∈ Xh.

Consequently, it follows from Proposition 1 that there is a positive constant C (C
depends on Ω only) such that

‖λh − Phλ‖M ≤ C (1 + k)κ
2
3
h .

Finally, we deduce from Lemma 7 that there is a positive constant C (C depends on
Ω only) such that

‖λ− λh‖M ≤ C (1 + k)κ
2
3
h ,

which concludes the proof of the error estimate of Theorem 2.
Proof of the a posteriori error estimate (3.7) in Theorem 3. Let φ be the solution

of the BVP (2.11) (see Lemma 1) with f = u − uh. Then, this solution φ belongs to
H

5
3 (Ω) and for every s ∈ [0, 5

3 ], there exists a constant C > 0 depending only on s
and Ω such that

|φ|s,Ω � C(1 + k)s−1‖u− uh‖0,Ω.

Using integration by parts, one can easily verify that

‖u− uh‖20,Ω =
∑
K∈Th

∫
∂K∩Σ

φ(∂nuh − ik uh) dt+
∑
K∈Th

∫
∂K∩Γ

φ
(
∂nuh + ∂ne

ikx·d) dt
+

∑
e interior

∫
e

[∂nuh]φdt−
∑

e interior

∫
e

[uh]∂nφdt.
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On the other hand, we also have

a(uh,Πhφ) = −
∑
K∈Th

∫
∂K∩Γ

∂ne
ikx·d Πhφdt.

Therefore, using integration by parts along with the fact that uh satisfies the Helmholtz
equation at the element level, we have

∑
K∈Th

∫
∂K∩Γ

∂nuhΠhφ dt +
∑
K∈Th

∫
∂K∩Σ

(∂nuh − ikuh)Πhφdt

+
∑

e interior

∫
e

[∂nuh] Πhφdt

= −
∑
K∈Th

∫
∂K∩Γ

∂ne
ikx·d Πhφ dt.

Consequently, using the fact that for every interior edge e, we have
∫
e
[∂nuh]φdt =∫

e
[∂nuh] Πhφdt, we deduce that

(3.38)

‖u− uh‖20,Ω =
∑
K∈Th

∫
∂K∩Σ

(
φ−Πhφ

)
(∂nuh − ik uh) dt

+
∑
K∈Th

∫
∂K∩Γ

(
φ−Πhφ

)
(∂nuh + ∂ne

ikx·d) dt−
∑

e interior

∫
e

[uh]∂nφ dt.

Next, we estimate each integral in the right-hand side of (3.38) to deduce the a
posteriori estimate given by (3.7) in Theorem 3.

• First, we estimate: I1 =

∣∣∣∣∣
∑
K∈Th

∫
∂K∩Σ

(
φ−Πhφ

)
(∂nuh − ik uh) dt

∣∣∣∣∣.
We have

I1 �
(∑
e⊂Σ

he‖∂nuh − ik uh‖20,e
) 1

2
(∑
e⊂Σ

h−1
e ‖φ−Πhφ‖20,e

) 1
2

� Ĉ

(∑
e⊂Σ

he‖∂nuh − ik uh‖20,e
) 1

2

|φ−Πhφ|1,Th
.

Therefore, assuming that kh � π, it follows from the properties of the operator
Π (see (3.21) in Property 3) that there is a positive constant Ĉ such that

I1 ≤ Ĉ1

(∑
e⊂Σ

he‖∂nuh − ik uh‖20,e
) 1

2 (
h

2
3 |φ| 5

3 ,Ω
+ |φ|1,Ω + k‖φ‖0,Ω

)
.

We deduce from the a priori estimate on |φ|s,Ω that there is a positive constant Ĉ1

such that

I1 ≤ Ĉ1

(∑
e⊂Σ

he‖∂nuh − ik uh‖20,e
) 1

2

‖u− uh‖0,Ω.
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• Similarly, there is also a positive constant Ĉ2 such that

I2 =

∣∣∣∣∣
∑
K∈Th

∫
∂K∩Γ

(
φ−Πhφ

) (
∂nuh + ∂ne

ikx·d) dt
∣∣∣∣∣

≤ Ĉ
(∑
e⊂Γ

he‖∂nuh + ∂ne
ikx·d‖20,e

) 1
2

|φ−Πhφ|1,Th
.

Then, there is there is a positive constant denoted again by Ĉ2 such that

I2 ≤ Ĉ2

(∑
e⊂Γ

he
∥∥∂nuh + ∂ne

ikx·d∥∥2

0,e

) 1
2

‖u− uh‖0,Ω.

• Last, we estimate I3 = |∑e interior

∫
e
[uh]∂nφdt|.

Consider an interior edge e = ∂K(e)
⋂
∂K ′(e), then∫

e

[uh]∂nφdt =
∫
e

[uh]∇φ.n dt =
∫
e

[uh] (∇φ− β).n dt ∀βββ ∈ C
2.

We then obtain ∣∣∣∣
∫
e

[uh]∂nφdt
∣∣∣∣ ≤ ‖[uh]‖0,e inf

βββ∈C2
‖∇φ− βββ ‖0,e.

On the other hand, since there is a positive constant Ĉ such that

inf
βββ∈C2

‖∇φ− βββ ‖0,e ≤ Ĉ h
1
6
e |φ| 5

3 ,K(e),

it follows that

I3 ≤ Ĉ
∑

e interior

h
1
6
e ‖[uh]‖0,e|φ| 5

3 ,K(e) ≤ Ĉ
( ∑
e interior

h−1
e ‖[uh]‖20,e

) 1
2

h
2
3 |φ| 5

3 ,Ω
.

Then, there is a positive constant Ĉ3 such that

I3 ≤ Ĉ3

( ∑
e interior

h−1
e ‖[uh]‖20,e

) 1
2

‖u− uh‖0,Ω.

4. Conclusion. A DGM with plane waves and Lagrange multipliers was recently
proposed by Farhat, Harari, and Hetmaniuk [3] for solving two-dimensional Helmholtz
problems at relatively high wavenumbers. In many previous papers, this method
was shown numerically to offer a significant potential for wave propagation problems
including acoustic scattering. However, it lacked a formal convergence theory. This
paper is a first step toward filling this gap. Indeed, it is proved that the hybrid
variational formulation underlying this DGM is well-posed in the sense of Hadamard.
In addition, a priori error estimates proved for the so-called R-4-1 element, that
is, the simplest two-dimensional element associated with this discretization method,
establish the convergence of this element and reveal its formal order of accuracy.
Furthermore, an a posteriori error estimate was derived that can be used as a practical
error indicator when refining the partition of the computational domain. Higher-order
elements will be analyzed in future research.
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Abstract. We prove the convergence of an adaptive linear finite element method for computing
eigenvalues and eigenfunctions of second-order symmetric elliptic partial differential operators. The
weak form is assumed to yield a bilinear form which is bounded and coercive in H1. Each step of
the adaptive procedure refines elements in which a standard a posteriori error estimator is large and
also refines elements in which the computed eigenfunction has high oscillation. The error analysis
extends the theory of convergence of adaptive methods for linear elliptic source problems to elliptic
eigenvalue problems, and in particular deals with various complications which arise essentially from
the nonlinearity of the eigenvalue problem. Because of this nonlinearity, the convergence result holds
under the assumption that the initial finite element mesh is sufficiently fine.
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1. Introduction. In the last decades, mesh adaptivity has been widely used to
improve the accuracy of numerical solutions to many scientific problems. The basic
idea is to refine the mesh only where the error is high, with the aim of achieving an
accurate solution using an optimal number of degrees of freedom. There is a large
amount of numerical analysis literature on adaptivity, in particular on reliable and
efficient a posteriori error estimates (e.g., [1]). Recently, the question of convergence
of adaptive methods has received intensive interest and a number of convergence
results for the adaptive solution of boundary value problems have appeared (e.g.,
[8, 18, 19, 7, 6, 23]).

We prove here the convergence of an adaptive linear finite element algorithm for
computing eigenvalues and eigenvectors of scalar symmetric elliptic partial differential
operators in bounded polygonal or polyhedral domains, subject to Dirichlet boundary
data. Such problems arise in many applications, e.g., resonance problems, nuclear re-
actor criticality, and the modelling of photonic band gap materials, to name but three.

Our refinement procedure is based on two locally defined quantities, firstly, a
standard a posteriori error estimator and secondly a measure of the variability (or
“oscillation”) of the computed eigenfunction. (Measures of “data oscillation” appear
in the theory of adaptivity for boundary value problems, e.g., [18]. In the eigenvalue
problem the computed eigenvalue and eigenfunction on the present mesh plays the role
of “data” for the next iteration of the adaptive procedure.) Our algorithm performs
local refinement on all elements on which the minimum of these two local quantities is
sufficiently large. We prove that the adaptive method converges provided the initial
mesh is sufficiently fine. The latter condition, while absent for adaptive methods for
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linear symmetric elliptic boundary value problems, commonly appears for nonlinear
problems and can be thought of as a manifestation of the nonlinearity of the eigenvalue
problem.

We believe that the present paper is the first contribution to the topic of con-
vergence of adaptive methods for eigenvalue problems. Since writing this paper, sub-
stantial improvements in the theory have been made in [5], where the need to adapt
on the oscillations of the eigenvalue is removed and, in addition, the general conver-
gence of the adaptive scheme to a nonspurious eigenvalue of the continuous problem
is established.

The outline of the paper is as follows. In section 2 we briefly describe the model
elliptic eigenvalue problem and the numerical method and in section 3 we describe
a priori estimates, most of which are classical. Section 4 describes the a posteriori
estimates and the adaptive algorithm. Section 5 proves that proceeding from one
mesh to another ensures error reduction (up to oscillation of the computed eigenfunc-
tion) while the convergence result is presented in section 6. Numerical experiments
illustrating the theory are presented in section 7.

2. Eigenvalue problem and numerical method. Throughout, Ω will denote
a bounded domain in R

d (d = 2 or 3). In fact, Ω will be assumed to be a polygon
(d = 2) or polyhedron (d = 3). We will be concerned with the problem of finding an
eigenvalue λ ∈ R and eigenfunction 0 �= u ∈ H1

0 (Ω) satisfying

(2.1) a(u, v) := λ b(u, v), for all v ∈ H1
0 (Ω),

where, for real valued functions u and v,

(2.2) a(u, v) =
∫

Ω

∇u(x)TA(x)∇v(x)dx and b(u, v) =
∫

Ω

B(x)u(x)v(x)dx .

Here, the matrix-valued function A is required to be uniformly positive definite, i.e.,

(2.3) 0 < a ≤ ξTA(x)ξ ≤ a for all ξ ∈ R
d with |ξ| = 1 and all x ∈ Ω.

The scalar function B is required to be bounded above and below by positive constants
for all x ∈ Ω, i.e.,

(2.4) 0 < b ≤ B(x) ≤ b for all x ∈ Ω.

We will assume that A and B are both piecewise constant on Ω and that any jumps
in A and B are aligned with the meshes Tn (introduced below), for all n.

Throughout the paper, for any polygonal (polyhedral) subdomain of D ⊂ Ω, and
any s ∈ [0, 1], ‖ · ‖s,D and | · |s,D will denote the standard norm and seminorm in the
Sobolev space Hs(D). Also (·, ·)0,D denotes the L2(D) inner product. We also define
the energy norm induced by the bilinear form a:

‖|u‖|2Ω := a(u, u) for all u ∈ H1
0 (Ω),

which, by (2.3), is equivalent to the H1(Ω) seminorm. (The equivalence constant
depends on the contrast a/a, but we are not concerned with this dependence in the
present paper.) We also introduce the weighted L2 norm:

‖u‖20,B,Ω = b(u, u) =
∫

Ω

B(x)|u(x)|2 dx,
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and note the norm equivalence

(2.5)
√
b‖v‖0,Ω ≤ ‖v‖0,B,Ω ≤

√
b‖v‖0,Ω.

Rewriting the eigenvalue problem (2.1) in standard normalized form, we seek
(λ, u) ∈ R×H1

0 (Ω) such that

(2.6) a(u, v) = λ b(u, v), for all v ∈ H1
0 (Ω)

‖u‖0,B,Ω = 1

}
.

By the continuity of a and b and the coercivity of a on H1
0 (Ω) it is a standard

result that (2.6) has a countable sequence of nondecreasing positive eigenvalues λj ,
j = 1, 2, . . . with corresponding eigenfunctions uj ∈ H1

0 (Ω) [3, 12, 24].
In this paper we will need some additional regularity for the eigenfunctions uj ,

which will be achieved by making the following regularity assumption for the elliptic
problem induced by a.

Assumption 2.1. We assume that there exists a constant Cell > 0 and s ∈ [0, 1]
with the following property. For f ∈ L2(Ω), if v ∈ H1

0 (Ω) solves the problem a(v, w) =
(f, w)0,Ω for all w ∈ H1

0 (Ω), then ‖v‖1+s,Ω ≤ Cell‖f‖0,Ω.
Assumption 2.1 is satisfied with s = 1 when A is constant (or smooth) and Ω is

has a smooth boundary or is a convex polygon. In a range of other practical cases
s ∈ (0, 1), for example, Ω nonconvex (see [4]), or A having a discontinuity across an
interior interface (see [2]). Under Assumption 2.1 it follows that the eigenfunctions
uj of the problem (2.6) satisfy ‖uj‖1+s,Ω ≤ Cellλj

√
b.

To approximate problem (2.6) we use the piecewise linear finite element method.
Accordingly, let Tn, n = 1, 2, . . . denote a family of conforming triangular (d = 2) or
tetrahedral (d = 3) meshes on Ω. Each mesh consists of elements denoted τ ∈ Tn.
We assume that for each n, Tn+1 is a refinement of Tn. For a typical element τ of
any mesh, its diameter is denoted Hτ and the diameter of its largest inscribed ball is
denoted ρτ . For each n, let Hn denote the piecewise constant mesh function on Ω,
whose value on each element τ ∈ Tn is Hτ and let Hmax

n = maxτ∈Tn Hτ . Throughout
we will assume that the family of meshes Tn is shape regular; i.e., there exists a
constant Creg such that

(2.7) Hτ ≤ Cregρτ , for all τ ∈ Tn and all n = 1, 2, . . . .

In the later sections of the paper, the Tn will be produced by an adaptive process
which ensures shape regularity.

We let Vn denote the usual finite dimensional subspace of H1
0 (Ω), consisting of all

continuous piecewise linear functions with respect to the mesh Tn. Then the discrete
formulation of problem (2.6) is to seek the eigenpairs (λn, un) ∈ R× Vn such that

(2.8) a(un, vn) = λn b(un, vn), for all vn ∈ Vn
‖un‖0,B,Ω = 1.

}

The problem (2.8) has N = dim Vn positive eigenvalues (counted according to
multiplicity) which we denote in nondecreasing order as λn,1 ≤ λn,2 ≤ · · · ≤ λn,N .
It is well-known (see [24, section 6.3]) that for any j, λn,j → λj as Hmax

n → 0 and
(by the minimax principle—see, e.g., [24, section 6.1]) the convergence of the λn,j is
monotone decreasing, i.e.,

(2.9) λn,j ≥ λm,j ≥ λj , for all j = 1, . . . , N, and all m ≥ n.
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Thus, it is clear that there exists a separation constant ρ > 0 (depending on the
spectrum of (2.6)) with the following property: If λj = λj+1 = · · · = λj+R−1 is any
eigenvalue of (2.6) of multiplicity R ≥ 1, then

(2.10)
λj

|λn,� − λj | ≤ ρ, � �= j, j + 1, . . . , j +R− 1,

provided Hmax
n is sufficiently small. (Note that for � �= j, j + 1, . . . j +R − 1, λn,� →

λ� �= λj .)
The a priori error analysis for our eigenvalue problem is classical (see, e.g., [3],

[12], and [24]). In the next section, we briefly recall some of the main known results
and also prove a nonclassical result (Theorem 3.2) which is essential to the proof of
convergence of our adaptive scheme.

3. A priori analysis. In this section we shall assume that λj is an eigenvalue
of (2.6) and λn,j is its approximation as described above. Let uj and un,j be any
corresponding normalized eigenvectors as defined in (2.6) and (2.8). From these we
obtain the important basic identity:

a(uj − un,j , uj − un,j) = a(uj , uj) + a(un,j, un,j)− 2a(uj, un,j)
= λj + λn,j − 2λj b(uj, un,j)
= λn,j − λj + λj (2 − 2b(uj, un,j))
= λn,j − λj + λj b(uj − un,j , uj − un,j).(3.1)

Using this and (2.9), we obtain

(3.2) |||uj − un,j|||2Ω = |λj − λn,j | + λj ‖uj − un,j‖20,B,Ω.
The following theorem investigates the convergence of discrete eigenpairs. Al-

though parts of it are very well-known, we do not know a suitable reference for all
the results given below, so a brief proof is given for completeness. In the proof we
make use of the orthogonal projection Qn of H1

0 (Ω) onto Vn with respect to the inner
product induced by a(·, ·), which has the property:

(3.3) a(Qnu, vn) = λ b(u, vn) for all vn ∈ Vn.
In the main result of this paper we prove convergence for adaptive approximations

to eigenvalues and eigenvectors assuming for simplicity a simple eigenvalue. The
following preliminary theorem is stated for a simple eigenvalue. However, this result
is known for multiple eigenvalues (see, e.g., [24]). More details are given in [10].

Theorem 3.1. Let λj be a simple eigenvalue of (2.6), let λn,j be its associated
approximation from solving (2.8), and let uj and un,j be any corresponding normalized
eigenvectors. Then for all 1 ≤ j ≤ N ,

(i)

(3.4) |λj − λn,j | ≤ |||uj − un,j|||2Ω;

(ii) There are constants C1, C2 > 0 and scalars αn,j ∈ {±1} such that

‖uj − αn,jun,j‖0,B,Ω ≤ C1(Hmax
n )s ‖|uj −Qnuj ‖|Ω

≤ C1(Hmax
n )s ‖|uj − αn,jun,j ‖|Ω,(3.5)

where s is as in Assumption 2.1.



CONVERGENT ADAPTIVE METHOD FOR EIGENVALUE PROBLEMS 1071

(iii) For sufficiently small Hmax
n there is a constant C2 such that

(3.6) |||uj − αn,jun,j |||Ω ≤ C2(Hmax
n )s.

The constants C1, C2 depend on the spectral information λ�, u�, � = 1, . . . , j, the
separation constant ρ, the constants Cell, Creg in Assumption 2.1 and in (2.7) and on
the bounds a, a, b, b in (2.3), (2.4).

Proof. The estimate (3.4) follows directly from (3.2). Note that (3.4) holds even if
un,j is not close to u, which may occur due to the nonuniqueness of the eigenvectors.

The proof of (3.5) is obtained by a reworking of the results in [24]. By the
symmetry of a and b there exists a basis {un,� : � = 1, . . . , N} of Vn (containing un,j)
which is orthonormal with respect to inner product b, and each un,� is an eigenvector
of (2.8) corresponding to eigenvalue λn,�. Then with βn,j := b(Qnuj, un,j), Parseval’s
equality yields

(3.7) ‖Qnuj − βn,jun,j‖20,B,Ω =
N∑

�=1
� �=j

b(Qnuj, un,�)2.

Then, since

λn,�b(Qnuj, un,�) = a(Qnuj, un,�) = a(uj, un,�) = λjb(uj , un,�),

we have (λn,� − λj)b(Qnuj, un,�) = λjb(uj −Qnuj , un,�), and so

‖Qnuj − βn,jun,j‖20,B,Ω =
N∑

�=1
� �=j

(
λj

λn,� − λj

)2

b(uj −Qnuj, un,�)2

≤ ρ2
N∑

�=1
� �=j

b(uj −Qnuj, un,�)2 ≤ ρ2‖uj −Qnuj‖20,B,Ω,

with the last step again by Parseval’s equality. Hence,

(3.8) ‖uj − βn,jun,j‖0,B,Ω ≤ (1 + ρ)‖uj −Qnuj‖0,B,Ω.

Moreover,

‖uj‖0,B,Ω −‖uj−βn,jun,j‖0,B,Ω ≤ ‖βn,jun,j‖0,B,Ω ≤ ‖uj‖0,B,Ω +‖uj−βn,jun,j‖0,B,Ω.

Since the uj and the un,j are normalized, this implies

1− ‖uj − βn,jun,j‖0,B,Ω ≤ |βn,j | ≤ 1 + ‖uj − βn,jun,j‖0,B,Ω
and, combining these with (3.8), we have

||βn,j | − 1| ≤ (1 + ρ)‖uj −Qnuj‖0,B,Ω.

Thus, with αn,j := sign(βn,j), we have |βn,j −αn,j| ≤ (1 + ρ)‖uj −Qnuj‖0,B,Ω , and

‖uj − αn,jun,j‖0,B,Ω ≤ 2(1 + ρ)‖uj −Qnuj‖0,B,Ω.
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The first inequality in (3.5) now follows from an application of the standard Aubin–
Nitsche duality argument, while the second is just the best approximation of Qn in
the energy norm.

The proof of (3.6) is a slight modification of that given in [24, Theorem 6.2].
The argument consists of obtaining an O((Hmax

n )2s) estimate for the eigenvalue error
|λj − λn,j | and then combining this with (3.2) and (3.5).

The next theorem is a generalization to eigenvalue problems of the standard
monotone convergence property for linear symmetric elliptic PDEs, namely, that if one
enriches the finite dimensional space, then the error is bound to decrease. This result
fails to hold for eigenvalue problems (even for symmetric elliptic partial differential
operators), because of the nonlinearity of such problems. The best that we can do is
to show that if the finite dimensional space is enriched, then the error will not increase
very much. This is the subject of Theorem 3.2.

Theorem 3.2. For any 1 ≤ j ≤ N , there exists a constant q > 1 such that, for
m ≥ n, the corresponding computed eigenpair (λm,j , um,j) satisfies:

(3.9) ‖|uj − αm,jum,j ‖|Ω ≤ q ‖|uj − αn,jun,j ‖|Ω.
Proof. From Theorem 3.1 (ii), we obtain

(3.10) ‖uj − αm,jum,j‖0,B,Ω ≤ C1(Hmax
m )s ‖|uj −Qmuj ‖|Ω.

Since Tm is a refinement of Tn, it follows that Vn ⊂ Vm and so the best approximation
property of Qm ensures that

‖|uj −Qmuj ‖|Ω ≤ ‖|uj −Qnuj ‖|Ω.
Hence, from (3.10) and using the fact that Hmax

m ≤ Hmax
n , we have

(3.11) ‖uj − αm,jum,j‖0,B,Ω ≤ C1(Hmax
n )s ‖|uj −Qnuj ‖|Ω.

Recalling that (3.2) holds for all eigenfunctions, and using (3.11) and then (2.9), we
obtain

‖|uj − αm,jum,j ‖|2Ω ≤ |λj − λm,j | + λj‖uj − αm,jum,j‖20,B,Ω
≤ |λj − λm,j | + λjC

2
1 (Hmax

n )2s ‖|uj −Qnuj ‖|2Ω
≤ |λj − λn,j | + λjC

2
1 (Hmax

n )2s ‖|uj −Qnuj ‖|2Ω.(3.12)

Hence, from (3.4) we obtain

(3.13) ‖|uj−αm,jum,j ‖|2Ω ≤ ‖|uj−αn,jun,j ‖|2Ω + λjC
2
1 (Hmax

n )2s ‖|uj−Qnuj ‖|2Ω.
But, since Qn yields the best approximation from Vn in the energy norm, we have

(3.14) ‖|uj − αm,jum,j ‖|2Ω ≤ (1 + λjC
2
1 (Hmax

0 )2s) ‖|uj − αn,jun,j ‖|2Ω,
which is in the required form.

Remark 3.3. From now on we will be concerned with a true eigenpair (λj , uj)
and its computed approximation (λj,n, uj,n) on the mesh Tn . Theorem 3.1 tells us
that a priori λn,j is “close” to λj and that the spaces spanned by uj and un,j are close.
From now on we drop the subscript j and we simply write (λ, u) for the eigenpair of
(2.6) (λn, un) for a corresponding eigenpair of (2.8) and the scalar αn,j is abbreviated
αn.
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4. A posteriori analysis. This section contains our a posteriori error estimator
and the definition of the adaptive algorithm for which convergence will be proved in
the following sections.

Recalling the mesh sequence Tn defined above, we let Sn denote the set of all
the interior edges (or the set of interior faces in 3D) of the elements of the mesh
Tn. For each S ∈ Sn, we denote by τ1(S) and τ2(S) the elements sharing S (i.e.,
τ1(S) ∩ τ2(S) = S) and we write Ω(S) = τ1(S) ∪ τ2(S). We let 	nS denote the unit
normal vector to S, orientated from τ1(S) to τ2(S). All elements, faces, and edges are
considered to be closed sets. Furthermore, we denote the diameter of S by HS . Note
that, by mesh regularity, diam(Ω(S)) ∼ Hτi(S), i = 1, 2.

Notation 4.1. We write A � B when A/B is bounded by a constant which may
depend on the functions A and B in (2.2), on a, a, b, and b, on Cell in Assumption 2.1,
Creg in (2.7). The notation A ∼= B means A � B and A � B.

All the constants depending on the spectrum, namely, ρ in (2.10), q in (3.9), C1

and C2 in (3.5) and (3.6), are handled explicitly. Similarly all mesh size dependencies
are explicit. Note that all eigenvalues of (2.8) satisfy λn � 1, since λn ≥ λ1 =
a(u1, u1) � |u1|21,Ω � ‖u1‖20,Ω � ‖u1‖20,B,Ω = 1.

Our error estimator is obtained by adapting standard estimates for source prob-
lems to the eigenvalue problem. Analogous eigenvalue estimates can be found in [9]
(for the Laplace problem) and [25] (for linear elasticity) and related results are in [14].

For a function g, which is piecewise continuous on the mesh Tn, we introduce its
jump across an edge (face) S ∈ Sn by:

[g]S(x) :=

⎛
⎝ lim
x̃∈τ1(S)
x̃→x

g(x̃)− lim
x̃∈τ2(S)
x̃→x

g(x̃)

⎞
⎠ , for x ∈ int(S).

Then for any function v with piecewise continuous gradient on Tn we define, for
S ∈ Sn,

JS(v)(x) := [	nS · A�v]S(x), for x ∈ int(S).

The error estimator ηn on the mesh Tn is defined as

(4.1) η2
n :=

∑
S∈Sn

η2
S,n,

where, for each S ∈ Sn,

(4.2) η2
S,n := ‖Hnλnun‖20,B,Ω(S) +

∥∥∥H1/2
S JS(un)

∥∥∥2

0,S
.

The following lemma is proved, in a standard way, by adapting the usual arguments
for linear source problems. Note again that λ is an eigenvalue of (2.6), λn is a nearby
eigenvalue of (2.8), and u, un are any corresponding normalized eigenfunctions which
are only “near” in the sense of Theorem 3.1.

Lemma 4.2 (reliability).

(4.3) ‖|u− un ‖|Ω � ηn +Gn,

and

(4.4) Gn :=
1
2
(λ+ λn)

‖u− un‖20,B,Ω
‖|u− un ‖|Ω .
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Remark 4.3. Recalling Remark 3.3, un in Lemma 4.2 is any normalized eigen-
vector of (2.8) corresponding to the simple eigenvalue λ; i.e., its sign is not unique.
However, the error estimators ηS,n are independent of the sign of un. This is not a
contradiction: we shall see that only one choice of eigenfunction will guarantee that
the second term on the right-hand side of (4.3) is small, and only in this case is the
left-hand side also guaranteed to be small.

A similar result to Lemma 4.2 was proved in [25, Proposition 5].
Proof. To ease readability we set en = u− un in the proof. Note first that, since

(λ, u) and (λn, un), respectively, solve the eigenvalue problems (2.1) and (2.8), we
have, for all wn ∈ Vn,

|||en|||2Ω = a(en, en)
= a(en, en − wn) + a(en, wn)
= a(en, en − wn) + a(u,wn) − a(un, wn)
= a(en, en − wn) + b(λu− λnun, wn)
= a(en, en − wn) − b(λu− λnun, en − wn) + b(λu− λnun, en).(4.5)

To estimate the first two terms on the right-hand side of (4.5), first note that, for
all v ∈ H1

0 (Ω),

a(en, v)− b(λu− λnun, v) = −a(un, v) + λnb(un, v).

Hence, using elementwise integration by parts (and the fact that A∇un is constant
on each element and v vanishes on ∂Ω), we obtain

a(en, v)− b(λu− λnun, v) = −
∑
τ∈Tn

∫
τ

(A∇un).∇v + λnb(un, v)

= −
∑
S∈Sn

∫
S

JS(un)v + λnb(un, v),(4.6)

and hence, for all wn ∈ Vn,
(4.7)

a(en, en−wn)− b(λu−λnun, en−wn) = −
∑
S∈Sn

∫
S

JS(un)(en−wn) + λnb(un, en−wn).

Now recall the Scott–Zhang quasi-interpolation operator ([22]) which has the property
that, for all v ∈ H1

0 (Ω), Inv ∈ Vn and

(4.8) ‖v − Inv‖0,τ � Hτ |v|1,ω(τ), ‖v − Inv‖0,S � H
1
2
S |v|1,ω(S),

where ω(τ) is the union of all elements sharing at least a point with τ , and ω(S)
is the union of all elements sharing at least a point with S. (Note Ω(S) ⊆ ω(S).)
Substituting wn = Inen in (4.7) and using the Cauchy–Schwarz inequality, together
with estimates (4.8), we obtain

(4.9) a(en, en − wn) − b(λu − λnun, en − wn) � ηn|||en|||Ω.
To estimate the third term on the right-hand side of (4.5), we simply observe that

due to the normalization in each of the eigenvalue problems (2.1) and (2.8) we have

(4.10) b(λu− λnun, en) = (λ+ λn)(1− b(u, un)) =
1
2
(λ+ λn)‖en‖20,B,Ω.
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Now, combine (4.9) and (4.10) with (4.5) and divide by |||en|||Ω to obtain the
result.

Remark 4.4. We shall see below that Gn defined above constitutes a “higher
order term”.

For mesh refinement based on the local contributions to ηn, we use the same
marking strategy as in [8] and [18]. The idea is to refine a subset of the elements of
Tn whose side residuals sum up to a fixed proportion of the total residual ηn.

Definition 4.5 (marking strategy 1). Given a parameter 0 < θ < 1, the proce-
dure is: mark the sides in a minimal subset Ŝn of Sn such that

(4.11)

⎛
⎝∑
S∈Ŝn

η2
S,n

⎞
⎠

1/2

≥ θηn.

To compute Ŝn, we compute all the “local residuals” ηS,n, then insert edges
(faces) into Ŝn in order of nonincreasing magnitude of ηS,n, until (4.11) is satisfied.
A minimal subset Ŝn may not be unique. After this is done, we construct another set
T̂n, containing all the elements of Tn, which contain at least one edge (face) belonging
to Ŝn.

In order to prove our convergence theory, we require an additional marking strat-
egy based on oscillations (Definition 4.7 below). This also appears in some theories of
adaptivity for source problems, e.g., [8], [18], [16], [7], and [6]), but to our knowledge
has not yet been used in connection with eigenvalue problems.

The concept of “oscillation” is just a measure of how well a function may be
approximated by piecewise constants on a particular mesh. For any function v ∈
L2(Ω), and any mesh Tn, we introduce its orthogonal projection Pnv onto piecewise
constants defined by

(4.12) (Pnv)|τ =
1
|τ |
∫
τ

vn, for all τ ∈ Tn.

Then we make the definition:
Definition 4.6 (oscillations). On a mesh Tn, we define

(4.13) osc(v, Tn) := ‖Hn(v − Pnv)‖0,B,Ω.
Note that

osc(v, Tn) =

(∑
τ∈Tn

H2
τ ‖v − Pnv‖20,B,τ

)1/2

,

and that (by standard approximation theory and the ellipticity of a(·, ·)),
(4.14) osc(v, Tn) � (Hmax

n )2|||v|||Ω , for all v ∈ H1
0 (Ω).

The second marking strategy (introduced below) aims to reduce the oscillations
corresponding to a particular approximate eigenfunction un.

Definition 4.7 (marking strategy 2). Given a parameter 0 < θ̃ < 1: mark the
elements in a minimal subset T̃n of Tn such that

(4.15) osc(un, T̃n) ≥ θ̃ osc(un, Tn).
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Fig. 4.1. The refinement procedure applied to an element of the mesh. In (a) the element before

the refinement, in (b) after the three sides have been refined, and in (c) after the bisection of one of
the three new segments.

Analogously to (4.11), we compute T̃n by inserting elements τ into T̃n according
to nonincreasing order of their local contributions H2

τ ‖(un − Pnun)‖20,B,τ until (4.15)
is satisfied.

Our adaptive algorithm can then be stated:

Algorithm 1 Converging algorithm
Require: 0 < θ < 1
Require: 0 < θ̃ < 1

loop
Solve the Problem (2.8) for (λn, un)
Mark the elements using the first marking strategy (Definition 4.5)
Mark any additional unmarked elements using the second marking strategy (Def-
inition 4.7)
Refine the mesh Tn and construct Tn+1

end loop

In 2D at the nth iteration in Algorithm 1 each element in the set T̂n ∪ T̃n is
refined using the algorithm illustrated in Figure 4.1. This consists of three recursive
applications of the newest node algorithm [17] to each marked triangle, first creating
two sons, then four grandsons, and finally bisecting two of the grandsons. This well-
known algorithm is stated without name in [18, section 5.1]), is called “bisection5” in
[7] and is called “full refinement” in [23]. This technique creates of a new node in the
middle of each marked side in Ŝn and also a new node in the interior of each marked
element. It follows from [17] that this algorithm yields shape regular conforming
meshes in 2D.

In the 3D case we use a suitable refinement that creates a new node on each
marked face in Ŝn and a node in the interior of each marked element.

In [18] and [16] it has been shown for linear source problems that the reduction
of the error, as the mesh is refined, is triggered by the decay of oscillations of the
source on the sequence of constructed meshes. For the eigenvalue problem (2.1) the
quantity λu plays the role of data and in principle we have to ensure that oscillations
of this quantity (or, more precisely, of its finite element approximation λnun) are
sufficiently small. However, λnun may change if the mesh changes and so the proof
of error reduction for eigenvalue problems is not as simple as it is for linear source
problems. This is the essence of the theoretical difficulty dealt with in this paper.

5. Error reduction. In this section we give the proof of error reduction for
Algorithm 1. The proof has been inspired by the corresponding theory for source
problems in [18]. However, the nonlinearity of the eigenvalue problem introduces new
complications, and there are several lemmas before the main theorem (Theorem 5.6).
For the rest of the section let (λn, un) be an approximate eigenpair on a mesh Tn, let
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Fig. 5.1. Two cases of refined couples of elements.

Tn+1 be the mesh obtained by one iteration of Algorithm 1, and let (λn+1, un+1) be
the corresponding eigenpair in the sense made precise in Remark 3.3.

The first lemma uses ideas from [18, Lemma 4.2] for the 2D case. The extension
of this lemma to the 3D case is treated in Remark 5.2.

Lemma 5.1. Consider the 2D case. Let Ŝn be as defined in Definition 4.5 and let
Pn be as defined in (4.12). For any S ∈ Ŝn, there exists a function ΦS ∈ Vn+1 such
that supp(ΦS) = Ω(S) and also

(5.1)

λn

∫
Ω(S)

B(Pnun)ΦS −
∫
S

JS(un)ΦS = ‖HnλnPnun‖20,B,Ω(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S
,

and

(5.2) |||ΦS |||2Ω(S) � ‖HnλnPnun‖20,B,Ω(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S
,

where |||v|||2Ω(S) :=
∫
Ω(S)
∇vTA∇v.

Proof. Figure 5.1 illustrates two possible configurations of the domain Ω(S).
We then define

(5.3) ΦS := αSϕS + β1ϕ1 + β2ϕ2,

where ϕS and ϕi are the nodal basis functions associated with the points xS and xi
on Tn+1, and αS , βi are defined by

(5.4) αS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−

∥∥∥H1/2
S JS(un)

∥∥∥2

0,S∫
S
JS(un)ϕS

if JS(un) �= 0,

0 otherwise,

and

(5.5) βi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖HnλnPnun‖20,B,τi(S) − αS

∫
τi(S) Bλn(Pnun)ϕS∫

τi(S)
Bλn(Pnun)ϕi if Pnun|τi(S) �= 0,

0 otherwise,

for i = 1, 2.
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Note that JS(un) and Pnun are constant on each element τ . Using the fact that
supp(ϕi) = τi(S), for i = 1, 2 we can easily see that the above formulae imply

αS

∫
S

JS(un)ϕS = −
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S
,(5.6) ∫

Ω(S)

Bλn(Pnun)(αSϕS + β1ϕ1 + β2ϕ2) = ‖HnλnPnun‖20,B,Ω(S)(5.7)

(and that these formulae remain true even if JS(un) or Pnun|τi(S) vanish). Hence,

λn

∫
Ω(S)

B(Pnun)ΦS −
∫
S

JS(un)ΦS

= λn

∫
Ω(S)

B(Pnun)(αSϕS + β1ϕ1 + β2ϕ2)− αS
∫
S

JS(un)ϕS

and (5.1) follows immediately on using (5.6) and (5.7).
To proceed from here note that by the shape-regularity of the mesh and the

standard inverse estimate,

|||φS |||Ω(S) � H−1
S ‖φS‖0,Ω(S).

Also, for all elements τ ∈ Tn+1 with τ ⊂ supp φS , there exists an affine map χ : τ̂ → τ ,
where τ̂ is the unit simplex in R

2 and φ̂S := φS ◦ χ is a nodal basis function on τ̂ .
The Jacobian Jχ of χ is constant and is proportional to the area of τ . Hence,

‖φS‖20,τ =
∫
τ

|φS |2 =
∫
τ̂

∣∣∣φ̂S∣∣∣2 Jχ ∼ H2
S ,

which ensures at |||ϕS |||Ω(S) � 1 and, similarly, |||ϕi|||Ω(S) � 1. Combining these with
(5.3), we obtain

(5.8) |||ΦS |||2Ω(S) � |αS |2 + |β1|2 + |β2|2.
Now, note that by a simple change of variable,

∫
S ϕS is the integral over [−HS/2,

HS/2] of the one-dimensional hat function centered on 0 and so
∫
S
ϕS ∼ HS . Since

JS(un) is constant on S , we have

(5.9) |αS | �
|JS(un)|

∥∥∥H1/2
S

∥∥∥2

0,S

HS
� |JS(un)|HS ∼

∥∥∥H1/2
S JS(un)

∥∥∥
0,S

.

Also, since Pnun is constant on each τi(S) and, since
∫
τi(S) Bφi ∼ H2

τi(S), we have

|βi| �
λn| (Pnun)|τi(S) | ‖Hn‖20,B,τi(S) + |αS |H2

τi(S)

H2
τi(S)

� λn| (Pnun)|τi(S) | H2
τi(S) + |αS | ∼ λn‖HnPnun‖0,B,τi(S) + |αS |.

This implies

(5.10)

|βi|2 � ‖λnHnPnun‖20,B,τi(S) + |αS |2 � ‖λnHnPnun‖20,B,τi(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S
,

and the proof is completed by combining (5.8) with (5.9) and (5.10).
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Remark 5.2. To extend the results in Lemma 5.1 to the 3D case we need to use
a refinement procedure for tetrahedra that creates a new node on each marked face
in Ŝn and a node in the interior of each marked element. The proof in the 3D case is
similar to the proof in the 2D case: for each couple of refined elements we define

ΦS := αSϕS + β1ϕ1 + β2ϕ2,

where ϕS is the nodal basis function associated to the new node on the shared face
and ϕi are the nodal basis functions associated to the new nodes in the interior of
the elements. The coefficients αS , β1, and β2 can be chosen in the same way as in
Lemma 5.1, and the rest of the proof proceeds similarly.

In the next lemma, we bound the local error estimator above by the local difference
of two discrete solutions coming from consecutive meshes, plus higher order terms.
This kind of result is called “discrete local efficiency” by many authors.

Recall that Tn+1 is the refinement of Tn obtained by applying Algorithm 1.
Lemma 5.3. For any S ∈ Ŝn, we have

(5.11)
η2
S,n � ‖|un+1 − un ‖|2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖20,B,Ω(S)

+ ‖Hnλn(un − Pnun)‖20,B,Ω(S).

Proof. Since the function ΦS defined in Lemma 5.1 is in Vn+1 and supp(ΦS) =
Ω(S), we have

(5.12)

a(un+1 − un,ΦS) = a(un+1,ΦS)− a(un,ΦS) = λn+1

∫
Ω(S)

Bun+1ΦS − a(un,ΦS).

Now applying integration by parts to the last term on the right-hand side of (5.12),
we obtain

(5.13) a(un+1 − un,ΦS) = λn+1

∫
Ω(S)

Bun+1ΦS −
∫
S

JS(un)ΦS .

Rewriting (5.13) and combining with (5.1), we obtain

a(un+1 − un,ΦS)−
∫

Ω(S)

B(λn+1un+1 − λnPnun)ΦS

= λn

∫
Ω(S)

B(Pnun)ΦS −
∫
S

JS(un)ΦS

= ‖HnλnPnun‖20,B,Ω(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S
.(5.14)

Rearranging this, and then applying the triangle and Cauchy–Schwarz inequalities,
we obtain

‖HnλnPnun‖20,B,Ω(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S

≤ |a(un+1 − un,ΦS)|+
∣∣∣∣
∫

Ω(S)

B(λn+1un+1 − λnPnun)ΦS
∣∣∣∣

≤ |||un+1 − un|||Ω(S)|||ΦS |||Ω(S) + ‖λn+1un+1 − λnPnun‖0,B,Ω(S)‖ΦS‖0,B,Ω(S)

�
(
|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)
|||ΦS |||Ω(S).(5.15)
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In the final step of (5.15) we made use of the Poincaré inequality ‖ΦS‖0,B,Ω(S) �
HS |||ΦS |||Ω(S) and also the shape-regularity of the meshes. In view of (5.2), we have

‖HnλnPnun‖20,B,Ω(S) +
∥∥∥H1/2

S JS(un)
∥∥∥2

0,S

�
(|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)2
� |||un+1 − un|||2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖20,B,Ω(S).(5.16)

Now, from the definition of ηS,n in (4.2), and the triangle inequality, we have

(5.17)

η2
S,n � ‖HnλnPnun‖20,B,Ω(S) +

∥∥∥H1/2
S JS(un)

∥∥∥2

0,S
+ ‖Hnλn(un − Pnun)‖20,B,Ω(S).

The required inequality (5.11) now follows from (5.16) and (5.17).
In the main result of this section, Theorem 5.6 below, we will be interested in

achieving an error reduction result of the form |||u−αn+1un+1|||Ω ≤ ρ|||u−αnun|||Ω
for some ρ < 1. Note that we need to introduce the scalar αn here to ensure nearness
of the approximate eigenfunction to the true one.

To prove error reduction we exploit the identity

‖|u− αnun ‖|2Ω = ‖|u− αn+1un+1 + αn+1un+1 − αnun ‖|2Ω
= ‖|u− αn+1un+1 ‖|2Ω+ ‖|αn+1un+1 − αnun ‖|2Ω

+ 2a(u− αn+1un+1, αn+1un+1 − αnun).
(5.18)

In the case of source problems (e.g., [18, 19]), the αn is not needed and the last
term on the right-hand side vanishes due to Galerkin orthogonality. However, this
approach is not available to us in the eigenvalue problem. Therefore, a more technical
approach is needed to bound the last two terms on the right-hand side of (5.18) from
below. The main technical result is in the following lemma. Recall the convention in
Notation 4.1.

Lemma 5.4. With u, un, αn as in Remark 3.3,

(5.19) |||αn+1un+1 − αnun|||2Ω � θ2|||u− αnun|||2Ω − osc(λnun, Tn)2 − L2
n,

where θ is defined in the marking strategy in Definition 4.5 and Ln satisfies the esti-
mate:

(5.20) Ln ≤ Ĉ(Hmax
n )s|||u− αnun|||Ω,

where Ĉ depends on θ, λ, C1, C2, and q.
Remark 5.5. Note that the oscillation term in (5.19) is unaffected if we replace

αnun by un.
Proof. By Definition 4.5 and Lemma 5.3, we have

θ2η2
n ≤

∑
S∈Ŝn

η2
S,n

� ‖|αn+1un+1 − αnun ‖|2Ω
+ ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖20,B,Ω + osc(λnunTn)2.
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Hence, rearranging and making use of Lemma 4.2 and Remark 4.3, we have

|||αn+1un+1 − αnun|||2Ω � θ2η2
n − ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖20,B,Ω

− osc(λnunTn)2

� θ2|||u− αnun|||2Ω − osc(λnunTn)2

− θ2G̃2
n − ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖20,B,Ω,(5.21)

where G̃n is the same as Gn in Lemma 4.2, but with un replaced by αnun.
Note that (5.21) is of the required form (5.19) with

Ln :=
(
θ2G̃2

n + ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖20,B,Ω
)1/2

.

We now estimate the last two terms in (5.21) to obtain (5.20). To estimate G̃n,
we use Theorem 3.1(ii) to obtain

G̃n � 1
2
(λ+ λn)C2

1 (Hmax
n )2s

|||u−Qnu|||2Ω
|||u − αnun|||Ω

≤ 1
2
(λ+ λn)C2

1 (Hmax
n )2s|||u − αnun|||Ω.(5.22)

To estimate the last term in (5.21), we first use the triangle inequality to obtain

(5.23) ‖Hn(λn+1αn+1un+1 − λnPnαnun)‖0,B,Ω ≤
‖Hn(λn+1αn+1un+1 − λnαnun)‖0,B,Ω + osc(λnun, Tn).

For the first term on the right-hand side of (5.23), we have

(5.24) ‖Hn(λn+1αn+1un+1 − λnαnun)‖0,B,Ω ≤
Hmax
n (‖λu− λn+1αn+1un+1‖0,B,Ω + ‖λu− λnαnun‖0,B,Ω) .

Then, recalling (2.6) and Theorem 3.1, we obtain

‖λu− λn+1αn+1un+1‖0,B,Ω ≤ |λ− λn+1|‖u‖0,B,Ω
+ λn+1‖u− αn+1un+1‖0,B,Ω

≤ |||u− αn+1un+1|||2Ω
+ λn+1C1(Hmax

n )s|||u− αn+1un+1|||Ω .(5.25)

Using Theorem 3.1 (iii) and then Theorem 3.2, this implies

‖λu− λn+1αn+1un+1‖0,B,Ω � (C2 + λn+1C1)(Hmax
n )s|||u− αn+1un+1|||Ω

≤ q(C2 + λn+1C1)(Hmax
n )s|||u− αnun|||Ω.(5.26)

An identical argument shows

(5.27) ‖λu− λnαnun‖0,B,Ω � (C2 + λnC1)(Hmax
n )s|||u− αnun|||Ω .

Combining (5.26) and (5.27) with (5.24), and using (2.9), we obtain

(5.28)
‖Hn(λn+1αn+1un+1−λnαnun)‖0,B,Ω � (1+q)(C2 +λnC1)(Hmax

n )s+1|||u−αnun|||Ω.
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Now combining (5.28) with (5.21), (5.22), and (5.23) we obtain the result.
The next theorem contains the main result of this section. It shows that, provided

we start with a “fine enough” mesh Tn, the mesh adaptivity algorithm will reduce the
error in the energy norm.

Theorem 5.6 (error reduction). For each θ ∈ (0, 1), there exists a sufficiently
fine mesh threshold Hmax

n and constants μ > 0 and ρ ∈ (0, 1) (all of which may
depend on θ and on the eigenvalue λ), with the following property. For any ε > 0 the
inequality

(5.29) osc(λnun, Tn) ≤ με
implies either |||u− αnun|||Ω ≤ ε or

|||u− αn+1un+1|||Ω ≤ ρ |||u − αnun|||Ω.
Proof. In view of (5.18) and remembering that αn+1un+1−αnun ∈ Vn+1 we have

‖|u− αnun ‖|2Ω− ‖|u− αn+1un+1 ‖|2Ω
= ‖|αn+1un+1 − αnun ‖|2Ω + 2a(u− αn+1un+1, αn+1un+1 − αnun)
= ‖|αn+1un+1 − αnun ‖|2Ω + 2b(λu− λn+1αn+1un+1, αn+1un+1 − αnun).(5.30)

Before proceeding further, recall that by the assumptions (2.3) and (2.4), and the
Poincaré inequality, there exists a constant CP (depending on A, B and Ω) such that

‖v‖0,B,Ω ≤ CP |||v|||Ω, for all v ∈ H1
0 (Ω).

Now using Cauchy–Schwarz and then the Young inequality 2ab ≤ 1
4C2

P
a2 +4C2

P b
2

on the second term on the right-hand side of (5.30), we get

‖|u− αnun ‖|2Ω− ‖|u− αn+1un+1 ‖|2Ω
≥ ‖|αn+1un+1 − αnun ‖|2Ω − 2‖λu− λn+1αn+1un+1‖0,B,Ω‖αn+1un+1 − αnun‖0,B,Ω
≥ ‖|αn+1un+1 − αnun ‖|2Ω −

1
4C2

P

‖αn+1un+1 − αnun‖20,B,Ω
− 4C2

P ‖λu− λn+1αn+1un+1‖20,B,Ω
≥ 3

4
‖|αn+1un+1 − αnun ‖|2Ω − 4C2

P ‖λu− λn+1αn+1un+1‖20,B,Ω.

(5.31)

Hence

|||u− αn+1un+1|||2Ω ≤ |||u− αnun|||2Ω −
3
4
|||αn+1un+1 − αnun|||2Ω

+ 4C2
P ‖λu− λn+1αn+1un+1‖20,B,Ω.

Applying Lemma 5.4, we see that there exist constants C, Ĉ such that

|||u− αn+1un+1|||2Ω ≤
(

1− 3
4
Cθ2 +

3
4
CĈ2(Hmax

n )2s
)
|||u− αnun|||2Ω

+ 4 C2
P ‖λu− λn+1αn+1un+1‖20,B,Ω

+
3
4
C osc(λnun, Tn)2.
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Then, making use of (5.26) we have

|||u− αn+1un+1|||2Ω ≤ γn |||u− αnun|||2Ω +
3
4
C osc(λnun, Tn)2(5.32)

with

(5.33) γn :=
[
1 − 3

4
Cθ2 + C′(Hmax

n )2s
]
,

where C′ is another constant independent of n. Note that Hmax
n can be chosen

sufficiently small so that γm ≤ γ for some γ ∈ (0, 1) and all m ≥ n.
Consider now the consequences of the inequality (5.29). If |||u − αnun|||Ω > ε,

then (5.32) implies

|||u − αn+1un+1|||2Ω ≤
[
γ +

3
4
Cμ2

]
|||u− αnun|||2Ω.

Now choose μ small enough so that

(5.34) ρ :=
(
γ +

3
4
Cμ2

)1/2

< 1

to complete the proof.

6. Proof of convergence. The main result of this paper is Theorem 6.2 below,
which proves convergence of the adaptive method and also demonstrates the decay of
oscillations of the sequence of approximate eigenfunctions. Before proving this result
we need a final lemma.

Lemma 6.1. There exists a constant ρ̃ ∈ (0, 1) such that

(6.1) osc(un+1, Tn+1) ≤ ρ̃ osc(un, Tn) + (1 + q)(Hmax
n )2 ‖|u− αnun ‖|Ω.

Proof. First, recall that one of the key results in [18], namely, [18, Lemma 3.8],
is the proof that the oscillations of any fixed function v ∈ H1

0 (Ω) are reduced by
applying one refinement based on Marking Strategy 2 (Definition 4.7). Thus, we have
(in view of Algorithm 1):

(6.2) osc(un, Tn+1) ≤ ρ̃ osc(un, Tn),

where 0 < ρ̃ < 1 is independent of un. Thus, a simple application of the triangle
inequality combined with (6.2) yields

osc(un+1, Tn+1) ≤ osc(un, Tn+1) + osc(αn+1un+1 − αnun, Tn+1)
≤ ρ̃ osc(un, Tn) + osc(αn+1un+1 − αnun, Tn+1).(6.3)

(Recall, again, that osc(un, Tn) = osc(αnun, Tn).) A further application of the triangle
inequality and then (4.14) yields

osc(αn+1un+1 − αnun, Tn+1) ≤ osc(u − αn+1un+1, Tn+1) + osc(u− αnun, Tn+1)
� (Hmax

n )2 (|||u− αn+1un+1|||Ω + |||u− αnun|||Ω) ,(6.4)
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and then combining (6.3) and (6.4) and applying Theorem 3.2 completes the
proof.

Theorem 6.2. Provided the initial mesh T0 is chosen so that Hmax
0 is small

enough, there exists a constant p ∈ (0, 1), such that the recursive application of Al-
gorithm 1 yields a convergent sequence of approximate eigenvalues and eigenvectors,
with the property:

(6.5) ‖|u− αnun ‖|Ω ≤ B0qp
n,

and

(6.6) λn osc(un, Tn) ≤ B1p
n,

where B0 and B1 are constants and q is the constant defined in Theorem 3.2.
Remark 6.3. The initial mesh convergence threshold and the constants B0 and

B1 may depend on θ, θ̃, and λ.
Proof. The proof of this theorem is by induction and the induction step contains

an application of Theorem 5.6. In order to ensure the reduction of the error, we have
to assume that the starting mesh T0 is fine enough and μ in Theorem 5.6 is small
enough such that, for the chosen value of θ, the quantity ρ in (5.34) satisfies ρ < 1.

Then with ρ̃ as in Lemma 6.1, choose p in the range

max{ρ, ρ̃} < p < 1.

We also set

B1 = osc(λ0u0, T0) and B0 = max
{
μ−1p−1B1, |||u− α0u0|||Ω

}
.

To perform the inductive proof, first note that by the definition ofB0 and Theorem 3.2,

‖|u− α0u0 ‖|Ω ≤ B0 ≤ B0q,

since q > 1. Combined with the definition of B1 we have shown the result for n = 0.
Now, suppose that, for some n > 0, the inequalities (6.5) and (6.6) hold.
Now let us consider the outcomes, depending on whether the inequality

(6.7) ‖|u− αnun ‖|Ω ≤ B0p
n+1

holds or not. If (6.7) holds, then we can apply Theorem 3.2 to conclude that

‖|u− αn+1un+1 ‖|Ω ≤ q ‖|u− αnun ‖|Ω ≤ qB0p
n+1,

which proves (6.5) for n+ 1.
On the other hand, if (6.7) does not hold, then, by definition of B0,

(6.8) |||u− αnun|||Ω > B0p
n+1 ≥ μ−1B1p

n.
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Also, since we have assumed (6.6) for n, we have

(6.9) λn osc(un, Tn) ≤ με with ε := μ−1B1p
n.

Then (6.8) and (6.9) combined with Theorem 5.6 yields

|||u − αn+1un+1|||Ω ≤ ρ|||u− αnun|||Ω,

and so, using the inductive hypothesis (6.5) combined with the definition of p, we
have

|||u− αn+1un+1|||Ω ≤ ρB0qp
n ≤ qB0p

n+1,

which, again, proves (6.5) for n+ 1.
To conclude the proof, we have to show that also (6.6) holds for n + 1. Using

Lemma 6.1, (2.9), and the inductive hypothesis, we have

λn+1 osc(un+1, Tn+1) ≤ ρ̃B1p
n + (1 + q)(Hmax

n )2λnB0qp
n

≤ (ρ̃B1 + (1 + q)(Hmax
0 )2λ0B0q)pn.(6.10)

Now, (recalling that ρ̃ < p), in addition to the condition already imposed on Hmax
0 ,

we can further require that

ρ̃B1 + (1 + q)(Hmax
0 )2λ0B0q ≤ pB1.

This ensures that

λn+1 osc(un+1, Tn+1) ≤ B1p
n+1,

thus concluding the proof.

7. Numerical experiments. We present numerical experiments to illustrate
the convergence theory. Algorithm 1 has been implemented in FORTRAN95. The
mesh refinement has been done using the toolbox ALBERTA [20]. We used the
package ARPACK [15] to compute eigenpairs and the sparse direct linear solver ME27
from the HSL [21, 13] to carry out the shift-invert solves required by ARPACK.
Additional numerical experiments on photonic crystal problems and on 3D problems
are given in [10] and [11].

7.1. Example: Laplace operator. In the first set of simulations, we have
solved the Laplace eigenvalue problem (i.e., A = I and B = 1 in (2.2)) on a unit square
with Dirichlet boundary conditions. The exact eigenvalues are known explicitly.

We compare different runs of Algorithm 1 using different values for θ and θ̃ in
Table 7.1. Since the problem is smooth, from Theorem 3.1 it follows that using
uniform refinement the rate of convergence for eigenvalues should be O(Hmax

n )2, or,
equivalently, the rate of convergence in the number of degrees of freedom (DOFs)
N should be O(N−1). We measure the rate of convergence by conjecturing that
|λ−λn| = CN−β and estimating β for each pair of computations from the formula β =
− log(|λ − λn|/|λ − λn−1|)/ log(DOFsn/DOFsn−1). Similarly, Table 7.2 contains the
same kind of information relative to the fourth smallest eigenvalue of the problem. Our
results show a convergence rate close to O(N−1) for θ, θ̃ sufficiently large. However,
the rate of convergence is sensitive to the values of θ and θ̃.
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Table 7.1

Comparison of the reduction of the error and DOFs of the adaptive method for the smallest
eigenvalue for the Laplace problem on the unit square.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.1327 498 0.0802 0.1177 954 0.1581 0.0529 1989 0.5839
3 0.1293 613 0.1228 0.0779 1564 0.8349 0.0176 5205 1.1407
4 0.1256 731 0.1645 0.0501 1977 1.8788 0.0073 15980 0.7877
5 0.1215 854 0.2138 0.0351 2634 1.2383 0.0024 48434 0.9836
6 0.1165 970 0.3340 0.0176 4004 0.7885 0.0009 122699 1.0673
7 0.1069 1097 0.6962 0.0121 6588 0.7217 0.0003 312591 1.0083

Table 7.2

Comparison of the reduction of the error and DOFs of the adaptive method for the fourth
smallest eigenvalue for the Laplace problem on the unit square.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 2.1439 400 - 2.1439 400 - 2.1439 400 -
2 2.0997 505 0.0895 1.8280 1016 0.1658 0.7603 2039 0.6365
3 2.0549 626 0.1004 1.0850 1636 1.1662 0.2439 6793 0.9447
4 1.9945 759 0.1548 0.7792 2254 1.0331 0.0917 18717 0.9652
5 1.9164 883 0.2638 0.4936 3067 1.4826 0.0331 54113 0.9583
6 1.7717 1017 0.5557 0.3484 4681 0.8240 0.0120 146056 1.0181
7 1.6463 1131 0.6911 0.2578 7321 0.6730 0.0046 382024 0.9970

In the theory presented in [24], it is shown that the error for eigenvalues for
smooth problems is bounded in terms of the square of the considered eigenvalue, i.e.,

(7.1) |λ− λn| ≤ C λ2 (Hmax
n )2.

Also, we know that the first and the fourth eigenvalues are 19.7392089 and 78.9568352,
and so, λ4 = 4λ1. Comparing errors in Table 7.2 with those in Table 7.1, we see that
the errors are roughly multiplied by a factor of 16, as predicted by (7.1).

Often h-adaptivity uses only a marking strategy based on an estimation of the
error, as in Marking Strategy 1 and avoids refining based on oscillations as in Marking
Strategy 2. (Convergence of an adaptive scheme for eigenvalue problems which does
not use marking strategy 2 is recently proved in [5].) To investigate the effects of
refinement based on oscillations, in Table 7.3 we have computed the smallest eigen-
value for the Laplace problem keeping θ fixed and varying θ̃ only. Reducing θ̃ towards
0 has the effect of turning off the refinement arising from Marking Strategy 2. The
results in Table 7.3 seem to suggest that the rate of convergence slightly increases as
θ̃ increases.

We investigate this further in Table 7.4, where we take iterations 5, 6, and 7 from
Table 7.3, and we present the quantity C∗ := N × |λ − λn|, where N denotes the
number of DOFs. Then C∗ gives an indication of the size of the unknown constant
in the optimal error estimate |λ− λn| = O(N−1). The results suggest that C∗ stays
fairly constant independent of θ̃.

In Table 7.5, we have set θ̃ = 0. Although the convergence result given in this
paper does not hold any more, the method is still clearly convergent. Comparing
Table 7.1, Table 7.3, and Table 7.5, we see that with the second marking strategy the



CONVERGENT ADAPTIVE METHOD FOR EIGENVALUE PROBLEMS 1087

Table 7.3

Comparison of the reduction of the error and DOFs of the adaptive method for the smallest
eigenvalue for the Laplace problem on the unit square for a fixed value of θ and varying θ̃.

θ = 0.8, θ̃ = 0.1 θ = 0.8, θ̃ = 0.3 θ = 0.8, θ̃ = 0.5
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.0704 1269 0.5646 0.0698 1372 0.5353 0.0673 1555 0.5131
3 0.0307 2660 1.1215 0.0300 2821 1.1700 0.0285 3229 1.1757
4 0.0137 7492 0.7770 0.0133 7846 0.7980 0.0115 9140 0.8731
5 0.0056 18853 0.9699 0.0052 20189 0.9918 0.0046 22793 0.9913
6 0.0021 52247 0.9587 0.0020 55640 0.9382 0.0018 61582 0.9310
7 0.0008 140049 0.9834 0.0008 145773 1.0011 0.0007 161928 1.0238

Table 7.4

Values of C∗ computed from Table 7.3.

Iteration θ = 0.8, θ̃ = 0.1 θ = 0.8, θ̃ = 0.3 θ = 0.8, θ̃ = 0.5

5 1.06 × 102 1.05 × 102 1.05 × 102

6 1.10 × 102 1.11 × 102 1.11 × 102

7 1.12 × 102 1.12 × 102 1.13 × 102

Table 7.5

Comparison of the reduction of the error and DOFs of the adaptive method for the smallest
eigenvalue for the Laplace problem on the unit square using marking strategy 1 only.

θ = 0.2 θ = 0.5 θ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.1328 447 0.1525 0.1209 648 0.2289 0.0704 1253 0.5704
3 0.1299 503 0.1824 0.0859 1036 0.7283 0.0307 2646 1.1125
4 0.1271 565 0.1958 0.0627 1455 0.9301 0.0138 7490 0.7697
5 0.1238 637 0.2157 0.0458 1965 1.0429 0.0056 18847 0.9734
6 0.1189 712 0.3650 0.0323 3031 0.8066 0.0021 52239 0.9585
7 0.1113 795 0.6014 0.0228 4372 0.9531 0.0008 140194 0.9828

Table 7.6

Comparison between the number of marked elements by strategy 1 (i.e., #T̂n) and the number

of marked elements by strategy 2 only (i.e., #(T̃n\T̂n)) for different values of θ and θ̃ for the smallest
eigenvalue of the Laplace problem on the unit square.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8

Iteration #T̂n #(T̃n\T̂n) #T̂n #(T̃n\T̂n) #T̂n #(T̃n\T̂n)

1 12 15 85 99 299 285
2 13 15 102 85 953 19
3 14 15 100 25 3069 198
4 14 14 173 7 7965 2053
5 15 13 310 48 22426 1486
6 15 12 552 184 58075 3005

number of degrees of freedom grows faster than without it. To illustrate this effect
better, Table 7.6 tabulates the number of elements #T̂n (marked by Marking Strategy
1) with the extra number of elements #(T̃n\T̂n) (marked by Marking Strategy 2 alone).
Note that the new DOFs created by mesh refinement come only from the refinement of
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Fig. 7.1. Loglog plots of convergence of adaptive and uniform refinement for first eigenvalue of
the Laplacian (left) and fourth eigenvalue of the Laplacian (right).

Table 7.7

Comparison of the reduction of the error and DOFs of the adaptive method for the second
smallest eigenvalue for the Laplace problem on the unit square.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
n |λ− λn| N β |λ− λn| N β |λ− λn| N β

1 0.5802 400 - 0.5802 400 - 0.5802 400 -
2 0.5678 478 0.1212 0.4935 811 0.2291 0.2447 1533 0.6427
3 0.5514 562 0.1816 0.3201 1275 0.9564 0.0959 3640 1.0826
4 0.5329 646 0.2449 0.2295 1728 1.0953 0.0368 11747 0.8169
5 0.5111 735 0.3237 0.1521 2374 1.2950 0.0136 32881 0.9651
6 0.4758 829 0.5942 0.1078 3498 0.8875 0.0050 82968 1.0778
7 0.4392 918 0.7856 0.0782 5555 0.6938 0.0020 221521 0.9574

the marked elements, but also from the closures used to keep the meshes conforming.
It is clear that the number of elements marked as a result of the oscillations continues
to rise as refinement proceeds, although much more slowly than the number marked
by the residual-based criterion (Marking Strategy 1).

In Figure 7.1 we compare the performance of the adaptive algorithm with uniform
bisection5 refinement (see Figure 4.1) for the first and fourth eigenvalues of the Laplace
operator. We note that in this case both methods converge with a similar rate, as is
expected since in this case the regularity of eigenfunctions is H2. To complete this
section, we give in Table 7.7 an example of the performance of the adaptive method
for computing nonsimple eigenvalues. In this case, we considered the second smallest
eigenvalue of the Laplace operator on the unit square which has multiplicity 2. We
see that, although the theory given above does not strictly hold, the method performs
similarly to the case of simple eigenvalues.

7.2. Example: Elliptic operator with discontinuous coefficients. In this
example, we investigate how our method copes with discontinuous coefficients. In
order to do that, we modified the smooth problem from Example 7.1. We inserted a
square subdomain of side 0.5 in the center of the unit square domain. In the bilinear
form (2.2), we also chose the function A to be the scalar piecewise constant function,
which assumes the value 100 inside the inner subdomain and the value 1 outside it.
As before, B in (2.2) is chosen as B = 1. The jump in the value of A generally
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Table 7.8

Comparison of the reduction of the error and DOFs of the adaptive method for the smallest
eigenvalue for the 2D problem with discontinuous coefficient.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 1.1071 81 - 1.1071 81 - 1.1071 81 -
2 1.0200 103 0.3410 0.8738 199 0.2632 0.4834 356 0.5597
3 1.0105 129 0.0416 0.5848 314 0.8805 0.2244 799 0.9494
4 1.0039 147 0.0498 0.3983 491 0.8591 0.0990 2235 0.7957
5 0.8968 167 0.8843 0.2766 673 1.1564 0.0401 4764 1.1932
6 0.8076 194 0.6996 0.1933 975 0.9665 0.0180 12375 0.8372
7 0.8008 217 0.0747 0.1346 1476 0.8722 0.0065 29148 1.1888
8 0.7502 237 0.7401 0.0948 2080 1.0237 0.0020 65387 1.4482
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Fig. 7.2. A refined mesh from the adaptive method corresponding to the first eigenvalue of the
2D problem with discontinuous coefficient, and the corresponding eigenfunction.

produces a jump in the gradient of the eigenfunctions all along the boundary of the
subdomain, and at the corners of the subdomain (from both inside and outside) the
eigenfunction has infinite gradient, arising from the usual corner singularities. We
choose our initial mesh to be aligned with the discontinuity in A and so only the
corner singularities are active here. We still have Assumption 2.1, but now s < 1 and,
from Theorem 3.1, using uniform refinement, the rate of convergence for eigenvalues
should be O(Hmax

n )2s or, equivalently, O(N−s), where N is the number of DOFs.
The adaptive method yields the optimal order of O(N−1) (which holds for uniform
meshes and smooth problems) for large enough θ and θ̃. (See Table 7.8.) Here we
compute the “exact” λ using a mesh with about half a million of DOFs.

In Figure 7.2, we depict the mesh coming from the fourth iteration of Algorithm 1
with θ = θ̃ = 0.8 for the smallest eigenvalue of this problem. This mesh is the result of
multiple refinements using both marking strategies 1 and 2 each time. As can be seen,
the corners of the subdomain are much more refined than the rest of the mesh. This is
clearly the effect of the first marking strategy, since the edge residuals have detected
the singularity in the gradient of the eigenfunction at these points. In Figure 7.2, we
also depict the corresponding eigenfunction.

In Figure 7.3, analogously to Figure 7.1, we compare the convergence of the
adaptive method with uniform refinement for this example. Now, because of the lack
of regularity, the superiority of the adaptive method is clearly visible.
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Fig. 7.3. Loglog plot of convergence of adaptive and uniform refinement for first eigenvalue of
the problem with discontinuous coefficient.
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1. Introduction. This paper is devoted to the derivation of a new class of dis-
continuous Galerkin (DG) methods for the three-dimensional Stokes problem

−Δu+ gradp = f in Ω,
divu = 0 in Ω,

u = g on ∂Ω.

As usual, we assume that f is in L2(Ω)3, that g ∈ H1/2(∂Ω)3, and that g satisfies
the compatibility condition

(1.1)
∫
∂Ω

g · n = 0,

where n is the outward unit normal on ∂Ω. We assume that Ω is a bounded simply
connected domain with connected Lipschitz polyhedral boundary ∂Ω.

The novelty in the class of DG methods derived here lies in the fact that they
can be hybridized. Hybridized methods are primarily attractive due to the reduc-
tion in the number of globally coupled unknowns, especially in the high order case.
Hybridization for conforming methods was traditionally thought of as a reformula-
tion that moves the interelement continuity constraints of approximations from the
finite element spaces to the system of equations. Such reformulations are now well
known to possess various advantages [9] (in addition to the reduction in the number
of unknowns). In adapting the hybridization idea to DG methods, we face the dif-
ficulty that DG methods have no interelement continuity constraints to begin with.
Nonetheless, some DG methods realize interelement coupling through constraints on
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numerical traces, which can be used to perform hybridization. This idea was exploited
in the context of the Poisson-like equations in [10]. It will feature again in this paper,
manifesting in a more complicated form suited to the Stokes system.

Let us put this contribution in perspective. This paper can be considered part
of a series of papers in which we study hybridization of finite element methods. The
hybridization of classical mixed methods for second-order elliptic problems was con-
sidered in [5, 6]. Hybridization of a DG method for the two-dimensional Stokes system
was carried out in [3], while hybridization of a mixed method for the three-dimensional
Stokes system was developed in [7, 8]. A short review of the work done up to 2005 is
provided in [9].

Recently in [10] it was shown how mixed, discontinuous, continuous, and even
nonconforming Galerkin methods can be hybridized in a single, unifying framework.
This was done for second-order elliptic problems. In this paper, we extend this ap-
proach to Galerkin methods for the Stokes problem. However, although the hybridiza-
tion techniques we propose here provide a similar unifying framework, we prefer to
sacrifice generality for the sake of clarity and concentrate our efforts on a particular,
new class of methods we call the hybridizable discontinuous Galerkin (HDG) meth-
ods. Then, just as was done for second-order elliptic problems in [10], we show that
this procedure also applies to mixed and other classic methods which can be obtained
as particular or limiting cases of these HDG methods.

Our results are also an extension of previous work on hybridization of a DG [3]
and a classical mixed method [7, 8] for the Stokes equations. For these two methods,
hybridization was used to circumvent the difficult task of constructing a local basis for
divergence-free spaces for velocity. Moreover, in [7, 8], it was shown that hybridization
results in a new formulation of the method which only involves the tangential velocity
and the pressure on the faces of the elements. In this paper, we show that such a
formulation can also be obtained for the HDG methods. We also show that these
methods can be hybridized in three additional ways differing in the choice of variables
which are globally coupled.

The organization of the paper is as follows. In section 2, we present the HDG
methods and show that their approximate solution is well defined. In section 3, we
present the four hybridizations of the HDG methods in full detail. Proofs of the
theorems therein are displayed in section 4. Finally, in section 5, we end with some
concluding remarks.

2. The HDG methods.

2.1. Definition of the methods. Let us describe the HDG methods under
consideration. We begin by introducing our notation. We denote by Ωh = {K} a
subdivision of the domain Ω into shape-regular tetrahedra K satisfying the usual
assumptions of finite element meshes and set ∂Ωh := {∂K : K ∈ Ωh}. We associate to
this mesh the set of interior faces E oh and the set of boundary faces E ∂h . We say that
e ∈ E oh if there are two tetrahedra K+ and K− in Ωh such that e = ∂K+ ∩ ∂K−, and
we say that e ∈ E ∂h if there is a tetrahedra K in Ωh such that e = ∂K ∩ ∂Ω. We set
Eh := E oh ∪ E ∂h .

The HDG methods provide an approximate solution (ωh,uh, ph) in some finite-
dimensional space W h × V h × Ph of the form

W h = {τ ∈ L2(Ω) : τ |K ∈W (K) ∀ K ∈ Ωh},
V h = {v ∈ L2(Ω) : v|K ∈ V (K) ∀ K ∈ Ωh},
Ph = {q ∈ L2(Ω) : q|K ∈ P (K) ∀ K ∈ Ωh},
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where the local spaces W (K),V (K), and P (K) are finite-dimensional polynomial
spaces that we shall specify later.

To define the approximate solution, we use the following formulation of the Stokes
equations:

ω − curlu = 0 in Ω,(2.1a)
curlω + gradp = f in Ω,(2.1b)

divu = 0 in Ω,(2.1c)
u = g on ∂Ω.(2.1d)

Multiplying the first three equations by test functions and integrating by parts, we ar-
rive at the following formulation for determining an approximate solution (ωh,uh, ph)
in W h × V h × Ph:

(ωh, τ )Ωh
− (uh, curl τ )Ωh

+ 〈ûh,n× τ 〉∂Ωh
= 0,(2.2a)

(ωh, curl v)Ωh
+ 〈ω̂h,v × n〉∂Ωh

(2.2b)
− (ph, div v)Ωh

+ 〈p̂h,v · n〉∂Ωh
= (f ,v)Ωh

,

− (uh, grad q)Ωh
+ 〈ûh · n, q〉∂Ωh

= 0(2.2c)

for all (τ ,v, q) ∈ W h × V h × Ph. The notation for volume innerproducts above is
defined by

(ζ, ω)Ωh
:=

∑
K∈Ωh

∫
K

ζ(x) ω(x) dx and (σ,v)Ωh
:=

3∑
i=1

(σi, vi)Ωh

for all ζ, ω in L2(Ωh) := {v : v|K ∈ L2(K) for all K in Ωh}, and all σ,v ∈ L2(Ωh) :=
[L2(Ωh)]3. More generally, our notation is such that if S represents the notation for
any given space (e.g., S can be L2, H1, etc.), the bold face notation S(Ωh) denotes
[S(Ωh)]3, and

S(Ωh) := {ω : Ωh �→ R, ω|K ∈ S(K) ∀ K ∈ Ωh},
S(∂Ωh) := {ω : ∂Ωh �→ R, ω|∂K ∈ S(∂K) ∀ K ∈ Ωh}.

The boundary innerproducts in (2.2) are defined by

〈v 
 n, μ〉∂Ωh
:=

∑
K∈Ωh

∫
∂K

v(γ)
 nμ(γ) dγ,

where 
 is either · (the dot product) or × (the cross product) and n denotes the
unit outward normal vector on ∂K. Similarly, for any Fh ⊆ Eh, the notation 〈·, ·〉Fh

indicates a sum of integrals over the faces in Fh.
To complete the definition of the HDG methods, we need to specify the numerical

traces, for which we need the following notation. For any vector-valued function v we
set

vt := n× (v × n),(2.3a)
vn := n (v · n).(2.3b)

Note that we have that v = vn + vt. In this paper we will often use double-valued
functions on E oh . One example is n. Indeed, on each interior mesh face e = ∂K+∩∂K−,
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the unit normal n is double valued with two branches, one from K+, which we denote
by n+, and another from K−, which we denote by n−. Similarly, if v is in H1(Ωh),
its full trace, as well as the tangential and normal traces in (2.3), are generally double
valued on E oh . We use v+ and v− to denote the full trace on e of v from K+ and
K−, respectively. On each e = ∂K+ ∩ ∂K−, the jumps of double-valued functions v
in H1(Ωh) and q in H1(Ωh) are defined by

[[q n]] := q+ n+ + q−n−,(2.4a)

[[v 
 n]] := v+ 
 n+ + v− 
 n−,(2.4b)

where 
 is either · or ×.
With these preparations we can now specify our definition of the numerical traces

appearing in (2.2). On the interior faces E oh , we set

(ω̂h)t =
(
τ−t (ω+

h )t + τ+
t (ω−h )t

τ−t + τ+
t

)
+
(

τ+
t τ−t

τ−t + τ+
t

)
[[uh × n]],(2.5a)

(ûh)t =
(
τ+
t (u+

h )t + τ−t (u−h )t
τ−t + τ+

t

)
+
(

1
τ−t + τ+

t

)
[[n× ωh]],(2.5b)

(ûh)n =
(
τ+
n (u+

h )n + τ−n (u−h )n
τ−n + τ+

n

)
+
(

1
τ−n + τ+

n

)
[[ph n]],(2.5c)

p̂h =
(
τ−n p+

h + τ+
n p−h

τ−n + τ+
n

)
+
(

τ+
n τ−n

τ−n + τ+
n

)
[[uh · n]],(2.5d)

where the so-called penalization or stabilization parameters τt and τn are functions
on Eh that are constant on each e in Eh and double valued on E oh ; indeed, if e =
∂K+∩∂K−, then τ±t and τ±n are the values on e∩∂K± of the stabilization parameters.
Finally, on the boundary faces of E ∂h , we set

(ûh)t = gt,(2.6a)
(ûh)n = gn,(2.6b)
(ω̂h)t = (ωh)t + τt (uh − ûh)× n,(2.6c)

p̂h = ph + τn (uh − ûh) · n.(2.6d)

This completes the definition of the HDG method in (2.2), save the specification of
the spaces on each element.

Let us briefly motivate the choice of the above numerical traces. First, we want
them to be linear combinations of the traces of the approximate solution (ωh,uh, ph).
We also want them to be consistent and conservative; these are very important prop-
erties of the numerical traces as was shown in [1] in the context of second-order elliptic
problems. They are consistent because when the approximate solution is continuous
across interelement boundaries, or at the boundary of Ω, we have that

((ω̂h)t, (ûh)t, (ûh)n, p̂h) = ((ωh)t, (uh)t, (uh)n, ph).

They are conservative because they are single valued.
The above general considerations, however, are not enough to justify the specific

expression of the numerical traces on the parameters τt and τn. We take this particular
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expression because it allows the hybridization of the methods. Although this will
become evident when we develop each of its four hybridizations, we can briefly argue
why this is so. Suppose that we want the numerical trace of the velocity, ûh = (ûh)t+
(ûh)n, to be the globally coupled unknown. This means that, on each elementK ∈ Ωh,
we should be able to express all the remaining unknowns in terms of ûh. If in the
weak formulation defining the method, (2.2), we take test functions with support in
the element K, we see that we can achieve this if we could write

(ω̂h)t = (ωh)t + τt (uh − ûh)× n and p̂h = ph + τn (uh − ûh) · n,

where (ωh,uh, ph) is the approximation on the element K, n is the outward unit
normal to K, and τt and τn take the values associated with K. Note that this is
consistent with the choice of the corresponding numerical traces on the border of Ω,
equations (2.6c) and (2.6d). Since the element K was arbitrary, we should then have

(ω̂h)t = (ωh)+t + τ+
t (u+

h − ûh)× n+ = (ωh)−t + τ−t (u−h − ûh)× n−,
p̂h = p+

h + τ+
n (u+

h − ûh) · n+ = p−h + τ−n (u−h − ûh) · n−

on all interior faces. A simple algebraic manipulation shows that this is possible only
if the numerical traces therein are taken as in (2.5).

Let us end this subsection by remarking that the choice of the penalization pa-
rameters τt and τn can be crucial since it can have an important effect on both
the stability and the accuracy of the method. This constitutes ongoing work; see
the last paragraph of section 5. In subsection 3.5, we show how, by taking special
choices of these parameters, several already known methods for the Stokes system are
recovered.

2.2. Other boundary conditions. The vorticity-velocity variational formula-
tion admits imposition of boundary conditions other than (2.1d); see a short discussion
in subsection 4.3 in [16]. In this paper, we consider the following types of boundary
conditions:

ut = gt

p = r

}
Type I boundary conditions,(2.7a)

ut = gt

un = gn

}
Type II boundary conditions,(2.7b)

ωt = γt

un = gn

}
Type III boundary conditions,(2.7c)

ωt = γt

p = r

}
Type IV boundary conditions.(2.7d)

We have already defined the HDG method in the case of the Type II boundary
conditions in the previous subsection. Neither the equations of the HDG method (2.2)
nor the equations of the interior numerical traces (2.5a)–(2.5d) change when the other
boundary conditions are considered. But the equations for the boundary numerical
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traces, namely (2.6a)–(2.6d), must be changed as follows:

(ûh)t = gt,

(ûh)n = (uh)n +
1
τn

(ph − p̂h)n,
ω̂h = (ωh)t + τt (uh − ûh)× n,
p̂h = r,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for Type I,(2.8a)

(ûh)t = (uh)t +
1
τt
n× (ωh − ω̂h),

(ûh)n = gn,

(ω̂h)t = γt,

p̂h = ph + τn (uh − ûh) · n,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

for Type III,(2.8b)

(ûh)t = (uh)t +
1
τt
n× (ωh − ω̂h),

(ûh)n = (uh)n +
1
τn

(ph − p̂h)n,
(ω̂h)t = γt,

p̂h = r,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for Type IV.(2.8c)

When we do not have boundary conditions on pressure, the pressure variable in Stokes
flow is determined only up to a constant. Therefore, for Type II and Type III boundary
conditions, in order to obtain unique solvability we must change the pressure space
from Ph to

P 0
h = Ph ∩ L2

0(Ω),

where L2
0(Ω) is the set of functions in L2(Ω) whose mean on Ω is zero. In the case of

Type I and Type IV boundary conditions, the pressure space is simply Ph. Finally, let
us point out that the Type IV boundary conditions are not particularly useful since
they have to be complemented by additional conditions on the velocity. For this reason,
we do not consider them as possible boundary conditions for the Stokes equations.
However, we discuss them here because, as we are going to see, there is a one-to-one
correspondence between the four types of boundary conditions just considered and
the four hybridizations of the HDG method.

2.3. Existence and uniqueness of the HDG solution. With (strictly) pos-
itive penalty parameters, the HDG method is well defined, as we next show. When
we say that a multivalued function τ is positive on ∂Ωh, we mean that both branches
of τ are positive on all faces of E oh and furthermore that the branch from within Ω is
positive on the faces of ∂Ω. Of course, the branch from outside Ω is zero.

To simplify our notation, we will use a symbol for averages of double-valued
functions. On any interior face e = ∂K+ ∩ ∂K−, let

{{v}}α = v+α+ + v−α−

for any double-valued function α. The notation {{v}} (without a subscript) denotes
{{v}}α with α+ = α− = 1/2. As a final note on our notation, we do not distinguish
between functions and their extensions by zero. Accordingly, we use the previously
defined notations like [[·]] and {{·}} even for boundary faces in E ∂h with the understand-
ing that one of the branches involved is zero (which is the case when the function is
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extended by zero); e.g., on a boundary face e, the penalty function τn has only one
nonzero branch, say τ−n , so {{τn}} on e equals τ−n /2. With this notation it is easy to
verify that the identities

〈σ,v × n〉∂Ωh
= 〈 {{σ}}α, [[v × n]] 〉Eh

− 〈 [[σ × n]], {{v}}1−α〉Eh
,(2.9a)

〈q,v · n 〉∂Ωh
= 〈 {{q}}α, [[v · n]]〉Eh

+ 〈 [[qn]], {{v}}1−α〉Eh
(2.9b)

hold for any α whose branches sum to one, i.e., α+ + α− = 1 on every face e in Eh.
Proposition 2.1. Assume that τt and τn are positive on ∂Ωh. Assume also that

curlV (K) ⊂W (K),
gradP (K) ⊂ V (K),
divV (K) ⊂ P (K)

for every element K ∈ Ωh. Then we have the following:
1. For the Type I boundary conditions, there is one and only one (ωh,uh, ph) in

the space W h × V h × Ph satisfying (2.2), (2.5), and (2.8a).
2. For the Type II boundary conditions, there is a solution (ωh,uh, ph) in the

space W h × V h × Ph satisfying (2.2), (2.5), and (2.6) if and only if g satis-
fies (1.1). When a solution (ωh,uh, ph) exists, all solutions are of the form
(ωh,uh, ph + κ) for some constant function κ. There is a unique solution if
Ph is replaced by P 0

h .
3. For Type III, the statements of the Type II case holds verbatim after replac-

ing (2.6) with (2.8b).
Proof. The proof proceeds by setting all data to zero and finding the null space

in each of the three cases. Taking (τ ,v, q) := (ωh,uh, ph) in (2.2) and adding them,
we obtain

(2.10) (ωh,ωh)Ωh
+ Θh = 0,

where

Θh := 〈−uh,n× ωh〉∂Ωh
+ 〈ûh,n× ωh〉∂Ωh

− 〈uh,n× ω̂h〉∂Ωh

− 〈ph,uh · n〉∂Ωh
+ 〈p̂h,uh · n〉∂Ωh

+ 〈ph, ûh · n〉∂Ωh
.

Rewriting Θh using (2.9), we obtain

Θh = − 〈ω̂h − {{ωh}}1−α, [[n× uh]]〉Eh
+ 〈ûh − {{uh}}α, [[n× ω̂h]]〉Eh

+ 〈p̂h − {{ph}}1−β, [[uh · n]]〉Eh
+ 〈ûh − {{uh}}β, [[ph n]]〉Eh

for any α and β whose branches sum to one on every face of Eh. We set α = τt/2 {{τt}}
and β = τn/2 {{τn}} on all the interior faces of E oh . On the remaining boundary faces,
we set α and β case by case as follows, letting α−∂Ω, β

−
∂Ω and α+

∂Ω, β
+
∂Ω denote the

branches of α, β from outside and inside Ω, respectively.
For the Type I case, we set α+

∂Ω = 0, α−∂Ω = 1, β+
∂Ω = 1, β−∂Ω = 0. Then,

inserting the expressions for the interior and boundary numerical traces given by (2.5)
and (2.8a), we obtain

Θh = Θo
h + 〈τt,

∣∣uh × n∣∣2〉∂Ω + 〈τn, |phn|2〉∂Ω,
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where

Θo
h =

〈
2
{{τt}} ,

∣∣ [[n× ωh]]∣∣2
〉

E o
h

+
〈

2
{{1/τt}} ,

∣∣ [[uh × n]]
∣∣2〉

E o
h

+
〈

2
{{1/τn}} , [[uh · n]]2

〉
E o

h

+
〈

2
{{τn}} ,

∣∣ [[ph n]]
∣∣2〉

E o
h

.

Hence (2.10) implies that ωh vanishes, uh and ph are continuous on Ω, and (uh)t and
ph vanish on ∂Ω. With this in mind, we integrate by parts the equations defining the
method, namely (2.2), to obtain

(curluh, τ )Ωh
= 0,

(grad ph,v)Ωh
= 0,

(divuh, q)Ωh
= 0

for all (τ ,v, q) ∈W h×V h×Ph. By our assumptions on the local spaces, this implies
that the following (global) distributional derivatives on Ω vanish:

(2.11) grad ph = 0, divuh = 0, and curluh = 0.

The first equality implies that ph vanishes since we already found ph to vanish on
∂Ω. Moreover, since (uh)t vanishes on the boundary ∂Ω, and since we have assumed
that ∂Ω consists of just one connected component, the last two equalities imply that
uh = 0. Thus, the null space is trivial.

For the Type II case, we set α+
∂Ω = 0, α−∂Ω = 1, β+

∂Ω = 0, and β−∂Ω = 1 and
simplify Θh using the interior and boundary numerical traces given by (2.5) and (2.6)
to find that

Θh = Θo
h + 〈τt,

∣∣uh × n∣∣2〉∂Ω + 〈τn,
∣∣uh · n∣∣2〉∂Ω.

Hence (2.10) implies that ωh vanishes, uh is continuous on Ω, and uh is zero on ∂Ω,
and ph is continuous on Ω. Proceeding as in the Type I case, we find that (2.11)
holds, so uh vanishes. But unlike the Type I case, we can now conclude only that
ph is constant. Thus the null space consists of (ωh,uh, ph) = (0,0, κ) for constant
functions κ. Hence, all statements of the proposition on the Type II case follow.

The Type III case is proved similarly.
It is interesting to note that the proof of the Type II case required only minimal

topological assumptions on Ω, namely, that Ω is connected. However, the proof of the
other two cases used the further assumptions we placed on Ω. The mixed method
presented in [8] without such topological assumptions dealt only with the Type II
boundary conditions.

We can now give some possible choices for polynomial spaces that can be set
within each element. Clearly, Proposition 2.1 gives the conditions that we must satisfy.
Let Pd denote the space of polynomials of degree at most d, and let Pd denote the
space of vector functions whose components are polynomials in Pd. Let dP ≥ 1,
dV ≥ 0, dW ≥ 0 be some integers satisfying

dP − 1 ≤ dV ≤ min(dP + 1, dW + 1).(2.12)

Then if we set

W (K) = PdW , V (K) = PdV , P (K) = PdP ,
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the conditions of Proposition 2.1 are satisfied. Some examples are

(dW , dV , dP ) =

⎧⎨
⎩(k − 1, k − 1, k),

(k − 1, k, k),

(k, k − 1, k),
(k, k, k),
(k, k + 1, k),

(k + 1, k − 1, k),
(k + 1, k, k),
(k + 1, k + 1, k)

for some integer k ≥ 1. Clearly there is greater flexibility in the choice of spaces than,
for instance, in the choice of spaces for mixed methods for the Stokes problem; e.g.,
from (2.12) it is clear that we can choose dW to be as large as we wish and the method
continues to be well defined.

Having established that the HDG methods are well defined, we show in the next
section that they can be hybridized in different ways according to the choice of vari-
ables that are globally coupled.

3. Hybridizations of the HDG methods. In this section, we will restrict
ourselves to considering the Stokes problem with the Type II boundary conditions.
We hybridize the HDG method for this case. As we shall see, while hybridizing we
can choose to set HDG methods with the other types of boundary conditions within
mesh elements.

For constructing hybridized methods based on the vorticity-velocity formulation,
let us recall the following four transmission conditions for the Stokes solution compo-
nents:

[[ω × n]]
∣∣∣∣
E o

h

= 0, [[u× n]]
∣∣∣∣
E o

h

= 0, [[u · n]]
∣∣∣∣
E o

h

= 0, [[pn]]
∣∣∣∣
E o

h

= 0.(3.1)

Corresponding to these four transmission conditions, there are four variables on which
boundary conditions of the following form can be prescribed:

ωt = γt, ut = λt, un = λn, p = ρ.(3.2)

With this correspondence in view, we can describe our approach for constructing
hybridization techniques as follows. We pick any two of the variables in (3.2) as un-
known boundary values on the boundary of each mesh element. (Once these values are
known, the solution inside the element can be computed locally.) Then, we formulate
a global system of equations for the chosen unknown variables, using the transmission
conditions on the other two variables in (3.1). Of course, we must identify the proper
discrete versions of these transmission conditions for this purpose. According to this
strategy, there appears to be six possible cases. But two of the six cases yield underde-
termined or overdetermined systems. For instance if we pick γt and λt as unknowns,
counting their components, we would have a total of four scalar unknown functions.
However, the transmission conditions (the last two in (3.1)) form only two scalar
equations so will yield an underdetermined system. Similarly, if we pick λn and ρ as
the unknowns, we get an overdetermined system. We discard these two possibilities.
In the remainder, we now work out the specifics for the remaining four cases.

3.1. Hybridization of Type I.
A formulation with tangential velocity and pressure. Here, we choose the second

and the last of the variables in (3.2), namely (u)t and p, as the unknowns on the mesh
interfaces. Their discrete approximations will be denoted by λt and ρ, respectively.
We shall then use the transmission conditions on the other two variables, namely,

(3.3) [[ω × n]]
∣∣∣∣
E o

h

= 0 and [[u · n]]
∣∣∣∣
E o

h

= 0,
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to derive a hybridized formulation that will help us solve for the approximations λt
and ρ.

The success of this approach relies on us being able to compute approximate solu-
tions within each element locally, once the discrete approximations λt ≈ ut and ρ ≈ p
are found. In other words, we need a discretization of the following Stokes problem
on one element:

ωK − curluK = 0 in K,
curlωK + grad pK = f in K,

divuK = 0 in K,
(uK)t = λt on ∂K,

pK = ρ on ∂K.

We use the HDG method (with Type I boundary conditions) applied to a single
element as our discretization. Specifically, given (λt, ρ,f) in L2(∂Ωh) × L2(∂Ωh) ×
L2(Ω), we define (W,U,P) in W h×V h×Ph on the element K ∈ Ωh as the function
in W (K)× V (K)× P (K) satisfying

(W, τ )K − (U, curl τ )K = −〈λt,n× τ 〉∂K ,(3.4a)

(W, curl v)K + 〈Ŵ,v × n〉∂K(3.4b)
− (P, div v)K = (f ,v)K − 〈ρ,v · n〉∂K ,
− (U, grad q)K + 〈Û · n, q〉∂K = 0(3.4c)

for all (τ ,v, q) ∈W (K)× V (K)× P (K), where

(Û)n = (U)n +
1
τn

(P− ρ) n,(3.4d)

Ŵ = W + τt (U− λt)× n.(3.4e)

Note that the above system (3.4) is obtained from the HDG system (2.2) with Ω set
to K and the numerical traces set by (2.8a) (and there are no interior faces). The
above system of equations thus defines a linear map (the “local solver”)

(λt, ρ,f) LI�−→ (W,U,P)(3.4f)

due to the unique solvability of the HDG method on one element, as given by Propo-
sition 2.1(1).

Next, we identify conditions on λt and ρ that make (W,U,P) identical to the
approximation (ωh,uh, ph). We begin by restricting the function (λt, ρ) to the space
(Mh)t × Ψh, where

(Mh)t := {μt ∈ L2(Eh) : μt|e ∈M (e) ∀ e ∈ E oh},(3.5a)

Ψh := {ψ ∈ L2(Eh) : ψ|e ∈ Ψ(e) ∀ e ∈ Eh},(3.5b)

where, on each face e ∈ Eh, the finite-dimensional spaces M(e) and Ψ(e) are such
that

M (e) ⊇ {(vt + n× τ )|e : (τ ,v) ∈W (K)× V (K) ∀ K : e ⊂ ∂K},(3.5c)
Ψ(e) ⊇ {(q + v · n)|e : (v, q) ∈ V (K)× P (K) ∀ K : e ⊂ ∂K}.(3.5d)



1102 BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

The next theorem identifies discrete analogues of the transmission conditions (3.3) as
the requirements for recovering the discrete solution.

Theorem 3.1 (conditions for Type I hybridization). Suppose (ωh,uh, ph) is the
solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that (λt, ρ) ∈
(Mh)t × Ψh is such that

λt = gt on ∂Ω,(3.6a)

〈 [[n× Ŵ]],μt〉E o
h

= 0 ∀ μt ∈Mh,(3.6b)

〈 [[Û · n]], ψ〉Eh
= 〈g · n, ψ〉∂Ω ∀ ψ ∈ Ψh,(3.6c)

(P, 1)Ω = 0.(3.6d)

Then (W,U,P) = (ωh,uh, ph), λt = (ûh)t, and ρ = p̂h.
Proof. We begin by noting that (W,U,P) is in the space W h ×V h ×Ph, by the

definition of the local solvers. Moreover, by adding the equations defining the local
solver, namely (3.4a)–(3.4c), we find that (W,U,P) satisfies the equations of (2.2),
with (Ŵ)t in place of (ω̂h)t, λt in place of (ûh)t, (Û)n in place of (ûh)t, and ρ in
place of p̂h. Hence, if we show that (Ŵ)t, λt, (Û)n, and ρ can be related to (W,U,P),
as in the expressions for the numerical traces (2.5a)–(2.5d), then the proof will be
complete because of the uniqueness result of Proposition 2.1(2) (which applies due to
condition (3.6d)).

Therefore, let us first derive such expressions for λt and ρ. By the choice of the
space Mh × Ψh, the jump conditions (3.6b) and (3.6c) imply that

[[n× Ŵ]] = 0 and [[Û · n]] = 0 on E oh .

Inserting the definition of the numerical traces (3.4d) and (3.4e), we readily obtain
that, on E oh ,

[[n×W]] + τ+
t (U+)t + τ−t (U−)t − (τ+

t + τ−t ) λt = 0,

[[U · n]] +
1
τ+
n

P+ +
1
τ−n

P− −
(

1
τ+
n

+
1
τ−n

)
ρ = 0,

or, equivalently,

λt =
(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+
(

1
τ−t + τ+

t

)
[[n×W]],

ρ =
(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+
(

τ−n τ+
n

τ−n + τ+
n

)
[[U · n]].

Substituting these expressions into (3.4d) and (3.4e), we obtain

(Ŵ)t =
(
τ−t (W+)t + τ+

t (W−)t
τ−t + τ+

t

)
+
(

τ+
t τ−t

τ−t + τ+
t

)
[[U× n]],

(Û)n =
(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+
(

1
τ−n + τ+

n

)
[[P n]].

In other words, the numerical traces satisfy (2.5). The fact that they satisfy (2.6a)
and (2.6b) follows from conditions (3.6a) and (3.6c), respectively. Finally, (2.6c) and
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(2.6d) follow directly from the definition of the numerical traces of the local solvers
(3.4e) and (3.4d), respectively.

Thus, by the uniqueness result of Proposition 2.1(2), we now conclude that
(W,U,P) coincides with (ωh,uh, ph), and consequently, λt = (ûh)t and ρ = p̂h.
This completes the proof.

At this point, we can comment more on our strategy for construction of hybridized
DG methods. Roughly speaking, the derivation of our hybridized methods proceeds by
imposing discrete versions of all four transmission conditions in (3.1) through the four
numerical traces of the HDG method. The two numerical traces we picked as unknowns
in this case, namely λt and ρ, being single valued on E oh , already satisfy a zero-jump
transmission condition, so we have in some sense already imposed the second and the
fourth of the conditions in (3.1). The discrete analogues of the remaining two (the
first and the third) transmission conditions are (3.6b) and (3.6c), which requires the
remaining two numerical traces to be single valued. Theorem 3.1 shows that once
these conditions are imposed, the HDG solution is recovered.

Next, we give a characterization of unknown traces λt and ρ and the discrete
HDG solution (ωh,uh, ph) in terms of the local solvers. In particular, we show that
the jump conditions (3.6b) and (3.6c) define a mixed method for the tangential velocity
and the pressure. To state the result, we need to introduce some notation. Letting
λot = λt|E o

h
, and remembering our identification of functions with their zero extension,

we can write

λt = λot + gt.

We denote by (M o
h )t the functions of (Mh)t which are zero on ∂Ω (so λot is in (Mo

h)t).
Finally, we use the following notation for certain specific local solutions:

(Wλt
,Uλt

,Pλt
) := LI(λt, 0,0),(3.7a)

(Wρ,Uρ,Pρ) := LI(0, ρ,0),(3.7b)
(Wf ,Uf ,Pf ) := LI(0, 0,f),(3.7c)

where LI is as in (3.4f). We are now ready to state our main result for this case.
Theorem 3.2 (characterization of the approximate solution). We have that

ωh = Wλo
t

+ Wρ + Wf + Wgt
,

uh = Uλo
t

+ Uρ + Uf + Ugt
,

ph = Pλo
t

+ Pρ + Pf + Pgt
,

where (λot , ρ) is the only element of (Mo
h)t × Ψh such that

ah(λot ,μt) + bh(ρ,μt) = �1(μt),(3.8a)
−bh(ψ,λot ) + ch(ρ, ψ) = �2(ψ)(3.8b)

for all (μt, ψ) ∈ (M o
h)t × Ψh, and

(Pλo
t

+ Pρ + Pf + Pgt
, 1)Ω = 0.(3.8c)
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Here

ah(λt,μt) :=(Wλt
,Wμt

)Ωh
+ 〈τt(λt −Uλt

)t, (μt −Uμt
)t〉∂Ωh

+
〈

1
τn

Pλt
,Pμt

〉
∂Ωh

,

bh(ρ,μt) :=
〈
ρ,n ·Uμt

+
1
τn

Pμt

〉
∂Ωh

,

ch(ρ, ψ) := (Wρ,Wψ)Ωh
+ 〈τt(Uρ)t, (Uψ)t〉∂Ωh

+
〈

1
τn

(ρ− Pρ), (ψ − Pψ)
〉
∂Ωh

,

and

�1(μt) := (f ,Uμt
)Ωh
− ah(g,μt),

�2(ψ) :=− (f ,Uψ)Ωh
− 〈g · n, ψ〉∂Ω + bh(ψ, gt).

The proof of this theorem is in section 4. In view of this theorem, we can obtain
the HDG solution by first solving a symmetric global system that is smaller than (2.2)
and then locally recovering all solution components (by applying LI). This is the main
advantage brought about by hybridization. It makes this HDG method competitive
in comparison with other existing DG methods for Stokes flow.

It is interesting to note that the space in which the trace variables lie, namely
(Mh)t and Ψh, can be arbitrarily large. While it is in the interest of efficiency to
choose as small a space as possible (for a given accuracy), in mixed methods one also
often require spaces to be not too large for stability reasons. In the HDG method,
stability is guaranteed through the penalty parameters τn and τt. A consequence of
this is that (3.8) is uniquely solvable, no matter how large (Mh)t and Ψh are. For the
analogous hybridized mixed method of [8], we needed the trace spaces corresponding to
(Mh)t and Ψh to be exactly equal to certain spaces of jumps, which created additional
implementation issues such as construction of local basis functions for the spaces.

3.2. Hybridization of Type II.
A formulation with velocity and means of pressure. Recalling our scheme for

construction of hybridized methods described in the beginning of this section, we
now consider the case when ut and un (i.e., all components of u) are chosen as the
unknowns in the mesh interfaces. Correspondingly, we should use the transmission
conditions on the other two variables, namely,

(3.9) [[ω × n]]
∣∣∣∣
E o

h

= 0 and [[pn]]
∣∣∣∣
E o

h

= 0,

to derive a hybridized formulation. However, the success of this strategy relies on us
being able to compute approximate Stokes solutions within each element locally, once
a discrete approximation to u, say λ, is obtained on the boundary of every mesh
element. Here we find a difficulty not encountered in the previous case, namely, that
the HDG discretization (2.2) on one element with λ as boundary data (of Type II) is
not solvable in general, unless

(3.10)
∫
∂K

λn · n = 0,

as seen from Proposition 2.1(2). Thus we are led to modify our local solvers, which
in turn necessitates the introduction of a new variable (ρ) approximating the means
of pressures on the element boundaries, as we shall see now.
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The new local solver, denoted by LII, maps a given function (λ, ρ,f ) in L2(∂Ωh)×
�2(∂Ωh)×L2(Ω) to a triple (W,U,P) ∈W h×V h×Ph defined below. Here, �2(∂Ωh)
denotes the set of functions in L2(∂Ωh) that are constant on each ∂K for all mesh
elements K. On any element K ∈ Ωh, the function (W,U,P) restricted to K is in
W (K)× V (K)× P (K) and satisfies

(W, τ )K − (U, curl τ )K = −〈λ,n× τ 〉∂K ,(3.11a)

(W, curl v)K + 〈Ŵ,v × n〉∂K(3.11b)

− (P, div v)K + 〈P̂,v · n〉∂K = (f ,v)K ,
− (U, grad q)K = 〈λ · n, q − q〉∂K ,(3.11c)

P = ρ,(3.11d)

where

Ŵ = W + τt (U− λ)× n,(3.11e)

P̂ = P + τn (U− λ) · n.(3.11f)

Here, we use the convention that for a given function q (that may not be in �2(∂Ωh)),
we understand q to mean the function in �2(∂Ωh) satisfying

(3.12) q|∂K =
1
|∂K|

∫
∂K

q dγ.

Obviously, for functions ρ in �2(∂Ωh), we have ρ = ρ. Let λ0
n be the function on ∂Ωh

defined by λ0
n|∂K = λn|∂K−λ · n|∂Kn for all mesh elements K. Then, we can rewrite

the right-hand side of (3.11c) as 〈λ0
n, qn〉∂K . Hence, the system (3.11) minus (3.11d)

is the same as the HDG system (2.2) applied to one element with the data gt = λt
and gn = λ0

n. Consequently, by Proposition 2.1(2), the system has a solution, and
moreover, the solution is unique once (3.11d) is added to the system. Thus, the map
LII is well defined.

Note that (3.11) is the HDG discretization of the exact Stokes problem

ωK − curluK = 0 in K,
curlωK + gradpK = f in K,

divuK = 0 in K,

uK = λt + λ0
n on ∂K,

pK = ρ

on a single element K.
Next, we find conditions on (λ, ρ,f) that make (W,U,P) ≡ LII(λ, ρ,f ) equal to

(ωh,uh, ph). First, we restrict λ to the space Mh defined by

Mh := {μ ∈ L2(Eh) : μ|e ∈M (e) ∀ e ∈ E oh},(3.13a)

Ψh := �2(∂Ωh),(3.13b)

where M(e) is a finite-dimensional space on the face e ∈ Eh such that

M(e) ⊇ {(v + n× τ + n q)|e : (τ ,v, q) ∈W (K)× V (K)× P (K)(3.13c)
∀ K : e ⊂ ∂K}.
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Then we have the following theorem, which identifies certain discrete analogues of (3.9)
as sufficient conditions for the coincidence of the locally recovered solution with the
HDG solution.

Theorem 3.3 (conditions for Type II hybridization). Suppose (ωh,uh, ph) is the
solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that (λ, ρ) ∈
Mh × Ψh is such that

λ = g on ∂Ω,(3.14a)

〈 [[n× Ŵ]],μt〉E o
h

= 0 ∀ μ ∈Mh,(3.14b)

〈 [[P̂ n]],μn〉E o
h

= 0 ∀ μ ∈Mh,(3.14c)

〈λ · n, q〉∂Ωh
= 0 ∀ q ∈ Ψh,(3.14d)

(P, 1)Ω = 0.(3.14e)

Then (W,U,P) = (ωh,uh, ph), λt = (ûh)t, and λn = (ûh)n.
Proof. We will show that (W,U,P) and (ωh,uh, ph) satisfy the same set of equa-

tions. To do this, just as in the proof of Theorem 3.1, it suffices to show that the
numerical traces (Ŵ)t, λt, λn, and P̂ can be related to (W,U,P) through the expres-
sions in (2.5).

We therefore derive expressions for (Ŵ)t, λt, λn, and P̂. By the choice of the
space Mh, the jump conditions (3.14b) and (3.14c) imply that

[[n× Ŵ]] = 0 and [[P̂ n]] = 0 on E oh .

Inserting the definition of the numerical traces (3.11e) and (3.11f), we readily obtain
that, on E oh ,

[[n×W]] + τ+
t (U+)t + τ−t (U−)t − (τ+

t + τ−t ) λt = 0,

[[P n]] + τ+
n (U+)n + τ−n (U−)n − (τ+

n + τ−n ) λn = 0,

or equivalently,

λt =
(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+
(

1
τ−t + τ+

t

)
[[n×W]],

λn =
(
τ+
t (U+)n + τ−t (U−)n

τ−t + τ+
t

)
+
(

1
τ−t + τ+

t

)
[[P n]].

Hence,

(Ŵ)t =
(
τ−t (W+)t + τ+

t (W−)t
τ−t + τ+

t

)
+
(

τ+
t τ−t

τ−t + τ+
t

)
[[U× n]],

P̂ =
(
τ+
n P+ + τ−n P−

τ−n + τ+
n

)
+
(

τ+
n τ−n

τ−n + τ+
n

)
[[U · n]].

In other words, the numerical traces satisfy (2.5a), (2.5b), (2.5c), and (2.5d). The
fact that they also satisfy (2.6) follows from conditions (3.14a) and (3.14c) and the
definition of the local solvers.

Consequently, by Proposition 2.1(2), we conclude that the difference between
(W,U,P) and (ωh,uh, ph) is (0,0, κ) for some constant function κ. Equation (3.14e)
then completes the proof.
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Next, we show that the jump conditions (3.14b) and (3.14c) define a mixed
method for the velocity traces and pressure averages on element boundaries. We de-
note by Mo

h the set of functions in Mh that vanish on ∂Ω and split λ = λo + g
with λo in Mo

h . In analogy with (3.7) of the Type I hybridization, we now define the
specific local solutions for this case by

(Wλ,Uλ,Pλ) := LII(λ, 0,0),(3.15a)
(Wρ,Uρ,Pρ) := LII(0, ρ,0),(3.15b)
(Wf ,Uf ,Pf ) := LII(0, 0,f),(3.15c)

but note that by Proposition 2.1(2),

(3.16) (Wρ,Uρ,Pρ) = (0,0, ρ).

Our main result for the Type II hybridization is the following theorem.
Theorem 3.4 (characterization of the approximate solution). We have that

ωh = Wλo + Wf + Wg,
uh = Uλo + Uf + Ug,
ph = Pλo + Pf + Pg + Pρ,

where (λo, ρ) is the only element of Mo
h × Ψh such that

ah(λo,μ) + bh(ρ,μ) = �(μ),

−bh(ψ,λo) = 0

for all (μ, ψ) ∈Mo
h × Ψh, and

(Pλo + Pρ + Pf + Pg, 1)Ω = 0.

Here

ah(λ,μ)= (Wλ,Wμ)Ωh
+ 〈τt(λ−Uλ)t, (μ−Uμ)t〉∂Ωh

+ 〈τn(λ−Uλ)n, (μ−Uμ)n〉∂Ωh
,

bh(ρ,μ) = −〈ρ,μ · n〉∂Ωh
,

�(μ) = (f ,Uμ)Ωh
− ah(g,μ).

A proof can be found in section 4. For appropriate choice of polynomial spaces,
as in the previous case, to satisfy the conditions of Proposition 2.1, we choose the
degrees dP , dV , and dW to be integers obeying (2.12). Then Mh is fixed once we pick
any M(e) satisfying (3.13c), e.g., M(e) = Pmax(dV ,dW ,dP )(e).

3.3. Hybridization of Type III.
A formulation with tangential vorticity, normal velocity, and pressure means.

Next we hybridize the HDG methods by making another choice of two variables
in (3.2), namely ωt and un, as the unknowns on the mesh interfaces. Their discrete
approximations will be denoted by γt and λn, respectively. When we try to formulate
a system for these unknowns using the transmission conditions on the other two
variables, namely,

(3.17) [[u× n]]
∣∣∣∣
E o

h

= 0 and [[pn]]
∣∣∣∣
E o

h

= 0,



1108 BERNARDO COCKBURN AND JAYADEEP GOPALAKRISHNAN

we again face the same difficulty we faced in the Type II case. Consequently, as we
shall see, we must introduce a new variable ρ approximating the averages of pressure
on element boundaries, just as in the Type II case.

To hybridize the HDG method, we begin as in the previous cases by introducing
discrete local solutions. These will be obtained using the HDG discretization of the
Stokes problem

ωK − curluK = 0 in K,
curlωK + grad pK = f in K,

divuK = 0 in K,
(ωK)t = γt on ∂K,

(uK)n = λ0
n on ∂K,

pK = ρ

on a single element K. Given the function (γt,λn, ρ,f ) in L2(∂Ωh) × L2(∂Ωh) ×
�2(∂Ωh) × L2(Ω), we define (W,U,P) in W h × V h × Ph on the element K ∈ Ωh as
the function in W (K)× V (K)× P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n× τ 〉∂K = 0,(3.18a)

(W, curl v)K − (P, div v)K + 〈P̂,v · n〉∂K = (f ,v)K − 〈γt,v × n〉∂K ,(3.18b)
−(U, grad q)K = −〈λn · n, q − q〉∂K ,(3.18c)

P = ρ,(3.18d)

where

Û = U +
1
τt
n× (W− γt),(3.18e)

P̂ = P + τn (U− λn) · n.(3.18f)

By Proposition 2.1(3), there is a unique solution to (3.18) on each mesh element K.
In other words, the local solver LIII(γt,λn, ρ,f) := (W,U,P) is well defined.

As in the previous cases, we now proceed to identify the discrete analogues
of (3.17) that make LIII(γt,λn, ρ,f) identical to (ωh,uh, ph). This will yield a mixed
method for (γt,λn, ρ,f). To do this, we begin by restricting the function (γt,λn, ρ)
to the space (Gh)t × (Mh)n × Ψh, where

(Gh)t := {δt ∈ L2(Eh) : δt|e ∈ G(e) ∀ e ∈ Eh},(3.19a)

(Mh)n := {μn ∈ L2(Eh) : μn|e ∈M(e) ∀ e ∈ E oh},(3.19b)

Ψh := {ψ ∈ L2(∂Ωh) : ψ|∂K ∈ R ∀ K ∈ Ωh} ≡ �2(∂Ωh),(3.19c)

where G(e) and M(e) for each face e ∈ Eh are finite-dimensional spaces satisfying

G(e) ⊇ {(vt + n× τ )|e : (τ ,v) ∈W (K)×U(K) ∀ K : e ⊂ ∂K},(3.19d)
M (e) ⊇ {(vn + n q)|e : (v, q) ∈ U(K)× P (K) ∀ K : e ⊂ ∂K}.(3.19e)

Theorem 3.5 (conditions for Type III hybridization). Suppose (ωh,uh, ph) is
the solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that
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(γt,λn, ρ) ∈ (Gh)t × (Mh)n × Ψh is such that

λn = gn on ∂Ω,(3.20a)

〈 [[Û× n]], δt〉Eh
= 〈gt × n, δt〉∂Ω ∀ δt ∈ (Gh)t,(3.20b)

〈 [[P̂ n]],μn〉E o
h

= 0 ∀ μn ∈ (Mh)n,(3.20c)

〈λn · n, q〉∂Ωh
= 0 ∀ q ∈ Ψh,(3.20d)

(P, 1)Ω = 0.(3.20e)

Then (W,U,P) = (ωh,uh, ph), λn = (ûh)n, and γt = (ω̂h)t.
Proof. We begin by noting that (W,U,P) is in the spaceW h×V h×Ph. Moreover,

(W,U,P) satisfies the weak formulation (2.2) by the definition of the local solver
(3.18).

Next, we note that, by the choice of the space (Gh)t×(Mh)n, the jump conditions
(3.20b) and (3.20c) imply that

[[Û× n]] = 0 and [[P̂ n]] = 0 on E oh .

Inserting the definition of the numerical traces (3.18e) and (3.18f), we readily obtain
that, on E oh ,

[[U× n]] +
1
τ+
t

(W+)t +
1
τ−t

(W−)t −
(

1
τ+
t

+
1
τ−t

)
γt = 0,

[[P n]] + τ+
n (U+

h )n + τ−n (U−h )n − (τ+
n + τ−n ) λn = 0,

or, equivalently,

γt =
(
τ−t (W+)t + τ+

t (W−)t
τ−t + τ+

t

)
+
(

τ−t τ+
t

τ−t + τ+
t

)
[[U × n]],

λn =
(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+
(

1
τ−n + τ+

n

)
[[P n]].

Hence,

(Û)t =
(
τ+
t (U+)t + τ−t (U−)t

τ−t + τ+
t

)
+
(

1
τ−t + τ+

t

)
[[n×W]],

P̂ =
(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+
(

τ−n τ+
n

τ−n + τ+
n

)
[[U · n]].

In other words, the numerical traces satisfy (2.5a), (2.5b), (2.5c), and (2.5d). The
fact that they also satisfy (2.6) follows from conditions (3.20a) and (3.20c). They also
satisfy (2.6c) and (2.6d) by definition of the local solvers.

By the uniqueness result of Proposition 2.1(2), we can now conclude that the
approximation (W,U,P) coincides with (ωh,uh, ph). Moreover, we also have γt =
(ω̂h)t and λn = (ûh)n. This completes the proof.

We now proceed to formulate a mixed method for the numerical traces. Define
specific local solutions by

(Wγt
,Uγt

,Pγt
) := LIII(γt,0, 0,0), (Wλn ,Uλn ,Pλn) := LIII(0,λn, 0,0),

(Wρ,Uρ,Pρ) := LIII(0,0, ρ,0), (Wf ,Uf ,Pf ) := LIII(0,0, 0,f),
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and observe that by Proposition 2.1(2), (Wρ,Uρ,Pρ) = (0,0, ρ). We additionally
denote by (M o

h )n the functions of (Mh)n which are zero on ∂Ω, and we write λn as
the sum of λon and gn, where λon is in (M o

h)n. We are now ready to state our main
result.

Theorem 3.6 (characterization of the approximate solution). We have that

ωh = Wγt
+ Wλo

n
+ Wf + Wgn

,
uh = Uγt

+ Uλo
n

+ Uf + Ugn
,

ph = Pγt
+ Pλo

n
+ Pf + Pgn

+ Pρ,

where (γt,λ
o
n, ρ) is the only element of (Gh)t × (M o

h)n × Ψh such that

ah(γt, δt) + bh(λn, δt) = �1(δt),
−bh(μn,γt) + ch(λn,μn) + dh(ρ,μn) = �2(μn),
−dh(q,λn) = 0

for all (δt,μn, ρ) ∈ Gh × (M o
h )n × Ψh, and

(Pλo
t

+ Pρ + Pf + Pgt
, 1)Ω = 0.

Here

ah(γt, δt) := (Wγt
,Wδt

)Ωh

+
〈

1
τt
n× (γt −Wγt

),n× (δt −Wδt
)
〉
∂Ωh

+ 〈τn (Uγt
)n, (Uδt

)n〉∂Ωh
,

bh(λn, δt) := 〈λn,Pδt
+ τn (Uλt

)n〉∂Ωh
,

ch(λn,μn) := (Wλn ,Wμn
)Ωh

+
〈

1
τt
n×Wμn

,n×Wλn

〉
∂Ωh

+ 〈τn(μn −Uμn
)n, (λn −Uλn

)n〉∂Ωh
,

dh(ρ,μn) := − 〈ρ,μn · n〉∂Ωh
,

and

�1(δt) := − (f ,Uδt)Ωh
− bh(gn, δt)− 〈gt × n, δt〉∂Ω,

�2(μn) := (f ,Uμn
)Ωh
− ch(gn,μn).

3.4. Hybridization of Type IV.
A formulation with tangential vorticity, pressure, and harmonic velocity poten-

tials. There is now only one more remaining choice of two variables from in (3.2),
namely ωt and p, that we have not yet investigated. This is the Type IV case. This
case presents additional complications not found in the previous three cases. The
complications are rooted in the same reason for which we did not consider “Type IV
boundary conditions” in section 2.

To explain the difficulty, suppose we are given an approximation (γt, ρ) to (ωt, p)
on ∂Ωh. To obtain an approximate solution inside the mesh elements, let us try to
define a local solution (W,U,P) generated by data (γt, ρ,f) in L2(∂Ωh)×L2(∂Ωh)×
L2(Ω). For this, we would like to use the HDG method applied to one element K, with
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boundary conditions on tangential vorticity and pressure (which would be discrete
versions of boundary conditions ωt = γt and p = ρ on ∂K). Thus we are led to take
(W,U,P) as the function in W (K)× V (K)× P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n× τ 〉∂K = 0,
(W, curl v)K − (P, div v)K = (f ,v)K

− 〈n× γt + ρ n,v〉∂K ,
−(U, grad q)K + 〈Û · n, q〉∂K = 0,

with (Û)t = (U)t+τ−1
t n× (W−γt) and (Û)n = (U)n+τ−1

n (P−ρ) n. Unfortunately
this problem is not solvable in general, which is the same reason we omitted this type
of boundary condition in Proposition 2.1.

Nonetheless, upon reviewing the proof of Proposition 2.1 in the case of one el-
ement, we find that the null space of the above system is of the form (W,U,P) =
(0, gradφ, 0), where φ is in the following local space harmonic velocity potentials:

Φ(K) = {ξ : grad ξ ∈ V (K) : Δξ = 0 and (ξ, 1)K = 0}.
Hence we can recover unique solvability if the velocity is kept orthogonal to Φ(K).
Keeping this in mind, we are motivated to reformulate the local problems to give
a consistent system of equations as follows. Denote the L2-projection of v ∈ V (K)
into gradΦ(K) by gradφv . Given the function (γt, ρ, φ,f) in L2(∂Ωh) × L2(∂Ωh) ×
H1(Ωh) × L2(Ω), we define (W,U,P) in W h × V h × Ph on the element K ∈ Ωh as
the function in W (K)× V (K)× P (K) such that

(W, τ )K − (U, curl τ )K + 〈Û,n× τ 〉∂K = 0,
(3.21a)

(W, curl v)K − (P, div v)K = (f ,v − gradφv)K(3.21b)
−〈n× γt+ρ n,v−gradφv〉∂K,

−(U, grad q)K + 〈Û · n, q〉∂K = 0,(3.21c)
(U, grad ξ)K =(gradφ, grad ξ)K ,(3.21d)

where

(Û)t = (U)t +
1
τt
n× (W− γt),(3.21e)

(Û)n = (U)n +
1
τn

(P− ρ) n.(3.21f)

A minor modification of the arguments in Proposition 2.1 shows unique solvability
of (3.21); hence we can define a fourth local solver LIV : L2(∂Ωh)×L2(∂Ωh)×H1(Ωh)×
L2(Ω) �→W (K)× V (K)× P (K) that takes (γt, ρ, φ,f) to (W,U,P).

Note that (3.21) is a discretization of the exact Stokes problem

ωK − curluK = 0 in K,
curlωK + grad pK = f in K,

divuK = 0 in K,
(ωK)t = γt on ∂K,

pK = ρ on ∂K,
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with the additional condition that the velocity field uK is L2-orthogonal to all gradi-
ents of harmonic functions, which is necessary for well-posedness.

Although we could have considered a global “Type IV boundary conditions”
case in Proposition 2.1 through the addition of an equation like (3.21d), it does not
appear to be very useful, because we do not know the data needed for the right-hand
side. However, we can use Type IV boundary conditions locally to hybridize a global
problem with Type II boundary conditions because we already have global solvability
for the Type II boundary conditions case. We need only ensure that the local problems
are solvable, and the reformulation of the local solvers with (3.21d) guarantees it.

Now, we proceed as in the previous cases to identify conditions on γt, ρ, and φ
in such a way that (W,U,P) is identical to (ωh,uh, ph). We begin by restricting the
function (γt, ρ, φ) to the space (Gh)t × Ψh × Φh, where

(Gh)t := {δt ∈ L2(Eh) : δt|e ∈ G(e) ∀ e ∈ E oh},(3.22a)

Ψh := {ψ ∈ L2(Eh) : ψ|e ∈ Ψ(e) ∀ e ∈ Eh},(3.22b)

Φh := {ξ ∈ H1(Ωh) : ξ|K ∈ Φ(K) ∀K ∈ Ωh},(3.22c)

where, on each face e ∈ Eh, we have finite-dimensional spacesG(e) and Ψ(e) satisfying

G(e) ⊇ {(vt + n× τ )|e : (τ ,v) ∈W (K)×U(K) ∀ K : e ⊂ ∂K},(3.22d)
Ψ(e) ⊇ {(q + v · n)|e : (v, q) ∈ U(K)× P (K) ∀ K : e ⊂ ∂K}.(3.22e)

The next theorem identifies the discrete analogues of the transmission conditions

[[u× n]]
∣∣∣∣
E o

h

= 0, [[u · n]]
∣∣∣∣
E o

h

= 0

that recover the original solution. An additional condition also appears because of our
reformulation of the local solvers.

Theorem 3.7 (conditions for Type IV hybridization). Suppose (ωh,uh, ph) is the
solution of the HDG method defined by (2.2), (2.5), and (2.6). Assume that (γt, ρ, φ) ∈
Mh × Ψh × Φh is such that

〈 [[Û × n]], δt〉Eh
= 〈g × n, δt〉∂Ω ∀ δt ∈ Gh,(3.23a)

〈 [[Û · n]], ψ〉Eh
= 〈g · n, ψ〉∂Ω ∀ ψ ∈ Ψh,(3.23b)

〈n× γt + ρ n, grad ξ〉∂Ωh
= (f , grad ξ)Ωh

∀ ξ ∈ Φh,(3.23c)
(P, 1)Ω = 0.(3.23d)

Then (W,U,P) = (ωh,uh, ph), γt = (ω̂h)t, and ρ = p̂h.
Proof. The proof is similar to the analogous proofs in the previous three cases and

begins with the observation that (W,U,P) satisfies the weak formulation (2.2) by the
definition of the local solver (3.21) and condition (3.23c). Next, the jump conditions
(3.23a) and (3.23b) imply that

[[Û× n]] = 0 and [[Û · n]] = 0 on E oh .
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Inserting the definition of the numerical traces (3.21e) and (3.21f), we readily obtain
that, on E oh ,

[[U× n]] +
1
τ+
t

(W+)t +
1
τ−t

(W−)t −
(

1
τ+
t

+
1
τ−t

)
γt = 0,

[[U · n]] +
1
τ+
n

P+
h +

1
τ−n

P−h −
(

1
τ+
n

+
1
τ−n

)
ρ = 0,

or, equivalently,

γt =
(
τ−t (W+)t + τ+

t (W−)t
τ−t + τ+

t

)
+
(

τ−t τ+
t

τ−t + τ+
t

)
[[U × n]],

ρ =
(
τ−n P+ + τ+

n P−

τ−n + τ+
n

)
+
(

τ−n τ+
n

τ−n + τ+
n

)
[[U · n]].

Hence,

(Û)t =
(
τ+
t (U+)t + τ+

t (U−)t
τ−t + τ+

t

)
+
(

τ+
t τ−t

τ−t + τ+
t

)
[[n×W]],

(Û)n =
(
τ+
n (U+)n + τ−n (U−)n

τ−n + τ+
n

)
+
(

1
τ−n + τ+

n

)
[[P n]].

In other words, (W,U,P) satisfies (2.2), (2.5), and (2.6). By the uniqueness result of
Proposition 2.1(2), we can now conclude that the approximation (W,U,P) coincides
with (ωh,uh, ph) and consequently γt = (ω̂h)t and ρ = p̂h.

Next, we give a characterization of the approximate solution in terms of the local
solutions

(Wγt
,Uγt

,Pγt
) := LIV(γt, 0, 0,0), (Wρ,Uρ,Pρ) := LIV(0, ρ, 0,0),

(Wφ,Uφ,Pφ) := LIV(0, 0, φ,0), (Wf ,Uf ,Pf ) := LIV(0,0, 0,f).

Note that

(3.24) (Wφ,Uφ,Pφ) = (0, gradφ, 0)

by direct verification in (3.21). The next theorem gives a mixed problem for the nu-
merical traces γt, ρ together with the volumetric unknown φ. The presence of the
variable φ defined within the elements (and not element boundaries, as in the pre-
vious cases) may appear to annul the potential advantages of dimensional reduction
brought about by hybridization. However, this is not the case because φ is completely
determined by its values on element boundaries.

Theorem 3.8 (characterization of the approximate solution). We have that

ωh = Wγt
+ Wρ + Wf ,

uh = Uγt
+ Uρ + Uf + gradφ,

ph = Pλo
t

+ Pρ + Pf ,

where (γt, ρ, φ) is the only element of (Gh)t × Ψh × Φh such that

ah(γt, δt) + bh(ρ, δt) + ch(φ, δt) = �1(μt),
bh(ψ,γt) + dh(ρ, ψ) + eh(φ, ψ) = �2(ψ),
−ch(ξ,γt)− eh(ξ, ρ) = �3(ξ)
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for all (δt, ψ, ξ) ∈ (Gh)t × Ψh × Φh, and

(Pγt
+ Pρ + Pf , 1)Ω = 0.

Here

ah(γt, δt) := (Wγt
,Wδt

)Ωh
+
〈

1
τn

Pγt
,Pδt

〉
∂Ωh

+
〈

1
τt
n× (γt −Wγt

),n× (δt −Wδt
)
〉
∂Ωh

,

bh(ρ, δt) := −
〈

Uδt
+

1
τn

Pδt
, ρ
∂Ωh

〉
,

ch(φ, δ) := 〈n× gradφ, δt〉∂Ωh
,

dh(ρ, ψ) := (Wρ,Wψ)Ωh
+
〈

1
τn

(ρ− Pρ), (ψ − Pψ)
〉
∂Ωh

+
〈

1
τt
n×Wρ,n×Wψ

〉
∂Ωh

,

eh(φ, ψ) := −〈gradφ · n, ψ〉∂Ωh
,

and

�1(δt) := −(f ,Uδt
)Ωh
− 〈g × n, δt〉∂Ω,

�2(ψ) := −(f ,Uψ)Ωh
− 〈g · n, ψ〉∂Ω,

�3(ψ) := +(f , grad ξ)Ωh
.

3.5. Summary. We have shown how to hybridize the HDG methods in four
different ways according to the choice of globally coupled variables. These variables
are described in Table 3.1 for each of the hybridizations we considered. They are
referred to as unknowns therein since all the other variables can be eliminated from
the original equations. The corresponding discrete transmission conditions appear
alongside under the heading jump conditions. The primary motivation for all these
hybridizations is the reduction in the number of global degrees of freedom achieved
by the elimination of volumetric unknowns ωh,uh, and ph. The variational equations
on the mesh faces that we derived in each type result in significantly smaller systems,
especially in the high order case.

Table 3.1

The unknowns and jump conditions for the hybridizations.

Type Unknowns Jump conditions

I (ûh)t p̂h [[n× (ω̂h)t]] = 0 [[(ûh)n · n]] = 0
II (ûh)t (ûh)n ph [[n× (ω̂h)t]] = 0 [[p̂h n]] = 0
III (ω̂h)t (ûh)n ph [[(ûh)t × n]] = 0 [[p̂h n]] = 0
IV (ω̂h)t p̂h φh [[(ûh)t × n]] = 0 [[(ûh)n · n]] = 0

For DG methods, the possibility of deriving a hybridized formulation is strongly
dependent on the structure of the numerical traces. Although we gave expressions for
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the numerical traces in the traditional DG format as in (2.5), we should note that the
numerical traces on which the jump conditions are imposed can be expressed element
by element. Indeed, on the boundary of each mesh element K, the numerical traces
on which the jump conditions are imposed have the following expressions using the
values of variables from just that element:

Type I:

⎧⎨
⎩

(ω̂h)t = (ωh)t + τt (uh − (ûh)t)× n on ∂K

(ûh)n = (uh)n +
1
τn

(ph − p̂h)n on ∂K,
(3.25)

Type II:

{
(ω̂h)t = (ωh)t + τt (uh − (ûh)t)× n on ∂K,

p̂h = ph + τn (uh − (ûh)n) · n on ∂K,
(3.26)

Type III:

⎧⎨
⎩ (ûh)t = (uh)t +

1
τt
n× (ωh − (ω̂h)t) on ∂K,

p̂h = ph + τn (uh − (ûh)n) · n, on ∂K,
(3.27)

Type IV:

⎧⎪⎪⎨
⎪⎪⎩

(ûh)t = (uh)t +
1
τt
n× (ωh − (ω̂h)t) on ∂K,

(ûh)n = (uh)n +
1
τn

(ph − (p̂h)t) n on ∂K.
(3.28)

Finally, let us note that in the rewritten expressions of the numerical traces above,
it is easy to formally set the parameters τt, τn to either zero or infinity, which gives rise
to numerical methods we can think of as being limiting cases of the HDG methods. In
Table 3.2, for each of these limiting cases, we give the associated continuity properties
of some of the components of the approximate solution as well as the corresponding
natural hybridizations.

Table 3.2

The continuity properties induced by the formal limits.

Formal limit Continuity property Hybridization type

τt = 0 ωh ∈ H(curl,Ω) I, II
1
τt

= 0 uh ∈ H(curl,Ω) III, IV

τn = 0 ph ∈ C0(Ω) II, III
1

τn
= 0 uh ∈ H(div,Ω) I, IV

In particular, if we use the hybridizations of Type I or IV and formally set τn =∞
in (3.25) or (3.28), we immediately obtain that uh ∈ H(div,Ω) by the jump condi-
tion (3.6c) (respectively, jump condition (3.23b)) for the Type I (respectively, Type
IV) boundary conditions. We also immediately see that the discrete incompressibility
condition (2.2c) becomes

(divuh, q)Ωh
= 0 ∀ q ∈ Ph,

and if we assume, as in Proposition 2.1, that

divV (K) ⊂ P (K) ∀ K ∈ Ωh,

we can conclude that our approximate velocity uh is strongly incompressible. That
is, the distributional divergence of the numerical velocity approximation satisfies
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divuh = 0 in all Ω. It is interesting that even though the space V h is a space of com-
pletely discontinuous functions, we are able to recover such a velocity approximation.
The first DG methods producing strongly incompressible velocities were introduced,
in the framework of the Navier–Stokes equations, in [12] and were later more explicitly
developed in [13]; see also [21], where this idea is applied to square and cube elements.
Another DG method able to provide strongly incompressible velocities is the method
introduced in [3]. It uses a velocity space V h of exactly divergence-free velocities and
uses a hybridization technique to avoid the almost impossible task of constructing its
bases.

Unfortunately, the above-mentioned methods do not fit into our setting. The
methods in [12, 13] do not use the vorticity as an unknown; instead, they use the
gradient of the velocity. The method in [3] almost fits into our setting except for the
fact that the numerical traces for the tangential vorticity and the tangential velocity
do not coincide for any finite values of τ±t . If, on the other hand, we formally set
τ−t = ∞ and then take τ+

t = 0, we do recover the general form of the numerical
traces considered in [3]. However, in that case, the numerical trace for the tangential
vorticity becomes independent of the tangential velocity. This is certainly not the case
for the scheme treated in [3].

In Table 3.3, we describe four special limiting cases. Most finite element methods
for the Stokes problem use approximate velocities uh in H1(Ω) (see [2]); they thus
correspond to the case 1

τt
= 1

τn
= 0. The method introduced by Nédélec in [17]

corresponds to the case τt = 1
τn

= 0; its hybridization was carried out in [7, 8].

Table 3.3

Four special formal limits of HDG methods.

τt = 0 1
τt

= 0

τn = 0
ωh ∈ H(curl,Ω)
ph ∈ C0(Ω)

Type II hybridization

uh ∈ H(curl,Ω)
ph ∈ C0(Ω)

Type III hybridization

1
τn

= 0
ωh ∈ H(curl,Ω)
uh ∈ H(div,Ω)

Type I hybridization

uh ∈ H(curl,Ω)
uh ∈ H(div,Ω)

Type IV hybridization

4. Proofs of the characterization theorems.

4.1. Preliminaries. We begin by proving an auxiliary identity that we will use
in all our proofs. It is stated in terms of functions (wh,uh, ph) in W h×V h×Ph that
are assumed to satisfy the equations

(wh, τ )Ωh
− (uh, curl τ )Ωh

= −〈ûh,n× τ 〉∂Ωh
,(4.1a)

(wh, curl v)Ωh
− (ph, div v)Ωh

= (f,v − Pv)Ωh
− 〈p̂h, (v − Pv) · n〉∂Ωh

(4.1b)
− 〈ŵh, (v − Pv)× n〉∂Ωh

,

−(uh, grad q)Ωh
= −〈ûh · n, q − Pq〉∂Ωh

(4.1c)

for all (τ ,v, q) ∈W h×V h×Ph. Here P is a projection from Ph, and P is a projection
from V h. Their ranges are denoted by ψh and Hh, respectively. The symbols ŵh, ûh,
and p̂h, while evocative of numerical traces, are not assumed to be related to the
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variables (wh,uh, ph) as in (2.5), nor are they assumed to be single valued on Eh.
They simply denote some given functions on ∂Ωh.

Lemma 4.1. Let (wh,uh, ph) be a function satisfying (4.1a) and (4.1c), and let
(w′h,u

′
h, p
′
h) be a function satisfying (4.1b) with f, ŵh, and p̂h replaced by f ′, ŵ′h, and

p̂′h, respectively. Then

−〈ûh,n× ŵ′h + n p̂′h〉∂Ωh
= (wh,w

′
h)Ωh

− 〈ûh − uh,n× (ŵ′h − w′h) + n (p̂′h − p′h)〉∂Ωh

− (uh, f ′)Ωh

whenever (Puh,Pp′h) = (0, 0).
Proof. By (4.1a) with τ := w′h, we have that

(wh,w
′
h)Ωh

= (uh, curlw′h)Ωh
− 〈ûh,n×w′h〉∂Ωh

and so, after integration by parts,

(wh,w
′
h)Ωh

= (curl uh,w′h)Ωh
+ 〈uh − ûh,n×w′h〉∂Ωh

.

By (4.1b) with v := uh, and with wh,uh, ph, and f replaced by w′h,u
′
h, p
′
h, and f ′,

respectively, we get

(wh,w
′
h)Ωh

= − 〈ŵ′h, (uh − Puh)× n〉∂Ωh
+ 〈uh − ûh,n×w′h〉∂Ωh

+ (p′h, div uh)Ωh
− 〈p̂′h, (uh − Puh) · n〉∂Ωh

+ (f ′,uh − Puh)Ωh

= − 〈uh,n× ŵ′h, 〉∂Ωh
+ 〈uh − ûh,n×w′h〉∂Ωh

+ (div uh, p
′
h)Ωh

− 〈uh · n, p̂′h〉∂Ωh
+ (uh, f ′)Ωh

since Puh = 0. If we now integrate by parts, we get

(wh,w
′
h)Ωh

= − 〈uh,n× ŵ′h, 〉∂Ωh
+ 〈uh − ûh,n×w′h〉∂Ωh

− (uh, gradp′h)Ωh
− 〈uh · n, p̂′h − p′h〉∂Ωh

+ (uh, f ′)Ωh
,

and by (4.1c) with q := p′h,

(wh,w
′
h)Ωh

=− 〈uh,n× ŵ′h, 〉∂Ωh
+ 〈uh − ûh,n×w′h〉∂Ωh

− 〈ûh · n, p′h − Pp′h〉∂Ωh
− 〈uh · n, p̂′h − p′h〉∂Ωh

+ (uh, f ′)Ωh

=− 〈ûh,n× ŵ′h, 〉∂Ωh
+ 〈uh − ûh,n× (w′h − ŵ′h)〉∂Ωh

− 〈ûh · n, p̂′h〉∂Ωh
+ 〈(ûh − uh) · n, p̂′h − p′h〉∂Ωh

+ (uh, f ′)Ωh

since Pp′h = 0. The result now follows after a simple rearrangement of terms. This
completes the proof.

The following immediate consequence of this result will also be useful.
Corollary 4.2. Let (wh,uh, ph) be a function satisfying (4.1), and let (w′h,

u′h, p
′
h) be a function satisfying (4.1) with f, ŵh, ûh, and p̂h replaced by f ′, ŵ′h, û′h,

and p̂′h, respectively. Then we have

−〈ûh,n× ŵ′h + n p̂′h〉∂Ωh
+ (uh, f ′)Ωh

= −〈û′h,n× ŵh + n p̂h〉∂Ωh
+ (u′h, f)Ωh

,

provided (Puh,Pph) = (Pu′h,Pp′h) = (0, 0) and

−〈ûh−uh,n×(ŵ′h−w′h)+n (p̂′h−p′h)〉∂Ωh
= −〈û′h−u′h,n×(ŵh−wh)+n (p̂h−ph)〉∂Ωh

.
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4.2. Proof of the characterization of Theorem 3.2. To prove the char-
acterization of Theorem 3.2, we are going to use several key identities gathered in
the following result. Recall the definitions of specific local solutions in (3.7) (such as
Wλt

,Uλt
, etc.). We denote by Ŵ� and Û� the corresponding numerical traces, for

all choices of the subscript “
” that make sense in the discussion of this hybridization
case:

Ŵλt = Wλt + τt (Uλt − λt)× n, Ûλt = Uλt +
1
τn

Pλt n,(4.2a)

Ŵρ = Wρ + τt (Uρ × n), Ûρ = Uρ +
1
τn

(Pρ − ρ)n,(4.2b)

Ŵf = Wf + τt (Uf × n), Ûf = Uf +
1
τn

Pf n.(4.2c)

Clearly these equations are inherited from the definitions (3.4d) and (3.4e).
Lemma 4.3 (elementary identities). For any λt,μt ∈ L2(Eh), any ρ, ψ ∈ L2(Eh),

and any f ∈ L2(Ω), we have

−〈 [[n× Ŵλt
]],μt〉Eh

= (Wλt
,Wμt

)Ωh
+ 〈τt(λt −Uλt

)t, (μt −Uμt
)t〉∂Ωh

+
〈

1
τn

Pλt
,Pμt

〉
∂Ωh

−〈 [[n× Ŵρ]],μt〉Eh
= 〈 [[Ûμt

· n]], ρ〉Eh
,

−〈 [[n× Ŵf ]],μt〉Eh
=− (f ,Uμt

)Ωh

and

−〈 [[Ûλt · n]], ψ〉Eh
= 〈 [[n× Ŵψ]],λt〉Eh

,

−〈 [[Ûρ · n]], ψ〉Eh
= (Wρ,Wψ)Ωh

+ 〈τt(Uρ)t, (Uψ)t〉∂Ωh

+
〈

1
τn

(Pρ − ρ), (Pψ − ψ)
〉
∂Ωh

,

−〈 [[Ûf · n]], ψ〉Eh
= + (f ,Uψ)Ωh

.

Proof. In all the applications of Lemma 4.1 and Corollary 4.2 in this proof, we
take (P,P) = (0, 0). Observe that (4.1) is satisfied by (wh,uh, ph) = (Wμt

,Uμt
,Pμt

)
if we set

(ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵμt
,μt, (Ûμt

)n, 0,0).

The system (4.1) is also satisfied by (w′h,u
′
h, p
′
h) = (Wλt

,Uλt
,Pλt

) if we set

(ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f

′) = (Ŵλt
,λt, (Ûλt

)n, 0,0).

Hence, by Lemma 4.1,

− 〈 [[n× Ŵλt ]],μt〉Eh
= (Wλt ,Wμt

)Ωh
− 〈μt −Uμt

, n× (Ŵλt −Wλt)〉∂Ωh

− 〈Ûμt
−Uμt

, n (0− Pλt
) 〉∂Ωh

.

The first identity of the lemma follows from this and the identities defining the nu-
merical traces such as (4.2).
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The second identity of the lemma follows just as the fourth; see below. The third
identity follows from Corollary 4.2. It is easy to check that the conditions of the
corollary are satisfied with

(wh,uh, ph) = (Wμt
,Uμt

,Pμt
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵμt

,μt, (Ûμt
)n, 0,0),

(w′h,u
′
h, p
′
h) = (Wf ,Uf ,Pf ), (ŵ′h, (û

′
h)t, (û

′
h)n, p̂

′
h, f
′) = (Ŵf ,0, (Ûf )n, 0,f).

Hence the corollary implies that

−〈ut,n× Ŵf 〉∂Ωh
+ (Uμ,f)Ωh

= −〈ûh,n× ŵ′h〉∂Ωh
+ (uh, f ′)Ωh

= −〈û′h,n× ŵh〉∂Ωh
+ (u′h, f)Ωh

= −〈0,n× Ŵμ〉∂Ωh

= 0,

and the required identity follows.
The fourth identity also follows from Corollary 4.2 after verifying its conditions

with

(wh,uh, ph) = (Wλt ,Uλt ,Pλt), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵλt ,λt, (Ûλt)n, 0,0),

(w′h,u
′
h, p
′
h) = (Wψ,Uψ,Pψ), (ŵ′h, (û

′
h)t, (û

′
h)n, p̂

′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

The fifth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wρ,Uρ,Pρ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵρ,0, (Uρ)n, ρ,0),

(w′h,u
′
h, p
′
h) = (Wψ,Uψ,Pψ), (ŵ′h, (û

′
h)t, (û

′
h)n, p̂

′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

The sixth identity follows from Corollary 4.2 after verifying its conditions with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (Ŵμt
,0, (Ûf )n, 0,f),

(w′h,u
′
h, p
′
h) = (Wψ ,Uψ,Pψ), (ŵ′h, (û

′
h)t, (û

′
h)n, p̂

′
h, f

′) = (Ŵψ,0, (Ûψ)n, ψ,0).

This completes the proof of the lemma.
Proof of Theorem 3.2. By the jump conditions (3.6b) and (3.6c),

−〈 [[n× (Ŵλo
t

+ Ŵρ)]],μt〉Eh
= 〈 [[n× (Ŵf + Ŵg)]],μt〉Eh

,

−〈 [[(Ûλo
t

+ Ûρ) · n]], ψ〉Eh
= 〈 [[(Ûf + Ûg) · n]], ψ〉Eh

− 〈g · n, ψ〉∂Ω.

By Lemma 4.3, we have that

− 〈 [[n× Ŵλo
t
]],μt〉Eh

= ah(λot ,μt), − 〈 [[Ûλo
t
· n]], ψ〉Eh

= −bh(ψ,λot ),
− 〈 [[n× Ŵρ]],μt〉Eh

= bh(ρ,μt), − 〈 [[Ûρ · n]], ψ〉Eh
= ch(ρ, ψ).

In order to prove (3.8a) and (3.8b), we now have only to show that �1 = �̃1 and
�2 = �̃2, where

�̃1(μt) := 〈 [[n× Ŵf ]],μt〉Eh
+ 〈 [[n× Ŵg]],μt〉Eh

,

�̃2(ψ) := 〈 [[Ûf · n]], ψ〉Eh
+ 〈 [[Ûg · n]], ψ〉Eh

− 〈g · n, ψ〉∂Ω.
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But, again by Lemma 4.3, we have

�̃1(μt) = (f ,Uμt
)Ωh
− ah(g,μt)

= �1(μt).

Similarly, applying Lemma 4.3 one more time,

�̃2(ψ) = −(f ,Uψ)Ωh
− 〈g, [[n× Ŵψ]]〉Eh

− 〈g · n, ψ〉∂Ω

= −(f ,Uψ)Ωh
+ bh(ψ, gt)− 〈g · n, ψ〉∂Ω

= �2(ψ).

It now only remains to prove that (λot , ρ) is the only solution of (3.8a)–(3.8c).
First observe that the above arguments in fact show that the jump conditions (3.6b)
and (3.6c) hold if and only if (3.8a) and (3.8b) hold, respectively. Hence if (λ̃

o

t , ρ̃) is
another solution of (3.8a)–(3.8c), then the numerical traces generated by LI(λ̃

o

t , ρ̃,f )
will also satisfy (3.6b) and (3.6c). But then, since (3.8c) implies (3.6d), we find that
all the conditions of Theorem 3.1 are verified, so we conclude that λ̃

o

t +gt = (ûh)t and
ρ̃ = p̂h. Since we also have (λot+gt, ρ) = ((ûh)t, p̂h), we conclude that (λ̃

o

t , ρ̃) = (λot , ρ).
This completes the proof of Theorem 3.2.

4.3. Proof of the characterization of Theorem 3.4. To prove Theorem 3.4,
we proceed as in the previous case and gather several key identities in the following
result. Recall the definitions of specific local solutions in (3.15) (such as Wλ,Uλ, etc.).
The numerical traces Ŵ� and P̂� are given by (3.11) for the choices of subscript 

that make sense here, such as when 
 is λ, ρ, or f , e.g.,

P̂λ = Pλ + τn (Uλ − λ) · n, Ŵρ = Wρ + τt Uρ × n,

just as in the previous case.
Lemma 4.4 (elementary identities). For any λ,μ ∈ L2(Eh), any ρ ∈ �2(∂Ωh),

and any f ∈ L2(Ω), we have

−〈 [[n× Ŵλ + P̂λ n]],μ〉Eh
= (Wλ,Wμ)Ωh

+ 〈τt(λ−Uλ)t, (μ−Uμ)t〉∂Ωh

+ 〈τn(λ−Uλ)n, (μ−Uμ)n〉∂Ωh
,

−〈 [[n× Ŵρ + P̂ρ n]],μ〉Eh
= −〈ρ,μ · n〉∂Ωh

,

−〈 [[n× Ŵf + P̂f n]],μ〉Eh
= − (f ,Uμ)Ωh

.

Proof. The second identity immediately follows because by (3.16),

n× Ŵρ + n P̂ρ = +ρ n.

To prove the remaining identities, we set P = 0 and Pψ = ψ̄ (where ψ̄ is as
defined in (3.12)) and apply Lemma 4.1 and Corollary 4.2 appropriately. Indeed, to
prove the first identity, first observe that (4.1) is satisfied by

(w′h,u
′
h, p
′
h) = (Wλ,Uλ,Pλ) with (ŵ′h, û

′
h, p̂
′
h, f

′) = (Ŵλ,λ, P̂λ,0), and

(wh,uh, ph) = (Wμ,Uμ,Pμ) with (ŵh, ûh, p̂h, f) = (Ŵμ,μ, P̂μ,0).

Furthermore, PPλ = 0. Hence the first identity follows by applying Lemma 4.1.
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Similarly, the last identity follows from Corollary 4.2, setting

(w′h,u
′
h, p
′
h) = (Wf ,Uf ,Pf ), (ŵ′h, û

′
h, p̂
′
h, f

′) = (Ŵf ,0, P̂f ,f) and

(wh,uh, ph) = (Wμ,Uμ,Pμ), (ŵh, ûh, p̂h, f) = (Ŵμ,μ, P̂μ,0).

This completes the proof of the identities.
Proof of Theorem 3.4. By the jump conditions (3.14b) and (3.14c),

−〈 [[n× Ŵλo + P̂λo n+ n× Ŵρ + P̂ρn]],μ〉Eh

= 〈 [[n× Ŵf + P̂f n+ n× Ŵg + P̂g n]],μ〉Eh
.

By Lemma 4.4, we have that

−〈 [[n× Ŵλo + P̂λo n]],μ〉Eh
= ah(λo,μ),

−〈 [[n× Ŵρ + P̂ρn]],μ〉Eh
= bh(ρ,μ).

It remains to show that the form �(·) of the theorem coincides with �̃ defined by

�̃(μ) := 〈 [[n× Ŵf + P̂f n]],μ〉Eh
+ 〈 [[n× Ŵg + P̂g n]],μ〉Eh

.

But, again by Lemma 4.4, we have

�̃(μ) = (f ,Uμ)Ωh
− ah(g,μ)

= �(μ).

The proof of uniqueness of the trace solution (λo, ρ) proceeds as in the Type I
case, so we omit it.

4.4. Proof of the characterization of Theorem 3.6. We now prove Theo-
rem 3.6, using the identities gathered in the next lemma. The notation for the numer-
ical traces of the form Û� and P̂� have meanings inherited from (3.18e) and (3.18f)
as in the previous cases.

Lemma 4.5 (elementary identities). For any γt, δt ∈ L2(Eh), any λn,μn ∈
L2(Eh), any ρ, ψ ∈ L2(Eh), and any f ∈ L2(Ω), we have

−〈 [[Ûγt
× n]], δt〉Eh

= (Wγt
,Wδt

)Ωh
+
〈
τn(Uγt

)n, (Uδt
)n
〉
∂Ωh

+
〈

1
τt
n× (γt −Wγt

),n× (δt −Wδt
)
〉
∂Ωh

,

−〈 [[Ûλn × n]], δt〉Eh
= 〈 [[P̂δt n]],λn〉Eh

,

−〈 [[Ûρ × n]], δt〉Eh
= 0,

−〈 [[Ûf × n]], δt〉Eh
= (f ,Uδt

)Ωh

and

−〈 [[P̂γt
n]],μn〉Eh

= 〈 [[Ûμn
× n]],γt〉Eh

,

−
〈

[[P̂λn
n]],μn

〉
Eh

= (Wλn
,Wμn

)Ωh
+
〈

1
τt
n×Wλn

,n×Wμn

〉
∂Ωh

+ 〈τn(λn −Uλn
)n, (μn −Uμn

)n〉∂Ωh
,

−〈 [[P̂ρn]],μn〉Eh
= −〈ρ,μn · n〉∂Ωh

−〈 [[P̂f n]],μn〉Eh
= −(f ,Uμn

)Ωh
.
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Proof. The third and seventh identities immediately follow because Ûρ = 0 and
P̂ρ = ρ.

For proving the remaining identities, we apply Lemma 4.1 and Corollary 4.2 with
P = 0 and Pψ = ψ̄. To prove the first identity, observe that (4.1) is satisfied by

(w′h,u
′
h, p
′
h) = (Wδt

,Uδt
,Pδt

) with (ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f

′) = (δt, (Ûδt
)t, 0, P̂δt

,0).

Equation (4.1) is also satisfied by

(w′h,u
′
h, p
′
h) = (Wγt

,Uγt
,Pγt

) with (ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f

′) = (γt, (Ûγt
)t, 0, P̂γt

,0).

Since we also have PPδt
= 0 because of (3.18d), all the conditions for applying

Lemma 4.1 are satisfied. Thus the first identity follows from Lemma 4.1.
The second identity follows like the fifth; see below. The fourth identity follows

from Corollary 4.2 with

(w′h,u
′
h, p
′
h) = (Wδt

,Uδt
,Pδt

), (ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f

′) = (δt, (Ûδt
)t, 0, P̂δt

,0),

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûf )t,0, P̂f ,f ).

The fifth identity follows from Corollary 4.2 with

(w′h,u
′
h, p
′
h) = (Wγt

,Uγt
,Pγt

), (ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f

′) = (γt, (Ûγt
)t, 0, P̂γt

,0),

(wh,uh, ph) = (Wμn
,Uμn

,Pμn
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûμn

)t,μn, P̂μn
,0).

The sixth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wμn
,Uμn

,Pμn
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûμn

)t,μn, P̂μn
,0),

(w′h,u
′
h, p
′
h) = (Wλn

,Uλn
,Pλn

), (ŵ′h, (û
′
h)t, (û

′
h)n, p̂

′
h, f
′) = (0, (Ûλn

)t,λn, P̂λn
,0).

The eighth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wμn
,Uμn

,Pμn
), (ŵh, (ûh)t, (ûh)n, p̂h, f) = (0, (Ûμn

)t,μn, P̂μn
,0),

(w′h,u
′
h, p
′
h) = (Wf ,Uf ,Pf ), (ŵ′h, (û

′
h)t, (û

′
h)n, p̂

′
h, f
′) = (0, (Ûf )t,0, P̂f ,f).

This completes the proof.
Proof of Theorem 3.6. By the jump conditions (3.20b) and (3.20c),

−〈 [[(Ûγt
+ Ûλo

n
+ Ûρ)× n]], δt〉Eh

= 〈 [[(Ûft
+ Ûgn

)× n]], δt〉Eh
− 〈gt × n, δt〉∂Ω,

−〈 [[(P̂γt
+ P̂λo

n
+ P̂ρ) n]],μn〉Eh

= 〈 [[(P̂f t
+ P̂gn

) n]],μn〉Eh
.

By Lemma 4.5, we have that

− 〈 [[Ûγt
× n]], δt〉Eh

= ah(λot , δt), − 〈 [[P̂γt
n]],μn〉Eh

= −bh(μn,γt),
− 〈 [[Ûλo

n
× n]], δt〉Eh

= bh(λon, δt), − 〈 [[P̂λo
n
n]],μn〉Eh

= ch(λon,μn),

− 〈 [[Ûρ × n]], δt〉Eh
= 0, − 〈 [[P̂ρ n]],μn〉Eh

= d(ρ,μn).

It remains to show that �1 = �̃1 and �2 = �̃2, where

�̃1(δt) := −〈 [[(Ûf + Ûgn
)× n]], δt〉Eh

− 〈gt × n, δt〉∂Ω,

�̃2(ψ) := 〈 [[(P̂f t
+ P̂gn

) n]],μn〉Eh
.



HYBRIDIZABLE DG METHODS FOR STOKES FLOW 1123

But, again by Lemma 4.5, we have

�̃1(δt) = −(f ,Uδt
)Ωh
− bh(gn, δt)− 〈gt × n, δt〉∂Ω

= �1(δt),

and, similarly, by Lemma 4.5,

�̃2(μn) = (f ,Uμn
)Ωh
− ch(gn,μn)

= �2(μn).

The proof of Theorem 3.6 is completed by also establishing the uniqueness as in the
previous cases.

4.5. Proof of the characterization of Theorem 3.8. To prove Theorem 3.8,
we use the identities below. The numerical traces of the form Û� appearing in these
identities are defined using (3.21e) and (3.21f) as in the previous cases for all possible
choices of the subscripts 
 that make sense for this case.

Lemma 4.6 (elementary identities). For any γt, δt ∈ L2(Eh), any ρ, ψ ∈ L2(Eh),
any φ ∈ H1(Ωh), and any f ∈ L2(Ω), we have

−〈 [[Ûγt
× n]], δt〉Eh

= (Wγt
,Wδt

)Ωh
+
〈

1
τn

Pγt
,Pδt

〉
∂Ωh

+
〈

1
τt
n× (γt −Wγt

),n× (δt −Wδt
)
〉
∂Ωh

,

−〈 [[Ûρ × n]], δt〉Eh
= −〈 [[Ûδt

· n]], ρ〉Eh
,

−〈 [[Ûφ × n]], δt〉Eh
= 〈n× gradφ, δt〉∂Ωh

,

−〈 [[Ûf × n]], δt〉Eh
= +(f ,Uδt

)Ωh

and

−〈 [[Ûγt
· n]], ψ〉Eh

= −〈 [[Ûψ × n]],γt〉Eh

−〈 [[Ûρ · n]], ψ〉Eh
= (Wρ,Wψ)Ωh

+
〈

1
τn

(ρ− Pρ), (ψ − Pψ)
〉
∂Ωh

+
〈

1
τt
n×Wρ,n×Wψ

〉
∂Ωh

,

−〈 [[Ûφ · n]], ψ〉Eh
= −〈gradφ · n, ψ〉∂Ωh

,

−〈 [[Ûf · n]], ψ〉Eh
= +(f ,Uψ)Ωh

.

Proof. The third and seventh identities are immediate because (3.24) implies that

Ûφ = gradφ.

In the remainder of the proof, whenever we apply Lemma 4.1 or Corollary 4.2 we take
Pv = gradφv and P = 0. To prove the first identity, we proceed as in the previous
cases and apply Lemma 4.1 (now additionally noting that PUγt

= 0) with

(wh,uh, ph) = (Wγt
,Uγt

,Pγt
), (ŵh, ûh, p̂h, f) = (γt, Ûγt

, 0,0),

(w′h,u
′
h, p
′
h) = (Wδt

,Uδt
,Pδt

), (ŵ′h, û
′
h, p̂
′
h, f
′) = (δt, Ûδt

, 0,0).
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The second identity is proved just like the fifth; see below. The fourth identity follows
from Corollary 4.2 with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, ûh, p̂h, f) = (0, Ûf , 0,f),

(w′h,u
′
h, p
′
h) = (Wδt

,Uδt
,Pδt

), (ŵ′h, û
′
h, p̂
′
h, f
′) = (δt, Ûδt

, 0,0),

The fifth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wγt
,Uγt

,Pγt
), (ŵh, ûh, p̂h, f) = (γt, Ûγt

, 0,0),

(w′h,u
′
h, p
′
h) = (Wψ,Uψ ,Pψ), (ŵ′h, û

′
h, p̂
′
h, f
′) = (0, Ûψ, ψ,0).

The sixth identity follows from Lemma 4.1 with

(wh,uh, ph) = (Wρ,Uρ,Pρ), (ŵh, ûh, p̂h, f) = (0, Ûρ, ρ,0),

(w′h,u
′
h, p
′
h) = (Wψ ,Uψ,Pψ), (ŵ′h, û

′
h, p̂
′
h, f
′) = (0, Ûψ, ψ,0).

The eighth identity follows from Corollary 4.2 with

(wh,uh, ph) = (Wf ,Uf ,Pf ), (ŵh, ûh, p̂h, f) = (0, Ûf , 0,f),

(w′h,u
′
h, p
′
h) = (Wψ,Uψ,Pψ), (ŵ′h, û

′
h, p̂
′
h, f
′) = (0, Ûψ, ψ,0).

Proof of Theorem 3.8. By the jump conditions (3.23b) and (3.23c),

−〈 [[(Ûγt
+ Ûρ + Ûφ)× n]], δt〉Eh

= 〈 [[(Ûf × n]], δt〉Eh
− 〈g × n, δt〉∂Ω,

−〈 [[(Ûγt
+ Ûρ + Ûφ) · n]], ψ〉Eh

= 〈 [[Ûf · n]], ψ〉Eh
− 〈g · n, ψ〉∂Ω.

By Lemma 4.6, we have that

− 〈 [[Ûγt
× n]], δt〉Eh

= ah(γt, δt), − 〈 [[Ûγt
· n]], ψ〉Eh

= bh(ψ,γt),

− 〈 [[Ûρ × n]], δt〉Eh
= bh(ρ, δt), − 〈 [[Ûρ · n]], ψ〉Eh

= dh(ρ, ψ),

− 〈 [[Ûφ × u]], δt〉Eh
= ch(φ, δt), − 〈 [[Ûφ · n]], ψ〉Eh

= eh(φ, ψ),

and that

〈 [[(Ûf × n]], δt〉Eh
− 〈g × n, δt〉∂Ω = �1(δt),

〈 [[Ûf · n]], ψ〉Eh
− 〈g · n, ψ〉∂Ω = �2(ψ).

The proof of Theorem 3.8 is now completed by a uniqueness argument as in the
previous cases.

5. Concluding remarks. In this paper, we introduced a new HDG method for
the Stokes system and showed four different ways of hybridizing it. In order for these
methods to be competitive with previously known ones [14, 20, 18, 19, 12, 15, 3, 13],
they need to be not only efficiently implemented, but also efficiently solved. We would
like to emphasize that our characterization theorems are a first step towards such a
goal since they shed light on the structure of the corresponding equations. However,
we feel that a meaningful study of those equations deserves a separate paper. The
design of efficient solvers for these methods constitutes work in progress.

Another subject that constitutes the subject of ongoing work is the analysis of
the accuracy of the methods. A careful a priori error analysis of the HDG methods
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should reveal the effect of the choice of the stabilization parameters τn and τt on
their accuracy. Let us recall that, in the context of second-order elliptic problems, the
HDG methods [10] were shown to be more accurate than all previously known DG
methods when their stabilization parameters are suitably chosen. In particular, when
using polynomial approximations of the same degree for both the solution and its
gradient, both approximations were shown to converge with optimal order; see [4, 11].
It is thus reasonable to expect that by a proper choice of the parameters τn and τt, the
HDG method using polynomial approximations of the same degree for the vorticity,
velocity, and pressure will also converge optimally in all three variables. This is work
in progress.
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NUMERICAL ANALYSIS OF A FINITE ELEMENT/VOLUME
PENALTY METHOD∗

BERTRAND MAURY†

Abstract. We present here some contributions to the numerical analysis of the penalty method
in the finite element context. We are especially interested in the ability provided by this approach
to use Cartesian, non boundary-fitted meshes to solve elliptic problems in complicated domain. In
the spirit of fictitious domains, the initial problem is replaced by a penalized one, posed over a
simply shaped domain which covers the original one. This method relies on two parameters, namely
h (space-discretization parameter) and ε (penalty parameter). We propose here a general strategy to
estimate the error in both parameters, and we present how it can be applied to various situations.
We pay special attention to a scalar version of the rigid motion constraint for fluid-particle flows.

Key words. finite element method, penalty, Poisson’s problem, error estimate
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1. Introduction. Because of its conceptual simplicity and the fact that it is
straightforward to implement, the penalty method has been widely used to incorporate
constraints in numerical optimization. The general principle can been seen as a relaxed
version of the following fact: given a proper functional J over a set X , and K a subset
of X , minimizing J over K is equivalent to minimizing JK = J + IK over X , where
IK is the indicatrix of K:

IK(x) =

∣∣∣∣∣ 0 if x ∈ K,
+∞ if x /∈ K.

Assume now that K is defined as K = {x ∈ X , Ψ(x) = 0}, where Ψ is a nonnegative
function; the penalty method consists in considering relaxed functionals Jε defined as

Jε = J +
1
ε
Ψ , ε > 0.

By definition of K, the function Ψ/ε approaches IK pointwisely:

1
ε
Ψ(x) −→ IK(x) as ε goes to 0 ∀x ∈ X.

If Jε admits a minimum uε, for any ε, one can expect uε to approach a (or the)
minimizer of J over K, if it exists.

In the finite element context, some uεh is computed as the solution to a finite di-
mensional problem, where h is a space-discretization parameter. The work we present
here is motivated by the fact that, even if the penalty method for the continuous prob-
lem is convergent and the discretization procedure is sound, the rate of convergence
of uεh toward the exact solution is not straightforward to obtain. A huge literature is
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2008; published electronically February 19, 2009.
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dedicated to the situation where the constraint is distributed over the domain, like
the divergence-free constraint for incompressible Stokes flows (see [BF91, GR79]).
In this context, the penalty approach makes it possible to use mixed finite element
methods which do not fulfill the so-called Babuska–Brezzi–Ladyzhenskaya (or inf-
sup) condition. The penalty approach is also commonly used to prescribe (possibly
nonhomogeneous) Dirichlet boundary conditions on a boundary. The pioneering pa-
pers [Nit71] and [Bab73] already addressed in the early 70’s the problem of error
estimation with respect to both parameters h and ε. Those works have been widely
used since then, and this area has recently experienced a regain of interest, triggered by
problems arising in domain decomposition (see, e.g., [BHS03]), discontinuous Galerkin
methods [BE07], or handling of discontinuities for elliptic problems with discontinuous
coefficients [HH02].

We will focus here on another type of constraints, namely geometrical ones: we
are interested in solving an elliptic problem on a domain Ω \ O, where Ω is a simply
shaped domain (e.g., a rectangle) and O a set of holes, and we aim at replacing it
by a new problem posed over the global domain Ω. The simplest situation one may
consider consists in solving a Poisson problem in a perforated, rectangular domain Ω,
with homogeneous Dirichlet boundary conditions on the holes and over the external
boundary. In the purpose of using a Cartesian mesh which covers the whole domain
(which can be of great interest if the holes are intended to move), it is natural to
consider the penalized version of the problem, which consists in minimizing (O designs
the subdomain covered by the holes)

1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

(
v2 + |∇v|2

)

over H1
0 (Ω). Another situation where the penalty approach has already proved to be

quite efficient is the modeling of fluid-particle flows (see [RPVC05] or [JLM05]). The
scalar version of this problem, which we shall address in detail in the following pages,
consists in minimizing the standard functional

J(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv

over all those functions which are constant on each connected component of the set of
holes O. Again, the constraint is easily relaxed by adding to J a term which penalizes
the H1 seminorm of v over O.

Two points advocate for the use of this approach:
1. The use of a Cartesian mesh makes this approach quite easy to implement:

both cases reduce to a few lines of instructions within user-friendly finite
element solvers like Freefem++ [FFp] for two-dimensional problems, or
Freefem3D [FFp] for three-dimensional ones. Note that the penalty terms do
not preserve the spectrum of the discrete Laplacian matrix, which prevents us
from using standard fast solvers like fast Fourier transform (to the contrary of
Lagrange multiplier based fictitious domain methods [PG02, GG95], which do
preserve the structure of the matrix, at the price of an iterative algorithm on
the Lagrange multipliers). A harmful effect upon the condition number of the
solution matrix is furthermore to be expected. Yet, as the penalty parameter
does not need to be taken too small, the method remains quite competitive
for reasonably sized problems.
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2. This method provides, with no extra computational cost, an approximation
of the Lagrange multiplier associated with the constraint, which is of great
significance from the modeling standpoint in many situations. For example,
in the first situation we considered, which can be seen as the stationary heat
equation, it is quite straightforward that, if we denote by uε the solution to
the discretized problem, ξε ∈ H−1 defined as

〈ξε , v〉 =
1
ε

∫
O

(uεv +∇uε · ∇v)

approximates the heat source which is necessary to fulfill the constraint. We
shall establish that this natural outcome of the method is still provided by
the discretized/penalized version. Note that this property has already been
used to handle numerically the motion of a three-dimensional turbine in a
Navier–Stokes fluid (see [DPM07]).

As for the theoretical analysis of the method, the error due to the fact that the
mesh is not boundary fitted is analyzed in [AR08, RAB07]. See also [SMSTT05] for
similar estimates used to establish the convergence of a method to handle the motion
of a rigid motion in the limit ε = 0. Yet, to the best of our knowledge, a full error
estimate (simultaneous convergence of h and ε toward 0) has not yet been provided
for the type of volume penalty approach we propose here. We aim here at showing
that the global error can be controlled, as expected, by the sum of the penalty error
and the space-discretization error, under quite general assumptions.

This paper is organized as follows: in section 2, we recall some standard properties
of the penalty method in the framework of constrained quadratic minimization, in-
cluding some general facts about the space discretization of those problems. Section 3
is devoted to the main result: an abstract estimate for the primal and the dual parts
of the discretized/penalized problem. The next section is concerned with a model
problem, in the spirit of fluid-particle flows, for which we present in detail how the
abstract estimate can be applied. Finally, we present in section 5 some other typical
situations where the abstract estimate can be used.

2. Preliminaries, abstract framework.

2.1. Continuous problem. We recall here some standard properties concerning
the penalty method applied to infinite dimensional problems. Most of those properties
are established in [BF91], with a slightly different formalism. We consider the following
set of assumptions:

(2.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V is a Hilbert space, ϕ ∈ V ′,
a(·, ·) bilinear, symmetric, continuous, elliptic (a(v, v) ≥ α |v|2),
b(·, ·) bilinear, symmetric, continuous, nonnegative,
K = {u ∈ V , b(u, u) = 0} = ker b,

J(v) =
1
2
a(v, v)− 〈ϕ , v〉, u = arg min

K
J,

Jε(v) =
1
2
a(v, v) +

1
2ε
b(v, v)− 〈ϕ , v〉, uε = arg min

V
Jε.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proposition 2.1. Under assumptions (2.1), the solution uε to the penalized prob-
lem converges to u.
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Proof. As the family (Jε) is uniformly elliptic, |uε| is bounded. We extract a
subsequence, still denoted by (uε), which converges weakly to some z ∈ V . As Jε ≥ J
and b(u, u) = 0, we have

(2.2) J(uε) ≤ Jε(uε) ≤ Jε(u) = J(u) ∀ε > 0,

so that (J is convex and continuous) J(z) ≤ lim inf J(uε) ≤ J(u). As

J(uε) +
1
2ε
b(uε, uε) ≤ J(u),

b(uε, uε)/ε is bounded, so that b(uε, uε) goes to 0 with ε. Consequently, it holds that
0 ≤ b(z, z) ≤ lim inf b(uε, uε) = 0, which implies z ∈ K, so that z = u.

To establish the strong character of the convergence, we show that uε converges
toward u for the norm associated with a(·, ·), which is equivalent to the original norm.
As uε converges weakly to u for this scalar product (a(uε, v)→ a(u, v) for any v ∈ V ),
it is sufficient to establish the convergence of |uε|a = a(uε, uε)1/2 toward |u|a. First,
|u|a ≤ lim inf |uε|a, and the other inequality comes from (2.2):

1
2
a(uε, uε)− 〈ϕ , uε〉 ≤ 1

2
a(u, u)− 〈ϕ , u〉,

so that lim sup |uε|a ≤ |u|a.
The proposition does not say anything about the rate of convergence, and it can

be very poor, as the following example illustrates.
Example 2.1. Consider I =]0, 1[, V = H1(I), and the problem which consists in

minimizing the functional

J(v) =
1
2

∫
I

|u′|2

over K = {v ∈ V , v(x) = 0 a.e. in O =]0, 1/2[} . The solution to that problem is ob-
viously u = max(0, 2(x−1/2)). Now let us denote by uε the minimum of the penalized
functional

Jε =
1
2

∫
I

|u′|2 +
1
2ε

∫
O

|u|2 .

The solution to the penalized problem can be computed exactly:

uε = kε(x) sh
(
x√
ε

)
in ]0, 1/2[ with kε(x) =

(
sh
(
x√
ε

)
+

1
2
√
ε

ch
(
x√
ε

))−1

,

and uε affine in ]1/2, 1[, continuous at 1/2. This makes it possible to estimate |uε − u|,
which turns out to behave like ε1/4.

Yet, in many situations, convergence can be shown to be of order 1, given some
assumptions are fulfilled. Let us introduce ξ ∈ V ′ as the unique linear functional such
that

(2.3) a(u, v) + 〈ξ , v〉 = 〈ϕ , v〉 ∀v ∈ V.

Before stating the first order convergence result, we show here that the penalty method
provides an approximation of ξ.
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Proposition 2.2. Let ξε ∈ V ′ be defined by

v ∈ V �−→ 〈ξε , v〉 =
1
ε
b(uε, v).

Then ξε converges (strongly) to ξ in V ′, at least as fast as uε converges to u.
Proof. The variational formulation of the penalized problem reads

(2.4) a(uε, v) +
1
ε
b(uε, v) = 〈ϕ , v〉 ∀v ∈ V.

The result is then a direct consequence of the identity which we obtain by substract-
ing (2.3) and (2.4):

〈ξ , v〉 − 1
ε
b(uε, v) = a(u− uε, v) ∀v ∈ V,

which yields ‖ξ − ξε‖V ′ ≤ C |u− uε|.
Let us now establish the first order convergence, provided an extra compatibility

condition between b(·, ·) and ξ is met.
Proposition 2.3. Under assumptions (2.1), we assume in addition that there

exists ξ̃ ∈ V such that b(ξ̃, v) = 〈ξ , v〉 for all v ∈ V . Then |uε − u| = O(ε).
Proof. First of all, notice that it is possible to pick ξ̃ in K⊥ (if not, we project it

onto K⊥). Now following the idea which is proposed in [Bab73] in a slightly different
context (see the proof of Thm. 3.2 therein), we introduce

Rε(v) =
1
2
a(u − v, u− v) +

1
2ε
b(εξ̃ − v, εξ̃ − v),

which can be written

Rε(v) =
1
2
a(u, u) +

ε

2
b(ξ̃, ξ̃) +

1
2
a(v, v) +

1
2ε
b(v, v)− a(u, v)− b(ξ̃, v).

As b(ξ̃, v) = 〈ξ , v〉 and −a(u, v)− 〈ξ , v〉 = −〈ϕ , v〉, the functional Rε is equal to Jε
up to a constant. Therefore minimizing Rε amounts to minimizing Jε. Let us now
introduce w = εξ̃ + u. We have

Rε(w) =
ε2

2
a(ξ̃, ξ̃) + 0 because u ∈ K = ker b,

so that |Rε(w)| ≤ Cε2. As uε minimizes Rε,

0 ≤ Rε(uε) =
1
2
a(u− uε, u− uε) +

1
2ε
b(εξ̃ − uε, εξ̃ − uε) ≤ Cε2,

from which we deduce, as a(·, ·) is elliptic, |u− uε| = O(ε).
Corollary 2.4. Under assumptions (2.1), we assume in addition that b(·, ·) can

be written b(u, v) = (Bu,Bv), where B is a linear continuous operator onto a Hilbert
space Λ, with closed range. Then |uε − u| = O(ε).

Proof. Let us show that the assumption of Proposition 2.3 is met. It is sufficient
to prove that any ξ ∈ V ′ which vanishes over K identifies through b(·, ·) with some
ξ̃ ∈ V ; i.e., there exists ξ̃ ∈ V such that

〈ξ , v〉 = b(ξ̃, v) ∀v ∈ V.
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Note that, as ξ vanishes over K, it can be seen as a linear functional defined on K⊥,
so that it is equivalent to establish that T : V −→ (K⊥)′ defined by

ξ̃ �−→ ξ : 〈ξ , v〉 = b(ξ̃, v) ∀v ∈ K⊥

is surjective. We denote by T � ∈ L (K⊥, V ) the adjoint of T . For all w ∈ K⊥,

|T �w| = sup
v �=0

(T �w, v)
|v| = sup

v �=0

b(w, v)
|v| = sup

v �=0

(Bw,Bv)
|v| ≥ |Bw|

2

|w| .

As B has closed range, |Bw| ≥ C |w| for all w in (kerB)⊥ = K⊥, so that

|T �w| ≥ C2 |w| ∀w ∈ K⊥,
from which we conclude that T is surjective.

Remark 2.1. Note that Proposition 2.3 is strictly stronger than its corollary. In-
deed, consider the handling of homogeneous Dirichlet boundary conditions by penalty:
V = H1(Ω), where Ω is a smooth, bounded domain, a(u, v) =

∫ ∇u · ∇v, and
〈ϕ , v〉 = ∫ fv, where f is in L2(Ω), and b(v, v) =

∫
∂Ω
v2. In this situation the corollary

cannot be used, because the trace operator from H1(Ω) onto L2(∂Ω) does not have a
close range. On the other hand one can establish that

〈ξ , v〉 =
∫
∂Ω

∂u

∂n
v,

and, as the solution u is regular (u ∈ H2(Ω)), its normal derivative (in H1/2(∂Ω)) can
be built as the trace of a function ξ̃ in H1(Ω), so that Proposition 2.3 holds true.

We conclude this section by some considerations concerning the saddle-point for-
mulation of the constrained problem, which will be useful in the following. We consider
again the closed situation.

Proposition 2.5. Under the assumptions of Corollary 2.4, there exists λ ∈ Λ
such that

(2.5) a(u, v) + (λ,Bv) = 〈ϕ , v〉 ∀v ∈ V.
The solution is unique in B(V ) (which identifies with Λ/ kerB�).

Proof. The proof of this standard property can be found in [BF91]. In fact, it
has just been established in the proof of Corollary 2.4: λ is simply Bξ̃. Uniqueness is
straightforward.

Proposition 2.6. Under the assumptions of Proposition 2.5 (assumptions (2.1)
and B(V ) is closed), we introduce

λε =
1
ε
Buε.

Then |λε − λ| = O(ε), where λ is the unique solution of (2.5) in B(V ).
Proof. Substracting the variational formulations for u and uε, we get

(λε − λ,Bv) = a(uε − u, v) ∀v ∈ V.
Now, as the range of B is closed, and λε−λ ∈ B(V ) = (kerB�)⊥, we have the inf-sup
condition (see, e.g., [BF91])

sup
v∈V

(λε − λ,Bv)
|v| ≥ β |λε − λ| ,
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so that

β |λε − λ| ≤ sup
(λε − λ,Bv)

|v| = sup
a(uε − u, v)
|v| ≤ ‖a‖ |uε − u| ,

which ensures the first order convergence thanks to Corollary 2.4.
Corollary 2.7. For any z ∈ V such that Bz = λ, there exists a sequence (vε)

in kerB such that ∣∣∣∣uεε − vε − z
∣∣∣∣ = O(ε).

Proof. This is a direct consequence of the fact that, B(V ) being closed, the re-
striction of B to kerB⊥ is a bicontinuous bijection between kerB⊥ and B(V ). The
convergence is therefore obtained by taking vε = PkerB(uε/ε− z).

2.2. Discretized problem. We consider now a family (Vh)h of inner approxi-
mation spaces (Vh ⊂ V ) and the associated penalized/discretized problems

(2.6)

⎧⎪⎨
⎪⎩

Find uεh ∈ Vh such that Jε(uεh) = inf
vh∈Vh

Jε(vh) ,

Jε(vh) =
1
2
a(vh, vh) +

1
2ε
b(vh, vh)− 〈ϕ , vh〉.

As far as we know, there does not exist any general theory which would give an
upper bound for the error |u− uεh| as the sum of a discretization error (typically h of
h1/2 for volume penalty, depending on whether the mesh is boundary-fitted or not),
and a penalty error (typically ε for closed-range penalty terms, possibly poorer in
general situations, as in Example 2.1). We propose here two general properties which
are direct consequences of standard arguments. They are suboptimal in the sense that
neither of them is optimal from both standpoints (discretization and penalty), but,
at least, they make it possible to recover the behavior in extreme situations (when ε
goes to 0 much quicker than h, and the opposite).

The first proposition uses the following lemma.
Lemma 2.8. Under assumptions (2.1), there exists C > 0 such that

b(uε, uε) ≤ Cε |u− uε| .
Proof. By definition of uε,

Jε(uε) =
1
2
a(uε, uε)− 〈ϕ , uε〉+ 1

2ε
b(uε, uε) ≤ Jε(u) =

1
2
a(u, u)− 〈ϕ , u〉,

so that

0 ≤ 1
2ε
b(uε, uε) ≤ 1

2
a(u, u)− 1

2
a(uε, uε) + 〈ϕ , uε − u〉

≤ 1
2
a(u+ uε, u− uε) + 〈ϕ , uε − u〉,

which yields the estimate by continuity of a(·, ·) and ϕ.
Proposition 2.9. Under assumptions (2.1), we denote by uεh the solution to

problem (2.6). Then

|uεh − u| ≤ C
(

min
vh∈Vh∩K

|vh − u|+
√
|uε − u|

)
.
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Proof. As uεh minimizes a(v − uε, v − uε) + b(v − uε, v − uε)/ε over Vh,

α |uεh − uε|2 ≤ a(uεh − uε, uεh − uε)

≤ a(uεh − uε, uεh − uε) +
1
ε
b(uεh − uε, uεh − uε)

≤ min
vh∈Vh

(
a(vh − uε, vh − uε) +

1
ε
b(vh − uε, vh − uε)

)

≤ min
vh∈Vh∩K

(
a(vh − uε, vh − uε) +

1
ε
b(vh − uε, vh − uε)

)
.

As vh is in K, the second term is b(uε, uε)/ε, which is bounded by C |uε − u| (by
Lemma 2.8). Finally, we get

|uεh − uε| ≤ C
(

min
vh∈Vh∩K

|vh − uε|+
√
|uε − u|

)
,

from which we conclude.
Proposition 2.10. Under assumptions (2.1), Vh ⊂ V , and uεh being the solution

to (2.6), it holds that

|uεh − u| ≤
C√
ε

inf
vh∈Vh

|uε − vh|+ |uε − u| .

Proof. One has

|uεh − u| ≤ |uεh − uε|+ |uε − u| ,
and we control the first term by Céa’s lemma applied to the bilinear form a + b/ε,
whose ellipticity constant behaves like 1/ε.

The following example illustrates how those estimates can be used in practice.
Example 2.2. The simplest example of penalty formulation one may think about

is the following: the constraint to vanish on the boundary of a subdomain O ⊂⊂ Ω is
handled by minimizing the functional

(2.7) Jε(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

u2.

Now considering the L2 penalty method in O, if we admit the ε1/4 convergence of
|uε − u|, Proposition 2.9 provides an estimate in h1/2 + ε1/8. This estimate is optimal
in h: the natural space discretization order is obtained if ε is small enough (ε = h4 in
the present case).

Symmetrically, the natural order in ε can be recovered if h is small enough: Indeed,
if we admit that uε can be approximated at the same order as u over Ω, which is 1/2,
then the choice ε = h4/3 in Proposition 2.10 gives

|uεh − u| ≤
C

ε1/2
ε3/4 + ε1/4 = O(ε1/4).

Note that if we replace u2 by u2+|∇u|2 in the integral over O in (2.7), assumptions
of Corollary 2.4 are fulfilled, so that convergence holds at the first order in ε. As
a consequence, |u− uεh| is bounded by C(h1/2 + ε1/2) (by Proposition 2.9), which
suggests the choice ε = h.
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3. Full error estimate. As shall be made clear below, a full and optimal error
estimate calls for a uniform discrete inf-sup condition. In the case of a nonconforming
mesh, it appears immediately that the penalty term has to be modified. To anticipate
this difficulty, we introduce a modified version of B, namely Bh, in this abstract
approach. No assumption is made a priori on Bh in terms of approximation properties,
but the estimate we establish below will not express any convergence property unless
Bh approaches B in some sense.

Besides (2.1), we consider the following set of additional assumptions and
notation:

(3.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b(v, v) = (Bv,Bv), where B ∈ L (V,Λ) has a closed range,
(Vh)h family of approximation spaces , Vh ⊂ V,
Bh ∈ L (V,Λ) , kerB ⊂ kerBh , ‖Bh‖ bounded , Λh = Bh(Vh),

Jεh(vh) = J(vh) +
1
ε
(Bhvh, Bhvh),

uεh = arg min
Vh

Jεh , λ
ε
h =

1
ε
Bhu

ε
h ∈ Λh,

sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ β |λh|Λh

∀λh ∈ Λh.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Theorem 3.1 (primal/dual error estimate). Under assumptions (2.1) and (3.1),
we have the following error estimate:

|u− uεh|+ |λ− λεh|(3.2)

≤ C
(
ε+ inf

ũh∈Vh

|ũh − u|+ inf
λ̃h∈Λh

∣∣∣λ̃h − λ∣∣∣+ |(B�h −B�)λ|+ |(Bh −B)z|
)
,

where z is such that λ = Bz.
Proof. The proof relies on some general properties of the continuous penalty

method which we established in the beginning of this section, and an abstract stability
estimate for saddle-point-like problems with stabilization (see Proposition 3.2 below).

First of all, note that, as the range of B is closed, the convergence of uε toward
u holds at the first order (by Corollary 2.4). As another consequence, λε = Buε/ε is
such that |λ− λε| = O(ε) (by Proposition 2.6).

We write the continuous penalized problem{
a(uε, v) + (λε, Bv) = 〈ϕ , v〉 ∀v ∈ V,
(Buε, μ) − ε(λε, μ) = 0 ∀μ ∈ Λ

and the discrete penalized problem in a saddle-point form{
a(uεh, vh) + (λεh, Bhvh) = 〈ϕ , vh〉 ∀vh ∈ Vh,

(Bhuεh, μh) − ε(λεh, μh) = 0 ∀μh ∈ Λh.

As Λh is exactly Bh(Vh), this problem admits a unique solution (uεh, λ
ε
h) (see Propo-

sition 2.5). For any (ũh, λ̃h) ∈ Vh × Λh, vh ∈ Vh, μh ∈ Λh,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(ũh − uεh, vh) + (λ̃h − λεh, Bhvh) = a(ũh − uε, vh) + (λ̃h − λε, Bhvh)
+ 〈(B�h −B�)λε , vh〉,

(Bh(ũh − uεh), μh)− ε(λ̃h − λεh, μh) = (Bh(ũh − uε), μh)− ε(λ̃h − λε, μh)
+ 〈(Bh −B)uε , μh〉.



PENALTY METHOD 1135

Our purpose is to use Proposition 3.2 (Vh and Λh play the role of V and Λ in the
proposition, respectively) with

〈ϕ , vh〉 = a(ũh − uε, vh) + (λ̃h − λε, Bhvh) + 〈(B�h −B�)λε , vh〉,(3.3)

〈Ψ , μh〉 = (Bh(ũh − uε), μh)− ε(λ̃h − λε, μh) + ((Bh −B)uε, μh).(3.4)

The last term of (3.3) is transformed as follows:

(B�h −B�)λε = (B�h −B�)λ+ (B�h −B�)(λε − λ),

where λ ∈ B(V ) is the exact Lagrange multiplier defined by Proposition 2.5. So,
defining

c(μ, μ′) = ε(μ, μ′) , w = ũh − uε , γ = −(λ̃h − λε) + (Bh −B)
uε

ε

(see (3.7) for the meaning of w and γ), Proposition 3.2 ensures existence of a constant
C > 0 (which does not depend on h) such that |ũh − uεh|+ |λ̃h − λεh| is less than

C
(
|ũh − uε|+

∣∣∣λ̃h − λε∣∣∣+ ‖(B�h −B�)λ‖ + |γ|
)
.

The second contribution to γ can be written, thanks to Corollary 2.7 and the fact
that kerB ⊂ kerBh,

(Bh −B)
uε

ε
= (Bh −B)

(
uε

ε
− vε − z

)
+ (Bh −B) z,

where vε ⊂ kerB, and z is such that Bz = λ, which yields

|γ| ≤
∣∣∣λ̃h − λε∣∣∣+ O(ε) + |(Bh −B) z| .

We finally obtain that |uε − uεh|+ |λε − λεh| is less than

C

(
inf

ũh∈Vh

|ũh − uε|+ inf
λ̃h∈Λh

∣∣∣λ̃h − λε∣∣∣+ |(B�h −B�)λ|+ ε+ |(Bh −B)z|
)
,

so that, by eliminating uε in the left-hand side, and again using |uε − u| = O(ε)
and |λε − λ| = O(ε) (see Corollary 2.4 and Proposition 2.6), we obtain the error
estimate.

Proposition 3.2 (abstract stability estimate). Let V and Λ be two Hilbert spaces,
B ∈ L (V,Λ), a(·, ·) and c(·, ·) bilinear continuous functionals, which we suppose el-
liptic. Then the problem

(3.5)

{
a(u, v) + (λ,Bv) = 〈ϕ , v〉 ∀v ∈ V,
(Bu, μ) − c(λ, μ) = 〈Ψ , μ〉 ∀μ ∈ Λ

admits a unique solution (u, λ) ∈ V × Λ. We assume furthermore that there exists a
constant β > 0 such that1

(3.6) β
∣∣P(kerB)⊥v

∣∣ ≤ |Bv| , sup
v∈V

(μ,Bv)
|v| ≥ β ‖μ‖Λ/ kerB� ,

1As the second inequality of (3.6) is a direct consequence of the first one, it could be suppressed.
We keep both assumptions for clarity reasons.
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that Ψ can be written

(3.7) 〈Ψ , μ〉 = (Bw, μ) + c(γ, μ),

and finally that c(·, ·) verifies

(3.8) μ1⊥μ2 −→ c(μ1, μ2) = 0.

Then we have the following estimate:

(3.9) |u|+ |λ| ≤ C(‖ϕ‖ + |w|+ |γ|),
where C is a locally bounded expression of ‖a‖, 1/α, 1/β, ‖B‖, ‖c‖ (α is the coercivity
constant of a(·, ·)). Note that C does not depend upon the coercivity constant of c(·, ·).

Proof. The first part of the proposition is trivial. With obvious notation, prob-
lem (3.5) can be written

(3.10)

{
Au + B�λ = ϕ,

Bu − Mλ = Ψ,

so that (u, λ) is uniquely determined as

u = (A+B�M−1B)−1
(
ϕ+B�M−1Ψ

)
, λ = M−1 (Bu−Ψ) .

In order to get an upper bound of |u| which does not degenerate with c(·, ·), we
introduce, following [BF91],

(3.11) u = u0︸︷︷︸
∈kerB

+ u⊥︸︷︷︸
∈(kerB)⊥

, λ = λ0︸︷︷︸
∈kerB�

+ λ⊥︸︷︷︸
∈(kerB�)⊥

.

From (3.6) and the first line of (3.5), we have

(3.12) β
∣∣λ⊥∣∣ = β ‖λ‖Λ/ kerB� ≤ sup

(λ,Bv)
|v| ≤ ‖a‖ |u|+ ‖ϕ‖ .

From (3.6) again and the second line of (3.5), we get

(3.13) β
∣∣u⊥∣∣ = β

∣∣P(kerB)⊥u
∣∣ ≤ |Bu| = sup

(Bu, μ)
|μ| ≤ ‖Ψ‖+ ‖c‖1/2 c(λ, λ)1/2.

From the ellipticity of a(·, ·) and the first line of (3.5),

α |u0| ≤ a
(
u0,

u0

|u0|
)
≤ sup
v0∈kerB

a(u0, v0)
|v0| = sup

v0∈kerB

a(u, v0)− a(u⊥, v0)
|v0|

≤ ‖ϕ‖+ ‖a‖ ∣∣u⊥∣∣ .(3.14)

From (3.13) and (3.14), we have

|u| ≤ ∣∣u⊥∣∣+ |u0| ≤ 1
β

(
‖Ψ‖+ ‖c‖1/2 c(λ, λ)1/2

)
+

1
α

(‖ϕ‖+ ‖a‖ ∣∣u⊥∣∣)

≤ 1
β

(
‖Ψ‖+ ‖c‖1/2 c(λ, λ)1/2

)(
1 +
‖a‖
α

)
+
‖ϕ‖
α
.(3.15)
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Now substracting the two lines of (3.5) with v = u and μ = λ, we obtain

a(u, u) + c(λ, λ) = 〈ϕ , u〉 − 〈Ψ , λ〉 = 〈ϕ , u〉 − (Bw, λ) − c(γ, λ)
≤ ‖ϕ‖ |u|+ ‖B‖ |w| ∣∣λ⊥∣∣+ c(γ, γ)1/2c(λ, λ)1/2,

so that, from (3.15) and (3.12),

a(u, u) + c(λ, λ) ≤
(
‖ϕ‖+

‖B‖
β
|w| ‖a‖

)(‖Ψ‖
β

(
1 +
‖a‖
α

)
+
‖ϕ‖
α

)

+ c(λ, λ)1/2
(
c(γ, γ)1/2 +

1
β
‖c‖1/2

(
1 +
‖a‖
α

)(
‖ϕ‖+

‖B‖
β
|w| ‖a‖

α

))
,(3.16)

which can be written

a(u, u) + c(λ, λ) ≤ P0(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c) + c(λ, λ)1/2P1(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c),
where P0 (resp., P1) is an homogeneous polynomial of degree 2 (resp., 1) in its four
variables. The coefficients of those polynomials are polynomial in ‖B‖, ‖a‖, 1/β, 1/α,
‖c‖1/2 with positive coefficients. We write X = c(λ, λ)1/2, so that X2 ≤ P1X + P0,
which implies |X | ≤ P1 +

√
P0, and finally

c(λ, λ) = X2 ≤ 2P 2
1 + 2P0 = P2(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c),

where P2 is an homogeneous polynomial of degree 2. It is dominated by the square of
the sum of the modulus of its variables, so that

c(λ, λ)1/2 ≤ C(‖ϕ‖ + ‖Ψ‖+ |w|+ |γ|c).
Again using (3.16) (we keep C to design a generic constant, or more precisely a
polynomial in ‖B‖, ‖a‖, 1/β, 1/α, ‖c‖1/2), we obtain immediately

|u| ≤ C(‖ϕ‖+ ‖Ψ‖+ |w| + |γ|c).
Finally, we write the second line of (3.5) with μ ∈ kerB�. As c(·, ·) verifies (3.8), it
yields λ0 = PkerB�γ, so that |λ0| ≤ |γ|. As |γ|c ≤ ‖c‖1/2 |γ|, and ‖Ψ‖ ≤ |w| + |γ|,
estimate (3.9) is obtained.

4. Application. This section is dedicated to the application of Theorem 3.1 to a
particular problem, namely a scalar version of the rigidity constraint for fluid-particle
flows.

4.1. Model problem. In order to present explicit constructions when needed,
we consider a particular situation. We introduce Ω =]− 2, 2[2, and O = B(0, 1) ⊂⊂ Ω
(see Figure 4.1). The case of more general situations is addressed in Remark 4.2, at
the end of this paper. We consider the following problem:

(4.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u = f in Ω \ O,

u = 0 on ∂Ω,
u = U on ∂O,∫

∂O

∂u

∂n
= 0,
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where U is an unknown constant, and f ∈ L2(Ω \ O). The scalar field u can be seen
as a temperature and O as a zone with infinite conductivity.

Definition 4.1. We say that u is a weak solution to (4.1) if u ∈ V = H1
0 (Ω),

there exists U ∈ R such that u = U a.e. in O, and∫
Ω

∇u · ∇v =
∫

Ω

fv ∀v ∈ DO(Ω),

where DO(Ω) is the set of all those functions which are compactly supported, C∞ on
Ω, and which are constant over O.

Proposition 4.2. Problem (4.1) admits a unique weak solution u ∈ V = H1
0 (Ω),

which is characterized as the solution to the minimization problem

(4.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u ∈ K such that

J(u) = inf
v∈K

J(v) , with J(v) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

fv,

K =
{
v ∈ H1

0 (Ω),∇v = 0 a.e. in O
}
,

where f has been extended by 0 inside O. Furthermore the restriction of u to the
domain Ω \ O is in H2(Ω \ O).

Proof. Existence and uniqueness are direct consequences of the Lax–Milgram
theorem applied in K = {v ∈ V , ∇v = 0 a.e. in O}, which gives in addition the
characterization of u as the solution to (4.2). Now u|Ω\O satisfies −�u = f , with
regular Dirichlet boundary conditions on the boundary of Ω \O which decomposes as
∂O ∪ ∂Ω. As Ω is a convex polygon and ∂O is smooth, standard theory ensures that
u|Ω\O ∈ H2(Ω \ O).

Proposition 4.3 (saddle-point formulation). Let u be the weak solution to (4.1).
There exists a unique λ ∈ Λ = L2(O)2 such that λ is a gradient, and∫

Ω

∇u · ∇v +
∫

O

λ · ∇v =
∫

Ω

fv ∀v ∈ V.

In addition λ is in H1(O)2.
Proof. The first part is a consequence of Proposition 2.5, where B is defined by

B : v ∈ H1
0 (Ω) �−→ ∇v ∈ L2(O)2.

Let us prove that B has a closed range. Considering μ ∈ Λ with μ = ∇v, we define
w ∈ H1

0 (O) as w = v − m(v), where m(v) is the mean value of v over O. By the
Poincaré–Wirtinger inequality, one has

‖w‖H1(O) ≤ C ‖μ‖L2(O)2 .

Now, as O ⊂⊂ Ω, there exists a continuous extension operator from H1(O) to H1
0 (Ω),

so that we can extend w to obtain w̃ ∈ H1
0 (Ω) with a norm controlled by ‖μ‖L2(O)2 ,

which proves the closed character of B(V ), and consequently the existence of λ ∈ Λ,
and its uniqueness in B(V ).

Let us now describe λ. We have∫
Ω

∇u · ∇v +
∫

O

λ · ∇v =
∫

Ω

fv,
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so that, by taking test functions in D(O), we get λ ∈ Hdiv(O) with ∇ · λ = 0. Taking
now test functions which do not vanish on the boundary of O, we identify the normal
trace of λ with ∂u/∂n ∈ H1/2(∂O). Therefore λ is defined as the unique divergence-
free vector field in O, with normal derivative equal to ∂u/∂n on ∂O, which, in addition,
is a gradient. In other words λ = ∇Φ, with⎧⎨

⎩
�Φ = 0 in O,

∂Φ
∂n

=
∂u

∂n
on ∂O.

As O is smooth, Φ ∈ H2(O), so that λ = ∇Φ ∈ H1(O)2.
We introduce the penalized version of problem (4.2)

(4.3)

⎧⎪⎨
⎪⎩

Find uε ∈ V such that Jε(uε) = inf
v∈V

Jε(v) ,

Jε(v) =
1
2

∫
Ω

|∇v|2 +
1
2ε

∫
O

|∇v|2 −
∫

Ω

fv.

Now we consider the family of Cartesian triangulations (Th) of the square Ω (see
Figure 4.1), and we denote by Vh the standard finite element space of continuous,
piecewise affine function with respect to Th:

Vh =
{
vh ∈ V , V|T is affine ∀T ∈ Th

}
.

It is tempting to define the fully discretized problem as the problem which consists
in minimizing Jε over Vh. But this straightforward approach (which does not corre-
spond to what is done in actual computations; see Remark 4.1) raises some problems
in relation to the discrete inf-sup condition which we need to establish the error es-
timate (see Proposition 4.7). It is related to the fact that we cannot control the size
of intersections of triangles with O (relative to the size of the whole triangle, which is
h2/2). To overcome this problem, many strategies can be adopted, all of them leading
to change B onto a new discrete operator Bh. We propose here a radical method,
which simply consists in removing in the penalty integral all squares (two-triangle
sets) which intersect the boundary of O. It will be made clear that the convergence

Ω

O
∂Oh

∂O

Fig. 4.1. Domains Ω, O, Oh, and the mesh Th.
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result is not sensitive to what is actually done in the neighborhood of ∂Ω. The proof
simply requires that the reduced obstacle is included in the exact one, and that the
difference set O \ Oh lies in a narrow band whose width goes to 0 like h.

Definition 4.4. The reduced obstacle Oh ⊂ O is defined as the union of the
triangles which belong to an elementary square which is contained in the disk O (see
Figure 4.1).

Definition 4.5. We recall that V = H1
0 (Ω), Λ is L2(O)2, and B ∈ L (V,Λ) is

the gradient operator (see Proposition 4.3). We define Bh ∈ L (V,Λ) as

v ∈ V �−→ μ = Bhv = �Oh
∇v,

where �Oh
is the characteristic function of Oh (see Definition 4.4). Finally, the dis-

cretization space Λh ⊂ Λ = L2(O)2 is the set of all those vector fields μh such that
their restriction to Oh is the gradient of a scalar field vh ∈ Vh, and which vanish a.e.
in O \ Oh, which we can express as

Λh = {μh ∈ Λ , ∃vh ∈ Vh , μh = Bhvh} = Bh(Vh).

The fully discretized problem reads

(4.4)

⎧⎪⎪⎨
⎪⎪⎩

Find uεh ∈ Vh such that Jεh(u
ε) = inf

vh∈Vh

Jεh(vh) ,

Jεh(vh) =
1
2

∫
Ω

|∇vh|2 +
1
2ε

∫
Oh

|∇vh|2 −
∫

Ω

fvh.

4.2. Error estimate for the model problem.
Proposition 4.6 (primal/dual error estimate for (4.1), nonconforming case). Let

u be the weak solution to (4.1), uεh the solution to (4.4), and λ the Lagrange multiplier
(see Proposition 4.3), and let λεh = Bhu

ε
h/ε (see Definition 4.5). We have the following

error estimate:

(4.5) |u− uεh|+ |λ− λεh| ≤ C(h1/2 + ε).

Proof. The proof is based on the abstract estimate in Theorem 3.1. All technical
ingredients are put off until the end of the section. We shall simply refer here to the
corresponding properties. The crucial requirement is the discrete inf-sup condition,
which can be established for this choice of Bh (see Proposition 4.7). The terms

inf
ũh∈Vh

|ũh − u| and inf
λ̃h∈Λh

∣∣∣λ̃h − λ∣∣∣
can be shown to behave like h1/2 (see Propositions 4.8 and 4.9, respectively). The last
two terms can be handled the same way as |λ̃h − λ|. Indeed,

|(B�h −B�)λ| ≤ |λ|0,O\Oh
,

which is a O(h1/2) (it is the L2 norm of a function with H1 regularity, on a h-
neighborhood of ∂O). The very same argument holds for |(Bh −B)z| (in our case,
both quantities are the same).

Proposition 4.7 (discrete inf-sup condition). Let Ω and O be defined as in
the beginning of section 4. We introduce h = 1/N , N ∈ N, and Th is the regular
triangulation with step h, so that the center of O is a vertex of Th. According to
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Definitions 4.4 and 4.5, Oh is the reduced obstacle, and Λh ⊂ L2(O)2 = Λ is the set
of all those vector fields which are the gradient of a piecewise affine function in Oh,
and which vanish in O \Oh.

There exists β > 0 such that, for all h (= 1/N),

(4.6) β
∣∣P(kerBh)⊥vh

∣∣ ≤ |Bhvh| ∀vh ∈ Vh , sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ β ‖λh‖Λh

.

Proof. Let vh ∈ Vh be given. If we are able to build wh ∈ Vh such that Bhwh =
Bhvh, with ‖wh‖ ≤ C ‖Bhvh‖, we obtain∣∣P(kerBh)⊥vh

∣∣ = inf
ṽh∈kerBh

|vh − ṽh| ≤ |vh − (wh − vh)| = |wh| ≤ C |Bhvh| ,

and the first inequality is proven. Let us describe how this wh ∈ Vh can be built in five
steps. First, we introduce w1

h = vh−vh, where vh is the mean value of wh over Oh. Note
that w1

h is not in Vh (it does not vanish on ∂Ω), but we consider only its restriction
to Oh. We have Bhw1

h = Bhvh, and the norm of w1
h is controlled:

∥∥w1
h

∥∥
H1(Oh)

≤
C1 ‖Bhvh‖L2(Oh)2 by the Poincaré–Wirtinger inequality (with a constant which does
not depend on h, as can be checked easily).

We shall now describe how we plan to extend w1
h in the first quadrant, the three

others being done the same way. This construction is illustrated by Figure 4.2. The
first step consists in extending w1

h in the polygonal domain CA3A
′
2A1 on each hori-

zontal segment by symmetry (see Figure 4.2). A similar construction extends w1
h in

O

A1

A2

A′1

A′2B1

B2

B′1

B′2

A3

B3

C

Fig. 4.2. Construction of w2
h.
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u1 u2u2 u1u1

v3v3 v2v2 v3

Fig. 4.3. Stretching of w2
h (detail).

CB′1B′2B3. Now the function is simply extended in the upper right zone by symme-
try around C. To show that the H1 seminorm of the newly defined function w2

h is
under control, we first remark that the shift between two consecutive lines does not
exceed one cell. Now consider the detail in Figure 4.3. On the left we represented
a detail of the triangulated domain in O where w2

h is already defined; the ui’s and
vi’s represent the values of w2

h at some vertices. Now by applying the “symmetry”
described previously, we obtain the stretched function which we represent on a single
element. To control the effect of this stretching, we use Lemma 4.10 in the following
way: The square of the H1 seminorm of the new function is a quadratic nonnegative
form q1 in the six variables, and the square of the H1 seminorm corresponding to
the left-hand situation itself is a scale invariant quadratic, nonnegative form q2 in the
same variables, so that Lemma 4.10 ensures the existence of a universal constant C
such that q1 ≤ Cq2. As a consequence, the H1 seminorm of the stretched function (in
CA3A

′
2A
′
1) is controlled by the H1 seminorm of the initial function (in CA1A2A3).

As the new function in CA′1B
′
1 is obtained by standard symmetry, the H1 seminorm

identifies with the one of the initial function in CA1B1.
This leads to a new function w2

h defined on O2
h, subtriangulation of Th, with∣∣w2

h

∣∣
1,O4

h

≤ C2 ‖Bhvh‖L2(Ω)2 . As w2
h has zero mean value in B(0, 1/2), one has

∥∥w2
h

∥∥
H1(O2

h
)
≤ C′2 ‖Bhvh‖L2(Ω)2 .

Finally, O2
h contains a ball strictly larger than O, say B(0, 1+

√
2/4). Considering now

a smooth function ρ which is equal to 1 in B(0, (1 + r)/2), and 0 outside B(0, r), we
define w3

h as Ih(ρw2
h) on O2

h, and 0 in Ω \ O2
h, where Ih is the standard interpolation

operator. This function is in Vh ∩H1
0 (Ω), and it verifies

Bhw
3
h = λh,

∥∥w3
h

∥∥
H1(Ω)

≤ C3 ‖Bhvh‖L2(Ω)2 ,

so that the first inequality of (4.6) holds, with β = 1/C3.
The second one is a direct consequence of the first one: given λh = Bhuh, one

considers wh = P(kerBh)⊥vh, so that

sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ (Bhwh, λh)

|wh| =
|Bhwh|2
|wh| ≥ β |Bhwh| = β ‖λh‖Λh

,

which ends the proof.
Proposition 4.8 (approximation of u). We make the same assumptions as in

Proposition 4.7, and we consider u ∈ H1
0 (Ω) such that u = U ∈ R a.e. in O, uΩ\O ∈

H2(Ω \ O). There exists C > 0 such that

inf
ũh∈Vh

‖u− ũh‖H1(Ω) ≤ Ch1/2.
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Proof. We recall that Ih is the standard interpolation operator from C(Ω) onto
Vh. Let us assume here that the constant value U on O is O (which can be achieved
by substracting a smooth extension of this constant outside O). Now we define Õh as
the union of all those triangles of Th which have a nonempty intersection with O. We
define ũh as the function in Vh which is 0 in Õh and which identifies with Ihu at all
other vertices. We introduce a narrow band around O:

(4.7) ωh =
{
x ∈ Ω , x /∈ O , d(x,O) < 2

√
2h
}
.

As u|Ω\O ∈ H2(Ω \ O), standard finite element estimates give

|u− ũh|0,L2(Ω\(O∪ωh)) ≤ Ch2 |u|H2(Ω\O) ,(4.8)

|u− ũh|1,L2(Ω\(O∪ωh)) ≤ Ch |u|H2(Ω\O) .(4.9)

By construction, both L2 and H1 errors in O are zero. There remains to estimate the
error in the band ωh. The principle is the following: ũh is a poor approximation of
u in ωh, but it is not very harmful because ωh is small. Note that similar estimates
are proposed in [SMSTT05] or [AR08] . For the sake of completeness, and because it
is essential to understand why a better order than 1/2 cannot be expected, we shall
detail here the proof. First of all, we write

(4.10) ‖u− ũh‖ ≤ |u|0,ωh
+ |u|1,ωh

+ |uh|0,ωh
+ |uh|1,ωh

= A+B + C +D.

Lemma 4.13 ensures B ≤ Ch1/2, and A ≤ Ch3/2. As for ũh (terms C and D
in (4.10)), the proof is less trivial. It relies on the technical lemmas (Lemmas 4.11, 4.12,
and 4.14 (see section 4.3)) which can be used as follows. The problematic triangles
are those on which ũh identifies neither with 0, nor with Ihu. On such triangles, ũh
sticks to Ihu at 1 or 2 vertices, and vanishes at 2 or 1 vertices. As a consequence, the
L∞ norm of ũh is less than the L∞ norm of Ihu. Let T be such a triangle. We write
(using Lemma 4.11, the latter remark, the fact that Ih is a contraction from L∞ onto
L∞, Lemma 4.11 again, and Lemma 4.14)

|ũh|2L2(T ) ≤ C′ |T | ‖ũh‖2L∞(T ) ≤ C′ |T | ‖Ihu‖2L∞(T )

≤ C′

C
‖Ihu‖2L2(T ) ≤ C′′

(
‖u‖2L2(T ) + h4 |u|22,T

)
.

By summing up all these contributions over all triangles which intersect ωh, and using
the fact that the L2 norm of u on ωh behaves like h3/2 |u|2,T , we obtain

‖ũh‖2L2(ωh) ≤
∑

T∩ωh �=∅
‖ũh‖2L2(T ) ≤ h3 |u|22,T ,

which gives the expected h3/2 estimate for C. The last term of (4.10) is directly
obtained by the previous estimate combined with the inverse inequality expressed by
Lemma 4.12.

Proposition 4.9 (approximation of λ). Let λ ∈ H1(O)2 be given, with λ = ∇w,
w ∈ H2(O). There exists a constant C > 0 such that

inf
λ̃h∈Λh

∥∥∥λ− λ̃h∥∥∥
L2(O)

≤ Ch1/2 |λ|1,O ,
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where Λh is defined in section 3 (see Definition 4.5).
Proof. First of all, we extend w on Ω \ O, to obtain a function (still denoted by

w) in H1
0 (Ω)∩H2(Ω). Let us define wh as the standard interpolate of w over Th. One

has |w − wh|1,O ≤ Ch. We define λ̃h ∈ Λh as the piecewise constant function which
identifies with ∇wh on Oh (see Definition 4.4), and which vanishes in O\Oh. One has∥∥∥∇wh − λ̃h∥∥∥

L2(O)
=
∥∥∥∇wh − λ̃h∥∥∥

L2(O\Oh)
= ‖∇wh‖L2(O\Oh) ≤ C ‖∇w‖L2(O\Oh) ,

which is the H1 seminorm of a function in H2, in a narrow domain. Therefore it
behaves like h1/2 times the H2 seminorm of u (see Lemma 4.13 and Remark 4.3),
which is the H1 seminorm of λ. Finally, one gets∥∥∥λ− λ̃h∥∥∥

L2(O)
≤ |w − wh|1,O +

∥∥∥∇wh − λ̃h∥∥∥
L2(O)

≤ C(h+ h1/2) |λ|1,O ,

which ends the proof.
Remark 4.1 (boundary fitted meshes). Although it is somewhat in contradiction

with its original purpose, the penalty method can be used together with a discretiza-
tion based on a boundary fitted mesh. In that case, the approximation error behaves
no longer like h1/2 but like h.

Remark 4.2 (technical assumptions). Some assumptions we made are only techni-
cal and can surely be relaxed without changing the convergence results. For example
the inclusion, which we supposed circular, could be a collection of smooth domains.
Note that a convex polygon is not acceptable, as it is seen from the outside, so that
u may no longer be in H2, which rules out some of the approximation properties
we made. Concerning the mesh, we have good confidence in the fact that the result
generalizes to any kind of unstructured mesh, but the proof of Proposition 4.7 in the
general case can no longer be based on an explicit construction.

4.3. Technical lemmas. We gather here some elementary properties which are
used in the proofs of Propositions 4.6, 4.7, 4.8, and 4.9.

Lemma 4.10. Let E be a finite dimensional real vector space, with q1 and q2
two nonnegative quadratic forms with ker q2 ⊂ ker q1. There exists C > 0 such that
q1 ≤ Cq2.

Proof. As q2 is nonnegative, ṽ �→ |ṽ|q2(v) =
√
q2(v) is a norm for E/ ker q2. Now

we define

q̃1 : ṽ ∈ E/ ker q2 �−→ q̃1(ṽ) = q1(v) ∈ R.

As ker q1 contains ker q2, this functional is well defined. As it is quadratic over a finite
dimensional space, it is continuous for the norm

√
q2, so that

q1(v) = q̃1(ṽ) ≤ C |v|2q2 = q2(v),

which ends the proof.
Lemma 4.11. There exist constants C and C′ such that, for any nondegenerated

triangle T , for any function wh affine in T ,

(4.11) C |T | ‖wh‖2L∞(T ) ≤ ‖wh‖2L2(T ) ≤ C′ |T | ‖wh‖2L∞(T ) .



PENALTY METHOD 1145

Proof. It is a consequence of the fact that, when deforming the supporting triangle
T , the L∞ norm is unchanged whereas the L2 norm scales like |T |1/2.

Lemma 4.12. There exists a constant C such that, for any nondegenerated triangle
T , for any function wh affine in T ,

|wh|21,K ≤ C
|T |
ρ2
K

‖wh‖2L∞(T ) ,

where ρK is the diameter of the inscribed circle.
Proof. Again, it is a straightforward consequence of the fact that, when deforming

the supporting triangle T , the L∞ norm is unchanged whereas the gradient (which
is constant over the triangle) scales like 1/ρk, so that the H1 seminorm scales like
|T |1/2 /ρK .

The next lemma establishes some Poincaré-like inequalities in narrow domains.
Lemma 4.13. Let O ⊂ R

2 be the unit disk, strongly included in a domain Ω, and
let ωη be the narrow band (note that this definition differs slightly from (4.7), which
is of no consequence):

ωη =
{
x ∈ Ω , x /∈ O , d(x,O) < η

}
, with η > 0.

Denoting by |·|p,ω the Hp seminorm over ω, we have the following estimates:

|ϕ|0,ωη
≤ Cη1/2 |ϕ|1,Ω\O ∀ϕ ∈ H1(Ω \ O), ϕ|∂Ω = 0,

|ϕ|1,ωη
≤ Cη1/2 |ϕ|2,Ω\O ∀ϕ ∈ H2(Ω \ O), ϕ|∂Ω = 0,

|ϕ|0,ωη
≤ Cη3/2 |ϕ|2,Ω\O ∀ϕ ∈ H2(Ω \ O), ϕ|∂Ω = 0, ϕ|∂O = 0.

Proof. We assume here that ϕ is C1 in Ω \O (the general case is obtained imme-
diately by density). Using polar coordinates, we write u(r, θ) = u(1, θ) +

∫ r
1
∂rudr, so

that

|u|20,ωh
≤ 2

∫ 2π

0

∫ 1+η

1

|u(1, θ)|2 r dr dθ + 2
∫ 2π

0

∫ 1+η

1

∣∣∣∣
∫ r

1

∂rϕds

∣∣∣∣
2

r dr dθ

≤ C
(
η |ϕ|20,∂O + η2 |ϕ|21,ωη

)
≤ Cη |ϕ|21,Ω\O ,

from which we deduce the first estimate.
This same approach can be applied to ∂iϕ for ϕ ∈ H2. As ϕ is supposed to vanish

over ∂Ω, one has

|∂iϕ| ≤ C ‖∇ϕ‖H1(Ω\O) ≤ C′ |ϕ|22,Ω\O ,

which leads to the second estimate. As for the third one, simply notice that the
boundary term (L2 norm over ∂O) vanishes in the equation above:

|ϕ|0,ωη
≤ η |ϕ|1,ωη

≤ η3/2 |ϕ|2,ωη
,

which ends the proof.
Remark 4.3. The previous lemma extends straightforwardly to the case of any

smooth inclusion (C2 regularity of the boundary is sufficient) strongly included in a



1146 BERTRAND MAURY

domain Ω (for a detailed proof of a similar property, see [GLM06]) or to the case
where the function is defined within the subdomain (in that case, ωη is defined as an
inner narrow band).

The last lemma quantifies how one can control the L2 norm of the interpolate of
a regular function on a triangle, by means of the L2 norm and the H2 seminorm of
the function.

Lemma 4.14. There exists a constant C such that, for any regular triangle T (see
below), for any u ∈ H2(T ),

‖Ihu‖2L2(T ) ≤ C
(
‖u‖2L2(T ) + h4 |u|22,T

)
.

By regular we mean that T runs over a set of triangles such that the flatness diam(T )/
ρK is bounded.

Proof. The interpolation operator Ih : H2(T ) −→ L2(T ) is continuous, and
|u|2,T scales like h/ρ2

K ≈ 1/h whereas the L2 norms scale like h.

5. Additional examples, concluding remarks. The approach can be checked
to be applicable to some standard situations, like the constraint to vanish in an in-
clusion O ⊂⊂ Ω (see Example 2.2), as soon as H1-penalty is used. The functional to
minimize is then

Jε(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

(
u2 + |∇u|2

)
,

so that B identifies with the restriction operator from H1
0 (Ω) to H1(O). The discrete

inf-sup condition, as well as the approximation properties, are essentially the same as
in the case of an inclusion with infinite conductivity.

Another straightforward application of the abstract framework presented in sec-
tion 3 is the numerical modeling of a rigid inclusion in a material which obeys Lamé’s
equations of linear elasticity. The penalized functional is then

Jε(v) =
1
2

∫
Ω

μ |e(v)|2 +
1
2

∫
Ω

λ |∇ · v|2 −
∫

Ω

f · v +
1
2ε

∫
O

|e(v)|2 ,

where e(v) =
(∇v + (∇v)T

)
/2 is the strain tensor.

We conclude this section by some remarks on the proof itself and on possible
extensions of this approach.

Remark 5.1 (conditioning issues). The fact that there is no need to choose ε
too small (both errors balance for ε of the order of

√
h) is of particular importance

in terms of conditioning. Indeed, considering the matrix Aεh resulting from the two-
dimensional discrete minimization problem (4.4), it can be checked easily that its
smallest eigenvalue scales like h2, whereas its largest eigenvalue behaves like 1/ε,
leading to a condition number of the order of 1/εh2. Following the ε-h balance sug-
gested by the error estimates, the condition number finally scales like 1/h5/2, which
compares reasonably to the standard 1/h2. Note also that some special fixed point
algorithms, recently proposed in [BFM08], can be used to circumvent the problem of
ill-conditioning.

Remark 5.2 (convergence in space). The poor rate of convergence in h is optimal
for a uniform mesh, at least if we consider the H1 error over all Ω. Indeed, as the so-
lution is constant inside O, nonconstant outside with a jump in the normal derivative,
the error within each element intersecting ∂O is a O(1) in this L∞ norm. By summing
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up over all those triangles, which cover a zone whose measure scales like h, we end up
with this h1/2 error. Note that a better convergence could be expected, in theory, if
one considers only the error in the domain of interest Ω \ O, the question now being
whether the bad convergence in the neighborhood of ∂O pollutes the overall approx-
imation. Our feeling is that this pollution actually occurs, because nothing is done
in the present approach to distinguish both sides of ∂O, so that the method tends to
balance the errors on both sides. An interesting way to give priority to the side of
interest is proposed in [DP02] for a boundary penalty method; it consists in having
the diffusion coefficient vanish within Ω. Note that other methods have been proposed
to reach the optimal convergence rate on nonboundary fitted mesh (see [Mau01]), but
they are less straightforward to implement.

The simplest way to improve the actual order of convergence is to carry out a
local refinement strategy in the neighborhood of ∂O, as proposed in [RAB07].

Remark 5.3 (nonregular domains). The method can be implemented straight-
forwardly to nonregular domains (e.g., with corners or cusps), but the numerical
analysis presented here is no longer valid. In particular, the inf-sup condition estab-
lished in Proposition 4.7 and approximation properties for u (see Proposition 4.8) may
no longer hold. Notice that Propositions 2.9 and 2.10 do not require any regularity
assumption, so that convergence can be established for some sequences (h, ε) tending
to (0, 0), but the optimal order of convergence is lost. Practical tests suggest a reason-
ably good behavior of the method is such situations, like in the case where O consists
of two tangent discs (this situation is of special interest for practical applications in
the context of fluid particle flows, when two particles are in contact; see, for example,
[Lef07]).

Remark 5.4. Note that having ε go to 0 for any h > 0 leads to an estimate
for a fictitious domain method (à la Glowinski, i.e., based on the use of Lagrange
multipliers). In [GG95], an error estimate is obtained for such a method; it relies on two
independent meshes for the primal and dual components of the solution (conditionally
to some compatibility conditions between the sizes of the two meshes). We recover
this estimate in the situation where the local mesh is simply the restriction of the
covering mesh to the obstacle (to the reduced obstacle Oh, to be more precise).
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MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR
ELECTROMAGNETIC SCATTERING∗
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1. Introduction. The modeling of electromagnetic scattering at a perfect con-
ductor in the exterior of a bounded domain Ω ⊂ R

3 leads to the Dirichlet boundary
value problem [12, 18, 22, 23]

curl curlU(x)− κ2U(x) = 0 for x ∈ Ωc = R
3 \ Ω,(1.1)

nx × (U(x) × nx) =g(x) for x ∈ Γ = ∂Ω,(1.2)

where κ ∈ R+ is the wave number, and nx is the exterior unit normal vector for
almost all x ∈ Γ. In addition to the exterior boundary value problem (1.1) we need to
formulate the radiation condition of electromagnetic scattering, i.e., the Silver–Müller
radiation condition

(1.3) lim
r=|x|→∞

∫
∂Br

|curlU(x) × nx − iκ(nx ×U(x)) × nx|2dsx = 0,

where Br is a ball around zero with radius r. Note that the exterior Dirichlet bound-
ary value problem (1.1)–(1.3) admits a unique solution. According to the partial
differential operator in (1.1) we can formulate Green’s first formula which is valid for
sufficiently smooth functions as∫

Ω

curl curlU(x) ·V(x) dx =
∫

Ω

curlU(x) · curlV(x) dx(1.4)

−
∫

Γ

(curlU(x)|Γ × nx) · (nx × (V(x)|Γ × nx)) dsx.
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Based on (1.4) related Sobolev spaces and corresponding trace operators can be in-
troduced [4, 5, 6, 7, 8]; these results will be summarized in section 2. Then, the
well-known Stratton–Chu representation formula will be discussed which implies the
definition of appropriate potential and boundary integral operators [6, 8, 11, 13,
16, 17, 20, 21, 23]. The corresponding boundary integral equations can be used
for a numerical treatment of the problem by means of boundary element methods
[3, 6, 8, 11, 12, 13, 19, 23]. But although the exterior boundary value problem (1.1)–
(1.3) is uniquely solvable, the standard boundary integral equations are not uniquely
solvable if the wave number κ corresponds to an eigenvalue of an associated interior
eigenvalue problem. To avoid these spurious modes Brakhage and Werner [1] intro-
duced a combined boundary integral approach for the acoustic problem in 1965. In
the same year Panich discussed this approach for the electromagnetic case [24]. But
the analysis of the approach of Brakhage and Werner is applicable for smooth bound-
aries only. Hence modified boundary integral equations were discussed in [10] for the
acoustic case and in [9] for the electromagnetic case. In [14] an alternative approach
was introduced for the acoustic case. Here we want to generalize this idea to obtain
modified combined boundary integral equations for the electromagnetic case.

The paper is structured as follows: In section 2 we first summarize the definitions
of Sobolev spaces to handle the variational formulation of the Maxwell system, and
introduce potential operators and related boundary integral operators as needed later.
We also discuss standard boundary integral approaches to solve the exterior Dirichlet
boundary value problem, and comment on combined and already existing stabilized
boundary integral formulations. An alternative modified boundary integral equation
is formulated and analyzed in section 3. In particular, we present a new boundary
integral formulation which is based on the use of standard, and therefore already
available, boundary integral operators, and which is stable for all wave numbers.
In section 4 we describe a first numerical example to show the applicability of the
proposed approach. We finally end up with some conclusions and an outlook on
ongoing work.

2. Function spaces and boundary integral equations. The formulation of
boundary integral equations for the Maxwell system requires the use of the correct
function spaces. Here we will recall only the definitions and the properties of Sobolev
spaces for the Maxwell system; for a more detailed description see, e.g., [4, 5].

Let Ω ⊂ R
3 be a Lipschitz polyhedron [4] with a Lipschitz boundary Γ = ∂Ω

which is the union of plane faces Γi, i.e., Γ =
⋃
i Γi, where ni is the exterior normal

vector on Γi.
The partial differential equation in (1.1) and Green’s first formula (1.4) motivate

the definition of the energy space

H(curl ,Ω) := {V ∈ L2(Ω) : curlV ∈ L2(Ω)}

as well as the space of the natural solutions

H(curl 2,Ω) := {V ∈ H(curl ,Ω) : curl curlV ∈ L2(Ω)} .

In addition we need to introduce appropriate Sobolev spaces on the boundary. For
|s| ≤ 1 and for scalar functions on the boundary the usual Sobolev spaces are denoted
by Hs(Γ). Let us define the Dirichlet traces

γDU := n× (U|Γ × n) = n× γ×U, γ×U := U|Γ × n
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and the Neumann trace

γNU := curlU|Γ × n

which all are mappings into tangential spaces. Hence we introduce the space

L2,t(Γ) := {u ∈ L2(Γ) : u · n = 0}
of tangential L2(Γ) integrable functions. For higher order Sobolev spaces we use the
piecewise definition

Hs
pw,t(Γ) := {u ∈ L2,t(Γ) : u ∈ Hs(Γk), k = 1, . . . , NΓ}.

The trace spaces γDH1(Ω) and γ×H1(Ω) are denoted by H1/2
‖ (Γ) and H1/2

⊥ (Γ), re-
spectively; for an alternative definition see [4]. The dual spaces with respect to L2,t(Γ)
are denoted by H−1/2

‖ (Γ) and H−1/2
⊥ (Γ).

Before introducing the trace spaces of H(curlΩ) we need to define some bound-
ary differential operators. Here we just give definitions for smooth boundaries; for
Lipschitz polyhedrons see [4, 5]. For a scalar function u defined on Γ we denote by
ũ an arbitrary bounded extension into a three-dimensional neighborhood of Γ. Then
we can define the boundary differential operators

∇Γ u := [n× (∇ũ× n)]|Γ , curlΓ u := [curl (ũn)]|Γ ,

where

∇Γ : H1(Ω)→ L2,t(Γ), curlΓ : H1(Ω)→ L2,t(Γ).

In addition, we introduce the adjoint operators of −∇Γ and of curlΓ , i.e.,

divΓ : L2,t(Γ)→ H−1
∗ (Ω), curlΓ : L2,t(Γ)→ H−1

∗ (Ω),

where

H−1
∗ (Ω) =

{
v ∈ H−1(Γ) : 〈v, 1〉Γ = 0

}
.

With the help of these operators we can finally define the Hilbert spaces

H−1/2
⊥ (curlΓ ,Γ) :=

{
u ∈ H−1/2

⊥ (Γ) : curlΓ u ∈ H−1/2(Γ)
}
,

H−1/2
‖ (divΓ ,Γ) :=

{
u ∈ H−1/2

‖ (Γ) : divΓ u ∈ H−1/2(Γ)
}
.

These spaces are dual to each other with respect to L2,t(Γ) and represent the trace
spaces γDH(curl ,Ω) and γ×H(curl ,Ω), respectively. Furthermore, there holds the
following theorem [4, Theorems 2.7 and 2.8] and [5, Theorem 4.5].

Theorem 2.1. The operators

γD : H(curl ,Ω)→ H−1/2
⊥ (curlΓ ,Γ),

γN : H(curl curl ,Ω)→ H−1/2
‖ (divΓ ,Γ)

are linear, continuous, and surjective.
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Now we are able to introduce some potential and boundary integral operators
which are relevant for electromagnetic scattering [11]. The solution of the exterior
Dirichlet boundary value problem (1.1)–(1.3) can be described by using the Stratton–
Chu representation formula [13, 17, 23]

(2.1) U(x) = −Ψκ
M (γcDU)(x) −Ψκ

S(γcNU)(x) for x ∈ Ωc,

where the Maxwell single layer potential is given by

Ψκ
S(μ) := Ψκ

A(μ) +
1
κ2

gradΨκ
V (divΓ (μ)),

and the Maxwell double layer potential is defined by

Ψκ
M (λ)(x) := curlΨκ

A(λ× n)(x).

The operators Ψκ
A and Ψκ

V are the vectorial and the scalar single layer potentials
which are given by

Ψκ
A(λ)(x) :=

∫
Γ

gκ(x, y)λ(y)dsy, Ψκ
V (λ)(x) :=

∫
Γ

gκ(x, y)λ(y)dsy ,

whereas gκ(x, y) is the fundamental solution of the Helmholtz equation,

gκ(x, y) =
1
4π

eiκ|x−y|

|x− y| .

To use an indirect approach to represent the solution of (1.1)–(1.3) the following result
is essential; see, e.g., [11, Theorem 3.8] or [13, section 6].

Theorem 2.2. The Maxwell single and double layer potentials are solutions of the
partial differential equation in (1.1) and fulfill the Silver–Müller radiation condition
(1.3). Moreover, the following mapping properties are valid:

Ψκ
S : H−1/2

‖ (divΓ ,Γ)→ Hloc(curl 2,Ω ∪ Ωc),

Ψκ
M : H−1/2

⊥ (curlΓ ,Γ)→ Hloc(curl 2,Ω ∪ Ωc).

Hence we can represent the solution of the exterior Dirichlet boundary value
problem (1.1)–(1.3) either by the single layer potential

(2.2) U(x) = Ψκ
S(μ)(x) for x ∈ Ωc

or by using the double layer potential

(2.3) U(x) = Ψκ
M (λ)(x) for x ∈ Ωc.

To find the unknown density functions μ ∈ H−1/2
‖ (divΓ ,Γ) and λ ∈ H−1/2

⊥ (curlΓ ,Γ)
we have to formulate appropriate boundary integral equations which can be derived
from the Dirichlet boundary condition (1.2). For this we first use the trace operators
γD and γN as given in Theorem 2.1 to define related boundary integral operators; in
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particular for the interior trace we obtain

γDΨκ
Sμ(x) =: Sκμ(x),

γDΨκ
Mλ(x) =:

(
1
2
I + Cκ

)
λ(x),

γNΨκ
Sμ(x) =:

(
1
2
I + Bκ

)
μ(x),

γNΨκ
Mλ(x) =: Nκλ(x),

while for the exterior trace we get

γcDΨκ
Sμ(x) =: Sκμ(x),

γcDΨκ
Mλ(x) =:

(
−1

2
I + Cκ

)
λ(x),

γcNΨκ
Sμ(x) =:

(
−1

2
I + Bκ

)
μ(x),

γcNΨκ
Mλ(x) =: Nκλ(x).

Note that

Sκ : H−1/2
‖ (divΓ ,Γ)→ H−1/2

⊥ (curlΓ ,Γ)

and

Nκ : H−1/2
⊥ (curlΓ ,Γ)→ H−1/2

‖ (divΓ ,Γ).

Moreover, with respect to the complex duality pairing

〈λ,μ〉 =
∫

Γ

λ(x) · μ(x) dsx,

we have for κ ∈ R\{0}

〈Sκμ,w〉 = 〈μ, S−κw〉 for all μ,w ∈ H−1/2
‖ (divΓ ,Γ),

〈Nκλ,v〉 = 〈λ,N−κv〉 for all λ,v ∈ H−1/2
⊥ (curlΓ ,Γ),

while the double layer potentials Cκ and Bκ are related to each other as follows.
Lemma 2.3. For all μ ∈ H−1/2

‖ (divΓ ,Γ) and λ ∈ H−1/2
⊥ (curlΓ ,Γ) there holds

〈Bκμ,λ〉 = −〈μ,C−κλ〉 for all κ ∈ R\{0}.
Proof. Since U = Ψκ

Sμ and V = Ψ−κM λ are solutions of the homogeneous Maxwell
equations, we can write Green’s first formula (1.4) for the bounded domain Ω as∫

Ω

curlU · curlVdx =
∫

Ω

curl curlU ·Vdx+ 〈γNU, γDV〉

=
∫

Ω

κ2 U ·Vdx+ 〈γNU, γDV〉
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and ∫
Ω

curlV · curlUdx =
∫

Ω

κ2 V ·Udx + 〈γNV, γDU〉.

Hence we first conclude

〈γNU, γDV〉 = 〈γNV, γDU〉.
On the other hand, for a bounded domain Br\Ω we have∫
Br\Ω

curlU · curlVdx =
∫
Br\Ω

κ2 U ·Vdx+
∫
∂Br

γNU · γDVdsx − 〈γcNU, γcDV〉

and∫
Br\Ω

curlV · curlUdx =
∫
Br\Ω

κ2 V ·Udx+
∫
∂Br

γNV · γDUdsx − 〈γcNV, γcDU〉.

Hence we also conclude

〈γcNU, γcDV〉 =
∫
∂Br

γNU · γDVdsx −
∫
∂Br

γNV · γDUdsx + 〈γcNV, γcDU〉

and therefore, for r →∞,

〈γcNU, γcDV〉 = 〈γcNV, γcDU〉 = 〈γNV, γDU〉 = 〈γNU, γDV〉.
Note that U = Ψκ

Sμ and V = Ψ−κM λ = Ψκ
Mλ are both solutions of the homoge-

neous Maxwell equations (1.1) satisfying the radiation condition (1.3); see also [11,
Lemma 3.10].

With the interior and exterior Neumann traces,

γNU = γNΨκ
Sμ =

(
1
2
I +Bκ

)
μ, γcNU = γNΨκ

Sμ =
(
− 1

2
I +Bκ

)
μ,

we further obtain

γNU + γcNU = 2Bκμ, γNU− γcNU = μ.

On the other hand, when considering the interior and exterior Dirichlet traces this
gives

γDV = γDΨ−κM λ =
(

1
2
I + C−κ

)
λ, γcDV =

(
− 1

2
I + C−κ

)
λ,

and therefore

γDV + γcDV = 2C−κλ, γDV − γcDV = λ.

Hence we finally obtain

2〈Bκμ,λ〉 = 〈γNU + γcNU, γDV − γcDV〉
= 〈γNU, γDV〉+ 〈γcNU, γDV〉 − 〈γNU, γcDV〉 − 〈γcNU, γcDV〉
= 〈γcNU, γcDV〉+ 〈γcNU, γDV〉 − 〈γNU, γcDV〉 − 〈γNU, γDV〉
= 〈γcNU− γNU, γcDV + γDV〉
= −2〈μ, C−κλ〉.
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When using the single layer potential (2.2) we have to find μ ∈ H−1/2
‖ (divΓ ,Γ)

by solving the boundary integral equation

(2.4) Sκμ(x) = g(x) for x ∈ Γ,

while for the double layer potential (2.3) λ ∈ H−1/2
⊥ (curlΓ ,Γ) is the solution of the

boundary integral equation

(2.5) −1
2
λ(x) + Cκλ(x) = g(x) for x ∈ Γ.

When applying the exterior Dirichlet and the exterior Neumann traces to the Stratton–
Chu representation formula (2.1) we obtain a system of boundary integral equations,

(2.6)
γcDU= −Sκγ

c
NU + (1

2I − Cκ)γcDU,

γcNU=(1
2I − Bκ)γcNU + −Nκγ

c
DU.

In particular, to describe the solution of the exterior Dirichlet boundary value problem
(1.1)–(1.3) we may use the first boundary integral equation in (2.6) to find γcNU ∈
H−1/2
‖ (divΓ ,Γ) such that

(2.7) Sκγ
c
NU(x) = −1

2
g(x)− Cκg(x) for x ∈ Γ.

Proposition 2.4 (see [12]). Let λ = κ2 be an eigenvalue of the interior Maxwell
eigenvalue problem

curl curlUλ(x) = λUλ(x) for x ∈ Ω.

Then, in the case of the interior Dirichlet eigenvalue problem

(2.8) curl curlUλ(x) = λUλ(x) for x ∈ Ω, γDUλ(x) = 0 for x ∈ Γ,

γNUλ(x) is in the kernel of Sκ and (− 1
2I + Bκ), i.e.,

SκγNUλ = 0,
(

1
2
I − Bκ

)
γNUλ = 0.

On the other hand, if κ2 is not an eigenvalue of the interior Dirichlet eigenvalue
problem (2.8), then Sκw = 0 implies w = 0.

Moreover, in the case of the interior Neumann eigenvalue problem

(2.9) curl curlVλ(x) = λVλ(x) for x ∈ Ω, γNVλ(x) = 0 for x ∈ Γ,

γDVλ(x) is in the kernel of Nκ and (1
2I − Cκ), i.e.,

NκγDVλ = 0,
(

1
2
I − Cκ

)
γDVλ = 0.

Hence, if λ = κ2 is an eigenvalue of the interior Maxwell eigenvalue problem, we
conclude that the single layer potential operator Sκ is not invertible, and therefore
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the boundary integral equations (2.4) and (2.7) are in general not solvable. However,
due to 〈

− 1
2
g − Cκg, γNUλ

〉
=
〈
g,
(
− 1

2
I + B−κ

)
γNUλ

〉
= 0

we conclude that the right-hand side of the boundary integral equation (2.7) is in the
image of the single layer potential Sκ; i.e., the boundary integral equation (2.7) of the
direct approach is solvable, but the solution is not unique. Moreover, the boundary
integral operator 1

2I − Cκ is also not invertible, and therefore the boundary integral
equation (2.5) of the indirect approach is in general not solvable.

To overcome the problem of nonsolvability of boundary integral equations due to
interior eigenfrequencies one may use a combined approach such as the formulation
of Brakhage and Werner, who introduced a combined field integral equation for the
acoustic scattering problem [1]. The same idea was used by Panich in [24] for the
electromagnetic case. In general, the idea is to consider complex linear combinations
of the single and double layer potential, i.e.,

U(x) = −iηΨκ
Sw(x) −Ψκ

Mw(x) for x ∈ Ωc,

where η ∈ R+ is some parameter to be chosen. The unknown density w ∈ L2(Γ) can
then be determined from the resulting boundary integral equation

(2.10) γcDU(x) = −iηSκw(x) +
(

1
2
I − Cκ

)
w(x) = g(x) for x ∈ Γ

which can be proved to be uniquely solvable if the boundary Γ = ∂Ω is sufficiently
smooth. But this proof is essentially based on the compactness of the double layer
potential operator Cκ which is not satisfied if Ω is a Lipschitz polyhedron. Hence one
may introduce a regularization operator B : H−1/2

‖ (divΓ ,Γ)→ H−1/2
⊥ (curlΓ ,Γ) such

that the stabilized boundary integral equation

(2.11) γcDU(x) = −iηSκw(x) +
(

1
2
I − Cκ

)
Bw(x) = g(x) for x ∈ Γ

admits a unique solution w ∈ H−1/2
‖ (divΓ ,Γ). A suitable compact operator B was

introduced by Buffa and Hiptmair in [9]. The unique solvability of the stabilized
boundary integral equation (2.11) is then based on a generalized G̊arding inequality
for the single layer potential Sκ and on the injectivity of the composed boundary
integral operator in (2.11).

In the next section we will describe an alternative approach which generalizes
modified boundary integral equations for the Helmholtz case [14]. To analyze the
proposed modified boundary integral formulation we will need some auxiliary results
as given in the following.

Due to the boundary integral equations (2.6) we define, for general σ ∈ C, the
Calderon projector

C =
(

1
2I − Cσ −Sσ
−Nσ

1
2I − Bσ

)

which satisfies the projection property

(2.12) C2

(
λ

μ

)
= C

(
λ

μ

)
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for all λ ∈ H−1/2
⊥ (curlΓ ,Γ) and μ ∈ H−1/2

‖ (divΓ ,Γ). As a corollary of the projection
property (2.12) we then conclude the relations

SσNσ =
1
4
I − C2

σ,(2.13)

NσSσ =
1
4
I − B2

σ,(2.14)

−NσCσ = BσNσ,(2.15)

−CσSσ = SσBσ.(2.16)

Note that the case σ = κ ∈ R corresponds to the Maxwell equation (1.1), while the
purely imaginary case σ = iκ, κ ∈ R, corresponds to the Yukawa-type equation

curl curlU(x) + κ2U(x) = 0 for x ∈ Ωc,

and the associated fundamental solution is given by

giκ(x, y) =
1
4π

e−κ|x−y|

|x− y| .

In this case, i.e., for σ = iκ, κ ∈ R, the single layer boundary integral operator Sσ and
the hypersingular integral operator Nσ are self-adjoint with respect to the complex
duality pairing, while for the related double layer potentials we have

〈Bσμ,λ〉 = −〈μ,Cσλ〉.
If the single layer potential operator Sσ is invertible, we can define the Steklov–
Poincaré operator

Tσ := S−1
σ

(
1
2
I − Cσ

)
: H−1/2

⊥ (curlΓ ,Γ)→ H−1/2
‖ (divΓ ,Γ)(2.17)

which allows an alternative symmetric representation

Tσ := Nσ +
(

1
2
I + Bσ

)
S−1
σ

(
1
2
I − Cσ

)
.(2.18)

Theorem 2.5. The operators

A0 = γcDΨ0
A : H−1/2

‖ (Γ)→ H1/2
‖ (Γ)

and

V0 = γcDΨ0
V : H−1/2(Γ)→ H1/2(Γ)

are self-adjoint as well as H−1/2
‖ (Γ)- and H−1/2(Γ)-elliptic, respectively. Moreover,

for σ = iκ, κ ∈ R+, the single layer potential

Sσ : H−1/2
‖ (divΓ ,Γ)→ H−1/2

⊥ (curlΓ ,Γ)

is H−1/2
‖ (divΓ ,Γ)-elliptic and self-adjoint.
Proof. For the mapping properties of the boundary integral operators A0 and V0

see [6, Theorem 4]. The ellipticity of Sσ follows as in the case of the Laplace operator;
see, e.g., [27].
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3. Modified boundary integral equations. In this section we propose an
alternative approach of a modified boundary integral equation to solve the exterior
Dirichlet boundary value problem (1.1)–(1.3). Because of symmetry reasons we choose

B = S∗0
−1

(
1
2
I + B−κ

)
: H−1/2
‖ (divΓ ,Γ)→ H−1/2

⊥ (curlΓ ,Γ),

whereas S∗0 : H−1/2
⊥ (curlΓ ,Γ)→ H−1/2

‖ (divΓ ,Γ) is given by

S∗0u := n× A0(u× n) + curlΓ V0 curlΓ u.

By using Theorem 2.5 one can prove that S∗0 is H−1/2
⊥ (curlΓ ,Γ)-elliptic and self-

adjoint.
Now we can describe the solution of the exterior Dirichlet boundary value problem

(1.1)–(1.3) by

U(x) = Ψκ
Sw(x) − iηΨκ

MBw(x) for x ∈ Ωc.

When applying the exterior Dirichlet trace we can find the unknown density w ∈
H−1/2
‖ (divΓ ,Γ) from the modified boundary integral equation

Zκw(x) = Sκw(x) + iη

(
1
2
I − Cκ

)
S∗0
−1

(
1
2
I + B−κ

)
w(x) = g(x) for x ∈ Γ.(3.1)

To establish the unique solvability of the modified boundary integral equation (3.1)
we first prove that Zκ is coercive. In contrast to the approach in [14] we show the
coercivity in the second part, because the single layer potential Sκ does not fulfill a
G̊arding inequality.

To prove the coercivity of the operator Zκ we first define an appropriate equivalent
norm in H−1/2

⊥ (curlΓ ,Γ), see Theorem 2.5; i.e., for σ = iκ, κ ∈ R+,

‖u‖S−1
σ

:=
√
〈S−1
σ u,u〉, u ∈ H−1/2

⊥ (curlΓ ,Γ).

As in the case of a formally elliptic partial differential operator [28] we can prove a
contraction property of the associated double layer potential 1

2I−Cσ, σ = iκ, κ ∈ R+.

Theorem 3.1. For all u ∈ H−1/2
⊥ (curlΓ ,Γ) and for σ = iκ, κ ∈ R+, there holds

(1− cK)‖u‖S−1
σ
≤
∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

S−1
σ

≤ cK‖u‖S−1
σ
,

where

cK =
1
2

+

√
1
4
− cS1 cN1 < 1,

and cS1 , c
N
1 are the ellipticity constants of the single layer potential Sσ and of the

hypersingular operator Nσ.
Proof. The proof follows as in the case of a formally elliptic partial differential

operator; see [28, Theorem 3.1].
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For u ∈ H−1/2
⊥ (curlΓ ,Γ) with ‖u‖

H
−1/2
⊥ (curlΓ ,Γ)

> 0 we first have

∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

2

S−1
σ

=
〈

S−1
σ

(
1
2
I − Cσ

)
u,
(

1
2
I − Cσ

)
u
〉

= 〈Tσu,u〉 − 〈Nσu,u〉,

where the Steklov–Poincaré operator Tσ is defined as in (2.18). Let

J : H−1/2
‖ (divΓ ,Γ)→ H−1/2

⊥ (curlΓ ,Γ)

be the Riesz operator; then

A := J S−1
σ : H−1/2

⊥ (curlΓ ,Γ)→ H−1/2
⊥ (curlΓ ,Γ)

is self-adjoint and H−1/2
⊥ (curlΓ ,Γ)-elliptic.

Hence we can consider the splitting A = A1/2A1/2 to obtain

〈Tσu,u〉 =
〈

S−1
σ

(
1
2
I − Cσ

)
u,u

〉

=
〈
JS−1

σ

(
1
2
I − Cσ

)
u,u

〉
H

−1/2
⊥ (curlΓ ,Γ)

=
〈
A1/2

(
1
2
I − Cσ

)
u, A1/2u

〉
H

−1/2
⊥ (curlΓ ,Γ)

≤
∥∥∥∥A1/2

(
1
2
I − Cσ

)
u
∥∥∥∥
H

−1/2
⊥ (curlΓ ,Γ)

‖A1/2u‖
H

−1/2
⊥ (curlΓ ,Γ)

.

With

‖A1/2v‖2
H

−1/2
⊥ (curlΓ ,Γ)

= 〈A1/2v, A1/2v〉
H

−1/2
⊥ (curlΓ ,Γ)

= 〈JS−1
σ v,v〉

H
−1/2
⊥ (curlΓ ,Γ)

= 〈S−1
σ v,v〉 = ‖v‖2

S−1
σ

we then obtain

〈Tσu,u〉 ≤
∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

S−1
σ

‖u‖S−1
σ
.

On the other hand, for the hypersingular boundary integral operator we have

〈Nσu,u〉 ≥ cN1 ‖u‖2H−1/2
⊥ (curlΓ ,Γ)

≥ cN1 cS1 〈S−1
σ u,u〉 = cN1 c

S
1 ‖u‖2S−1

σ
.

Altogether, this gives
∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

2

S−1
σ

= 〈Tσu,u〉 − 〈Nσu,u〉

≤
∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

S−1
σ

‖u‖S−1
σ
− cN1 cS1 ‖u‖2S−1

σ
,
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which is equivalent to (a
b

)2

− a

b
+ cN1 c

S
1 ≤ 0,

where

a :=
∥∥∥∥
(

1
2
I − Cσ

)
u
∥∥∥∥

S−1
σ

≥ 0, b := ‖u‖S−1
σ
> 0.

Hence we finally conclude

1
2
−
√

1
4
− cN1 cS1 ≤

a

b
≤ 1

2
+

√
1
4
− cN1 cS1 ,

which gives the assertion.
A similar estimate can also be shown for the operator 1

2I + Cσ.
Theorem 3.2. For v ∈ H−1/2

⊥ (curlΓ ,Γ), σ = iκ, κ ∈ R+, there holds

(1− cK)‖v‖S−1
σ
≤
∥∥∥∥
(

1
2
I + Cσ

)
v
∥∥∥∥

S−1
σ

≤ cK‖v‖S−1
σ
.

Proof. The proof follows as in the case of a formally elliptic partial differential
operator; see [28, Theorem 3.2].

With the contraction property of 1
2I − Cσ we obtain

‖v‖S−1
σ

=
∥∥∥∥
(

1
2
I + Cσ

)
v +

(
1
2
I − Cσ

)
v
∥∥∥∥

S−1
σ

≤
∥∥∥∥
(

1
2
I + Cσ

)
v
∥∥∥∥

S−1
σ

+
∥∥∥∥
(

1
2
I − Cσ

)
v
∥∥∥∥

S−1
σ

≤
∥∥∥∥
(

1
2
I + Cσ

)
v
∥∥∥∥

S−1
σ

+ cK‖v‖S−1
σ

and therefore the first inequality. On the other hand, by using the representations
(2.17) and (2.18) we get∥∥∥∥

(
1
2
I + Cσ

)
v
∥∥∥∥

2

S−1
σ

=
∥∥∥∥
(
I −

(
1
2
I − Cσ

))
v
∥∥∥∥

2

S−1
σ

= ‖v‖2
S−1

σ
+
∥∥∥∥
(

1
2
I − Cσ

)
v
∥∥∥∥

2

S−1
σ

− 2
〈

S−1
σ

(
1
2
I − Cσ

)
v,v

〉

= ‖v‖2
S−1

σ
+
∥∥∥∥
(

1
2
I − Cσ

)
v
∥∥∥∥

2

S−1
σ

− 2〈Tσv,v〉

= ‖v‖2
S−1

σ
−
∥∥∥∥
(

1
2
I − Cσ

)
v
∥∥∥∥

2

S−1
σ

− 2〈Nσv,v〉

≤ [1− (1 − cK)2 − 2cS1 c
N
1 ] ‖v‖2

S−1
σ

= c2K‖v‖2S−1
σ

and therefore the upper estimate.
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As for the operators 1
2I ± Cσ we can prove related estimates for the operators

1
2I ±Bσ when considering an equivalent norm in H−1/2

‖ (divΓ ,Γ) which is induced by
the single layer potential Sσ; i.e., for σ = iκ, κ ∈ R+ there holds

(3.2) (1− cK) ‖w‖Sσ ≤
∥∥∥∥
(

1
2
I ± Bσ

)
w
∥∥∥∥

Sσ

≤ cK ‖w‖Sσ

for all w ∈ H−1/2
‖ (divΓ ,Γ).

For u ∈ H−1/2
‖ (divΓ ,Γ) and κ ∈ R+ we finally define the operator

Sκ,0u := A0u− 1
κ2
∇Γ V0 divΓ u.

Now we are able to prove the coercivity of the operator Zκ.
Theorem 3.3. Let κ ∈ R+. The operator

Zκ = Sκ + iη

(
1
2
I − Cκ

)
S∗0
−1

(
1
2
I + B−κ

)
: H−1/2

‖ (divΓ ,Γ)→ H−1/2
⊥ (curlΓ ,Γ)

satisfies a G̊arding inequality; i.e., there holds

[〈Zκμ,μ〉+ c1(μ,μ)] ≥ cZ ‖μ‖2H−1/2
‖ (divΓ ,Γ)

for all μ ∈ H−1/2
‖ (divΓ ,Γ) with a positive constant cZ where c1(μ,μ) is a compact

bilinear form.
Proof. Since 〈Sκ,0w,w〉 is real, the same holds true for the duality product〈

S∗0
−1

(
1
2
I + B−κ

)
w,
(

1
2
I + B−κ

)
w
〉
∈ R.

Because of the contraction property (3.2) we get, for σ = iκ,∥∥∥∥
(

1
2
I + Bσ

)
w
∥∥∥∥
H

−1/2
‖ (divΓ ,Γ)

≥ c ‖w‖
H

−1/2
‖ (divΓ ,Γ)

for all w ∈ H−1/2
‖ (divΓ ,Γ). Since the operator S∗0

−1 is H−1/2
‖ (divΓ ,Γ)-elliptic, we

have 〈
S∗0
−1

(
1
2
I + Bσ

)
w,
(

1
2
I + Bσ

)
w
〉
≥ c ‖w‖2

H
−1/2
‖ (divΓ ,Γ)

for all w ∈ H−1/2
‖ (divΓ ,Γ). The operator Zκ can now be written in the following

form:

Zκ = Sκ,0 + (Sκ − Sκ,0)︸ ︷︷ ︸
compact

+iη

((
1
2
I − Cσ

)
S∗0
−1

(
1
2
I + Bσ

)

+ (Cσ − Cκ)S∗0
−1

(
1
2
I + B−κ

)
+
(

1
2
I − Cσ

)
S∗0
−1(B−κ − Bσ)︸ ︷︷ ︸

compact

)
,
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which implies

 [〈Zκw,w〉+ c1(w,w)]

= 
[
〈Sκ,0w,w〉+ iη

〈
S∗0
−1

(
1
2
I + Bσ

)
w,
(

1
2
I + Bσ

)
w
〉]

= η

〈
S∗0
−1

(
1
2
I + Bσ

)
w,
(

1
2
I + Bσ

)
w
〉

≥ c ‖w‖2
H

−1/2
‖ (divΓ ,Γ)

.

Note that the compactness of Sκ − Sκ,0, Cσ − Cκ, and B−κ − Bσ follows as for the
Helmholtz case; see, e.g., [26, 27, 29].

Hence, to use Fredholm’s alternative to establish the unique solvability of the
modified boundary integral equation (3.1) it remains to prove the injectivity of the
operator Zκ. This can be done as for the Helmholtz equation; see [14].

Theorem 3.4. For a positive wave number κ ∈ R+ there holds

[〈Sκw,w〉] ≥ 0

for all w ∈ H−1/2
‖ (divΓ ,Γ).

Proof. Let U(x) = Ψκ
Sw(x), x ∈ Ω, be a solution of the partial differential

equation (1.1). From Green’s first formula (1.4) we then have∫
Ω

[
curlU(x) · curlV(x) − κ2U(x) ·V(x)

]
dx =

∫
Γ

γNU(x) · γDV(x)dsx.

For V = U it follows that∫
Ω

(|curlU(x)|2 − κ2|U(x)|2) dx =
∫

Γ

γNU(x) · γDU(x)dsx.

With

γNΨκ
Sw(x) =

1
2
w(x) + Bκw(x),

γDΨκ
Sw(x) = Sκw(x),

we then obtain∫
Ω

(|curlU(x)|2 − κ2|U(x)|2) dx = 〈γNU, γDU〉 =
〈

1
2
w + Bκw, Sκw

〉
.

To handle the exterior domain Ωc we first consider the bounded domain Br\Ω,∫
Br\Ω

(|curlU(x)|2 − κ2|U(x)|2) dx
=
∫
∂Br

γNU(x) · γDU(x)dsx −
∫

Γ

γcNU(x) · γcDU(x)dsx.
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For the exterior traces of U(x) = Ψκ
Sw(x), x ∈ Ωc, we have for x ∈ Γ

γcNΨκ
Sw(x) = −1

2
w(x) + Bκw(x),

γcDΨκ
Sw(x) = Sκw(x),

and therefore ∫
Br\Ω

(|curlU(x)|2 − κ2|U(x)|2) dx
=
∫
∂Br

γNU(x) · γDU(x)dsx +
〈

1
2
w − Bκw, Sκw

〉
.

Hence we find by summing up the above expressions∫
Br

(|curlU(x)|2 − κ2|U(x)|2) dx = 〈w, Sκw〉+
∫
∂Br

γNU(x) · γDU(x)dsx,

and therefore

[〈w, Sκw〉] = −
[ ∫

∂Br

γNU(x) · γDU(x)dsx

]
.

From the Silver–Müller radiation condition, i.e.,

lim
r=|x|→0

∫
∂Br

|curlU(x) × n− iκ(n×U(x)) × n|2dsx = 0,

we further conclude∫
∂Br

|γNU(x)− iκγDU(x)|2dsx

=
∫
∂Br

(
|γNU(x)|2 + |κγDU(x)|2 − 2�[γNU(x) · iκγDU(x)]

)
dsx

=
∫
∂Br

(|γNU(x)|2 + |κγDU(x)|2 − 2κ [γNU(x) · γDU(x)
])
dsx

=
∫
∂Br

(|γNU(x)|2 + |κγDU(x)|2) dsx + 2κ[〈w, Sκw〉]→ 0

as r →∞, which implies

2κ[〈w, Sκw〉] ≤ 0

and thus

2κ[〈Sκw,w〉] ≥ 0.

Now we are in a position to prove the injectivity of Zκ.
Theorem 3.5. For κ ∈ R+ and η ∈ R+ the modified boundary integral operator

Zκ = Sκ + iη

(
1
2
I − Cκ

)
S∗0
−1

(
1
2
I + B−κ

)
: H−1/2

‖ (divΓ ,Γ)→ H−1/2
⊥ (curlΓ ,Γ)

is injective.
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Proof. Let w ∈ H−1/2
‖ (divΓ ,Γ) be a solution of the homogeneous equation

Zκw(x) = 0 for x ∈ Γ.

Then it follows that

0 = 〈Zκw,w〉 = 〈Sκw,w〉 + iη

〈
S∗0
−1

(
1
2
I + B−κ

)
w,
(

1
2
I + B−κ

)
w
〉

and therefore


[
〈Sκw,w〉 + iη

〈
S∗0
−1

(
1
2
I + B−κ

)
w,
(

1
2
I + B−κ

)
w
〉]

= 0.

By using Theorem 3.4 we then get

η

〈
S∗0
−1

(
1
2
I + B−κ

)
w,
(

1
2
I + B−κ

)
w
〉

= −[〈Sκw,w〉] ≤ 0,

and hence we conclude (
1
2
I + B−κ

)
w = 0.

But then we also have

Sκw(x) = 0 for x ∈ Γ,

which admits only a nontrivial solution w = γNUλ if κ2 = λ is an eigenvalue of the
interior Dirichlet eigenvalue problem (2.8) implying(

1
2
I − B±κ

)
w = 0,

i.e., (
1
2
I + B−κ

)
w = 0,

(
1
2
I − B−κ

)
w = 0.

Hence we conclude w = 0 for all frequencies κ > 0.
When combining the coercivity (Theorem 3.3) and the injectivity (Theorem 3.4)

of the operator Zκ we therefore conclude the unique solvability of the modified bound-
ary integral equation (3.1). The related variational formulation is to find w ∈
H−1/2
‖ (divΓ ,Γ) such that

(3.3) 〈Sκw, τ 〉+ iη

〈(
1
2
I − Cκ

)
S∗0
−1

(
1
2
I + B−κ

)
w, τ

〉
= 〈g, τ 〉

is satisfied for all test functions τ ∈ H−1/2
‖ (divΓ ,Γ). Note that the variational problem

(3.3) has a similar structure as the symmetric boundary integral representation of
the Steklov–Poincaré operator. Due to the composite structure a direct Galerkin
discretization of (3.3) will not be possible. Hence we introduce

z = S∗0
−1

(
1
2
I + B−κ

)
w ∈ H−1/2

⊥ (curlΓ ,Γ),
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which is the unique solution of the variational problem such that

〈S∗0z,v〉 =
〈(

1
2
I + B−κ

)
w,v

〉

is satisfied for all v ∈ H−1/2
⊥ (curlΓ ,Γ). Finally we obtain a saddle point formulation

to find (w, z) ∈ H−1/2
‖ (divΓ ,Γ)×H−1/2

⊥ (curlΓ ,Γ) such that

(3.4)
〈Sκw, τ 〉 + iη〈(1

2I − Cκ)z, τ 〉 = 〈g, τ 〉
− 〈(1

2I + B−κ)w,v〉 + 〈S∗0z,v〉 = 0

is satisfied for all (τ ,v) ∈ H−1/2
‖ (divΓ ,Γ) × H−1/2

⊥ (curlΓ ,Γ). Since the modified
boundary integral equation (3.1) is the Schur complement system of the mixed for-
mulation (3.4) the unique solvability of (3.4) follows immediately.

Remark 3.6. In this paper we just presented a modified boundary integral formu-
lation for the exterior Dirichlet boundary value problem (1.1)–(1.3). For an exterior
Neumann boundary value problem a similar modified formulation can be derived and
analyzed as well [29].

4. Numerical example. As a numerical example to show the applicability of
the proposed approach we consider the exterior Dirichlet boundary value problem
(1.1)–(1.3) where Ω = (0, 1)3 is the unit cube whose boundary Γ = ∂Ω is decomposed
intoN triangular plane elements. For this domain we can easily deduce the eigenvalues
and eigenfrequencies of the interior Dirichlet eigenvalue problem. In particular we will
consider the smallest eigenvalue which corresponds to the wave number k =

√
2π ≈

4.44288. As exact solution of the exterior Dirichlet boundary value problem (1.1)–
(1.3) we consider [2]

U(x) =

⎡
⎢⎣κ2r2 + κr + 1

r3

⎛
⎜⎝

1
0
0

⎞
⎟⎠− κ2r2 + 3κr + 3

r5
(x1 − x̂1)

⎛
⎜⎝

x1 − x̂1

x2 − x̂2

x3 − x̂3

⎞
⎟⎠
⎤
⎥⎦ eκr

for x ∈ Ωc, where the source point is x̂ = (1
2 ,

1
2 ,

1
2 )� ∈ Ω, and r = |x − x̂|. For

a comparison of different approaches we consider the indirect single layer potential
ansatz leading to the boundary integral equation (2.4), the proposed modified formu-
lation (η = 1) where we have to solve (3.1), and a direct approach which results in
the boundary integral equation (2.7). In all cases the Galerkin discretization is done
by using linear Raviart–Thomas elements; see, e.g., [2, 25] for details. The result-
ing linear systems are solved by a GMRES method with a relative error reduction
of ε = 10−8. Then we compute approximate solutions Uh and the related pointwise
error in the evaluation point x̄ = (1.4, 1.8, 2.0)� ∈ Ωc. All results are documented in
Table 1.

It is obvious that the indirect single layer potential approach fails since the wave
number k corresponds to an eigenvalue of the interior Dirichlet eigenvalue problem.
The results of the modified formulation (3.1) and of the direct approach (2.7) are
comparable in this example. However, for the latter one has to ensure a solvability
condition also in the discrete case which requires in general the knowledge of the
related eigenfrequency. Here we considered only a direct Galerkin discretization of
(2.7) which may fail in more general situations.
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Table 1

Number of GMRES iterations and pointwise error.

Indirect, (2.4) Modified, (3.1) Direct, (2.7)

N Iter |U(x̄) − Uh(x̄)| Iter |U(x̄) − Uh(x̄)| Iter |U(x̄) − Uh(x̄)|
72 53 7.64 110 1.27632 53 0.64908
288 107 10.85 197 0.19541 107 0.19153
1152 238 15.52 280 0.04874 209 0.04677
4608 554 43.20 403 0.01308 469 0.01222
18432 665 0.00730 834 0.00529

Related to the numerical results there are several points to be discussed, first of
all the numerical analysis to establish the quadratic order of pointwise convergence.
Moreover, we have to investigate a suitable choice of the scaling parameter η ∈ R+

and the construction of efficient preconditioned iterative solution methods. It is ob-
vious that these questions are strongly related to the case of exterior boundary value
problems for the Helmholtz equation [15]. Note that the formulation corresponds to
the symmetric formulation of boundary integral equations as used in domain decom-
position methods, or to solve boundary value problems with boundary conditions of
mixed Dirichlet and Neumann type [27].

5. Conclusions. In this paper we have described and analyzed a modified bound-
ary integral equation to solve an exterior Dirichlet boundary value problem for the
Maxwell system which is stable for all wave numbers. Note that a similar formulation
can be given in the case of an exterior Neumann boundary value problem as well.
The proposed regularization operator relies on boundary integral operators which
are already available when considering standard boundary integral equations for the
Maxwell system. The modified boundary integral equation is finally reformulated
as a saddle point formulation which allows a direct Galerkin discretization. A first
numerical example shows the applicability of the proposed approach.

In a forthcoming paper we will present the numerical analysis of the related
boundary element method to solve the saddle point formulation (3.4). This may also
include the use of fast boundary element methods, and the design of preconditioned
iterative solution strategies to solve the resulting linear systems of algebraic equations.

Acknowledgment. The authors would like to express their thanks to the anony-
mous referees for many helpful hints and advice.
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A FAST METHOD FOR LINEAR WAVES BASED ON
GEOMETRICAL OPTICS∗

CHRISTIAAN C. STOLK†

Abstract. We develop a fast method for solving the one-dimensional wave equation based
on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB
approximation) it is known that high-frequency waves split into forward and backward propagating
parts, each propagating with the wave speed, with amplitude that is slowly changing depending on
the medium coefficients, under the assumption that the medium coefficients vary slowly compared to
the wavelength. Based on this we construct a method of optimal, O(N) complexity, with basically
the following steps: 1. decouple the wavefield into an approximately forward and an approximately
backward propagating part; 2. propagate each component explicitly along the characteristics over a
time step that is small compared to the medium scale but can be large compared to the wavelength;
3. apply a correction to account for the errors in the explicit propagation; repeat steps 2 and 3 over
the necessary amount of time steps; and 4. reconstruct the full field by adding forward and backward
propagating components again. Due to step 3 the method accurately computes the full wavefield.
A variant of the method was implemented and outperformed a standard order (4,4) finite difference
method by a substantial factor. The general principle is applicable also in higher dimensions, but
requires efficient implementations of Fourier integral operators which are still the subject of current
research.

Key words. wave equation, numerical method, multiscale method, geometrical optics, integrat-
ing factor
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1. Introduction. Consider waves propagating in an inhomogeneous medium
which varies slowly on the scale of the wavelength. In this case, waves behave much
like in the constant coefficient case. For example, in one dimension an initial pulse
approximately splits into a forward propagating pulse and a backward propagating
pulse, each propagating with the wave speed, and with slowly varying amplitude.
Indeed for small times, the wave “sees” only a small, approximately constant part
of the medium. This can be made precise using WKB, or geometrical optics theory,
or the more general and advanced theory of Fourier integral operators. One finds that
the above picture is true in the limit for high-frequency waves; these have the just
described relatively simple interaction with the medium. For the low-frequency part
the interaction with the medium is of course more complicated; e.g., reflections occur.

Simulating high-frequency waves using finite differences or finite elements is no-
toriously expensive, especially in three dimensions. One reason for this is the large
number of time steps that is generally needed, since in conventional methods the time
step is bounded by the space discretization length. In one dimension this leads to
cost at least O(N2) if N is the number of space discretization points. This on the
one hand is quite understandable: The wavefield is computed over a finite part of the
(x, t)-plane with resolution 1/N in both the x and the t direction. On the other hand,
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if we are interested only in the map from initial to final values, one can argue that
there is room for improvement: The high frequencies are well described by translation
and scaling over quantities that follow from the smoothly varying medium. The low
frequencies still need to be computed by some discretization, but with a coarse grid.
In this paper we will show that in fact we can devise a scheme that follows this pattern
and is of complexity O(N), i.e., optimal.

The observation about the high cost of simulating high-frequency waves is not
new, and various authors have sought to deal with this, e.g., [12] in one dimension,
[2, 9] in higher dimensions. The paper [12] uses the observation that the matrix that
describes the propagator P (t) (the operator exponent etM in the notation below, that
maps initial values at time 0 to values at a later time t, assuming time-independent
coefficients) can be compressed by wavelet compression. High-frequency signals in
the propagator are concentrated around the characteristics. Low-frequency signals
are not. Due to the separation in space and scale that is obtained using wavelets, this
leads to many small entries that, if omitted, give only a small error to the matrix. The
matrix is compressed in this way, and it becomes possible to store it. The operator
exponent is then first computed for a small time τ , and subsequently for longer times
by repeated squaring P (2τ) = P (τ)2, P (4τ) = P (2τ)2, etc. Unlike our method this
idea is restricted to time-independent coefficients. Curvelet frames [15, 4] have been
proposed to extend this idea to multiple dimensions.

In this paper we introduce a new, different concept to reduce computational
cost. We explicitly separate forward and backward propagating parts of the waves, as
made possible by high-frequency asymptotic theory, and propagate these explicitly.
No matrix compression is used. Roughly speaking the method involves the following
steps, that are repeated over a number of time steps to obtain the final result:

1. Decouple the wavefield into a forward and a backward propagating part, like
for the constant coefficient medium where we can find two functions F and
B such that the solution is given by U1(x, t) = B(x+ ct) + F (x− ct).

2. Propagate each component explicitly over a time step that is small compared
to the medium scale but large compared to the wavelength.

3. Apply a correction to account for the errors in the explicit propagation.
4. Reconstruct the full field by adding forward and backward propagating com-

ponents again.
For higher dimensions one could perhaps devise a similar scheme; however, at this
point in time it is not clear how to efficiently compute the Fourier integral operators
needed in step 2.

Two methods according to this outline will be described. First we derive a rela-
tively straightforward method, that is implemented numerically and tested. The goal
of this is to get a first impression of what kind of numerical results can be obtained.
Compared with an order (4,4) finite difference method we find improvements in speed
of factors up to 20, depending on the smoothness of the medium.

A second method is derived using several more innovations, in particular a new
multiscale time-stepping method; see section 6 and thereafter. For this method we
study error estimates and the complexity, and we show that it has optimal O(N)
complexity. The O(N) complexity is better than that in [12], but we also have another
improvement compared to the repeated squaring method, namely that our method is
also applicable in media with time-dependent coefficients.

Let us discuss in more mathematical terms the ideas behind the method. We
consider the one-dimensional acoustic wave equation
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(1.1) (∂t ◦ a(x, t)∂t − ∂x ◦ b(x, t)∂x)U1(x, t) = 0,

with domain given by a circle Ω of integer length L. It will be convenient to write
this as a first-order system; let

(1.2) U2 = a∂tU1, U =

(
U1

U2

)
, M =

(
0 a−1

∂x ◦ b∂x 0

)
.

Then (1.1) becomes

(1.3)
d

dt
U = MU.

We view this as an ODE with values in a function space, which explains the notation
d
dt in this equation.

We are interested in the initial value problem where U(t0) = U0 is given and U(t1)
is to be determined. The natural space to consider the equation is U(t) ∈ H1 × L2,
where Hs = Hs(Ω) denotes the Sobolev space of order s. With coefficients that are
Ck,1 in space, and with time derivative that is also Ck,1 in space, there is existence,
uniqueness, and stable dependence on initial values for U0 ∈ Hs+1 ×Hs, with

U(t) ∈ C([t0, t1], Hs+1 ×Hs),

for −k − 1 ≤ s ≤ k [14, 16].
Let us consider now where there is room for improvement in standard finite dif-

ference or finite element methods. Suppose U1, U2 are discretized on Ω by finite
differences, using a regular grid with grid distance h and N = L/h grid points. Then
the operator M is discretized, and the time evolution is computed with some time-
stepping procedure. The operator M behaves like a first-order operator, mapping
Hs+1×Hs to Hs×Hs−1. Its norm is proportional to h−1. Accuracy and stability of
a discrete approximation now require that the time step is of order h, Δt � h/c(x, t),
with c =

√
b/a the velocity (the Courant–Friedrichs–Lewy condition). The cost for

given N is therefore at least O((# of time steps) ·N) = O(N2).
To have lower cost, we will attack the number of time steps, by using larger

time steps. An idea that has been used for this purpose is operator splitting with an
integrating factor method. Suppose M is of the form

(1.4) M = A+B.

Operator splitting is the idea that the matrix exponential eΔt(A+B) is approximated
by products of factors eΔtjA and eΔtkB. One way to derive an operator splitting
method is the integrating factor method. Let E(t, t0) be a solution operator for
U ′ = AU , i.e., an operator that maps U(t0) to the solution U(t) of U ′ = AU . For the
time-independent case E(t, t0) = e(t−t0)A. Then we can define

(1.5) V = E(t, t0)−1U.

The term E(t, t0)−1 is then an integrating factor. Differentiating the equivalent equa-
tion E(t, t0)V = U gives that

(A+B)U =
dU

dt
= AE(t, t0)V + E(t, t0)

dV

dt
.
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Therefore, solving for dV
dt ,

(1.6)
dV

dt
= E(t, t0)−1BE(t, t0)V.

To apply this usefully, the operator on the right-hand side must have smaller norm
than the original operatorM , so that time-stepping can be performed with larger time
steps. This is applied in some nonlinear equations with a diffusive part, for which
the time evolution can be computed efficiently in the Fourier domain [20]. Because of
this use of an integrating factor, we call our method a geometrical optics integrating
factor method.

A similar idea is used in the Egorov theorem of microlocal analysis. In this theory,
a Fourier integral operator (FIO) E(t, t0) is constructed [11, 10, 19, 21], such that the
field V (t) = E(t, t0)−1U(t) satisfies

(1.7)
∂

∂t
V (t) = R(t, t0)V (t),

where the operator R is smoothing, in the sense that it maps Hs+1×Hs → Hs+1+K×
Hs+K for any K desired (the order K depends on the amount of terms in the asymp-
totic series for the amplitude in the FIO E(t, t0)). The fact that R is bounded means
that a properly discretized version can be bounded independent of h. By the above
reasoning the stepsize requirement would become independent of h (of course an es-
timate of the time discretization error is needed to establish this). For small h, as
the number of time steps would become large due to the CFL condition, one might
expect to have a gain in computation speed for the transformed differential equation
(1.7).

Continuing this line of reasoning, the time step could become independent of the
number of space discretization points N , assuming the desired accuracy stays fixed.
For example, having initial conditions double in frequency, with the same medium
and accuracy, one can conjecture that the time step could stay the same.

While Fourier integral operator theory has been developed for any space dimen-
sion, for dimension 2 or higher it is not clear how to efficiently obtain numerical
approximations of Fourier integral operators (see for work in this direction, e.g., the
recent paper [3]). Here we therefore treat the one-dimensional case.

In this case, it is convenient not to work with the field U , or with V in (1.7)
directly, but instead work with forward and backward propagating components. These
will be denoted by u1 and u2. An operator Q and its inverse will be constructed such
that u = (u1, u2)T = Q−1U (this gives step 1 and 3). We will show that in terms of
these variables the differential equation (1.3) becomes

(1.8)
d

dt
u = (T +R)u

with

T =

(√
b/a∂x + f1 0

0 −√b/a∂x + f2

)
,

f1, f2 functions given below, and R a remainder operator, that is explicitly derived
and is continuous Hs+1 × Hs+1 → Hs+2 × Hs+2 (for time-independent coefficients
f1 = f2 = 0). Versions of R with off-diagonal terms that are even more smoothing
can also be constructed; see further on in the paper.

Equation (1.8) will be used for operator splitting. The equation u′ = Tu corre-
sponds to two transport equations (step 2 in the outline above). These are solved
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using the method of characteristics. This yields a geometrical optics approximation
of the propagator. The term R then yields the correction mentioned in step 3 of the
four points above.

Computing with the characteristics is cheaper than computing directly on the
wavefield, e.g., using a discretization of the transport equation. The explanation for
this is that the time steps in an ODE solver needed for solving for the characteristics
depend on the medium smoothness, and not on the smoothness of the wavefield,
and can therefore be longer than the time steps in a discretization of the transport
equation. Similarly, it is not necessary to compute a characteristic for each grid point
because interpolation can be used. After computing the characteristics, applying the
flow along the characteristics becomes a standard interpolation problem.

The computation of flow along characteristics is related to the use of moving
grids in scalar conservation laws. Originally the reason to have the grid moving with
the singularities of solutions was that an adapted (locally refined) grid would stay
adapted to the singularities. But it was also observed that this could lead to larger
time steps [13].

As mentioned we have both numerical and theoretical results. First we derive
a relatively simple method following the above ideas. This method has been imple-
mented and compared with a standard order (4,4) finite-difference method described
in [6]. Factors of order 10 to 20 of improvement in the computation speed were
obtained in examples.

In the second part of the paper we study error estimates and complexity. It turns
out that the method described in sections 2 to 4 does not yet have the best possible
complexity. With several enhancements we construct a method (or a class of methods)
with optimal complexity O(N) to solve the initial value problem. These additional
features are the use of higher-order decoupling, and of a multiscale decomposition
where each scale has its own time step (multiscale time-stepping). They will be
further introduced in section 6.

The remainder of the paper will be organized as follows. In section 2 we describe
the separation of the forward and backward propagating parts of the wavefield (de-
coupling). The differential equation is then transformed into one to which operator
splitting and the integrating factor method can be applied. This is discussed in sec-
tion 3. We then describe a simple space discretization and the resulting algorithm
in section 4. Section 5 contains some numerical results. Section 6 introduces the
main additional ideas behind the method for which we establish O(N) complexity.
These are further worked out and proved in sections 7, 8, and 9. We end with a short
discussion of the results.

2. Decoupling the equation. The splitting in (1.4)–(1.6) is not directly ap-
plied to M ; first the equation is transformed to new variables as announced in (1.8).
We define new variables by

U(t) = Q(t)u(t),

with Q an invertible matrix operator. The operator Q is independent of t if M
is independent of t, and may otherwise depend on t. The equation for u is then
(′ denoting time differentiation)

(2.1) u′ = (Q−1MQ−Q−1Q′)u.
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The purpose of this section is to find a suitable operatorQ, such that the resulting
differential equation is of the form

(2.2)
d

dt

(
u1

u2

)
=

(√
b/a∂x + f1 0

0 −√b/a∂x + f2

)(
u1

u2

)
+R

(
u1

u2

)
,

with Q, f1, and f2 and the remainder operator R to be determined. In fact, we will
derive an explicit expression for

(2.3)
QR = MQ

︸︷︷︸
− Q

(√
b/a∂x + f1 0

0 −√b/a∂x + f2

)
︸ ︷︷ ︸

− Q′.

︸︷︷︸
A B C

The notations A,B,C will be used below in evaluating the product. Note that R is
not given directly, but has to be computed as the product of Q−1 and QR which are
given; the reason for this is that we want to minimize the use of inverse differential
operators, and here the only place where those occur is in Q−1. We will find that the
operator R belongs to a class of pseudodifferential operators of order −1.

In the remainder of the section the actual computation is done. We treat sep-
arately the cases where a, b are time-independent, resp., the general case with time-
dependent a, b. For convenience we collect the results in the following lemma.

Lemma 2.1. For the time-independent case, with Q given by (2.5), and f1 = f2 =
0, QR is given by (2.6) and (2.7). For the time-dependent case, with Q, f1, f2 given
by (2.8), (2.9), and (2.12), QR is given by (2.10), (2.11), (2.13), and (2.14).

Computation for the time-independent case. In this case we will take Q indepen-
dent of t, so that C = 0, and such that f1 and f2 vanish. Consider first the following
choice for Q:

Q(0) =

(
1 1√
ab∂x −√ab∂x

)
.

A quick computation shows that

(2.4) Q(0)R(0) = MQ(0) −Q(0)

(√
b/a∂x 0

0 −√b/a∂x
)

=

(
order(0) order(0)
order(1) order(1)

)
,

so to highest order this is a good choice.
Next we modify Q so that (1) it is invertible, and (2) the components of QR

vanish to one order lower. The operator Q becomes invertible when the derivative
is replaced by a regularized derivative, which will be denoted by ∂̃x, defined in the
Fourier domain by multiplication with ik + α

βk2+1 , with α, β suitable positive, real
constants that remain to be chosen. To eliminate the order 0 and order 1 terms in
(2.4), the columns of Q will be normalized by a weight function; we will try

(2.5) Q =

(
f(x) f(x)

f(x)
√
ab∂̃x −f(x)

√
ab∂̃x

)
, Q−1 = 1

2

(
f−1 ∂̃−1

x f−1 1√
ab

f−1 −∂̃−1
x f−1 1√

ab

)
,

with f given by f = a−1/4b−1/4.
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For contribution A we then find

A11 = −A12 = f(x)

√
b

a
∂x + f(x)

√
b

a
(∂̃x − ∂x) = a−3/4b1/4∂x + a−3/4b1/4(∂̃x − ∂x)

and

A21 = A22 = ∂xb∂xf

= a1/4b1/4∂xa
−1/2b1/2∂x +R1

with

R1 = a−1/4b3/4
[(

1
4∂x log a− 3

4∂x log b
) (

1
4∂x log a+ 1

4∂x log b
)

− (1
4∂

2
x log a+ 1

4∂
2
x log b

)]
.

Contribution B is given by

B11 = −B12 = a−3/4b1/4∂x

and

B21 = B22 = a1/4b1/4∂xa
−1/2b1/2∂x + a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x.

We thus find the following for QR:

(2.6) (QR)11 = −(QR)12 = a−3/4b1/4(∂̃x − ∂x)
and

(2.7) (QR)21 = (QR)22 = R1 − a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x.

The time-dependent case. In this case we try

(2.8) Q =

(
f(x) f(x)

f(x)
√
ab∂̃x + c1 −f(x)

√
ab∂̃x + c2

)
,

with f as above, and f1, f2, c1, c2 to be determined. The inverse of Q will be discussed
below. We find

A11 = a−3/4b1/4∂x + a−3/4b1/4(∂̃x − ∂x) + a−1c1,

A12 = − a−3/4b1/4∂x − a−3/4b1/4(∂̃x − ∂x) + a−1c2;

A21 and A22 remain unchanged. For the coefficients of the matrix operator B we find

B11 = a−3/4b1/4∂x + (ab)−1/4f1,

B12 = − a−3/4b1/4∂x + (ab)−1/4f2,

B21 = a1/4b1/4∂xa
−1/2b1/2∂x + a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x

+ c1
√
b/a∂x+ (ab)1/4∂̃x ◦ f1 + c1f1,

B22 = a1/4b1/4∂xa
−1/2b1/2∂x + a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x

− c2
√
b/a∂x− (ab)1/4∂̃x ◦ f2 + c2f2.
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For C we have

C11 = ∂t(ab)−1/4,

C12 = ∂t(ab)−1/4,

C21 = ∂t(ab)1/4∂̃x + ∂tc1,

C22 = − ∂t(ab)1/4∂̃x + ∂tc2.

Adding all the contributions we find that

(QR)11 = +a−3/4b1/4(∂̃x − ∂x) + a−1c1 − (ab)−1/4f1 − ∂t(ab)−1/4

and

(QR)21 = R1 − a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x − c1
√
b/a∂x− (ab)1/4∂̃xf1

− c1f1 − ∂t(ab)1/4∂̃x − ∂tc1.
The lower-order terms vanish if

c1 = − a3/4b−1/4((ab)−1/4∂t(ab)1/4),

f1 = 0.
(2.9)

What results is

(2.10) (QR)11 = a−3/4b1/4(∂̃x − ∂x)
and

(QR)21 = R1 − a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x − ∂t(ab)1/4(∂̃x − ∂x)

+ ∂t(
√
a/b∂t(ab)1/4).

(2.11)

Similarly we have for the 12 and 22 components

(QR)12 = − a−3/4b1/4(∂̃x − ∂x) + a−1c2 − (ab)−1/4f2 − ∂t(ab)−1/4,

(QR)22 = R1 − a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x + c2
√
b/a∂x+ (ab)1/4∂̃xf2

− c2f2 + ∂t(ab)1/4∂̃x − ∂tc2,
with lower-order terms vanishing if

c2 = − a3/4b−1/4((ab)−1/4∂t(ab)1/4),

f2 = 0.
(2.12)

The result for (QR)12 and (QR)22 are

(QR)12 = − a−3/4b1/4(∂̃x − ∂x),(2.13)

(QR)22 = R1 − a1/4b1/4(∂̃x − ∂x)a−1/2b1/2∂x + ∂t(ab)1/4(∂̃x − ∂x)

+ ∂t(
√
a/b∂t(ab)1/4).(2.14)

This completes the time-dependent case, except for the inverse of Q.
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For the inversion, rewrite Q as

Q =

(
f(x) f(x)

f(x)
√
ab(∂̃x + c̄1) −f(x)

√
ab(∂̃x − c̄2)

)
,

with c̄j = cj

f
√
ab

. It turns out that Q can be inverted, according to the following
explicit formula:

(2.15) Q−1 =
1
2

(
∂̃−1(∂̃x − c̄2)f−1 ∂̃−1 1√

ab
f−1

∂̃−1(∂̃x + c̄1)f−1 −∂̃−1 1√
ab
f−1

)
.

This is basically due to the fact that c̄1 = c̄2.

3. Operator splitting and time-stepping. The equation for the decoupled
wavefields u is now

(3.1)
d

dt
u = (T +R)u

with R as derived in the previous section and T given by

T =

(√
b/a∂x 0

0 −√b/a∂x
)
.

The integrating factor will be E(t, t0)−1, where E(t, t0) solves d
dtE(t, t0) =

TE(t, t0), E(t0, t0) = Id, and we will define a field v by

v(t, t0) = E(t, t0)−1u(t),

which satisfies the differential equation

(3.2)
dv

dt
= E(t, t0)−1RE(t, t0)v.

Applying Euler forward time-stepping for this equation gives

v(t+ Δt, t) ≈ (1 + Δt E(t+ Δt, t)−1RE(t+ Δt, t))u(t),

using that v(t, t) = u(t). Hence

u(t+ Δt) ≈ (1 + Δt R)E(t+ Δt, t)u(t).

A symmetric form of splitting (cf. Strang splitting [17]) leads to the following time-
stepping, expressed in time-stepping for u:

(3.3) u(t+ Δt) ≈ (1 + 1
2Δt R)E(t+ Δt, t)(1 + 1

2Δt R)u(t).

Let us now explain in more detail the computation of E(t, t0). This is a diag-
onal 2 × 2 matrix operator. We take the forward propagating component (the E2,2

component, which acts on the u2 field); the backward propagating component is done
similarly. The characteristic equation is

(3.4)
dx

dt
= c(x, t).
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For the time-independent case, we can solve this ODE for x(t) with initial value
x(t0) = x0 by separating the variables, which yields the equation

∫ x
x0
c(ξ)−1 dξ = t−t0,

so the computation can be done from a primitive
∫
c(x) dx. For the time-dependent

case (3.4) is solved directly. Let X(x0, t, t0) denote the solution x(t) with initial values
x(t0) = x0. Then we have

(3.5) E2,2(t, t0)u2 = u2(t0, X(x, t0, t))

(the characteristic is computed backward). If Φ2(t, t0) denotes the characteristic flow
mapping x0 toX(x0, t, t0), this equals the pull backE2,2(t, t0)u2(t0) = Φ2(t0, t)∗u2(t0).

4. Numerical implementation. For a numerical implementation, it remains
to perform the space discretization. We chose to work with finite differences, which
are easy to implement. The following operators were discretized:

1. ∂x. This operator was discretized using central differences.
2. ∂̃x, ∂̃−1

x , ∂̃x−∂x. These are applied in the Fourier domain, with a regularized
version of central differences. There computation involves an FFT and an
inverse FFT, which, due to the O(N logN) cost of this operation, will form
the bulk of the computations.

3. Multiplications with coefficients and derivatives of coefficients. Derivatives of
coefficients are computed again using central differences.

4. The translation operator E(t, t0) is computed for the time-independent case
using the primitive

∫
c(x)−1 dx, mentioned above, and using a Runge–Kutta

ODE solver otherwise. Then third-order Lagrange interpolation is applied.
For the time-independent case a sparse matrix is precomputed, that performs
the translation over a given time step Δt.

In this way a simple numerical implementation of the method given by (3.3) was
made.

5. Numerical results. In the numerical results we concentrate on the method
for the time-independent case. For this case comparisons of computation time were
made. For the time-dependent case it was observed that solutions are well approxi-
mated. But we feel the results for the time-independent case give sufficient indication
of the effectiveness of the method.

For this method, with the assumption of medium smoothness it is of course an im-
portant question just how smooth the medium coefficients need to be in order that the
method demonstrates an improvement compared to more conventional methods.
Therefore numerical results were computed for media with increasing smoothness.
The media were chosen parameterized by B-splines of order 3; the coefficients a of the
media were randomly chosen, uniformly distributed between 0.4 and 1.6. The increas-
ing smoothness was obtained by increasing the node distance, for which we took the
values 1, 2, 4, and 8. The b coefficient was chosen equal to 1. The initial value for U1

was a pulse of approximately unit width; the initial value for U2 was chosen equal to
zero. In Figure 5.1 one such medium is displayed. In Figure 5.2 the initial value for
U1 is plotted. The propagation was over approximately 100 wavelengths.

The results were compared with the result of an order (4,4) finite difference
method; see [6]. Both methods were implemented in MATLAB. For our method
the main cost was in the Fourier transform used for computing ∂̃x and its inverse. In
the standard finite difference methods, for each time step a sparse matrix was applied,
and this constituted almost 100% of the cost.

The first check was that the method actually approximates the solutions well.
This was indeed the case. In Table 5.1 some numerical results are given, where
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Fig. 5.1. Medium coefficients with random B-splines with knot distance 4.
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Fig. 5.2. Initial value for U1 used in the numerical tests.

Table 5.1

Comparison of the cost of the method of section 4 with an order (4,4) finite difference method.
hFD is the space stepsize taken in the finite difference scheme for which the comparison is made.

Medium scale hFD
Cost FD

Cost GOIF
1 0.05 0.37

0.025 0.30
2 0.05 3.3

0.025 5.4
4 0.05 9.0

0.025 15.7
8 0.05 17.4

0.025 25.3

computation time is compared. For the new method we required the error to be
smaller in both the supremum and the L2 sense, or at most 10% larger in one of the
two, but better when both are taken into account. As can be seen, knot distance 1
is not sufficient to obtain any gain, but from knot distance 2 considerable gain is
obtained, up to a factor of about 20 for very smooth media.

As this is only a first implementation we feel this is strong encouragement to
further analyze geometrical optics based methods.
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6. An optimal complexity method: Overview. For the method introduced
above there were no rigorous error estimates given. The complexity is, however, at
least O(N logN) since the regularized derivative ∂̃x and its inverse were computed in
the Fourier domain and needed to be computed for each time step. In this section
we present a more elaborate algorithm, for which we establish that the complexity is
O(N), where N denotes the number of grid points in the space discretization.

So the task in the remaining sections is on the one hand to control the error in a
numerical method and on the other hand control the cost. The discretization will be
done for the differential equation

(6.1)
dv

dt
= E(t, t0)−1RE(t, t0)v,

that resulted from (3.1) after applying the integrating factor. It follows from the
results in section 8 below that the transformation from the original equation (1.3) to
this form and back can be done at cost O(N) and with error satisfying bounds that
are sufficient.

We will provide precise error estimates of classical type; i.e., we assume the input
has a certain amount of additional regularity, we consider the discretization error in
the result given that the input has to be approximated in an N -dimensional space
of (spline-) functions, and we then show that the total error in the output is of the
same order in N as the discretization error. Evolution according to (6.1) maps initial
values v(t0) = v0 in H1 ×H1 to final values v(t1) that are also in H1 ×H1. We will
assume that v0 is in H1+α × H1+α, i.e., has α additional orders of regularity. The
discretization error that results from putting v0 in an N -dimensional spline space can
then be estimated by CN−α. We will show that, for a method with cost that can be
bounded by CN , the final result satisfies an estimate of the type

‖vapprox(t1)− v(t1)‖H1×H1 ≤ CN−α

(the letter C may mean a different constant in different equations).
A naive approach would be to simply take the differential equation (6.1), first

apply a discretization in space, and then subsequently apply discretization in time.
The time discretization should preferably be of higher order. There are two main
problems with this approach, which will lead to additional special features of our
method. These new features are the following:

1. Higher order decoupling. Control of the time discretization error in higher-
order time-stepping, say of order K, requires bounds on the time derivatives
of the operator E(t, t0)−1RE(t, t0) occurring on the right-hand side of (6.1).
The first time derivative contains a commutator [R, T ] (which is of order 0
and hence bounded), but higher time derivatives contain higher-order com-
mutators, that are of positive order, and hence do not satisfy the required
bounds. To address this issue we will introduce higher-order decoupling. In
section 7 we will construct a new operator R, with off-diagonal terms that are
smoothing operators of order K, and show that its time derivatives of order
0, . . . ,K are bounded on a sufficiently large range of Sobolev spaces. The
higher-order decoupling is obtained by adapting an argument of Taylor [19,
Chapter 9] or [18].

2. Multiscale time-stepping. The second problem that needs to be addressed is
that in our complexity estimates, with increasing N , the error must decrease.
This in turn means that the time step must decrease, which would lead to



1180 CHRISTIAAN C. STOLK

superlinear complexity. To address this issue we introduce multiscale time-
stepping. The idea is that the coarse scales are propagated with a small time
step. The coarse scales are parameterized with relatively few coefficients but
contain most of the energy. It is therefore affordable to use a smaller time
step, and at the same time this leads to a big improvement in the error. For
the fine scales, that contain relatively little energy, larger time steps are used.
Incidentally this is very much in agreement with the philosophy of asymptotic
methods, where the high frequencies are well approximated. Each time step
amounts to a correction to the purely asymptotic approximation, so few are
needed for the high frequencies. The idea of multiscale time-stepping is new
to our knowledge.

Because of the multiscale time-stepping, we assume the use of a wavelet based
multiscale discretization in space. We will use [5] as our main reference for wavelet
discretization; see also [7].

In the next three sections we will work out the above issues in detail and prove
the O(N) complexity result. Section 7 concerns the higher-order decoupling. Dis-
cretization and operator approximation will be discussed in section 8. Section 9 will
contain the ideas on multiscale time-stepping and the final parts of the proof that
combine all the intermediate results.

7. Higher-order decoupling. By the transformation u = Q−1U in section 2,
the original system (1.3) was transformed to

u′ = (T +R)u,

where T +R = Q−1MQ−Q−1Q′. We had

T =

(√
b/a∂x 0

0 −√b/a∂x
)
.

The operator R is a matrix pseudodifferential operator, with components that are of
order

(7.1) R =

(
order(−1) order(−1)
order(−1) order(−1)

)
.

Here by order(−1) we mean that it is bounded Hs → Hs+1 for a suitable range of s.
In this section we explain how to construct Q such that R has the property that

(7.2)
dj

dtj
(E(t, t0)−1RE(t, t0)) is bounded on H1 ×H1 for j = 0, 1, . . . ,K,

with K a positive integer indicating, as mentioned, the order of the time-stepping
that is going to be used.

We first argue that property (7.1) is not sufficient if K > 1. Take for example the
first time derivative of E(t, t0)−1RE(t, t0):

(7.3)
d

dt
(E(t, t0)RE(t, t0)) = E(t, t0)−1

(
[R, T ] +

dR

dt

)
E(t, t0).

Consider the commutator [R, T ] occurring inside the brackets:

(7.4) [R, T ] =

(
[R1,1, T1,1] R1,2T2,2 − T1,1R1,2

R2,1T1,1 − T2,2R2,1 [R2,2, T2,2]

)
.
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To get the idea assume that the coefficients a and b are C∞, so that R and T have
smooth symbols. What we see from this expression is the following:

• The diagonal terms [R, T ]1,1 and [R, T ]2,2 are commutators of scalar pseu-
dodifferential operators, and their order equals the order of R1,1, resp., R2,2.
• For the off-diagonal terms [R, T ]1,2 and [R, T ]2,1 this is not true; their order

is increased by 1 compared to R1,2, resp., R2,1.
This has nothing to do with the specific form of R; if R is replaced by a different

matrix pseudodifferential operator, these two statements remain true. So consider
the second-order time derivative of E(t, t0)RE(t, t0). This contains the higher-order
commutator [[R, T ], T ]. Assuming (7.1) and using (7.4) twice, it follows that the off-
diagonal terms [[R, T ], T ]1,2 and [[R, T ], T ]2,1 are (a priori) of order 1, implying that
(7.2) is violated.

To address this problem we will construct a modified operator Q, such that

(7.5) R =

(
order(−1) order(−K)
order(−K) order(−1)

)
.

The old operators Q and R will be referred to as Q(−1) and R(−1), because of (7.1).
The new operators will be referred to as Q(−K) and R(−K). This way, we can handle
K time derivatives, each of which can increase the order of the off-diagonal term by 1.

We write ∂̃x = ∂x + Ψ, where from now on we assume that Ψ is smoothing in the
sense that it is continuous Hs → Hs+K , 1−K ≤ s ≤ 1. The reason is that then any
term that is a product of Ψ and other operators, none of which is of positive order,
automatically is of order(−K) and is hence “safe” (see (7.5)). For Ψ, we could use
for example

Ψ =
α

β(−∂2
x)�K/2� + 1

with symbol α
βk2�K/2�+1

. This is a modification with respect to the original definition

of ∂̃ in section 2. However, it does not affect equations like (2.6), (2.7), (2.10), (2.11),
(2.13), and (2.14), because the specific form of ∂̃x− ∂x is not used in their derivation.

The main result of this section is captured in the following theorem, a short
explanation of which is given after its formulation.

Theorem 7.1. Assume a, b are at least C2K+1,1. There exists an operator Q(−K)

of the form

Q(−K) = Q(−1)

(
1 E

0 1

)(
1 0
F 1

)

such that the operator R(−K) satisfies (7.2). The operators E,F can be chosen of the
form

K∑
j=2

cE(−j)(x, t)∂̃−jx ,

K∑
j=2

cF (−j) (x, t)∂̃−jx ,

where the cE(−j)(x, t), cF (−j) (x, t) are (x, t) dependent coefficients that depend on
a(x, t), b(x, t) and derivatives of order up to j of a, b. The operators that form the
matrix elements of R(−K) are sums of products of the following basic operators: oper-
ator Ψ, operators ∂̃−k for k ≥ 0, and multiplication by coefficients that are functions
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of a, b and derivatives of order at most K + 1 of a and b. This can be done such that
all the terms for the off-diagonal elements of R(−K) are explicitly of order −K in the
sense that they contain a factor of Ψ or at least K powers of ∂̃−1

x .
The description as a sum of products of basic operators is such that the operators

involved can be numerically approximated with the techniques described in section 8.
We note in particular that there are no cancellations between terms of R(−K) of order
> −K. This is important, to avoid the situation where R(−K) consists of several
contributions whose highest-order parts cancel analytically but not numerically due
to the errors made in the numerical approximation. In the proof we will also describe a
calculational scheme to compute the cE(−j)(x, t), cF (−j) (x, t). (We have not calculated
any case K > 1 explicitly.)

Proof. We write temporarily

T +R(−1) =

(
A B

C D

)
.

We will first assume that a, b are C∞, so that all pseudodifferential operators involved
have smooth symbols; later we will investigate how much smoothness for the coeffi-
cients is needed. Using a transformation with a matrix pseudodifferential operator of
the form

(
1 E
0 1

)
the operator B will be removed to the highest K − 1 orders.

Replacing Q by Q
(

1 E
0 1

)
yields the following for the new operator R; see (2.1):

(7.6)

(
1 E

0 1

)−1(
A B

C D

)(
1 E

0 1

)
−
(

1 E

0 1

)−1(
0 E′

0 0

)

=

(
A− EC B +AE − ED − E′

C D + CE,

)
,

where we used the explicit inverse
(

1 E
0 1

)−1 =
(

1 −E
0 1

)
. The first problem is to find E

such that B+AE−ED−E′ is of the desired lower order. Next we do a transformation
with a matrix

(
1 0
F 1

)
of the matrix in (7.6). After this second transformation, the new

operator R becomes

(
1 0
F 1

)−1(
A− EC B +AE − ED − E′

C D + CE

)(
1 0
F 1

)
−
(

1 0
F 1

)−1(
0 0
F ′ 0

)

=

(
A− EC + (B +AE − ED − E′)F B +AE − ED − E′
C + (D + CE)F − F (A− EC)− F ′ D + CE − F (B +AE − ED − E′)

)
.

Just like E we must then choose F , such that C + (D + CE)F − F (A − EC) − F ′
is of the desired lower order. The new Q is then Q

(
1 E
0 1

)(
1 0
F 1

)
(using the factor(

1 E
0 1

)(
1 0
F 1

)
is convenient compared to

(
1 E
F 1

)
because it has an explicit inverse, easy

numerically).
Let us consider the construction of E. This follows a standard pattern in pseu-

dodifferential operator theory, choosing E order by order. We let

E = E(−2) + E(−3) + · · ·+ E(−K),
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and set

B(−2) = B(−1) +AE(−2) − E(−2)D − E(−2)′,

B(−3) = B(−2) +AE(−3) − E(−3)D − E(−3)′,

etc., until B(−K) = B +AE − ED − E′.

The principal symbol of B(−k) is of the form cB(−k)(x)(iξ)−k, while those of A and
−D are both equal to

√
b/a(iξ). Hence if we choose the principal symbol of E(−k−1)

equal to − cB(−k)(x)

2
√
b/a

(iξ)−k−1, then the principal symbol of B(−k−1) vanishes, with as

a result that B(−k−1) becomes an operator of order −k − 1 as desired. So we set

cE(−k−1) = − cB(−k)

2
√
b/a

and E(−k−1) = cE(−k−1) ∂̃−k−1
x .

The operators E(−k) follow from this scheme. The coefficients cB(−k) and cE(−k) are
determined inductively. This can be done on the symbol level using pseudodifferential
operator calculus, or directly, as we will demonstrate now.

We further investigate this construction of the cB(−k) and cE(−k) and of the re-
mainders R(−k). It is convenient to just take the matrix R(−1), which is the starting
point of the induction, and apply a few steps of the recipe. Doing this, the key proper-
ties that allow the successful construction will become clear, without becoming overly
formal.

The matrix R(−1) follows in the time-independent case from (2.6), (2.7), and
(2.5). Omitting anything involving ∂̃x − ∂x (which is smoothing by definition), we
have the following terms relevant for the higher-order decoupling:

R(−1) =

(
∂̃−1
x a−1/4b−1/4R1 ∂̃−1

x a−1/4b−1/4R1

−∂̃−1
x a−1/4b−1/4R1 −∂̃−1

x a−1/4b−1/4R1

)
+ order(−K).

So we set, following the above scheme,

E(−2) = −a
−1/4b−1/4R1

2
√
b/a

∂̃−2
x .

We then find

B(−2) = B(−1) +
(√

b/a∂x + ∂̃xa
−1/4b−1/4R1

)
E − E

(
−
√
b/a∂x − ∂̃xa−1/4b−1/4R1

)
−E′

= ∂̃−1
x a−1/4b−1/4R1 −

√
b/a∂x

a−1/4b−1/4R1

2
√
b/a

∂̃−2
x −

a−1/4b−1/4R1

2
√
b/a

∂̃−2
x

√
b/a∂x

+ order(−3).(7.7)

In the first term we need to commute ∂̃−1
x to the right, in the second term we need to

commute ∂x to the right, and in the third term we need to commute ∂̃−2
x to the right.



1184 CHRISTIAAN C. STOLK

To continue an understanding of the commutator of ∂̃−1
x with (multiplication by)

some function g(x) is needed. Such a commutator yields the following:

[∂̃−1
x , g] = − ∂̃−1

x [∂x + S, g]∂̃−1
x

= − ∂̃−1
x (∂xg)∂̃−1

x − ∂̃−1
x (Sg − gS)∂̃−1

x .

The first term in this expression for the commutator is of order −2 and contains a
coefficient with one more derivative. The second term is of order less than −K and
is hence to be disregarded.

After the commutations the highest-order terms in B(−2) cancel, and what re-
mains are commutator terms and other lower-order terms.

Several more remarks are in order. First the general form, involving as basic
operations the ∂̃jx, the operator Ψ = ∂̃x−∂x, and multiplications with coefficients and
derivatives and powers of coefficients, remains conserved in each step.

Concerning the order of derivatives of the coefficients that occur, in B(−1) and
E(−2) we have at most second-order derivatives, in B(−2) and E(−3) at most third
order, and inductively we find that in B(−j) and E(−j−1) we have at most j+1 order
of derivatives. One of the assumptions is that the coefficients are C2K+1,1, which
implies that in R(−K) the coefficients are still CK,1.

Does this also hold for the time derivatives; i.e., do we have (7.2)? We must
then carefully study (7.3) and (7.4). It turns out that each time derivative leads to
a loss of at most one derivative in the regularity of the coefficients of a coefficient
multiplication operator. With K time derivatives, we need C0,1 smoothness to have
a bounded map on H1 ×H1 (L∞ would be enough if the operator was considered on
L2×L2). Therefore CK,1 in the coefficients occurring in R(−K) is sufficient and (7.2)
follows.

The operator F can be determined in a similar fashion. This completes the proof
of Theorem 7.1.

8. Discretization and operator approximation. The multiscale discretiza-
tion will be done using wavelets. We follow the book of Cohen [5], which gives an
excellent description of one-dimensional wavelet discretization theory; see also [7]. In
a wavelet discretization functions in L2(Ω) and Hs(Ω) are approximated by elements
of increasingly large finite-dimensional subspaces of L2(Ω) given by a multiresolution
analysis Vj , j = 0, 1, 2, . . . . The spaces Vj are spanned by translates and scalings of
the scaling function φ:

φj,k = 2j/2φ(2j · −k), k ∈ Z/(2jLZ).

The Vj are assumed to form an increasing sequence Vj ⊂ Vj+1,
⋃∞
j=0 Vj = L2(Ω).

In our case, where the domain is a circle of integer length L, the space Vj has
L2j elements. We denote by J the final level of discretization, so that N = L2J .
Typically we will denote by fj an approximation of a function f in Vj , and by Aj the
approximation of an operator A on Vj .

The multiscale decomposition is obtained from the wavelet spaces. The wavelet
space Wj is such that Vj+1 = Vj ⊕Wj . It is spanned by the translates and scalings
ψj,k of a mother wavelet ψ. This leads to the multiscale decomposition

Vj = V0 ⊕W0 ⊕ · · · ⊕Wj−1.

The scaling function can be chosen with compact support, and with any order
Ck smoothness. Together with the Vj , a dual multiresolution analysis Ṽj can be
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constructed, spanned by translates and scalings of a dual scaling function φ̃, such
that the basis functions satisfy the biorthogonality property 〈φ̃j,k, φj,k′ 〉 = δk,k′ . One
of φ, φ̃ can be chosen as a compactly supported spline, we assume φ is a spline, and
V is a spline space of a certain order. The space Vj can be made to satisfy Vj ⊂ Hs

for any s by choosing wavelets of sufficiently high order of smoothness. Throughout
the analysis we will assume sufficient smoothness of the wavelets, without specifying
this precisely.

The error estimates and assumptions on the smoothness of initial values are for-
mulated in terms of regularity in L2 based Sobolev spaces. That is natural and
convenient for wave equations (where physical energy conservation holds). It is also
easy to handle in wavelet discretizations, because of norm equivalences. The Sobolev
norms ‖ · ‖Hs are equivalent to weighted norms of the wavelet coefficients. If

f =
K−1∑
k=0

c−1,kφ0,k +
∞∑
j=0

2jL∑
k=0

cj,kψj,k,

and the wavelets are sufficiently smooth, then there is the norm equivalence

‖f‖2Hα(Ω) ∼
∞∑

j=−1

∑
k

|2αjcj,k|2.

From these norm equivalences one can easily derive an important approximation re-
sult. Assume that f is in Hα; then the projections ΠVjf of f to the Vj satisfy

‖f −ΠVjf‖L2(Ω) ≤ C2−αj‖f‖Hα(Ω).

In our application we typically deal with products of operators that are applied
after each other, in discrete form, to a discretized function. We first derive a criterion,
that we call order k approximation operator, for each of the operators to satisfy, such
that such products converge. After this we will argue that the operators in our
application can be approximated such that the approximation indeed satisfies the
approximation property.

Suppose A is some operator Hs1 → Hs2 , and Aj is a discrete approximation to
A. As pointed out, convergence estimates are done using additional regularity, say
k additional orders of regularity. For our operator A from Hs1 → Hs2 we therefore
assume its argument, say f is in Hs1+k. The result Af may be the argument of
another operator, so we will require Af ∈ Hs2+k; in other words we will assume

A is continuous Hs1+s → Hs2+s for 0 ≤ s ≤ k.

Next we discuss a property that ensures that Ajfj approximates Af if fj approxi-
mates f .

Definition. Let A be as just described; then we say A and Aj satisfy the order k
approximation property if

‖A−Aj‖Hs1+k→Hs2 ≤ C2−jk.

This also implies that Aj is continuous Hs1+s → Hs2+s for 0 ≤ s ≤ k. This
implies that if a function f ∈ Hs1+k is approximated in Hs1 by functions fj , with
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the convergence as expected from the additional regularity, i.e., ‖f − fj‖Hs1 ≤ C2−kj

‖f‖Hs1+k , then Ajfj approximates Af in the same way, since

‖Af −Ajfj‖Hs2 ≤ ‖Aj(f − fj)‖Hs2 + ‖(A−Aj)f‖Hs2

≤ C2−jk‖f‖Hs1+k .

We will assume that k is an integer, although this does not seem essential, and that
k ≥ 1.

The basic operators needed here are partial differential operators, the operator
(−∂2

x + 1)−1 or inverses of higher-order elliptic operators for the approximation of
the operator S of section 7, and the pull back along the characteristic flow (which is
a smooth coordinate transformation). Here we discuss partial differential operators
and constant coefficient inverse partial differential operators; the pull back will be
discussed in the last part of this section. We state the result on the approximation of
R(−K), Q(−K) as a lemma.

Lemma 8.1. Assume the coefficients a, b are Ck+K+1,1. Then numerical approx-
imations to the operators R(−K) on H1 × H1, Q(−K) from H1 × H1 → H1 × L2

and (Q(−K))−1 from H1 ×L2 → H1 ×H1 can be constructed that satisfy the order k
approximation property.

Proof. Multiplication by polynomials and differentiation operators can be dis-
cretized using results of [8]; see that reference or section 2.5 of [5]. They can be
discretized at cost O(N), in such a way that the above order k approximation prop-
erty is satisfied. For multiplication operators with functions other than polynomials,
the coefficient is locally approximated by polynomials. As for the regularity require-
ment on the coefficients, for an approximate multiplication operator on Hs1 to have
the order k approximation property, it is sufficient to have Ck+s1−1,1 coefficients, since
a Ck−1,1 function can be approximated to error 2−jk by polynomials on regions of
size order 2−j.

In the case of the approximation of R(−K) on H1 × H1, the coefficients in the
remainder term need to be Ck,1. It follows that the coefficients a and b must be in
Ck+K+1,1.

The operator (−∂2
x + 1)−1 can be computed in O(N) cost using a multigrid al-

gorithm [1]; a wavelet variant of this algorithm was given in [5]. To show that the
approximation property holds, a slight change in the argument about multilevel pre-
conditioning in example 4 in section 3.11 of [5] is needed; namely, nj is chosen such
that ρnj ≤ 2−t

′j , with t′ > t. Similar arguments work for the higher-order inverse
elliptic operator Ψ. This concludes the proof.

Next we will show a similar result for E(t, t0). This operator was diagonal with
E2,2 given by (see (3.5))

(8.1) E2,2(t, t0)u2(x) = u2(t0, X(x, t0, t)).

The 1,1 component of E(t, t0) is given by a similar formula.
We will first discuss the approximation of X(x, t, t0); then the next lemma will

contain the result on E(t, t0).
Let Xj(x, t, t0) denote a numerical approximation used at level j. This must be

computed for a set of points x. We require increasing accuracy as j increases, with
error bounded by C2−j(k+1). It is allowed that, as j increases, the computational
cost increases as 2j. We find that for the time-independent case Ck+1 smoothness of
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the coefficients is sufficient, while for the time-dependent case C2k+2 smoothness is
sufficient for this computation, as we will now show.

For the time-independent case, the evaluation of (8.1) can be done by solving
X = X(x, t, t0) from

(8.2)
∫ X

x

c(ξ)−1 dξ = t− t0.

First the primitive
∫ x
0
c(ξ)−1 dξ is computed for all x in the periodic grid with grid

distance 2−j. Assuming that c is Ck+1, this can be done at cost O(2j), with error
≤ C2−j(k+1). Next the solution of (8.2) can be done for a set of 2j points x using
interpolation, which conserves the order of error, i.e., with error still bounded by
C2−j(k+1).

For the time-dependent case we solve for the characteristics using a Runge–Kutta
method of order 2k + 2. We require C2k+2 smoothness of c; then we can take order
2j/2 points with distance between them of 2−j/2 and solve with time steps of order
2−j/2. The total error is then bounded by C2−j(k+1).

Next we discuss how (8.1) can be computed numerically such that the order k
approximation property is satisfied.

Lemma 8.2. Assume the coefficients a, b are Ck+1 for the time-independent case
or C2k+2 in the time-dependent case, and the wavelets are order k+1 splines. Then a
numerical approximation to the operator E(t, t0) on H1 ×H1 can be constructed that
satisfies the order k approximation property.

Proof. We consider the approximation at level J of E2,2(t, t0)f , with f an ele-
ment of VJ . We have that E2,2(t, t0)f(x) = f(X(x, t0, t)). For brevity we will write
X(x) instead of X(x, t0, t). We will write h(x) = f(X(x)). We want to compute
cJ,k̃ = 〈φ̃J,k̃, h〉. The computation of matrix elements of polynomials, i.e., 〈φ̃J,k̃, p〉,
when p is a polynomial, is basically exact; see the method of section 2.5 of [5]. To com-
pute matrix elements of other smooth functions, it is common to approximate these
locally by polynomials, and we will also use this in this argument. So to compute
the approximate coefficient of the scaling function φJ,k̃, the function h is approxi-
mated around the support of φJ,k̃ by a polynomial p. The approximate value of the
coefficient is then c̃J,k̃ = 〈φ̃J,k̃, p〉 and is obtained according to the mentioned section
of [5].

Thus we must define how to approximate h locally by a polynomial. This can
simply be done by polynomial interpolation with an order k polynomial. A function
h in Ck,1 can be approximated by interpolation on a grid of size 2−J up to an error
bounded by

sup
x∈SJ,k̃

|h(x) − p(x)| ≤ C2−(k+1)J‖h‖Ck,1(SJ,k̃).

We will apply this to a wavelet, f = ψj,k̂. We assume that the wavelet ψ
is Ck,1 and use that X is also Ck,1. The function h(x) = ψj,k̂(X(x)) satisfies
‖ψj,k̂(X(·))‖Ck,1(SJ,k̃) ≤ C2j(k+3/2). Thus the error with p an exact interpolating
polynomial is given by

|cJ,k̃ − c̃J,k̃| ≤ ‖φ̃J,k̃‖L1 sup
x∈SJ,k̃

|h(x)− p(x)| ≤ C2J(−k−3/2)+j(k+3/2) ≤ C2(k+1)(j−J).

Here we used that ‖φ̃J,k̃‖L1 can be bounded by C2−J/2 (which has to do with the
normalization; the L2 norm of φ̃J,k̃ is normalized to unity). Thus we find that the
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map from f to the error
∑

k̃(cJ,k̃ − c̃J,k̃)φJ,k̃ is bounded by C2−(k+1)J from Hk+1 to
L2, and hence by C2−kJ from Hk+1 to H1.

A second source of error is that XJ(x) is used instead of the exact value X(x).
For these errors we have

ψj,k̂(XJ (x))− ψj,k̂(X(x)) =
∫ XJ (x)

X(x)

dψj,k̂
dx

(s)ds.

Since
dψj,k̂

dx is bounded by C23j/2, and |XJ(x) − X(x)| < C2−J(k+1), these errors
satisfy

|ψj,k̂(XJ(x)) − ψj,k̂(X(x))| ≤ C23j/2−J(k+1).

From this a bound C2−J(k+1) follows for the map from input to this error, considered
in spaces H3/2 → L2, and a bound C2−JK from H3/2 → H1, which is better than or
equal to the bound for the interpolation error, since k > 1/2.

9. Multiscale time-stepping and proof of the theorem. In this section
multiscale time-stepping is introduced to finally obtain an O(N) algorithm. The
results of section 7 enable the use of higher-order time-stepping methods and lead
to estimates for the time discretization errors. The results of section 8 allow us to
estimate the errors due to space discretization. Here we will combine space and time
discretization, choose parameters, like the order of space and time discretization,
and establish the complexity of the algorithm by estimating error and cost of the
algorithm.

We solve the equivalent of differential equation (3.2) with higher-order decoupling,
after the application of the integrating factor; i.e., we solve

(9.1)
dv

dt
(t) = S(t, t0)v(t),

with

S(t, t0) = E(t, t0)−1R(−K)E(t, t0),

where R(−K) is as constructed in section 7. We will approximate the solution v(t1)
starting from t0. The approximation is done in H1 ×H1. The initial values v0 = u0

also must be in H1 × H1. We assume they have α additional orders of regularity;
i.e., they are in fact in H1+α ×H1+α. It follows from the results of sections 7 and 8
that we can transform the values U(t) of the original system (1.3) to those of the
transformed system (9.1) and back with complexity O(N).

Operators will be approximated with the order k approximation property, with
k > α. A minimum value for k is derived below. Regularity assumptions follow
from these assumptions according to the previous sections. Note that this is different
from the previous section, where the order k corresponded to the order of additional
regularity of functions that operators acted on, while here k > α. By Sj we denote
an approximation of S in Vj ×Vj with the order k approximation property, according
to the methods of section 8. (Note that Sj �= ΠVjSΠVj .)

In general in an integrating factor method it is common to frequently reset t0, so
that E(t, t0) propagates only over small time intervals. We will refrain from doing so,
as this is not needed in this context, and the frequent application of E(t, t0) to the full
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signal (i.e., not only the addition made during a small time interval by a Runge–Kutta
time step) may cause additional errors.

As motivated in section 6, we will make a multiscale decomposition of the signal
and do time-stepping separately for each scale. The initial values are decomposed as
follows:

u0 =
J∑
j=0

w0,j ,

with w0,0 = ΠV0u0, and w0,j = ΠWj−1u0, for j = 1, . . . , J . Here ΠVj , ΠWj denote
the projection on Vj × Vj and Wj × Wj , respectively. The field v(t) will also be
decomposed. The jth component, corresponding to initial values in Wj−1 ×Wj−1,
will not be approximated in Vj × Vj , however (nor in Wj−1 ×Wj−1), but in a space
Vl(j) × Vl(j), j ≤ l(j) ≤ J . To indicate this we write the components of the sum as
vj,l(j). We will show that v(t) can be approximated like

v(t) ≈
J∑
j=0

vj,l(j).

The motivation for doing this is simple: Large errors would result in the time
propagation in Vj × Vj of the w0,j , while large cost would result if we would work in
the full space VJ ×VJ . By working in an intermediate space both cost and errors can
be controlled.

The final numerical approximation will be a sum of components wj,l(j),Δtj . The
terms describe the discrete time propagation with time step Δtj , using the space
discretized operators Sl(j)(t), applied to the initial values w0,j .

For purposes of error estimation we consider two sets of fields in addition to
wj,l(j),Δtj . We assume the fields vj,l(j) introduced above describe the continuous time
propagation of the operator ΠVl(j)SΠVl(j) , and the field vj,l(j),Δtj will describe the
discrete time propagation of ΠVl(j)SΠVl(j) .

We first establish that vJ (t1) can be approximated like

vJ(t1) ≈
J∑
k=0

vj,l(j)(t1).

Lemma 9.1. Suppose l(j) is such that

(9.2) k(l(j)− j) = α(J − j).
Then

(9.3)

∥∥∥∥∥∥
J∑
j=0

vj,l(j)(t1)− v(t1)
∥∥∥∥∥∥
H1×H1

≤ C2−αJ‖u0‖H1+α×H1+α .

Proof. Let vj,∞ denote the solution of the exact differential equation with initial
value w0,j . It satisfies dvj,∞

dt = Svj,∞. As S is bounded on H1+s ×H1+s, 0 ≤ s ≤ k,
it follows that vj,∞(t) satisfies the bound

‖vj,∞(t)‖H1+s×H1+s ≤ C‖w0,j‖H1+s×H1+s

for 0 ≤ s ≤ k, t0 ≤ t ≤ t1.
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We have dvj,l(j)

dt = ΠVl(j)SΠVl(j)vj,l(j), so the difference vj,l(j) − vj,∞ satisfies

(9.4)
dvj,l(j) − vj,∞

dt
= ΠVl(j)SΠVl(j) (vj,l(j) − vj,∞) + (ΠVl(j)SΠVl(j) − S)vj,∞.

By standard estimates for ODEs we have that

‖vj,l(j)(t)− vj,∞(t)‖H1+s×H1+s ≤ C1‖vj,l(j)(t0)− vj,∞(t0)‖H1+s×H1+s

+ C2

∫ t

t0

‖(ΠVl(j)SΠVl(j) − S)vj,∞(s)‖H1+s×H1+s ds.

The first term on the right-hand side is zero. For the second term we use that by the
regularity assumptions we have

(9.5) ‖ΠVl(j)SΠVl(j) − S‖H1+k×H1+k→H1×H1 ≤ C2−kl(j).

The components of the initial values w0,j are bounded according to

(9.6) ‖w0,j‖H1+k×H1+k ≤ C2j(k−α)‖w0,j‖H1+α ,

and the same is true for vj,∞(t) for t0 < t < t1. The inhomogeneous term in (9.4) can
therefore be bounded by∥∥(ΠVl(j)SΠVl(j) − S)vj,∞(t)

∥∥
H1×H1 ≤ C2−kl(j)+j(k−α)‖w0,j‖H1+α×H1+α

= C2−αJ‖w0,j‖H1+α×H1+α .

The error vj,l(j)(t1)− vj,∞(t1) therefore satisfies the bound

(9.7) ‖vj,∞(t1)− vj,l(j)(t1)‖H1×H1 ≤ C2−αJ‖w0,j‖H1+α×H1+α .

Adding the estimates for each j results in (9.3).
The second step in the estimation of the error is to estimate the time discretiza-

tion error for the field vj,l(j). We will argue that the fields vj,l(j) can be sufficiently
accurately approximated using Runge–Kutta time discretization. By vj,l(j),Δtj we
denote the time-discretized fields. We assume the use of an order K Runge–Kutta
method for the time-stepping.

Lemma 9.2. Suppose that the time step Δtj satisfies the inequality

(9.8) Δtj ≤ C2−α(J−j)/K ,

and that the coefficients a, b are at least C2K+1,1; then we have

(9.9)

∥∥∥∥∥∥
J∑
j=0

vj,l(j),Δtj (t1)−
J∑
j=0

vj,l(j)(t1)

∥∥∥∥∥∥
H1×H1

≤ C2−αJ‖u0‖H1+α×H1+α .

Proof. The error per time step in

‖vj,l(j) − vj,l(j),Δtj‖H1×H1
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is bounded by

(Δtj)K+1 sup
τ∈[t,t+Δtj]

∥∥∥∥∥d
K+1vj,l(j)(τ)
dtK+1

∥∥∥∥∥
H1×H1

.

Using the differential equation, the higher-order time derivative dK+1vj(τ)
dtK+1 can be

expanded as a sum of terms that are each given by a product of factors dγ

dtγ ΠVl(j)SΠVl(j)

(total sum of the γ’s is ≤ K) acting on vj,l(j)(τ). In section 7 it was shown that with
the given smoothness assumption on a, b, the time derivatives djS

dtj were bounded
operators on H1 × H1 for j = 0, . . . ,K. The same is true for dj

dtj ΠVl(j)SΠVl(j) . It
follows that the error per time step is bounded by

C(Δtj)K+1 sup
τ∈[t,t+Δtj]

∥∥vj,l(j)(τ)∥∥H1×H1 .

Using standard arguments to go from local to global error, we find that the error at
time t1 can be estimated by

‖vj,l(j)(t1)− vj,l(j),Δtj (t1)‖H1×H1 ≤ C(Δtj)K‖w0,j‖H1×H1 .

We have that

J∑
j=0

(
2αj‖w0,j‖H1×H1

)2
is bounded. We therefore require that

(9.10) (Δtj)K ≤ C2αj2−αJ ;

then (9.9) follows. The conditions (9.8) and (9.10) are of course equivalent.
For the estimate of the time discretization error it turned out to be convenient

to work with ΠVl(j)SΠVl(j) , an exact discretization that is not practical to compute,
instead of Sl(j), the approximate discretization discussed in section 8. The reason is
that the errors made in Sl(j) are not differentiable. So the next step is to take into
account the difference between Sl(j) and ΠVl(j)SΠVl(j) .

Lemma 9.3. Assume still (9.2). We have the estimate

(9.11)

∥∥∥∥∥∥
J∑
j=0

wj,l(j),Δtj (t1)−
J∑
j=0

vj,l(j),Δtj (t1)

∥∥∥∥∥∥
H1×H1

≤ C2−αJ‖u0‖H1+α×H1+α .

Proof. The difference Sl(j) − ΠVl(j)SΠVl(j) satisfies a similar estimate as the dif-
ference ΠVl(j)SΠVl(j) −S, which was considered in the proof of Lemma 9.1. The proof
of (9.11) therefore proceeds similarly as the proof of Lemma 9.1, except that differ-
ence equations are used instead of differential equations. The difference wj,l(j),Δtj −
vj,l(j),Δtj satisfies the linear inhomogeneous difference equation

wj,l(j),Δtj (t+ Δt)− vj,l(j),Δtj (t+ Δt)

= ΔtRKStep(t,Δt, Sl(j))(wj,l(j),Δtj (t)− vj,l(j),Δtj (t))

+ Δt(RKStep(t,Δt, Sl(j))− RKStep(t,Δt,ΠVl(j)SΠVl(j)))vj,l(j),Δtj (t),
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where ΔtRKStep(t,Δt, A)y denotes the Runge–Kutta step for the equation y′ = Ay,
which is a linear map on y. It follows that

‖wj,l(j),Δtj (t̂)− vj,l(j),Δtj (t̂)‖H1×H1 ≤ CΔtj

×
∑

t-values < t̂

‖(RKStep(t,Δt, Sl(j))−RKStep(t,Δt,ΠVl(j)SΠVl(j)))vj,l(j),Δtj (t)‖H1×H1 .

The difference RKStep(t,Δt, Sl(j))−RKStep(t,Δt,ΠVl(j)SΠVl(j)) can be worked out.
It is a product of Sl(j) − ΠVl(j)SΠVl(j) and of operators that are bounded on H1+s,
0 ≤ s ≤ k. It follows that we have the estimate∥∥RKStep(t,Δt, Sl(j))− RKStep(t,Δt,ΠVl(j)SΠVl(j) )

∥∥
H1+k×H1+k→H1×H1 ≤ C2−kl(j).

Furthermore ∥∥vj,l(j),Δtj (t)∥∥H1+k×H1+k ≤ 2j(k−α) ‖w0,j‖H1+α .

It follows that we can estimate∥∥wj,l(j),Δtj (t1)− vj,l(j),Δtj (t1)∥∥ ≤ C2−kl(j)+j(k−α) ‖w0,j‖H1+α×H1+α

= C2−αJ ‖w0,j‖H1+α×H1+α .

The estimate (9.11) trivially follows from this.
This ends our estimation of the error. The cost of this time-stepping is

C

J∑
j=0

(Δtj)−1 2l(j) = C

J∑
j=0

2α(J−j)/K+α(J−j)/k+j

= C2J
J∑
j=0

2(−1+α/K+α/k)(J−j).

The requirement is that the cost is bounded by CN , and hence that −1+α/K+α/k <
0. If we allow logarithmic cost O(N logN), equality is also allowed. We hence have
our final result.

Theorem 9.4. If a Kth-order Runge–Kutta scheme is used, if the operators Sj
are approximated using the order k approximation property, with, in particular, order
k+1 spline wavelets, if the initial data u0 are in H1+α×H1+α, if coefficient functions
are at least CK+1+max(k,K),1, and if

(9.12) 1/K + 1/k < 1/α,

then the algorithm above with N = L2J degrees of freedom computes an approximation
with error bound

(9.13)

∥∥∥∥∥∥
J∑
j=0

wj,l(j),Δtj (t1)− v(t1)
∥∥∥∥∥∥
H1×H1

≤ CN−α‖u0‖H1+α×H1+α

at a cost O(N). If

(9.14) 1/K + 1/k = 1/α,
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it satisfies the same error bound at cost O(N logN).
The requirement that u0 is in H1+α ×H1+α means that the initial values U0 for

the original system (1.3) must be in H1+α ×Hα.
In (9.13) it may look like we are summing J functions of N sample points, with

cost O(JN) = O(N logN). However, this is not the case. The terms wj,l(j),Δtj (t1)
have C2l(j) sample points (being in Vl(j)). Using the wavelet spaces, and the fast
wavelet transform (which is O(N) for N sample points), the summation can be done
at cost C

∑J
j=0 2l(j) ≤ C2J = O(N).

10. Discussion. A numerical method for wave propagation in smooth media
was developed. The numerical results in section 5 show that the method certainly
has potential in applications with relatively smooth media. Further improvements
might be possible to further improve computation speed or weaken the requirements
of medium smoothness. One step that could possibly give an improvement is a co-
ordinate change that makes the wave speed equal to unity. We refrained from doing
this since it has no equivalent in higher dimensions, but it could reduce the error in
the application of the operator T .

The material of sections 6 to 9 not only leads to the O(N) complexity result but
also suggests ways to possibly improve the method.

The main question for future research is in our view about the generalization to
higher-dimensional cases. For the multidimensional case, curvelets form a redundant
basis (frame) with respect to which the solution operator can be made sparse [4].
Potentially it could be used for computations. However, one needs to be able to
implement operators that give the approximate effect of wave propagation, such as
translation, rotation, and deformation, efficiently in a curvelet basis. Perhaps other
fast implementations of Fourier integral operators could be used (cf. [3]) to compute
the approximate wave propagation. In dimension 2 and higher the remainder operator
R becomes, at least in the continuous setting, a pseudodifferential operator, which
is more challenging to implement. But a priori there is no reason why the principle
of combining an approximate solution operator with lower-order, exact “corrections”
could not be extended to higher dimensions.
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STABLE AND COMPATIBLE POLYNOMIAL EXTENSIONS IN
THREE DIMENSIONS AND APPLICATIONS TO THE p AND h-p

FINITE ELEMENT METHOD∗

BENQI GUO† AND JIANMING ZHANG‡

Abstract. Polynomial extensions play a vital role in the analysis of the p and h-p finite element
method (FEM) and the spectral element method. We construct explicitly polynomial extensions on
standard elements: cubes and triangular prisms, which together with the extension on tetrahedrons
are used by the p and h-p FEM in three dimensions. These extensions are proved to be stable
and compatible with FEM subspaces on tetrahedrons, cubes, and prisms and realize a continuous

mapping: H
1/2
00 (T ) (or H

1/2
00 (S)) → H1(Ωst), where Ωst denotes one of these standard elements and

T and S are their triangular and square faces. Applications of these polynomial extensions to the p
and h-p FEM are illustrated.

Key words. the p and h-p version, finite elememt method, polynomial extension, tetrahedron,
hexahedron, prism, pyramid, cube, Sobolev spaces, Jacobi polynomials
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1. Introduction. In the analysis of the high-order finite element method (FEM),
such as the p and h-p versions of FEM and the spectral element method, we need to
construct a globally continuous and piecewise polynomial which has the optimal es-
timation for its approximation error and satisfies homogeneous or nonhomogeneous
Dirichlet boundary conditions. The construction of such a polynomial is started with
local polynomial projections on each element for the best rate of convergence. Unfor-
tunately, a union of local polynomial projections is not globally continuous and does
not satisfy the homogeneous Dirichlet boundary conditions or the nonhomogeneous
Dirichlet boundary conditions. In the context of the continuous Galerkin method
in two and three dimensions, we have to adjust these local polynomial projections
by a special technique called polynomial extension or lifting. Hence, it is essential
for us to build a polynomial extension compatible with FEM subspaces, by which
the union of local polynomial projections can be modified to a globally continuous
polynomial without degrading the best order of approximation error. Compatible
polynomial extensions together with local projections led to the best estimation in
the approximation error for the p and h-p FEM [1, 2, 5, 6, 16, 21].

Babuška and Suri [5] proposed an extension F on a triangle T with I = (0, 1)
as one of its sides, which realizes a continuous mapping H1/2(I)→ H1(T ) such that
Ff ∈ P1

p (T ) for f ∈ Pp(I). The extension is the convolution of f and a characteristic
function. Using this extension they proved the existence of the continuous extension
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R: H1/2
00 (Γ) → H1(T ) [3, 5] such that Rf ∈ P1

p (T ) for f ∈ P0
p (I). They gener-

alize the extension on a square S = (−1, 1)2, which realizes a continuous mapping
H

1/2
00 (Γ) → H1(S) and Rf ∈ P2

p (S) for f ∈ P0
p (I). Hereafter, Pp(I) denotes a set of

polynomial of degree ≤ p and P0
p(I) is its subset of polynomial vanishing at the end-

points of I, P1
p (Ω) and P2

p (Ω) denote sets of polynomials of total and separate degree
≤ p on a domain Ω in R

n, n = 2, 3, respectively, and Pm,0p (Ω) is its subset of polyno-
mials vanishing on the boundary of Ω. These polynomial extensions are compatible
with FEM subspaces and have been successfully applied to the p and h-p versions of
FEM in two dimensions, which lead to the optimal estimate for approximation error
in the finite element solution of the p and h-p versions on quasi-uniform meshes with
triangular and quadrilateral elements [1, 2, 5, 6, 16]. It was shown [20] that the exten-
sion on a triangle or a square defined in [5] is stable in Sobolev spaces. The polynomial
extensions in weighted Sobolev spaces on a square were studied in [9] to improve the
error estimation of the spectral collection method for an approximation of the Stokes
equation. The polynomial extensions in high-order Sobolev spaces were studied in [8].

The extension of convolution-type has been generalized to tetrahedrons [21] and
cubes [7] in three dimensions. Muñoz-Sola creatively developed the polynomial exten-
sion of convolution-type on tetrahedron K from a triangular face T by introducing the
extension operatorR (see (2.2)) and gave an explicit proof of continuity of the mapping
H

1/2
00 (T )→ H1(K) such that RKf ∈ P1

p (K) if f ∈ P1,0
p (T ), which is compatible with

the FEM subspaces on tetrahedral elements. The polynomial extension RK together
with local projections leads to an error estimation for the h-p FEM on tetrahedral
meshes [21]. Unfortunately, the polynomial extension of convolution-type on a cube D
is not compatible with FEM subspaces on hexahedral element. Namely, if f ∈ P2,0

p (S)
where S is a square face of D, the extended polynomial by the convolution will not be
in P2

p (D), instead, in P2
p (S)× P2p(I). Also, if f ∈ P1,0

p (S), the extended polynomial
is in P2

p (D). Obviously, P1
p(S) is not a trace space of P2

p (D) and P2
p (S) × P2p(I) �⊆

P2
p (D). It seems that the extension of convolution-type works only for polynomial

spaces of total degree ≤ p on elements in three dimensions, e.g., P1
p (K), but does not

work for polynomials spaces of separate degree ≤ p, e.g., P2
p (D). Therefore, we need

to develop a new type of extension operator RD without using convolution.
In this paper we design polynomial extension on cubes by using spectral solu-

tions of the eigenvalue problem of Poisson equation on a square face S and two-point
value problem on an interval I. A polynomial extension using eigen-polynomials
which forms an L2 and H1 orthogonal basis of P2,0

p (S) and spectral solutions of two-
point value problems associated with the eigenvalues realize a continuous mapping
RD : H

1/2
00 (S) → H1(D) and RDf ∈ P2

p (D) for f ∈ P2,0
p (S). Besides tetrahe-

drons(simplices) and hexahedrons(cubes), triangular prisms are commonly used for
FEM in three dimensions. There are two types of different faces of triangular prism:
triangle and square. Therefore, we need to construct a polynomial extension from a
triangular face and a polynomial extension from a square face. The former one is based
on the convolution-type extension on a tetrahedron, and the later one is based on a
new extension on a triangle from a side. Both are compatible with FEM subspaces
and realize continuous mapping H

1/2
00 (T ) → H1(G) and H2(S) ∩ H1

0 (S) → H1(G),
respectively.

The rest of the paper is organized as follows. In section 2, after quoting the results
on polynomial extension R on tetrahedrons K from [21], a polynomial extension RTK
from a triangular face T to a triangular prism G is introduced, which is based on
the extension on a truncated tetrahedron KH incorporated with a trilinear mapping
of G onto KH . The continuity of the mapping is proved, and the compatibility with
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FEM subspace is verified. Another polynomial extension RSG from a square face S to a
triangular prism G is constructed, which is as important as RTK in the error analysis of
FEM on prism elements. In section 3, we construct an extension on a cube D without
using convolution, instead using spectral solutions of an eigenvalue problem on a
square and a two-point value problem on an interval. It is shown that this polynomial
extension realizes a continuous mapping: H

1/2
00 (S) → H1(D) and compatible with

FEM subspaces on cubic elements. Applications of the polynomial extensions to
error estimation for the p-version of FEM in three dimensions are illustrated in the
last section.

2. Polynomial extension on a triangular prism.

2.1. Polynomial extension on a tetrahedron. For the construction of poly-
nomial extensions on a triangular prism, we need to quote results on the extension on
a tetrahedron from [21]. We denote, by K, a standard tetrahedron {(x1, x2, x3)|x1 ≥
0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 ≤ 1} in R

3 shown in Figure 2.1, and ∂K denotes the
boundary of K. Let T = {(x1, x2)|x1 ≥ 0, x2 ≥ 0, x1 +x2 ≤ 1} be a standard triangle
in R

2, and let Γi, 1 ≤ i ≤ 3 be faces of K contained in the plane xi = 0 and Γ4 be the
oblique face.

Muñoz-Sola introduced the following operators [21]:

FKf(x1, x2, x3) =
2
x2

3

∫ x1+x3

x1

dξ1

∫ x1+x2+x3−ξ1

x2

f(ξ1, ξ2)dξ2(2.1)

and

RKf(x1, x2, x3) = (1− x1 − x2 − x3)x1x2FK f̃(x1, x2, x3),(2.2)

with

f̃(x1, x2) =
f(x1, x2)

x1x2(1− x1 − x2)
.

The operator RK has the following decomposition:

RKf(x1, x2, x3) = (1− x1 − x2 − x3)R12f(x1, x2, x3)
(2.3)

+ x2R13f(x1, x2, x3) + x1R23f(x1, x2, x3),

1

2

3

1

1

1

O

K

Γ

Γ

ΓΓ1

3

2

4

x

x

x

Fig. 2.1. The tetrahedron K.
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where

R12f(x1, x2, x3) = x1x2FK f̃12(x1, x2, x3), f̃12(x1, x2) =
f(x1, x2)
x1x2

,(2.4)

Ri3f(x1, x2, x3) = (1− x1 − x2 − x3)xiFK f̃i3(x1, x2, x3),(2.5)

with

f̃i3(x1, x2) =
f(x1, x2)

xi(1− x1 − x2)
, i = 1, 2.

The following theorems were proved in [21].
Theorem 2.1. Let RK be the operator defined by (2.2). Then RKf(x) ∈ P1

p (K)
for f ∈ P1,0

p (Γ3), and

‖RKf‖H1(K) ≤ C‖f‖
H

1
2
00(Γ̂3)

,(2.6)

RKf |Γ3 = f, RKf |Γi= 0, i = 1, 2, 4,(2.7)

where C is a constant independent of f and p.
Theorem 2.2. For f ∈ P1

p (∂K) = {f ∈ C0(∂K) | f |Γi∈ P1
p (Γi), 1 ≤ i ≤ 4},

there exists a polynomial EKf ∈ P1
p(K) such that EKf |∂K = f and

‖EKf‖H1(K) ≤ C‖f‖H1/2(∂K),(2.8)

where C is a constant independent of f and p.

2.2. Polynomial extension on prisms from a triangular face. Let G =
T × I be a triangular prism with faces Γi, 1 ≤ i ≤ 5 shown in Figure 2.2, where
T = {(x̃1, x̃2) | x̃1 ≥ 0, x̃2 ≥ 0, x̃1 + x̃2 ≤ 1} and I = [0, 1]. Γi, 1 ≤ i ≤ 3 are on the
planes x̃i = 0, Γ5 is the face of G contained in the plane x̃3 = 1, and Γ4 is the face
of G contained in the plane x̃1 + x̃2 = 1. Then Γ3 = T and Γ2 = S = I × I. By
P1
p (T )×Pp(I), we denote a set of polynomials with the subtotal degree in x̃1 and x̃2

≤ p and with the degree ≤ p in x̃3. Obviously P1
p (G) ⊂ P1

p (T ) × Pp(I) ⊂ P2
p (G), it

is denoted by P1.5
p (G).

We shall establish polynomial extensions from the triangle T to the prism G.
Since the mapping M :

x1 = x̃1(1−Hx̃3), x2 = x̃2(1−Hx̃3), x3 = Hx̃3(2.9)

Γ2

Γ1

Γ2

Γ3

Γ5

Γ3

Γ1

Γ4
Γ4

1

1

1

O

H

1

1

1

O

Γ5 G

K

KH

1

2

3

2x

x

x

1

x

x

x
3

Fig. 2.2. The prism G and truncated tetrahedron KH .
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maps the prism G onto a truncated tetrahedron KH = {(x1, x2, x3)|x1 ≥ 0, x2 ≥
0, H ≥ x3 ≥ 0, x1 + x2 + x3 ≤ 1}, with H ∈ (0, 1) shown in Figure 2.2. Γ̃i, i =
1, 2, 3, 4, 5 are the faces of KH , Γ̃3 and Γ̃5 are contained in the planes x3 = 0 and
x3 = H , respectively, and Γ̃i, i = 1, 2, 4 are portions of the faces of the tetrahedron
K. Hence, we need to construct a polynomial extension operator RH : P1,0

p (T ) →
P1
p (KH)

⊕P1
p (T ) × P1(IH) with desired properties, where IH = (0, H), which can

lead to a polynomial extension from a triangular face to a whole prism.
We now introduce polynomial lifting operator RH on KH defined by

RHf(x1, x2, x3) = RKf(x1, x2, x3)− x3

H
RKf(x1, x2, H),(2.10)

where RK is the lifting operator on K given in (2.2).
Theorem 2.3. Let RH be the operator given in (2.10). Then, RHf(x) ∈

P1
p (KH)

⊕P1
p (T ) × P1(IH) for f ∈ P1,0

p (T ) such that RHf(x) |Γ̃3
= f,RHf |Γ̃i

=
0, i = 1, 2, 4, 5, and

‖RHf‖H1(KH) ≤ C‖f‖
H

1
2
00(Γ̃3)

,(2.11)

where IH = (0, H) and TH = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1−H} and C is a
constant independent of f and p.

Combining the operator RH and the mapping M , we construct an extension RTG
by

RTGf(x̃1, x̃2, x̃3) = RHf ◦M = U(x̃1, x̃2, x̃3)− x̃3U(x̃1, x̃2, 1),(2.12)

where U(x̃1, x̃2, x̃3) = RKf◦M . Suppose thatRKf(x1, x2, x3) =
∑

i+j+k≤p aijkx
i
1x
j
2x
k
3 ,

then

RKf ◦M(x̃1, x̃2, x̃3) = U(x̃1, x̃2, x̃3)

=
∑

i+j+k≤p
aijkH

kx̃i1x̃
j
2x̃
k
3(1−Hx̃3)i+j ∈ P1

p (T )× Pp(I)

and
x3

H
RKf(x1, x2, H) ◦M = x̃3U(x̃1, x̃2, 1) ∈ P1

p (T )× P1(I).

Therefore, RTGf(x̃1, x̃2, x̃3) = RHf ◦M ∈ P1,0
p (T )× Pp(I) if f ∈ P1

p (T ). We are able
to establish the polynomial extension from a triangular face to a prism.

Theorem 2.4. Let RTG be the extension defined in (2.12). Then, RTGf ∈ P1
p(T )×

Pp(I) for f ∈ P1,0
p (T ), RTGf |Γ3= f and vanishes on ∂G\Γ3, and∥∥RTGf∥∥H1(G)

≤ C‖f‖
H

1
2
00(Γ3)

,(2.13)

where C is a constant independent of f and p.
Proof. Obviously, RTG : P1,0

p (T ) → P1,0
p (T ) × Pp(I), and RTGfΓ3 = f for f ∈

P1,0
p (T ), RTGf |Γi= 0, i = 1, 2, 4, 5. Since the mapping M is trilinear,∥∥RTGf∥∥H1(G)

≤ C‖RHf‖H1(KH).

Then, (2.13) follows from (2.11) easily.



1200 BENQI GUO AND JIANMING ZHANG

ξ=x

Case 1.   0 < h < a/2 Case 2.     a/2 < h <  a

ξ

O

ξ=x

ξ=x+h
ξ

O

h

ξ=x+h

a−h a−h

a

a

h
a−h a−h

XX

Fig. 2.3. Case 1 and Case 2.

It remained to prove Theorem 2.3. To this end, we need the following lemmas.
Lemma 2.5. For 0 < h < a and any function g ∈ L2(0, a), it holds that

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a

0

|g(x)|2dx.(2.14)

Also, there hold

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤ 1
h

∫ a

0

x|g(x)|2dx(2.15)

and

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤ 1
h

∫ a

0

(a− x)|g(x)|2dx.(2.16)

Proof. By Schwarz inequality, we have

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

|g(ξ)|dξ
∣∣∣∣∣
2

dx ≤
∫ a−h

0

dx

∫ x+h

x

|g(ξ)|2
h

dξ.

Case 1 : 0 < h ≤ a/2 (see Figure 2.3). There holds

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a−h

0

dx

∫ x+h

x

|g(ξ)|2
h

dξ

=
∫ h

0

dξ

∫ ξ

0

|g(ξ)|2
h

dx+
∫ a−h

h

dξ

∫ ξ

ξ−h

|g(ξ)|2
h

dx+
∫ a

a−h
dξ

∫ a−h

ξ−h

|g(ξ)|2
h

dx

=
∫ h

0

ξ|g(ξ)|2
h

dξ +
∫ a−h

h

h|g(ξ)|2
h

dξ +
∫ a

a−h

(a− ξ)|g(ξ)|2
h

dξ.

Hence, we have

∫ a−h

0

∣∣∣∣∣1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a

0

|g(ξ)|2dξ
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and

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤ 1
h

∫ a

0

ξ|g(ξ)|2dξ.

Case 2 : a/2 < h < a (see Figure 2.3). Similarly, there holds

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a−h

0

dx

∫ x+h

x

|g(ξ)|2
h

dξ

=
∫ a−h

0

dξ

∫ ξ

0

|g(ξ)|2
h

dx+
∫ h

a−h
dξ

∫ a−h

0

|g(ξ)|2
h

dx+
∫ a

h

dξ

∫ a−h

ξ−h

|g(ξ)|2
h

dx

=
∫ a−h

0

ξ|g(ξ)|2
h

dξ +
∫ h

a−h

(a− h)|g(ξ)|2
h

dξ +
∫ a

h

(a− ξ)|g(ξ)|2
h

dξ,

which implies

∫ a−h

0

∣∣∣∣∣1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤
∫ a

0

|g(ξ)|2dξ

and

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx ≤ 1
h

∫ a

0

ξ|g(ξ)|2dξ.

Therefore, we always have (2.14) and (2.15) for 0 < h ≤ a/2 or a/2 < h < a.
Letting η = a− ξ and x̂ = a− h− x and using (2.15), we obtain

∫ a−h

0

∣∣∣∣∣ 1h
∫ x+h

x

g(ξ)dξ

∣∣∣∣∣
2

dx =
∫ a−h

0

∣∣∣∣∣ 1h
∫ x̂+h

x̂

g(a− η)dη
∣∣∣∣∣
2

dx̂

≤ 1
h

∫ a

0

x̂|g(a− x̂)|2dx̂ =
1
h

∫ a

0

(a− z)|g(z)|2dz,

which yields (2.16).
Lemma 2.6. Let R12(x1, x2, H) and Ri3(x1, x2, H) be the operators given in (2.4)

and (2.5), with x3 = H. Then

‖R12f(x1, x2, H)‖L2(KH) ≤ C
∥∥∥(x1x2)

1
2 f(x1, x2)

∥∥∥
L2(T )

(2.17)

and for i = 1, 2,

‖Ri3f(x1, x2, H)‖L2(KH) ≤ C
∥∥∥x 1

2
i (1− x1 − x2)

1
2 f(x1, x2)

∥∥∥
L2(T )

,(2.18)

where C is a constant independent of f .
Proof. Note that

‖R12f(x1, x2, H)‖2L2(KH ) ≤
4
H2

∫ H

0

dx3

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

∣∣∣∣∣ 1
H

∫ x1+H

x1

g1(ξ1)dξ1

∣∣∣∣∣
2

dx1,
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with g1(ξ1) =
∫ x2+H

x2
|f̃(ξ1, ξ2)|dξ2. Hereafter, f̃ denotes the extension of f by zero

outside T . We apply here Lemma 2.5 to g1(ξ1) with a = 1 − x2 − x3, h = H,x =
x1, ξ = ξ1. Then we get

∫ 1−x2−x3

0

(
1
H

∫ x1+H

x1

g(ξ1)dξ1

)2

dx1 ≤ 1
H

∫ 1−x2−x3+H

0

x1|g1(x1)|2dx1,

which implies

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

∣∣∣∣∣ 1
H

∫ x1+H

x1

g1(ξ1)dξ1

∣∣∣∣∣
2

dx1(2.19)

≤ 1
H

∫ 1−x3

0

dx2

∫ 1−x2−x3+H

0

x1

∣∣∣∣∣
∫ x2+H

x2

∣∣∣f̃(x1, ξ2)
∣∣∣ dξ2

∣∣∣∣∣
2

dx1

= H

⎧⎨
⎩
∫ H

0

x1dx1

∫ 1−x3

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

∣∣∣f̃(x1, ξ2)
∣∣∣ dξ2

∣∣∣∣∣
2

dx2

+
∫ 1−x3+H

H

x1dx1

∫ 1−x1−x3+H

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

∣∣∣f̃(x1, ξ2)
∣∣∣ dξ2

∣∣∣∣∣
2

dx2

⎫⎬
⎭ .

Applying Lemma 2.5 again, we have

∫ 1−x3

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

∣∣∣f̃(x1, ξ2)
∣∣∣ dξ2

∣∣∣∣∣
2

dx2 ≤ 1
H

∫ 1−x3+H

0

x2

∣∣∣f̃(x1, x2)
∣∣∣2 dx2

and

∫ 1−x1−x3+H

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

∣∣∣f̃(x1, ξ2)
∣∣∣ dξ2

∣∣∣∣∣
2

dx2 ≤ 1
H

∫ 1−x1−x3+2H

0

x2

∣∣∣f̃(x1, x2)
∣∣∣2 dx2,

which together with (2.19) yields

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

(
1
H

∫ x1+H

x1

dξ1

∫ x2+H

x2

∣∣∣f̃(ξ1, ξ2)
∣∣∣ dξ2

)2

dx1

≤
(∫ H

0

dx1

∫ 1+H

0

+
∫ 1−x3+H

H

dx1

∫ 1−x1+2H

0

)
x2x1

∣∣∣f̃(x1, x2)
∣∣∣2 dx2

≤
(∫ H

0

dx1

∫ 1+H

0

+
∫ 1+H

H

dx1

∫ 1−x1+2H

0

)
x2x1

∣∣∣f̃(x1, x2)
∣∣∣2 dx2 ≤ 2

∥∥∥(x1x2)
1
2 f
∥∥∥2

L2(T )
.

Therefore, (2.17) follows immediately.
Let Q1 be the mapping

x1 = x̂2, x2 = 1− x̂1 − x̂2 − x̂3, x3 = x̂3,(2.20)

which maps KH onto itself, and let W1 be the mapping

ξ1 = ξ̂2, ξ2 = 1− ξ̂1 − ξ̂2,(2.21)
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which maps T onto itself. Then f̂(ξ̂1, ξ̂2) = f(ξ1, ξ2) ◦W1 = f(ξ̂2, 1 − ξ̂1 − ξ̂2) and
R12f(x̂1, x̂2, H) = R13f(x1, x2, x3) ◦Q1 |x3=H . Therefore,

‖R13f(x1, x2, H)‖L2(KH) ≤
∥∥∥R12f̂(x̂1, x̂2, H)

∥∥∥
L2(KH)

≤ C
∥∥∥∥(ξ̂1ξ̂2)

1
2
f̂

∥∥∥∥
L2(T )

≤ C
∥∥∥ξ 1

2
1 (1− ξ1 − ξ2) 1

2 f
∥∥∥
L2(T )

.

For R23f , we introduce mapping Q2 and W2:

Q2 : x1 = 1− x̂1 − x̂2 − x̂3, x2 = x̂1, x3 = x̂3,(2.22)

which maps KH onto itself, and

W2 : ξ1 = 1− ξ̂1 − ξ̂2, ξ2 = ξ̂1,(2.23)

which maps T onto itself. Similarly, there holds

‖R23f(x1, x2, H)‖L2(KH) ≤
∥∥∥R12f̂(x̂1, x̂2, H)

∥∥∥
L2(KH)

≤ C
∥∥∥∥(ξ̂1ξ̂2)

1
2
f̂

∥∥∥∥
L2(T )

≤ C
∥∥∥ξ 1

2
2 (1− ξ1 − ξ2) 1

2 f
∥∥∥
L2(T )

.

Lemma 2.7. Let R12(x1, x2, H) and Ri3(x1, x2, H) be the operators given in (2.4)
and (2.5), with x3 = H. Then for i = 1, 2,∥∥∥∥∂R12f(x1, x2, H)

∂xi

∥∥∥∥
L2(KH)

≤ C
∥∥∥x− 1

2
i f

∥∥∥
L2(T )

,(2.24)

and t = 1, 2∥∥∥∥∂Ri3f(x1, x2, H)
∂xt

∥∥∥∥
L2(KH)

≤ C
(∥∥∥x− 1

2
t f

∥∥∥
L2(T )

+
∥∥∥(1 − x1 − x2)−

1
2 f
∥∥∥
L2(T )

)
,(2.25)

where C is a constant independent of f .
Proof. Note that

∂R12f(x1, x2, H)
∂x1

=
2x2

H2

∫ x1+H

x1

dξ1

∫ x1+x2+H−ξ1

x2

f(ξ1, ξ2)
ξ1ξ2

dξ2

−2x2

H2

∫ x2+H

x2

f(x1, ξ2)
ξ2

dξ2 +
2x1x2

H2

∫ x1+H

x1

f(ξ1, x1 + x2 +H − ξ1)
ξ1(x1 + x2 +H − ξ1) dξ1

and ∣∣∣∣∂R12f(x1, x2, H)
∂x1

∣∣∣∣ ≤ I1 + I2 + I3,(2.26)

where

I1 =
2
H2

∫ x1+H

x1

dξ1

∫ x2+H

x2

|f(ξ1, ξ2)|
ξ1

dξ2, I2 =
2
H2

∫ x2+H

x2

|f(x1, ξ2)|dξ2,

I3 =
2
H2

∫ x1+H

x1

|f(ξ1, x1 + x2 +H − ξ1)|dξ1.
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Note that

‖I1‖2L2(KH) =
4
H2

∫ H

0

dx3

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

(
1
H

∫ x1+H

x1

g1(ξ1)dξ1

)2

dx1,

with g1(ξ1) =
∫ x2+H

x2

|f̃(ξ1,ξ2)|
ξ1

dξ2. Applying Lemma 2.5 to g1(ξ1) with a = 1 − x2 −
x3, h = H,x = x1, ξ = ξ1, we have

∫ 1−x2−x3

0

∣∣∣∣∣ 1
H

∫ x1+H

x1

g1(ξ1)dξ1

∣∣∣∣∣
2

dx1 ≤ 1
H

∫ 1−x2−x3+H

0

x1

∣∣∣∣∣
∫ x2+H

x2

f̃(x1, ξ2)
x1

dξ2

∣∣∣∣∣
2

dx1,

which implies

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

∣∣∣∣∣ 1
H

∫ x1+H

x1

g1(ξ1)dξ1

∣∣∣∣∣
2

dx1

≤ 1
H

∫ 1−x3

0

dx2

∫ 1−x2−x3+H

0

1
x1

∣∣∣∣∣
∫ x2+H

x2

f̃(x1, ξ2)dξ2

∣∣∣∣∣
2

dx1

≤ H
⎧⎨
⎩
∫ H

0

1
x1
dx1

∫ 1−x3

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

f̃(x1, ξ2)dξ2

∣∣∣∣∣
2

dx2

+
∫ 1−x3+H

H

1
x1
dx1

∫ 1−x1−x3+H

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

f̃(x1, ξ2)dξ2

∣∣∣∣∣
2

dx2

⎫⎬
⎭ .

Applying Lemma 2.5 again to the function g2(ξ2) = f̃(x1, ξ2), we have

‖I1‖2L2(KH) ≤
4
H2

∫ H

0

dx3

∫ H

0

1
x1
dx1

∫ 1−x3+H

0

∣∣∣f̃(x1, x2)
∣∣∣2 dx2

+
4
H2

∫ H

0

dx3

∫ 1−x3+H

H

1
x1
dx1

∫ 1−x1−x3+2H

0

∣∣∣f̃(x1, x2)
∣∣∣2 dx2

(2.27)

≤ 4
H

(∫ H

0

dx1

∫ 1+H

0

+
∫ 1+H

H

dx1

∫ 1−x1+2H

0

) ∣∣∣f̃(x1, x2)
∣∣∣2

x1
dx2

≤ 8
H

∥∥∥x1
− 1

2 f
∥∥∥2

L2(T )
.

Similarly, we have by Lemma 2.5,

‖I2‖2L2(KH) =
4
H2

∫ H

0

dx3

∫ 1−x3

0

dx1

∫ 1−x1−x3

0

∣∣∣∣∣ 1
H

∫ x2+H

x2

|f(x1, ξ2)|dξ2
∣∣∣∣∣
2

dx2

≤ 4
H3

∫ H

0

dx3

∫ 1−x3

0

dx1

∫ 1−x1−x3+H

0

x2|f(x1, x2)|2dx2

(2.28)

≤ 4
H3

∫ H

0

dx3

∫ 1

0

dx1

∫ 1−x1+H

0

x2

∣∣∣f̃(x1, x2)
∣∣∣2 dx2

=
4
H2

∥∥∥x 1
2
2 f
∥∥∥2

L2(T )
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and

‖I3‖2L2(KH)

=
4
H2

∫ H

0

dx3

∫ 1−x3

0

dx2

∫ 1−x2−x3

0

∣∣∣∣∣ 1
H

∫ x1+H

x1

∣∣∣f̃(ξ1, x1 + x2 +H − ξ1)
∣∣∣ dξ1

∣∣∣∣∣
2

dx1

≤ 4
H3

∫ H

0

dx3

∫ 1−x3

0

dx2

∫ 1−x2−x3+H

0

x1

∣∣∣f̃(x1, x2 +H)
∣∣∣2 dx1

≤ 4
H3

∫ H

0

dx3

∫ 1

0

dx2

∫ 1−x2+H

0

x1

∣∣∣f̃(x1, x2 +H)
∣∣∣2 dx1

=
4
H2

∫ 1

0

dx2

∫ 1−x2+H

0

x1

∣∣∣f̃(x1, x2 +H)
∣∣∣2 dx1.

Letting z = x2 +H , we have

4
H2

∫ 1

0

dx2

∫ 1−x2+H

0

x1

∣∣∣f̃(x1, x2 +H)
∣∣∣2 dx1

=
4
H2

∫ 1+H

H

dz

∫ 1−z+2H

0

x1

∣∣∣f̃(x1, z)
∣∣∣2 dx1

=
4
H2

∫ 1

H

dz

∫ 1−z

0

x1

∣∣∣f̃(x1, z)
∣∣∣2 dx1 ≤ 4

H2

∥∥∥x 1
2
1 f
∥∥∥2

L2(T )
,

which implies

‖I3‖2L2(KH) ≤
4
H2

∥∥∥x 1
2
1 f
∥∥∥2

L2(T )
.(2.29)

Combining (2.26)–(2.29), we have∥∥∥∥∂R12f(x1, x2, H)
∂x1

∥∥∥∥
L2(KH)

≤ C
∥∥∥x− 1

2
1 f

∥∥∥
L2(T )

.

Similarly, we can prove∥∥∥∥∂R12f(x1, x2, H)
∂x2

∥∥∥∥
L2(KH)

≤ C
∥∥∥x− 1

2
2 f

∥∥∥
L2(T )

.

Let Qi and Wi (i=1,2) be the mapping as defined in (2.20)–(2.23). Then, for t = 1, 2,∥∥∥∥∂R13f(x1, x2, H)
∂xt

∥∥∥∥
L2(KH)

≤
∑
i=1,2

∥∥∥∥∥∂R12f̂(x̂1, x̂2, H)
∂x̂i

∥∥∥∥∥
L2(KH)

≤ C
∑
i=1,2

∥∥∥ξ̂− 1
2

i f̂
∥∥∥
L2(T )

≤ C
(∥∥∥ξ− 1

2
1 f

∥∥∥
L2(T )

+
∥∥∥(1− ξ1 − ξ2)− 1

2 f
∥∥∥
L2(T )

)
.

Similarly, we have for t = 1, 2,∥∥∥∥∂R23f(x1, x2, H)
∂xt

∥∥∥∥
L2(KH)

≤
∑
i=1,2

∥∥∥∥∥∂R12f̂(x̂1, x̂2, H)
∂x̂i

∥∥∥∥∥
L2(KH)

≤ C
∑
i=1,2

∥∥∥ξ̂− 1
2

i f̂
∥∥∥
L2(T )

≤ C
(∥∥∥ξ− 1

2
2 f

∥∥∥
L2(T )

+
∥∥∥(1− ξ1 − ξ2)− 1

2 f
∥∥∥
L2(T )

)
.
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Proof of Theorem 2.3. Obviously, RHf(x) ∈ P1
p(KH)

⊕P1,0
p (T ) × P1(IH) for

f ∈ P1,0
p (T ). Due to (2.10), we have

‖RHf(x1, x2, x3)‖H1(KH) ≤ ‖RKf(x1, x2, x3)‖H1(KH)(2.30)

+
∥∥∥x3

H
RKf(x1, x2, H)

∥∥∥
H1(KH)

.

By Theorem 2.1, there holds

‖RKf(x1, x2, x3)‖H1(KH) ≤ ‖RKf(x1, x2, x3)‖H1(K) ≤ C‖f(x1, x2)‖
H

1
2
00(T )

(2.31)

and by (2.3) and Lemma 2.6–Lemma 2.7, it holds that∥∥∥x3

H
RKf(x1, x2, H)

∥∥∥
H1(KH)

≤ C
⎛
⎝‖R12f(x1, x2, H)‖H1(KH) +

∑
i=1,2

‖Ri3f(x1, x2, H)‖H1(KH )

⎞
⎠

≤ C
⎛
⎝‖f‖

H
1
2 (T )

+
∑
i=1,2

∥∥∥x− 1
2

i f
∥∥∥
L2(T )

+
∥∥∥(1− x1 − x2)−

1
2 f
∥∥∥
L2(T )

⎞
⎠ ≤ C‖f‖

H
1
2
00(T )

,

which together with (2.30)–(2.31) leads to (2.11) immediately.

2.3. Polynomial extension on prisms from a square face. We shall con-
struct a polynomial extension on prisms from a square face S = {x = (x1, x2, x3) |
0 ≤ x1, x3 ≤ 1}, which is as important as the extension from a triangular face for
error analysis and preconditioning of high-order FEM in three dimensions [15, 18].

Lemma 2.8. Let T = {(x1, x2)|0 < x2 < 1 − x1, 0 ≤ x1 < 1} be the standard
triangle and I = (0, 1). Then there is a polynomial extension operator R∗T : H1

0 (I)→
H1(T ) such that R∗T f ∈ P1

p (T ) if f(x1) ∈ P0
p (I), and

R∗T f |I = f(x1), R∗T f |∂T\I = 0,(2.32)

‖R∗T f‖Ht(T ) ≤ C
(
pt−

3
2 ‖f‖H1(I) + pt−

1
2 ‖f‖L2(I)

)
, t = 0, 1,(2.33)

with C independent of f and p.
Proof. Let ψ(x2) = (1− x2)p. Then for t ≥ 0,

‖ψ‖Ht(I) ≤ Cpt− 1
2 .(2.34)

We introduce a function Ψ ∈ P1
2p+1(T ) by

Ψ(x1, x2) = ψ(x2)((1 − x1 − x2)f(x1) + x1f(x1 + x2)).

Then Ψ(x1, 0) = f(x1),Ψ(1, x2) = Ψ(x1, 1− x1) = 0, and

‖Ψ‖L2(T ) ≤ Cp− 1
2 ‖f‖L2(I),(2.35)

‖Ψ‖H1(T ) ≤ C
(
p−

1
2 ‖f‖H1(I) + p

1
2 ‖f‖L2(I)

)
.(2.36)

By the lifting theorem on the triangle T [17], there exists a lifting operator RT :

H
1
2
00(I)→ H1(T )

RT f =
x1(1− x1 − x2)

x2
2

∫ x1+x2

x1

f(ξ)
ξ(1 − ξ)dξ
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such that RT f ∈ P1
p(T ), RT f |I= f , RT f |∂T\I= 0, and

‖RT f‖H1(T ) ≤ C‖f‖
H

1
2
00(I)

,

which implies that RT satisfies (2.33) with t = 1. Unfortunately, the extension does
not give precise information on ‖RT f‖L2(T ), and the desired estimation (2.33) with
t = 0 may not be true for RT . Therefore, we have to construct a new extension
operator R∗T .

Note that Ψ − RT f = 0 on ∂T . By ΠT , we denote the orthogonal projection
operator H1

0 (T )→ P1,0
p (T ), and let

wp = RT f + ΠT (Ψ−RT f).

Then wp(x1, 0) = f(x1), wp(1, x2) = wp(x1, 1− x1) = 0, and

Ψ− wp =
(
I −ΠT

)
(Ψ−RT f).(2.37)

Due to the continuity of operator RT and a trace theorem, we obtain

‖wp‖H1(T ) ≤ ‖Ψ‖H1(T ) + ‖Ψ− wp‖H1(T ) ≤ ‖Ψ‖H1(T ) + ‖Ψ−RT f‖H1(T )(2.38)

≤ 2‖Ψ‖H1(T ) + ‖RT f‖H1(T ) ≤ C
(
‖Ψ‖H1(T ) + ‖f‖

H
1
2
00(I)

)

≤ C
(
‖Ψ‖H1(T ) + ‖Ψ‖

H
1
2 (∂T )

)
≤ C‖Ψ‖H1(T ).

Let R∗T f = wp. Then (2.36) and (2.38) lead to (2.32) and (2.33) with t = 1. Note
that ΠT (Ψ−RT f) is the finite element solution in P1,0

p (T ) for the the boundary value
problem

−Δu+ u = f̃ in T
u |∂T= 0,

with f̃ = −Δ(Ψ−RT f) + Ψ−RT f . By the Nitsche’s trick, we have

‖(I −ΠT )(Ψ −RT f)‖L2(T ) ≤ Cp−1‖(I −ΠT )(Ψ−RT f)‖H1(T ) ≤ Cp−1‖Ψ‖H1(T ),

which implies

‖Ψ− wp‖L2(T ) = ‖(I −ΠT )(Ψ−RT f)‖L2(T ) ≤ Cp−1‖Ψ‖H1(T ).(2.39)

Combining (2.39) and (2.36) we have (2.33) for t = 0.
We construct a polynomial extension from a square face to the prism G with help

of the extension R∗T in triangle T :

RSGf(x1, x2, x3) = R∗T f(·, x3).(2.40)

Theorem 2.9. Let Γ2 = S be a square face of the prism G as shown in Figure 2.2,
and let RSG be the extension operator defined as in (2.40). Then, RSGf ∈ P1

p (T )×Pp(I)
for f ∈ P2,0

p (Γ2), and

RSGf = f on Γ2, RSGf = 0 on ∂G\Γ2,(2.41) ∥∥RSGf∥∥H1(G)
≤ C

(
p−

3
2 |fx3 |H1(Γ2) + p−

1
2 |f |H1(Γ2) + p

1
2 ‖f‖L2(Γ2)

)
,(2.42) ∥∥RSGf∥∥L2(G)

≤ C
(
p−

3
2 ‖f‖H1(Γ2) + p−

1
2 ‖f‖L2(Γ2)

)
.(2.43)
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Proof. Obviously, RSGf ∈ P1
p (T )× Pp(I) and (2.41) holds. Due to (2.40),

∥∥RSGf∥∥2

L2(G)
=
∫ 1

0

(∫
T

∣∣RSGf ∣∣2 dx1dx2

)
dx3 ≤

∫ 1

0

‖R∗T f‖2L2(T )dx3

≤ C
∫ 1

0

(
p−3‖f(·, x3)‖2H1(I) + p−1‖f(·, x3)‖2L2(I)

)
dx3

≤ C
(
p−3‖f‖2H1(S) + p−1‖f‖2L2(S)

)
,

which leads to (2.43).
Applying (2.40) to f(x1, x3) and fx3(x1, x3), respectively, we have

∣∣RSGf ∣∣2H1(G)
≤
∫ 1

0

(
|R∗T f |2H1(T ) + |R∗T fx3 |2L2(T )

)
dx3

≤ C
∫ 1

0

(
p−1‖f‖2H1(I) + p ‖f‖2L2(I) + p−3‖fx3‖2L2(I)

)
dx3,

which implies (2.42).
Remark 2.1. It is an open problem whether there exists a polynomial extension

operator RSG such that ∥∥RSGf∥∥H1(G)
≤ C‖f‖

H
1/2
00 (S)

.(2.44)

Although (2.42) is not strong as the desired stability of (2.44), it gives the depen-
dence of ‖RSGf‖H1(G) on ‖f‖Ht(S), t = 1, 0 and ‖fx3‖H1(S) furnished precisely with
weights p−1/2, p1/2, and p−3/2, respectively. This estimation is sufficient while we ap-
ply the extension to a pair of elements sharing a common square face for constructing
a continuous piecewise polynomial in P1.5

p (G) without degrading the best order of
approximation error. Hence, the extension RSG defined as in (2.40) is weakly stable,
and Theorem 2.9 plays an important role in error analysis for the p and h-p versions
of the FEM in three dimensions on meshes containing triangular prism elements. For
the detail of the application of this extension for the construction of a continuous
piecewise polynomial, we refer to [15, 18].

3. Polynomial extension on a cube. Let D be a cube and Γi, i = 1, 2, . . . , 6
be faces of D shown in Figure 3.1, and let γij = Γi ∩ Γj , i = 1, 2, . . . , 6. As usual,
I = [−1, 1] and S = [−1, 1]2.

Γ5

Γ6

Γ4

1

O

3

2Γ

Γ1

Γ
2

3
1

1 −1

1

x

x

x

D

Fig. 3.1. A cube D.
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3.1. Polynomial extension from a face. Let Jα,βj (x) be the Jacobi polyno-
mial of degree j:

Jα,βj (x) =
(−1)j(1− x)−α(1 + x)−β

2jj!
dj(1− x)j+α(1 + x)j+β

dxj
, j ≥ 0,(3.1)

with weights α, β > −1, and let

ϕi(x) =
1− x2√
γ2,2
i−1

J2,2
i−1(x), i = 1, 2, 3, . . . ,(3.2)

where γ2,2
i−1 = 25i(i+1)

(2i+3)(i+2)(i+3) .
Proposition 3.1. ϕi(x), i = 1, 2, . . . , p− 1 form an orthogonal basis of P0

p (I),

〈ϕi(x), ϕj(x)〉L2(I) = δij , 1 ≤ i, j ≤ p− 1.(3.3)

Proof. Due to the orthonormality of Jacobi polynomials,

〈ϕi(x), ϕj(x)〉L2(I) =
1√

γ2,2
i−1

√
γ2,2
j−1

∫
I

(
1− x2

)2
J2,2
i−1(x)J

2,2
j−1(x)dx = δij .

We introduce

(3.4)

ϕn(x1, x2) = ϕi(x1)ϕj(x2) =

(
1− x2

1

) (
1− x2

2

)
√
γ2,2
i−1γ

2,2
j−1

J2,2
i−1(x1)J

2,2
j−1(x2), 1 ≤ i, j ≤ p− 1,

with n = (p− 1)(i− 1) + j.
Proposition 3.2. {ϕn(x1, x2), n = 1, 2, . . . , (p− 1)2} forms an orthnormal basis

of P2,0
p (S) in L2(S), i.e.,

〈ϕn, ϕm〉L2(S) = δnm, 1 ≤ n,m ≤ Np = (p− 1)2.(3.5)

Proof. Let n = (p− 1)(i− 1) + j and m = (p− 1)(i′ − 1) + j′. Then

〈ϕn, ϕm〉L2(S)

=
∫
I

(
1− x2

1

)2√
γ2,2
i−1γ

2,2
i′−1

J2,2
i−1(x1)J

2,2
i′−1(x1)dx1

∫
I

(
1− x2

2

)2√
γ2,2
j−1γ

2,2
j′−1

J2,2
j−1(x2)J

2,2
j′−1(x2)dx2

= δi,i′δj,j′ = δnm.

We consider an eigenvalue problem{−�u = λu in S = (−1, 1)2,
u
∣∣
Γ

= 0,(3.6)

and its spectral solution (λp, ψp), with ψp ∈ P2,0
p (S), which satisfies∫

S

∇ψp∇qdx1dx2 = λp

∫
S

ψpqdx1dx2 ∀q ∈ P2,0
p (S).(3.7)
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Selecting the basis {ϕn(x1, x2), n = 1, 2, . . . , Np} as in (3.4), with Np = (p− 1)2 and
letting ψp(x1, x2) =

∑Np

i=1 ciϕi(x1, x2), we have the corresponding system of linear
algebraic equations:

K
−→
C = λM

−→
C = λ

−→
C ,

where −→C = (c1, c2, . . . , cNp)T ,K = (kij)
Np

i,j=1, with kij =
∫
S
∇ϕi∇ϕjdx1dx2. Here,

we used the orthonormality of ϕn(x1, x2) in L2(S), which implies the matrix M =
I. Therefore, the spectral solution of eigenvalue problem (3.7) is equivalent to the
eigenvalue problem of matrix K. Since K is symmetric and positive definite, the
eigenvalues λp,k > 0, k = 1, 2, . . . , Np and the corresponding eigenvectors −→C (k)

are
orthonormal, i.e.,

〈−→
C

(k)
,
−→
C

(l)
〉

=
Np∑
i=1

c
(k)
i c

(l)
i = δk,l, 1,≤ k, l ≤ Np.

The corresponding eigen-polynomial ψp,k =
∑Np

n=1 c
(k)
n ϕn(x1, x2). Then, due to the

properties of eigenvalues and vectors of K, we have the following theorem.
Theorem 3.3. The problem (3.7) has Np real eigenvalues, and the corresponding

eigen-polynomials {ψp,k(x1, x2), 1 ≤ k ≤ Np} are orthogonal in L2(S) and H1(S),
which form an L2-orthonormal basis of P2,0

p (S).
Proof. The problem (3.7) has Np real eigenvalues because the corresponding

stiffness matrix K is positive definite and there hold for 1 ≤ k, k′ ≤ Np

〈ψp,k, ψp,k′〉L2(S) =
Np∑
j=1

Np∑
i=1

c
(k)
i c

(k′)
j 〈ϕi, ϕj〉L2(S) =

〈−→
C

(k)
,
−→
C

(k′)
〉

= δk,k′

and ∫
S

∇ψp,k∇ψp,k′dx1dx2 = λk

∫
S

ψp,kψp,k′dx1dx2 = λkδk,k′ .

Therefore, {ψp,k, k = 1, 2, . . . , Np} is orthogonal in L2(S) and H1(S) and forms an
orthonormal basis in L2(S).

We next consider a two-point boundary value problem{−v′′
p,k(x3) + λp,kvp,k(x3) = 0, x3 ∈ I = (−1, 1),
vp,k(−1) = 1, vp,k(1) = 0,

(3.8)

and its spectral solution φp,k ∈ Pp(I) such that φp,k(−1) = 1, φp,k(1) = 0 and∫
I

(
φ

′
p,kq

′
+ λp,kφp,kq

)
dx3 = 0,(3.9)

which is equivalent to finding φp,k = φ̃p,k + 1−x3
2 , with φ̃p,k ∈ P 0

p (I) satisfying∫
I

(
φ̃

′
p,k(x3)q

′
(x3) + λp,kφ̃p,k(x3)q(x3)

)
dx3

(3.10)
=

1
2

∫
I

(q′(x3)− λp,k(1− x3)q(x3))dx3.
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Since the corresponding bilinear form is coercive and continuous on H1
0 (I) ×H1

0 (I),
the solution φ̃p,k(x3) uniquely exists in P 0

p (I) for each λp,k.
Lemma 3.4 (Inverse inequality).∫

S

|∇ψp,k|2dx1dx2 ≤ Cp4

∫
S

|ψp,k|2dx1dx2,(3.11)

where C is a constant independent of p and k.
Proof. It is a typical inverse inequality in two dimensions; for the proof, we refer

to, e.g., [11].
Lemma 3.5. Let λp,k be an eigenvalue of the problem (3.7), and let φp,k(x3) be

the corresponding solution of two-point value problem (3.8). Then

∫ 1

−1

(∣∣∣φ′
p,k

∣∣∣2 + λp,k |φp,k|2
)
dx3 ≤ C

√
λp,k, k = 1, 2, . . . , Np.(3.12)

Proof. Since λp,k is an eigenvalue of the problem (3.7), then

λp,k =
∫
S

(∇ψp,k)2dx1dx2.

By Lemma 3.4, there exists a constant η > 0 independent of p and k such that
0 < λp,k ≤ ηp4. Then for each k, we always can find a unique integer 1 ≤ Mk ≤ p
satisfying

η(Mk − 1)4 ≤ λp,k ≤ ηM4
k .(3.13)

For each k, correspondingly we introduce the knots and the weights ξi, ωi(i = 0, 1, . . . ,
Mk) of the Gauss–Legendre–Lobatto quadrature formula of order Mk on the interval
[−1, 1]. We assume that the knots are ordered in such a way that ξ0 = −1. Let χk
be the Lagrange interpolation polynomial of degree Mk such that

χk(ξi) =
{

1, if i = 0,
0, otherwise.

By the equivalence of discrete and continuous L2 norms over PMk
(−1, 1) (see [11]),

there exists a constant c1 > 0 independent of Mk such that

∫ 1

−1

|χk(x1)|2dx1 ≤ c1
Mk∑
i=0

χ2
k(ξi)ωi = c1ω0.

Since ω0 = 2
Mk(Mk+1) (see [13]), we obtain

∫ 1

−1

|χk(x1)|2dx1 ≤ c2
M2
k

,

and, by the inverse inequality, we have

∫ 1

−1

|χ′k(x1)|2dx1 ≤ c2ηM2
k .
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Setting q = φp,k−χk in (3.10) and by using the Cauchy–Schwarz inequality, we obtain∫ 1

−1

(
(φ

′
p,k)

2 + λp,k(φp,k)2
)
dx3 ≤ CM2

k .

Lemma 3.5 follows immediately by this inequality and (3.13).
Since f(x1, x2) ∈ P2,0

p (S) and {ψp,k(x1, x2), 1 ≤ k ≤ Np} is an orthonormal basis
of P2,0

p (S),

f(x1, x2) =
Np∑
k=1

βkψp,k(x1, x2),

with βk =
∫
S
f(x1, x2)ψp,k(x1, x2)dx1dx2. Let

RDf =
Np∑
k=1

βkψp,k(x1, x2)φp,k(x3).(3.14)

Obviously,

RDf |Γ1 =
Np∑
k=1

βkψp,k(x1, x2) = f(x1, x2),

where Γ1 = {(x1, x2,−1)| − 1 < x1, x2 < 1}.
Theorem 3.6. Let D = (−1, 1)3 and Γ1 = {(x1, x2,−1)| − 1 < x1, x2 < 1}, then

for f ∈ P2,0
p (Γ1), there exists RDf ∈ P2

p (D) such that RDf |Γ1 = f,RDf |∂D\Γ1 =
0, and

‖RDf‖H1(D) ≤ C‖f‖
H

1
2
00(Γ1)

,(3.15)

where C is a constant, which is independent of p and f .
Proof. Let ψp,k and φp,k be defined as in (3.7) and (3.10), and let RDf be given

in (3.14), then

RDf |Γ1 = f, RDf |∂D\Γ1 = 0.

Due to the orthogonality of the ψp,k L2(S) and H1(S) and by using (3.7) and
Lemma 3.5, we have

‖RDf‖2L2(D) =
Np∑
k=1

β2
k

1√
λp,k

and

|RDf |2H1(D) =
∫
D

(∣∣∣∣∂RDf∂x1

∣∣∣∣
2

+
∣∣∣∣∂RDf∂x2

∣∣∣∣
2

+
∣∣∣∣∂RDf∂x3

∣∣∣∣
2
)
dx1dx2dx3

=
Np∑
k=1

β2
k

(∫
S

|ψp,k|2dx1dx2

∫
I

∣∣∣φ′
p,k

∣∣∣2 dx3 +
∫
S

|∇ψp,k|2dx1dx2

∫
I

|φp,k|2dx3

)

=
Np∑
k=1

β2
k

∫
I

(∣∣∣φ′
p,k

∣∣∣2 + λp,k|φp,k|2
)
dx3 ≤ C

Np∑
k=1

β2
k

√
λp,k.
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Therefore,

‖RDf‖2H1
0(D) ≤ C

Np∑
k=1

β2
k

(
1 +

√
λp,k

)
.(3.16)

Note that

‖f‖2L2(Γ1)
=

Np∑
k=1

β2
k, ‖f‖2H1

0(Γ1)
=

Np∑
k=1

β2
k(1 + λp,k).

By interpolation space theory [8, 10, 19],

‖f‖2
H

1
2
00(Γ1)

≈
Np∑
k=1

β2
k(1 + λp,k)

1
2 ≈

Np∑
k=1

β2
k

(
1 +

√
λp,k

)
,

which together with (3.16) implies (3.15).
Analogously, we consider spectral solutions in either P2

p(Γ1) or 0P2
p (Γ1) =

{ϕ ∈ P2
p (Γ1) |ϕ(±1, x2) = 0} for the corresponding eigenvalue problems. Obvi-

ously, {√(2i+ 1)(2j + 1)/2Li(x1)Lj(x2), 0 ≤ i, j ≤ p} and {√2j + 1(1 − x2
1)/√

2γ2,2
i−1J

2,2
i−1(x1)Lj(x2), 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p} are the orthonormal bases of

P2
p (Γ1) and 0P2

p (Γ1), respectively, where Li(x1) and J2,2
i−1(x1) denote the Legendre

and the Jacobi polynomials. The arguments for Theorem 3.6 can be carried out ex-
cept replacing P2,0

p (Γ1) by P2
p (Γ1) or 0P2

p (Γ1). Therefore, we have the following two
theorems which are parallel to Theorem 3.6.

Theorem 3.7. Let D = [0, 1]3 and Γ1 = {(x1, x2, 0)|0 < x1, x2 < 1}, then for
f ∈ P2

p (Γ1), there exists U ∈ P2
p (D) such that U |Γ1 = f, U |Γ4 = 0 and

‖U‖H1(D) ≤ C‖f‖H 1
2 (Γ1)

,(3.17)

where C is a constant independent of p and f .
Theorem 3.8. Let D = [0, 1]3 and Γ1 = {(x1, x2, 0) | 0 < x1, x2 < 1}, then for

f ∈ P2
p (Γ1), f |γ12 = 0, f |γ15 = 0, there exists U ∈ P2

p(D) such that U |Γ1 = f, U |Γ4 =
0, U |Γ2 = 0, U |Γ5 = 0 and

‖U‖H1(D) ≤ C‖f‖
H

1
2
00(Γ1,γ12∪γ15)

,(3.18)

where C is a constant independent of p and f , and

‖u‖2
H

1
2
00(Γi,γil∪γim)

= ‖u‖2
H

1
2 (Γi)

+
∫

Γi

|u|2
dist(x, γil)

dSx +
∫

Γi

|u|2
dist(x, γim)

dSx.(3.19)

Remark 3.1. Theorem 3.6 can be proved on a cube (0, 1)3 by a simple mapping.
Hereafter, D = (0, 1)3 shall be the standard cube for the convenience in following
sections.

Remark 3.2. The polynomial extension without using convolution was first pro-
posed by Canuto and Funaro for the extension in square [10]. Since the polynomial
extension of convolution-type is sufficient on triangle and square elements, the gen-
eralization of this approach to a cube is much more significant because it is the only
polynomial extension compatible to FEM subspace on a cube.
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Fig. 3.2. A cube and a truncated pyramid ΛH .

Remark 3.3. In [7] a similar extension was proposed by using spectral solutions
of two eigenvalue problems in one dimension and one boundary value problem on
an interval without rigorous proof. Recently, the same approach was developed with
a proof in [12]. A genuine generalization of Canuto and Funaro’s approach from a
square to a cube should be based on the spectral solution of an eigenvalue problem
on a square, which is much better than the spectral solutions of two eigenvalue prob-
lems on an interval. More significantly, this approach can be used for a prism with
nonsquare bases on which the eigenvalue problem cannot be decomposed into two one
dimensional problems, e.g., a prism with a triangular base. The polynomial extension
from a triangular base to a prism given in Theorem 2.4 can be proved by using this
approach, but we will not elaborate the details here.

Remark 3.4. As an analogue to the extension on a square via a convolution-type
extension on a triangle and a mapping of a square onto a truncated triangle [5, 18], we
are able to construct an extension via a convolution-type extension on a tetrahedron
and a mapping of a cube onto a truncated tetrahedron. It was shown that there is
a convolution-type extension RΛ from a square base S to a pyramid Λ such that RΛ

realizes a continuous mapping H
1
2
00(S) → H1(Λ) and RΛf |S = f,RΛf |∂Λ\S = 0 [22].

Then a convolution-type extension R̃D on a cube D is defined as

R̃Df = RΛHf ◦M,

R̃ΛHf(x1, x2, x3) = R̃Λf(x1, x2, x3)− x3

H
RΛf(x1, x2, H),

where the mapping

M : xi =
ξi + 1

2

(
1− H(ξ3 + 1)

2

)
, i = 1, 2, x3 =

H(ξ3 + 1)
2

maps the cube D onto a truncated pyramid ΛH as shown in Figure 3.2. It is easy to
see that R̃Df ∈ P1

p (D), R̃Df |S = f, R̃Df |∂D\S=0 if f ∈ P1,0
p (S). Note that R̃Df �∈

P2
p (D), instead, R̃Df ∈ P1,0

p (S)× P1
p(I) if f ∈ P2,0

p (S). Hence, the convolution-type
extension R̃D is not compatible with the finite element space on the cube D and is not
applicable to analysis of the p and h-p finite element solutions on meshes containing
hexahedral elements.

3.2. Polynomial extension from whole boundary. We shall construct a
polynomial extension E which lifts a polynomial on a whole boundary of a cube D in
three steps, which is proved to be a continuous operator: H

1
2 (∂D)→ H1(T ).
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Theorem 3.9. Let D = [0, 1]3 be the cube and f ∈ P2
p (∂D) = {f ∈ C0(∂D),

f |Γi= fi ∈ P2
p (Γi), i = 1, . . . , 6}, where Γi’s are the faces of cube D. Then there

exists EDf ∈ P2
p (D) such that EDf |∂D= f and

‖EDf‖H1(D) ≤ C‖f‖H 1
2 (∂D)

,(3.20)

where C is a constant independent of p and f , ∂D is the boundary of D.
Proof. By Theorem 3.7, there exist U1, U4 ∈ P2

p(D) such that U1|Γ1 = f1, U1|Γ4 =
0; U4|Γ4 = f4, U4|Γ1 = 0, and

‖U1‖H1(D) ≤ C‖f1‖H 1
2 (Γ1)

, ‖U4‖H1(D) ≤ C‖f4‖H 1
2 (Γ4)

.(3.21)

Let g2 = f2 − U1|Γ2 − U4|Γ2 and g5 = f5 − U1|Γ5 − U4|Γ5 , then g2 vanishes at
the sides γ12 and γ24 of Γ2, and g5 vanishes at the sides γ15 and γ45 of Γ5. By
Theorem 3.8, there exist U2, U5 ∈ P2

p (D) such that U2|Γ2 = g2, U2|Γi = 0, i = 1, 4, 5,
U5|Γ5 = g5, U5|Γj = 0, j = 1, 2, 4, and

‖U2‖H1(D) ≤ C‖g2‖
H

1
2
00(Γ2,γ12∪γ24)

, ‖U5‖H1(D) ≤ C‖g5‖
H

1
2
00(Γ5,γ15∪γ45)

.(3.22)

Let

g3 = f3 −
∑

i=1,2,4,5

Ui|Γ3 , g6 = f6 −
∑

i=1,2,4,5

Ui|Γ6 ,

then

g3|γ13 = −U2|γ13 − U5|γ13 , g3|γ23 = 0, g3|γ34 = −U2|γ34 − U5|γ34 , g3|γ35 = 0,
g6|γ16 = −U2|γ16 − U5|γ16 , g6|γ26 = 0, g6|γ46 = −U2|γ46 − U5|γ46 , g6|γ56 = 0.

By Theorem 3.8, there exist U3, U6 ∈ P2
p(D) such that U3|Γ3 = g3, U3|Γi = 0, i =

2, 5, 6, and U6|Γ6 = g6, U6|Γj = 0, j = 2, 3, 5, and

‖U3‖H1(D) ≤ C‖g3‖
H

1
2
00(Γ3,γ23∪γ35)

, ‖U6‖H1(D) ≤ C‖g6‖
H

1
2
00(Γ6,γ26∪γ56)

.(3.23)

Let U = U1 + U2 + U3 + U4 + U5 + U6. Then it is easy to see that U |Γi = fi, i =
2, 3, 5, 6. Let g1 = f1 − U |Γ1 , g4 = f4 − U |Γ4 . Since γ12 = Γ̄1 ∩ Γ̄2 and U1 |Γ1= f1,
U2 |Γ1= U4 |Γ1= U5 |Γ1= U3 |Γ2= U6 |Γ2= 0, there holds

g1|γ12 = (f1 − U |Γ1)|γ12 = f1|γ12 − ((U1 + U2 + U3 + U4 + U5 + U6)|Γ1) |γ12
= f1|γ12 − (f1 + U2 |Γ1 +U3|Γ2 + U4 |Γ1 +U5 |Γ1 +U6 |Γ2)|γ12 = 0,

and since U3 |γ13= g3 |γ13= (f3 −U1 +U2 +U4 +U5) |γ13 and U6 |Γ3= 0, it holds that

g1|γ13 = (f1 − U |Γ1)|γ13 = f1|γ13 − (U |Γ3)|γ13 = f1|γ13 − f3|γ13 = 0.

Similarly, it can be shown that g1|γ15 = g1|γ16 = 0. Hence, g1 |∂Γ1= 0. Due to the
symmetry, it holds that g4 |∂Γ4= 0.

By Theorem 3.6, there exist V1 ∈ P2,0
p (Γ1) and V4 ∈ P2,0

p (Γ4) such that

V1|Γ1 = g1, V1|Γi = 0, i = 2, 3, 4, 5, 6,
V4|Γ4 = g4, V4|Γi = 0, i = 1, 2, 3, 5, 6,
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and

‖V1‖H1(D) ≤ C‖g1‖
H

1
2
00(Γ1)

, ‖V4‖H1(D) ≤ C‖g4‖
H

1
2
00(Γ4)

.

Let EDf = U + V1 + V4, then we have EDf |Γi = fi, i = 1, 2, 3, 4, 5, 6, and

‖EDf‖H1(S) ≤ ‖U‖H1(S) + ‖V1‖H1(S) + ‖V4‖H1(S)(3.24)

≤ C
(
‖f1‖

H
1
2 (Γ1)

+ ‖f4‖
H

1
2 (Γ4)

+ ‖g2‖
H

1
2
00(Γ2,γ12∪γ24)

+ ‖g5‖
H

1
2
00(Γ5,γ15∪γ45)

+ ‖g3‖
H

1
2
00(Γ3,γ23∪γ35)

+ ‖g6‖
H

1
2
00(Γ6,γ26∪γ56)

+ ‖g1‖
H

1
2
00(Γ1)

+ ‖g4‖
H

1
2
00(Γ4)

)
.

First, we prove that

‖g2‖
H

1
2
00(Γ2,γ12∪γ24)

≤ C‖f‖
H

1
2 (Γ1∪Γ2∪Γ4)

.(3.25)

Due to (3.21), there holds

‖g2‖
H

1
2 (Γ2)

≤ ‖f2‖
H

1
2 (Γ2)

+ ‖U1‖
H

1
2 (Γ2)

+ ‖U4‖
H

1
2 (Γ2)(3.26) ≤ ‖f2‖

H
1
2 (Γ2)

+ C‖U1‖H1(D) + C‖U4‖H1(D)

≤ C
(
‖f2‖

H
1
2 (Γ2)

+ ‖f1‖
H

1
2 (Γ1)

+ ‖f4‖
H

1
2 (Γ4)

)
.

For (3.25), by the definition (3.19) of H
1
2
00(Γ2, γ12 ∪ γ24), we need to show that

∫
S

|g2|2
x3

dx1dx3 ≤ C‖f‖
H

1
2 (Γ1∪Γ2∪Γ4)

,

∫
S

|g2|2
1− x3

dx1dx3 ≤ C‖f‖
H

1
2 (Γ1∪Γ2∪Γ4)

.(3.27)

Since U1(x1, x3, 0) = f1(x1, x3) and U4(x1, x3, 0) = 0, there holds

g2(x1, x3) = f2(x1, x3)−
∑
i=1,4

Ui(x1, x2, x3)|Γ2 = f2(x1, x3)−
∑
i−1,4

Ui(x1, 0, x3)

= (f2(x1, x3)− f1(x1, x3)) + (U1(x1, x3, 0)− U1(x1, 0, x3))
+ (U4(x1, x3, 0)− U4(x1, 0, x3)).

Due to following equivalent norms for the space H
1
2 (Γ2 ∪ Γ1) [3, 14],

‖f‖
H

1
2 (Γ2∪Γ1)

≈
(
‖f2‖2

H
1
2 (Γ2)

+ ‖f1‖2
H

1
2 (Γ1)

+D(f2, f1)
) 1

2

,(3.28)

where

D(f2, f1) =
∫
S

|f2(t1, 0, t2)− f1(t1, t2, 0)|2
t2

dt1dt2,
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we have ∫
S

|f2(x1, x3)− f1(x1, x3)|2
x3

dx1dx3 ≤ ‖f‖2
H

1
2 (Γ1∪Γ2)

,∫
S

|U1(x1, x3, 0)− U1(x1, 0, x3)|2
x3

dx1dx3 = D(U1|Γ1 , U1|Γ2) ≤ C‖U1‖2
H

1
2 (Γ1∪Γ2)

≤ C‖U1‖2H1(D) ≤ C‖f1‖2H 1
2 (Γ1)

,

and∫
S

|U4(x1, x3, 0)− U4(x1, 0, x3)|2
x3

dx1dx3 = D(U4|Γ1 , U4|Γ2) ≤ C‖U4‖2
H

1
2 (Γ1∪Γ2)

≤ C‖U4‖2H1(D) ≤ C‖f4‖2H 1
2 (Γ4)

.

Therefore, we obtain the first inequality of (3.27).
For the second inequality of (3.27), we shall decompose g2(x1, x3) differently.

Since U4(x1, x3, 1) = f4(x1, x3) and U1(x1, x3, 1) = 0, there holds

g2(x1, x3) = f2(x1, x3)−
∑
i=1,4

Ui(x1, x2, x3)|Γ2 = f2(x1, x3)−
∑
i=1,4

Ui(x1, 0, x3)

= (f2(x1, x3)− f4(x1, x3)) + (U4(x1, x3, 1)− U4(x1, 0, x3))
+ (U1(x1, x3, 1)− U1(x1, 0, x3)).

Arguing as previously, we have the second inequality of (3.27). Then (3.25) follows
immediately from (3.26)–(3.27). Due to the symmetry, we have analogously

‖g5‖
H

1
2
00(Γ5,γ15∪γ45)

≤ C‖f‖
H

1
2 (Γ1∪Γ4∪Γ5)

.(3.29)

We shall next prove that

‖g3‖
H

1
2
00(Γ3,γ23∪γ35)

≤ C‖f‖
H

1
2 (∂D\Γ6)

, ‖g6‖
H

1
2
00(Γ6,γ26∪γ65)

≤ C‖f‖
H

1
2 (∂D\Γ3)

.(3.30)

By (3.22), (3.25), and (3.29) we have

‖g3‖
H

1
2 (Γ3)

=

∥∥∥∥∥∥f3 −
∑

i=1,2,4,5

Ui|Γ3

∥∥∥∥∥∥
H

1
2 (Γ3)

≤ ‖f3‖
H

1
2 (Γ3)

+ C
∑

i=1,2,4,5

‖Ui‖H1(D)(3.31)

≤ C
⎛
⎝‖f3‖

H
1
2 (Γ3)

+
∑
i=1,4

‖fi‖
H

1
2 (Γi)

+
∑
i=2,5

‖gi‖
H

1
2
00(Γi,γ1i∪γi4)

⎞
⎠

≤ C
⎛
⎝‖f3‖

H
1
2 (Γ3)

+
∑
i=1,4

‖fi‖
H

1
2 (Γi)

+
∑
i=2,5

‖f‖
H

1
2 (Γ1∪Γi∪Γ4)

⎞
⎠

≤ C‖f‖
H

1
2 (∂D\Γ6)

.
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For the first inequality of (3.30), due to the definition (3.19) of H
1
2
00(Γ3, γ23∪γ35),

it remains to show that∫
S

|g3|2
x2

dx1dx3 ≤ C‖f‖
H

1
2 (∂D\Γ6)

,

∫
S

|g3|2
1− x2

dx1dx3 ≤ C‖f‖
H

1
2 (∂D\Γ6)

.(3.32)

Since U2(x2, 0, x3) = g2(x2, x3) and U5(x2, 0, x3) = 0, we have

g3(x2, x3) = f3(x2, x3)− g2(x2, x3) + U2(x2, 0, x3)−
∑

i=1,2,4,5

Ui(0, x2, x3)

= f3(x2, x3)− (f2(x2, x3)− U1(x2, 0, x3)− U4(x2, 0, x3)) + U2(x2, 0, x3)
− U1(0, x2, x3)− U4(0, x2, x3)− U2(0, x2, x3)− U5(0, x2, x3)

= (f3(x2, x3)− f2(x2, x3)) + (U1(x2, 0, x3)− U1(0, x2, x3)) + (U4(x2, 0, x3)
− U4(0, x2, x3)) + (U2(x2, 0, x3)− U2(0, x2, x3)) + (U5(x2, 0, x3)− U5(0, x2, x3)).

By the equivalent norm of H
1
2 (Γ2 ∪ Γ3) described in (3.28), we have∫

S

|f3(x2, x3)− f2(x2, x3)|
x2

dx2dx3 ≤ ‖f‖2
H

1
2 (Γ3∪Γ2)

,

∫
S

|U1(x2, 0, x3)− U1(0, x2, x3)|
x2

dx2dx3 = D(U1|Γ2 , U1|Γ3) ≤ C‖U1‖2
H

1
2 (Γ2∪Γ3)

≤ C‖U1‖2H1(D) ≤ C‖f1‖2H 1
2 (Γ1)

,

∫
S

|U4(x2, 0, x3)− U4(0, x2, x3)|
x2

dx2dx3 = D(U4|Γ2 , U4|Γ3) ≤ C‖U4‖2
H

1
2 (Γ2∪Γ3)

≤ C‖U4‖2H1(D) ≤ C‖f4‖2H 1
2 (Γ4)

,

∫
S

|U2(x2, 0, x3)− U2(0, x2, x3)|
x2

dx2dx3 = D(U2|Γ2 , U2|Γ3) ≤ C‖U2‖2
H

1
2 (Γ2∪Γ3)

≤ C‖U2‖2H1(D) ≤ C‖g2‖2
H

1
2
00(Γ2,γ12∪γ24)

≤ C‖f‖2
H

1
2 (Γ1∪Γ2∪Γ4)

,

∫
S

|U5(x2, 0, x3)− U5(0, x2, x3)|
x2

dx2dx3 = D(U5|Γ2 , U5|Γ3) ≤ C‖U5‖2
H

1
2 (Γ2∪Γ3)

≤ C‖U5‖2H1(D) ≤ C‖g5‖2
H

1
2
00(Γ5,γ12∪γ24)

≤ C‖f‖2
H

1
2 (Γ1∪Γ4∪Γ5)

.

Then the first inequality of (3.32) follows easily.
For the second inequality of (3.32), we shall decompose g3(x2, x3) in different way,

i.e.,

g3(x2, x3) = (f3(x2, x3)− f5(x2, x3)) + (U1(x2, 1, x3)− U1(0, x2, x3))
+ (U4(x2, 1, x3)− U4(0, x2, x3)) + (U5(x2, 1, x3)− U5(0, x2, x3))
+ (U2(x2, 1, x3)− U2(0, x2, x3)).
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Arguing as previously, we obtain the second estimation of (3.32). A combination of
(3.31) and (3.32) leads to the first inequality of (3.30). By the symmetry, we have the
second one of (3.30).

Finally, we prove that

‖gi‖
H

1
2
00(Γ1)

≤ C‖f‖
H

1
2 (∂D)

, i = 1, 4.(3.33)

By (3.21)–(3.23) and (3.25), (3.29)–(3.30), there holds

‖g1‖
H

1
2 (Γ1)

= ‖f1 − U |Γ1‖H 1
2 (Γ1)(3.34)

≤ ‖f1‖
H

1
2 (Γ1)

+
6∑
i=1

‖Ui‖
H

1
2 (Γ1)

≤ C‖f‖
H

1
2 (∂D)

.

For (3.33) with i = 1, we need to show that, for j = 1, 2,∫
S

|g1(x1, x2)|2
xj

dx1dx2 ≤C‖f‖
H

1
2 (∂D)

,

∫
S

|g1(x1, x2)|2
1− xj dx1dx2≤C‖f‖

H
1
2 (∂D)

.(3.35)

Since U2|Γ2 = g2, U5|Γ1 = 0, U3|Γ2 = 0 and U6|Γ2 = 0, we have

g1(x1, x2) = f1(x1, x2)− g2(x1, x2) + U2(x1, 0, x2)− U(x1, x2, x3)|Γ1

= f1(x1, x2)− (f2(x1, x2)− U1(x1, 0, x2)− U4(x1, 0, x2))

+ U2(x1, 0, x2)−
∑

1≤i≤6

Ui(x1, x2, 0)

= (f1(x1, x2)− f2(x1, x2)) + (U1(x1, 0, x2)− U1(x1, x2, 0))
+ (U4(x1, 0, x2)− U4(x1, x2, 0)) + (U2(x1, 0, x2)− U2(x1, x2, 0))
+ (U3(x1, 0, x2)− U3(x1, x2, 0)) + (U6(x1, 0, x2)− U6(x1, x2, 0)).

By the equivalent norm of H
1
2 (Γ2 ∪ Γ1) described in (3.28), there hold∫

S

|f1(x1, x2)− f2(x1, x2)|2
x2

dx1dx2 ≤ ‖f‖
H

1
2 (Γ1∪Γ2)

,

∫
S

|U1(x1, 0, x2)− U1(x1, x2, 0)|2
x2

dx1dx2 = D(U1|Γ2 , U1|Γ1) ≤ C‖U1‖2
H

1
2 (Γ2∪Γ1)

≤ C‖U1‖2H1(D) ≤ C‖f1‖2H 1
2 (Γ1)

,

∫
S

|U4(x1, 0, x2)− U4(x1, x2, 0)|2
x2

dx1dx2 = D(U4|Γ2 , U4|Γ1) ≤ C‖U4‖2
H

1
2 (Γ2∪Γ1)

≤ C‖U4‖2H1(D) ≤ C‖f4‖2H 1
2 (Γ4)

,

∫
S

|U2(x1, 0, x2)− U2(x1, x2, 0)|2
x2

dx1dx2 = D(U2|Γ2 , U2|Γ1) ≤ C‖U2‖2
H

1
2 (Γ2∪Γ1)

≤ C‖U2‖2H1(D) ≤ C‖g2‖2
H

1
2
00(Γ2,γ12∪γ24)

≤ C‖f‖2
H

1
2 (Γ1∪Γ2∪Γ4)

,
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∫
S

|U3(x1, 0, x2)− U3(x1, x2, 0)|2
x2

dx1dx2 = D(U3|Γ2 , U3|Γ1) ≤ C‖U3‖2
H

1
2 (Γ2∪Γ1)

≤ C‖U3‖2H1(D) ≤ C‖g3‖2
H

1
2
00(Γ3,γ23∪γ35)

≤ C‖f‖2
H

1
2 (∂D\Γ6)

,

and∫
S

|U6(x1, 0, x2)− U6(x1, x2, 0)|2
x2

dx1dx2 = D(U6|Γ2 , U6|Γ1) ≤ C‖U6‖2
H

1
2 (Γ2∪Γ1)

≤ C‖U6‖2H1(D) ≤ C‖g6‖2
H

1
2
00(Γ6,γ26∪γ56)

≤ C‖f‖2
H

1
2 (∂D\Γ3)

.

The above inequalities lead to the first estimation of (3.35) for j = 2.
For the second inequality of (3.35) with j = 2, we shall decompose g1 differently.

Since U5|Γ5 = g5, U2|Γ5 = 0, U3|Γ5 = 0, and U6|Γ5 = 0, there holds

g1(x1, x2) = (f1(x1, x2)− f5(x1, x2)) + (U1(x1, 1, x2)− U1(x1, x2, 0))
+ (U4(x1, 1, x2)− U4(x1, x2, 0)) + (U5(x1, 1, x2)− U5(x1, x2, 0))
+ (U2(x1, 1, x2)− U2(x1, x2, 0)) + (U3(x1, 1, x2)− U3(x1, x2, 0))
+ (U6(x1, 1, x2)− U6(x1, x2, 0)).

Arguing as above, we can get the second inequality of (3.35) for j = 2.
For the first and second inequalities of (3.35) for j = 1, we decompose g1 in two

other ways. Since U3|Γ3 = g3, U6|Γ3 = 0, U6|Γ6 = g6, and U3|Γ6 = 0, we have

g1(x1, x2) = (f1(x1, x2)− f3(x1, x2)ig) + (U1(0, x1, x2)− U1(x1, x2, 0))
+ (U4(0, x1, x2)− U4(x1, x2, 0)) + (U2(0, x1, x2)− U2(x1, x2, 0))
+ (U5(0, x1, x2)− U5(x1, x2, 0)) + (U3(x1, 1, x2)− U3(x1, x2, 0))
+ (U6(0, x1, x2)− U6(x1, x2, 0))

and

g1(x1, x2) = (f1(x1, x2)− f6(x1, x2)) + (U1(1, x1, x2)− U1(x1, x2, 0))
+ (U4(1, x1, x2)− U4(x1, x2, 0)) + (U2(1, x1, x2)− U2(x1, x2, 0))
+ (U5(1, x1, x2)− U5(x1, x2, 0)) + (U3(1, x1, x2)− U3(x1, x2, 0))
+ (U6(1, x1, x2)− U6(x1, x2, 0)),

respectively, which implies (3.35) for j = 1.
Combining (3.34) and (3.35), we obtain (3.33) for i = 1. Analogously, we have

(3.33) for i = 4 due to the symmetry, which together with (3.24)–(3.25) and (3.29)–
(3.30) leads to (3.20). Thus, we complete the proof.

4. Applications to the error analysis of p-version of FEM. Tetrahe-
drons(simplices), triangular prisms(wedges), and hexahedrons(cubes) are three com-
monly used elements for the FEM in three dimensions. We have established poly-
nomial extensions RG, RΛ, and RD on a triangular prism, a pyramid, and a cube,
which, with the polynomial extension RK on a tetrahedron [21], are sufficient for the



POLYNOMIAL EXTENSIONS IN THREE DIMENSIONS 1221

construction of a globally continuous and piecewise polynomial on a mesh containing
tetrahedral elements, triangular prism elements, and hexahedral elements. Therefore,
approximation errors in solutions of the p and h-p version can be proved to be as good
as in local projections without comprising the optimal rate of the convergence. We
will illustrate how to incorporate the local projection with polynomial extensions in
the error analysis for the p-version of the FEM; the details of the proof are given in
a coming paper [15].

Let Ω be a Lipschitz domain in R3, and let Δ = {Ωj, 1 ≤ j ≤ J} be a partition of
Ω. Ω′js are shape-regular and surfaced tetrahedral, hexahedral, and triangular-prism
elements. By Mj , we denote a mapping of standard element Ωst onto Ωj , where Ωst
is the standard tetrahedral K, or the standard triangular-prism G, or the standard
hexahedron D which we defined in previous sections. Let Ppj (Ωj) denote a set of
pull-back polynomials ϕ on Ωj such that ϕ ◦Mj ∈ Pκpj

(Ωst), with κ = 1 if Ωst is the
tetrahedron K, κ = 2 if Ωst is the hexahedron D, and P1.5

p (Ωst) = P1
p (T ) × Pp(I)

if Ωst is the triangular-prism G. By P , we denote the distribution of the element
degrees. As usual, the finite element subspaces of piecewise pull-back and continuous
polynomials are defined as

SP,1D (Ω; Δ) = SPD(Ω; Δ) ∩H1
D(Ω), SP,1D (Ω; Δ) = {ϕ∣∣ϕ|Ωj ∈ Pp(Ωj), 1 ≤ j ≤ J},(4.1)

where H1
D(Ω) denotes the set of u ∈ H1(Ω), with u = 0 on ΓD.

Incorporating the polynomial extensions with the approximation in the framework
of Jacobi-weighted Sobolev spaces, we have the following theorem, which leads to the
error estimates for the p-version of the FEM with a quasi-uniform degree distribution
in three dimensions.

Theorem 4.1. Let u ∈ Hk(Ω), k ≥ 1, and let SP,1D (Ω; Δ) be the finite element
subspace defined with a uniform degree p as in (4.1). Then there exists a polynomial
ϕ ∈ SP,1D (Ω; Δ) such that

‖u− ϕ‖H1(Ω) ≤ C(p+ 1)−(k−1)‖u‖Hk(Ω),(4.2)

with a constant C independent of p and u.
We shall outline the proof and emphasize the essential role which the polynomial

extensions play, and we refer readers to [15] for the details. To this end, we introduce
three important propositions.

Proposition 4.2. Let u ∈ Hk(Ωj), k > 3
2 , where Ωj is a tetrahedron, or a prism,

or a cube with planar surfaces or nonplanar surfaces. Then there exists a polynomial
φ ∈ Pκp (Ωj), with p ≥ 1 and κ = 1, 1.5, 2, respectively, such that for 0 ≤ � ≤ k,

‖u− φ‖H�(Ωj) ≤ Cp−(k−�)‖u‖Hk(Ωj),(4.3)

and u = φ at vertices V� of Ωj, 1 ≤ � ≤ L,L = 4 or 6 or 8, respectively.
Proposition 4.3. Let γ = (− 1

2 ,
1
2 ) and u ∈ Hs(γ), s > 1/2. Then there exists

an operator πγ = Hs(γ)→ Pp(γ) such that u(± 1
2 ) = πγu(± 1

2 ) and for 0 ≤ l ≤ s,
‖u− πγu‖Hl(γ) ≤ C(p+ 1)−(s−l)‖u‖Hs(γ),(4.4)

with a constant C independent of p and u.
Proposition 4.4. Let Ωst be a standard tetrahedron, or triangular prism, or

hexahedron, and let u ∈ Hs(Ωst), s ≥ 2. Then there exists a polynomial ϕj ∈ Pp(Ωst)
such that u(Vl) = ϕp(Vl) at the vertices Vl of Ωj, and ϕp |γ= πγu on each edge of Ωst,

‖u− ϕj‖Hl(Ωst) ≤ C(p+ 1)−(s−l)‖u‖Hs(Ωst)(4.5)
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and on each face of Ωst

‖u− ψ‖Ht(Fi) ≤ Cp−(k−t− 1
2 )‖u‖Hk(Ωst), t = 0, 1,(4.6)

with a constant C independent of p and u. If Ωst is a standard triangular prism and
u ∈ Hs(Ωst), s ≥ 3, it holds that∥∥∥∥∂(u− ψ)

∂x3

∥∥∥∥
H1(Fi)

≤ Cp−(k− 5
2 )‖u‖Hk(Ωst).(4.7)

The construction of the operator πγ and the polynomial ϕp are started with
the Jacobi projection with β = −1/2 (Chebyshev projection) and followed by the
modification at vertices and on edges.

Proof of Theorem 4.1. We first assume that k ≥ 2. Due to Proposition 4.4, we
have a polynomial ϕj ∈ Pp(Ωj) in each element Ωj such that u = ϕj at each vertex
V of Ωj and ϕj = πγu on each edge γ of Ωj , where πγ is the projection-like operator
defined as in Proposition 4.3, and, for 0 ≤ l ≤ k,

‖u− ϕj‖Hl(Ωj) ≤ C(p+ 1)−(k−l)‖u‖Hk(Ωj).(4.8)

Suppose that F = Ω̄j ∩ Ω̄i is a common face of two neighboring elements Ωj
and Ωi. We may assume without loss of generality that Ωi and Ωj are standard-size
elements.

If F is a standard triangle T , there are three possible cases:
(T1) both are tetrahedrons;
(T2) both are triangular prisms;
(T3) Ωj is a tetrahedron and Ωi is a triangular prism.
If F is a standard square face S, similarly, there are three possible cases:
(S1) both Ωj and Ωi are hexahedrons;
(S2) both Ωj and Ωi are triangular prisms;
(S3) Ωj is a hexahedron and Ωi is a triangular prism.
We shall modify ϕi and ϕj in the cases (T1) and (S2); the treatment for other

cases are similar with what follows.
In the case (T1), Ωi and Ωj are tetrahedrons. ψ = (ϕi − ϕj)

∣∣
F
∈ P1,0

p (F ). By
Theorem 2.1, there is a polynomial Ψ ∈ P1

p (Ωj) such that Ψ |F= ψ and Ψ |∂Ωj\F= 0,
and

‖Ψ‖H1(Ωj) ≤ C‖ψ‖
H

1
2
00(F )

= C‖ϕi − ϕj‖
H

1
2
00(F )

.(4.9)

Note that (ϕi − ϕj) ∈ H
1
2
00(F ) = (H0(F ), H1

0 (F )) 1
2 ,2

and that for t = 0, 1,

‖ϕi − ϕj‖Ht(F ) ≤ C
(‖ϕi − u‖Ht(F ) + ‖ϕj − u‖Ht(F )

)
≤ C(p + 1)−(k+t−1/2)

(‖u‖Hk(Ωj) + ‖u‖Hk(Ωi)

)
,

which implies

‖Ψ‖H1(Ωj) ≤ C(p + 1)−(k−1)
(‖u‖Hk(Ωj) + ‖u‖Hk(Ωi)

)
.(4.10)

In the case (S2), by Proposition 4.4, there are ϕi ∈ P1.5
p (Ωi) and ϕj ∈ P1.5

p (Ωj)
satisfying (4.5)–(4.7). Suppose that F = {x = (x1, 0, x3) | 0 ≤ x1, x3 ≤ 1}. Then
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ψ(x1, x3) = (ϕi − ϕj)|F ∈ P2,0
p (F ), and there exists a polynomial extension Ψ on Ωj

[18] such that Ψ ∈ P1.5
p (Ωj), Ψ|F = ψ and Ψ|∂Ωj\F = 0, and

‖Ψ‖H1(Ωj) ≤ C
(
(p+ 1)−

3
2 ‖ψx3‖H1(F ) + (p+ 1)−

1
2 ‖ψ‖H1(F ) + (p+ 1)

1
2 ‖ψ‖L2(F )

)
.

Due to (4.5) and (4.7), there hold for t = 0, 1,

‖ψ‖Ht(F ) ≤ ‖u−ϕj‖Ht(F )+‖u−ϕi‖Ht(F ) ≤ C(p+1)−(k−t− 1
2 )
(‖u‖Hk(Ωj) + ‖u‖Hk(Ωi)

)
and

‖ψx3‖H1(F ) ≤
∥∥∥∥∂(u− ϕj)

∂x3

∥∥∥∥
H1(F )

+
∥∥∥∥∂(u− ϕi)

∂x3

∥∥∥∥
H1(F )

≤ C(p+ 1)−(k− 5
2 )
(‖u‖Hk(Ωj) + ‖u‖Hk(Ωi)

)
,

which implies (4.10).
Let ϕ̃j = ϕj + Ψ and ϕ̃i = ϕi. Then ϕ̃j = ϕ̃i on F , and by (4.9) and (4.10),

‖u− ϕ̃j‖H1(Ωj) ≤ ‖u− ϕj‖H1(Ωj) + ‖Ψ‖H1(Ωj)(4.11) ≤ C(p + 1)−(k−1)
(‖u‖Hk(Ωj) + ‖u‖Hk(Ωi)

)
and

‖u− ϕ̃i‖H1(Ωi) = ‖u− ϕi‖H1(Ωi) ≤ C(p+ 1)−(k−1)‖u‖Hk(Ωi).(4.12)

Adjusting ϕj on each face of Ωj by the polynomial extension Ψ, we achieve the
continuity across interfaces of elements. For the homogeneous Dirichlet boundary
condition, we can adjust ϕj in similar way such that ϕ̃j ∈ Pκp (Ωj) and vanishes on
ΓD ∩ ∂Ωj . Let φ = ϕ̃j in Ωj , 1 ≤ j ≤ J . Then ϕ ∈ SP,1D (Ω; Δ) and satisfies (4.2).

We next prove (4.2) for 1 < k < 3. It was shown in [4] that Hk(Ω) ∩H1
D(Ω) =

(H1
D(Ω), H3(Ω) ∩ H1

D(Ω))θ,2 ⊂ (H1(Ω), H3(Ω))θ,2 ∩ H1
D(Ω), with θ = k−1

2 ∈ (0, 1)
for 1 < k < 3. Since (H1(Ω), H3(Ω))θ,2 ⊂ (H1(Ω), H3(Ω))θ,∞ = Bk(Ω), Hk(Ω) ∩
H1
D(Ω) ⊂ Bk(Ω)∩H1

D(Ω). Suppose that v ∈ H1
D(Ω) and w ∈ H3(Ω)∩H1

D(Ω) form a
decomposition of u ∈ Bk(Ω)∩H1

D(Ω). Applying (4.2) for k = 3, we have a polynomial
ϕ ∈ SP,1D (Ω; Δ), with p ≥ 1 such that

‖w − ϕp‖H1(Ω) ≤ C 1
(p+ 1)2

‖w‖H3(Ω).

Therefore, we have for any decomposition v and w of u,

‖u− ϕ‖H1(Ω) ≤ ‖v‖H1(Ω) + ‖w − ϕp‖H1(Ω)

≤ C
(
‖v‖H1(Ω) +

1
(p+ 1)2

‖w‖H3(Ω)

)
= C

(‖v‖H1(Ω) + t1‖w‖H3(Ω)

)
,

with t1 = 1
(p+1)2 and C independent of v and w. Due to the definition of the Besov

space Bk(Ω), we have

‖u− ϕ‖H1(Ω) ≤ CK(u, t1) ≤ Ctθ1 sup
t>0

t−θK(u, t)

≤ Ctθ1‖u‖Bk(Ω) ≤ C(p+ 1)k−1‖u‖Hk(Ω).
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For p = 0 or k = 1, (4.2) is trivial by selecting ϕ = 0. Thus, the proof of the
theorem is completed.

Remark 4.1. For elliptic problems, there holds the finite element solution up ∈
SP,1D (Ω; Δ) satisfies

‖u− up‖Hl(Ω) ≤ C inf
w∈SP,1

D (Ω;Δ)
‖u− w‖Hl(Ω) ≤ C(p+ 1)−(k−1)‖u‖Hk(Ω),

which together with (4.2) leads to the convergence of the p-version of FEM.
Remark 4.2. For the sake of simplicity, we prove the theorem only for the p-

version with uniform degree for problems with homogeneous Dirichlet boundary con-
ditions, but the result of the theorem and the techniques in the proof can be gen-
eralized to the p-version with quasi-uniform degree distributions for problems with
homogeneous and nonhomogeneous Dirichlet boundary conditions [15] and the h-p
version [18] with quasi-uniform meshes and quasi-uniform degree distribution.
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MIXED FINITE ELEMENT METHODS FOR THE FULLY
NONLINEAR MONGE–AMPÈRE EQUATION BASED ON THE

VANISHING MOMENT METHOD∗

XIAOBING FENG† AND MICHAEL NEILAN†

Abstract. This paper studies mixed finite element approximations of the viscosity solution to
the Dirichlet problem for the fully nonlinear Monge–Ampère equation det(D2u0) = f (> 0) based
on the vanishing moment method which was proposed recently by the authors in [X. Feng and M.
Neilan, J. Scient. Comp., DOI 10.1007/s10915-008-9221-9, 2008]. In this approach, the second-order
fully nonlinear Monge–Ampère equation is approximated by the fourth order quasilinear equation
−εΔ2uε + detD2uε = f . It was proved in [X. Feng, Trans. AMS, submitted] that the solution uε

converges to the unique convex viscosity solution u0 of the Dirichlet problem for the Monge–Ampère
equation. This result then opens a door for constructing convergent finite element methods for the
fully nonlinear second-order equations, a task which has been impracticable before. The goal of
this paper is threefold. First, we develop a family of Hermann–Miyoshi-type mixed finite element
methods for approximating the solution uε of the regularized fourth-order problem, which computes
simultaneously uε and the moment tensor σε := D2uε. Second, we derive error estimates, which
track explicitly the dependence of the error constants on the parameter ε, for the errors uε − uε

h
and σ0 − σε

h. Finally, we present a detailed numerical study on the rates of convergence in terms of
powers of ε for the error u0 −uε

h and σε −σε
h, and numerically examine what is the “best” mesh size

h in relation to ε in order to achieve these rates. Due to the strong nonlinearity of the underlying
equation, the standard perturbation argument for error analysis of finite element approximations of
nonlinear problems does not work for the problem. To overcome the difficulty, we employ a fixed
point technique which strongly relies on the stability of the linearized problem and its mixed finite
element approximations.

Key words. fully nonlinear PDEs, Monge–Ampère type equations, moment solutions, vanishing
moment method, viscosity solutions, mixed finite element methods, Hermann–Miyoshi element

AMS subject classifications. 65N30, 65M60, 35J60, 53C45
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1. Introduction. This paper is the second in a sequence (cf. [19]) which concerns
finite element approximations of viscosity solutions of the following Dirichlet problem
for the fully nonlinear Monge–Ampère equation (cf. [22]):

det
(
D2u0

)
= f in Ω ⊂ Rn,(1.1)

u0 = g on ∂Ω,(1.2)

where Ω is a convex domain with smooth boundary ∂Ω. D2u0(x) and det(D2u0(x))
denote the Hessian of u0 at x ∈ Ω and the determinant of D2u0(x).

The Monge–Ampère equation is a prototype of fully nonlinear second-order PDEs
which have a general form

(1.3) F
(
D2u0, Du0, u0, x

)
= 0

with F (D2u0, Du0, u0, x) = det(D2u0)− f . The Monge–Ampère equation arises nat-
urally from differential geometry and from applications such as mass transportation,
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meteorology, and geostrophic fluid dynamics [4, 8]. It is well known that, for non-
strictly convex domain Ω, the above problem does not have classical solutions in
general even when f , g, and ∂Ω are smooth (see [21]). Classical result of Aleksandrov
states that the Dirichlet problem with f > 0 has a unique generalized solution in the
class of convex functions (cf. [1, 9]). Major progress on the analysis of problems (1.1)–
(1.2) has been made later after the introduction and establishment of the viscosity
solution theory (cf. [7, 12, 22]). We recall that the notion of viscosity solutions was
first introduced by Crandall and Lions [11] in 1983 for the first-order fully nonlinear
Hamilton–Jacobi equations. It was quickly extended to second-order fully nonlinear
PDEs, with dramatic consequences in the wake of a breakthrough of Jensen’s max-
imum principle [24] and the Ishii’s discovery [23] that the classical Perron’s method
could be used to infer existence of viscosity solutions. To continue our discussion,
we need to recall the definition of viscosity solutions for the Dirichlet Monge–Ampère
problem (1.1)–(1.2) (cf. [22]).

Definition 1.1. A convex function u0 ∈ C0(Ω) satisfying u0 = g on ∂Ω is called
a viscosity subsolution (resp., viscosity supersolution) of (1.1) if for any ϕ ∈ C2 there
holds det(D2ϕ(x0)) ≥ f(x0) (resp., det(D2ϕ(x0)) ≤ f(x0)) provided that u0 − ϕ has
a local maximum (resp., a local minimum) at x0 ∈ Ω. u0 ∈ C0(Ω) is called a viscosity
solution if it is both a viscosity subsolution and a viscosity supersolution.

It is clear that the notion of viscosity solutions is not variational. It is based
on a “differentiation by parts” approach, instead of the more familiar integration
by parts approach. As a result, it is not possible to directly approximate viscosity
solutions using Galerkin type numerical methods such as finite element, spectral, and
discontinuous Galerkin methods, which all are based on variational formulations of
PDEs. The situation also presents a big challenge and paradox for the numerical
PDE community, since, on one hand, the “differentiation by parts” approach has
worked remarkably well for establishing the viscosity solution theory for fully nonlinear
second-order PDEs in the past two decades; on the other hand, it is extremely difficult
(if all possible) to mimic this approach at the discrete level. It should be noted
that, unlike in the case of fully nonlinear first-order PDEs, the terminology “viscosity
solution” loses its original meaning in the case of fully nonlinear second-order PDEs.

Motivated by this difficulty and by the goal of developing convergent Galerkin type
numerical methods for fully nonlinear second-order PDEs, very recently we proposed
in [18] a new notion of weak solutions, called moment solutions, which is defined
using a constructive method, called the vanishing moment method. The main idea
of the vanishing moment method is to approximate a fully nonlinear second-order
PDE by a quasilinear higher order PDE. The notion of moment solutions and the
vanishing moment method are natural generalizations of the original definition of
viscosity solutions and the vanishing viscosity method introduced for the Hamilton–
Jacobi equations in [11]. We now briefly recall the definitions of moment solutions
and the vanishing moment method, and refer the reader to [16, 18] for a detailed
exposition.

The first step of the vanishing moment method is to approximate the fully non-
linear (1.3) by the following quasilinear fourth-order PDE:

(1.4) −εΔ2uε + F
(
D2uε, Duε, uε, x

)
= 0 (ε > 0),

which holds in domain Ω. Suppose the Dirichlet boundary condition u0 = g is pre-
scribed on the boundary ∂Ω, then it is natural to impose the same boundary condition
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on uε, that is,

(1.5) uε = g on ∂Ω.

However, boundary condition (1.5) alone is not sufficient to ensure uniqueness for
fourth-order PDEs. An additional boundary condition must be imposed. In [16] the
authors proposed to use one of the following (extra) boundary conditions:

(1.6) Δuε = ε, or D2uεν · ν = ε on ∂Ω,

where ν stands for the unit outward normal to ∂Ω. Although both boundary condi-
tions work well numerically, the first boundary condition Δuε = ε is more convenient
for standard finite element methods, spectral, and discontinuous Galerkin methods
(cf. [19]), while the second boundary condition D2uεν · ν = ε fits better for mixed
finite element methods, and hence, it will be used in this paper.

In summary, the vanishing moment method involves approximating second-order
boundary value problem (1.2)–(1.3) by fourth-order boundary value problems (1.4),
(1.5), and (1.6). In the case of the Monge–Ampère equation, this means that we
approximate boundary value problem (1.1)–(1.2) by the following problem:

−εΔ2uε + det
(
D2uε

)
= f in Ω,(1.7)

uε = g on ∂Ω,(1.8)

D2uεν · ν = ε on ∂Ω.(1.9)

It was proved in [16] that, if f > 0 in Ω, then problem (1.7)–(1.9) has a unique solution
uε which is a strictly convex function over Ω. Moreover, uε uniformly converges
as ε → 0 to the unique viscosity solution of (1.1)–(1.2). As a result, this shows
that (1.1)–(1.2) possesses a unique moment solution that coincides with the unique
viscosity solution. Furthermore, it was proved that there hold the following a priori
bounds which will be used frequently later in this paper:

‖uε‖Hj = O
(
ε−

j−1
2

)
, ‖uε‖W 2,∞ = O

(
ε−1
)
,(1.10) ∥∥D2uε

∥∥
L2 = O

(
ε−

1
2

)
,

∥∥cof
(
D2uε

)∥∥
L∞ = O

(
ε−1
)

(1.11)

for j = 2, 3, where cof(D2uε) denotes the cofactor matrix of the Hessian, D2uε.
With the help of the vanishing moment methodology, the original difficult task of

computing the unique convex viscosity solution of the fully nonlinear Monge–Ampère
problem (1.1)–(1.2), which has multiple solutions (i.e., there are nonconvex solutions),
is now reduced to a feasible task of computing the unique regular solution of the
quasilinear fourth-order problem (1.7)–(1.9). This then opens a door to let one use
and/or adapt the wealthy amount of existing numerical methods, in particular, finite
element Galerkin methods to solve the original problem (1.1)–(1.2) via the problem
(1.7)–(1.9).

The goal of this paper is to construct and analyze a class of Hermann–Miyoshi-
type mixed finite element methods for approximating the solution of (1.7)–(1.9). In
particular, we are interested in deriving error bounds that exhibit explicit dependence
on ε. We like to point out that one of our motivations for developing mixed finite ele-
ment methods for (1.7)–(1.9) is that our experience in [19] tells us that Galerkin meth-
ods are numerically expensive for solving the singularly perturbed problem (1.7)–(1.9)
(see [18] for a detailed numerical study). Finite element approximations of fourth-
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order PDEs, in particular, the biharmonic equation, were carried out extensively in
the 1970s in the two-dimensional case (see [10] and the references therein), and have
attracted renewed interest lately for generalizing the well known 2-D finite elements
to the 3-D case (cf. [33, 34, 32]) and for developing discontinuous Galerkin methods
in all dimensions (cf. [17, 26]). Clearly, all these methods can be readily adapted to
discretize problem (1.7)–(1.9) although their convergence analysis do not come easy
due to the strong nonlinearity of the PDE (1.7). We refer the reader to [19, 27] for
further discussions in this direction.

A few attempts and results on numerical approximations of the Monge–Ampère
as well as related equations have recently been reported in the literature. Oliker
and Prussner [29] constructed a finite difference scheme for computing Aleksandrov
measure induced by D2u in 2-D and obtained the solution u of problem (1.7)–(1.9)
as a by-product. Baginski and Whitaker [2] proposed a finite difference scheme for
Gauss curvature equation (cf. [18] and the references therein) in 2-D by mimicking
the unique continuation method (used to prove existence of the PDE) at the discrete
level. In a series of papers (cf. [13] and the references therein) Dean and Glowinski
proposed an augmented Lagrange multiplier method and a least squares method for
problem (1.7)–(1.9) and the Pucci’s equation (cf. [7, 21]) in 2-D by treating the Monge–
Ampère equation and Pucci’s equation as a constraint and using a variational criterion
to select a particular solution. Very recently, Oberman [28] constructed some wide
stencil finite difference schemes which fulfill the convergence criterion established by
Barles and Souganidis in [3] for finite difference approximations of fully nonlinear
second order PDEs. Consequently, the convergence of the proposed wide stencil finite
difference scheme immediately follows from the general convergence framework of [3].
Numerical experiments results were reported in [29, 28, 2, 13]; however, convergence
analysis was not addressed except in [28].

The remainder of this paper is organized as follows. In section 2, we first de-
rive the Hermann–Miyoshi mixed weak formulation for problem (1.7)–(1.9) and then
present our mixed finite element methods based on this weak formulation. Section 3
is devoted to studying the linearization of problem (1.7)–(1.9) and its mixed finite
element approximations. The results of this section, which are of independent inter-
ests in themselves, will play a crucial role in our error analysis for the mixed finite
element introduced in section 2. In section 4, we establish error estimates in the
H1 × L2-norm for the mixed finite element solution (uεh, σ

ε
h). Our main ideas are to

use a fixed point technique and to make strong use of the stability property of the
linearized problem and its finite element approximations, which all are established in
section 3. In addition, we derive the optimal order error estimate in the H1-norm for
uε − uεh using a duality argument. Finally, in section 5, we first run some numerical
tests to validate our theoretical error estimate results, and we then present a detailed
computational study for determining the “best” choice of mesh size h in terms of ε
in order to achieve the optimal rates of convergence, and for estimating the rates of
convergence for both u0 − uεh and u0 − uε in terms of powers of ε.

We conclude this section by remarking that standard space notations are adopted
in this paper; we refer to [5, 21, 10] for their exact definitions. In addition, Ω denotes
a bounded domain in Rn for n = 2, 3. (·, ·) and 〈·, ·〉 denote the L2-inner products on
Ω and on ∂Ω, respectively. For a Banach space B, its dual space is denoted by B∗.
C is used to denote a generic ε-independent positive constant.

2. Formulation of mixed finite element methods. There are several popu-
lar mixed formulations for fourth-order problems (cf. [6, 10, 15]). However, since the



1230 XIAOBING FENG AND MICHAEL NEILAN

Hessian matrix, D2uε, appears in (1.7) in a nonlinear fashion, we cannot use Δuε

alone as our additional variable, but rather we are forced to use σε := D2uε as a
new variable. Because of this, we rule out the family of Ciarlet–Raviart mixed finite
elements (cf. [10]). On the other hand, this observation suggests to try Hermann–
Miyoshi or Hermann–Johnson mixed elements (cf. [6, 15, 30, 31]), which both seek σε

as an additional unknown. In this paper, we shall only focus on developing Hermann–
Miyoshi-type mixed methods.

We begin with a few more space notations:

V := H1(Ω), W :=
{
μ ∈ [H1(Ω)

]n×n
; μij = μji

}
,

V0 := H1
0 (Ω), Vg := {v ∈ V ; v|∂Ω = g},

Wε := {μ ∈ W ; μν · ν|∂Ω = ε}, W0 := {μ ∈ W ; μν · ν|∂Ω = 0}.
To define the Hermann–Miyoshi mixed formulation for problem (1.7)–(1.9), we

rewrite the PDE into the following system of second-order equations:

σε −D2uε = 0,(2.1)
−εΔtr (σε) + det (σε) = f.(2.2)

Testing (2.2) with v ∈ V0 yields

(2.3) ε

∫
Ω

div(σε) ·Dv dx +
∫

Ω

det(σε)v dx =
∫

Ω

fv dx.

Multiplying (2.1) by μ ∈W0 and integrating over Ω we get

(2.4)
∫

Ω

σε : μdx+
∫

Ω

Duε · div(μ) dx =
n−1∑
k=1

∫
∂Ω

μν · τk ∂g
∂τk

ds,

where σε : μ denotes the matrix inner product and {τ1(x), τ2(x), . . . , τn−1(x)} denotes
the standard basis for the tangent space to ∂Ω at x.

From (2.3) and (2.4), we define the variational formulation for (2.1)–(2.2) as
follows: Find (uε, σε) ∈ Vg ×Wε such that

(σε, μ) + (div(μ), Duε) = 〈g̃, μ〉 ∀μ ∈W0,(2.5)

(div(σε), Dv) +
1
ε

(detσε, v) = (fε, v) ∀v ∈ V0,(2.6)

where

〈g̃, μ〉 =
n−1∑
i=1

〈
∂g

∂τi
, μν · τi

〉
and fε =

1
ε
f.

To discretize (2.5)–(2.6), let Th be a quasiuniform triangular or rectangular par-
tition of Ω if n = 2 and be a quasiuniform tetrahedral or 3-D rectangular mesh if
n = 3. Let V h ⊂ H1(Ω) be the Lagrange finite element space consisting of continuous
piecewise polynomials of degree k(≥ 2) associated with the mesh Th. Let

V hg := V h ∩ Vg, V h0 := V h ∩ V0,

Wh
ε :=

[
V h
]n×n ∩Wε, Wh

0 :=
[
V h
]n×n ∩W0.
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In the 2-D case, the above choices of V h0 and Wh
0 are known as the Hermann–

Miyoshi mixed finite element for the biharmonic equation (cf. [6, 15]). They form a
stable pair which satisfies the inf-sup condition. We like to note that it is easy to check
that the Hermann–Miyoshi mixed finite element also satisfies the inf-sup condition in
3-D. See section 3.2 for the details.

Based on the weak formulation (2.5)–(2.6) and using the above finite element
spaces, we now define our Hermann–Miyoshi-type mixed finite element method for
(1.7)–(1.9) as follows: Find (uεh, σ

ε
h) ∈ V hg ×Wh

ε such that

(σεh, μh) + (div(μh), Duεh) = 〈g̃, μh〉 ∀μh ∈ Wh
0 ,(2.7)

(div(σεh), Dvh) +
1
ε

(det(σεh), vh) = (fε, vh) ∀vh ∈ V h0 .(2.8)

Let (σε, uε) be the solution to (2.5)–(2.6) and (σεh, u
ε
h) solves (2.7)–(2.8). As

mentioned in section 1, the primary goal of this paper is to derive error estimates for
uε − uεh and σε − σεh. To this end, we first need to prove existence and uniqueness
of (σεh, u

ε
h). It turns out both tasks are not easy to accomplish due to the strong

nonlinearity in (2.8). Unlike in the continuous PDE case, where uε is proved to be
convex for all ε (cf. [16]), it is far from clear if uεh preserves the convexity even for
small ε and h. Without a guarantee of convexity for uεh, we could not establish any
stability result for uεh. This, in turn, makes proving existence and uniqueness a difficult
and delicate task. In addition, again due to the strong nonlinearity, the standard
perturbation technique for deriving error estimate for numerical approximations of
mildly nonlinear problems does not work here. To overcome the difficulty, our idea
is to adopt a combined fixed point and linearization technique which was used by
the authors in [20], where a nonlinear singular second-order problem known as the
inverse mean curvature flow was studied. We note that this combined fixed point and
linearization technique kills three birds by one stone, that is, it simultaneously proves
existence and uniqueness for uεh and also yields the desired error estimates. In the
next two sections, we shall give a detailed account about the technique and realize it
for problem (2.7)–(2.8).

3. Linearized problem and its finite element approximations. To build
the necessary technical tools, in this section we shall derive and present a detailed
study of the linearization of (2.5)–(2.6) and its mixed finite element approximations.
First, we recall the following divergence-free row property for the cofactor matrices,
which will be frequently used in later sections. We refer to [14, p. 440] for a short
proof of the lemma.

Lemma 3.1. Given a vector-valued function v = (v1, v2, . . . , vn) : Ω → Rn.
Assume v ∈ [C2(Ω)]n. Then the cofactor matrix cof(Dv) of the gradient matrix Dv
of v satisfies the following row divergence-free property:

(3.1) div(cof(Dv))i =
n∑
j=1

∂xj (cof(Dv))ij = 0 for i = 1, 2, . . . , n,

where (cof(Dv))i and (cof(Dv))ij denote, respectively, the ith row and the (i, j)-entry
of cof(Dv).

3.1. Derivation of linearized problem. We note that for a given function w
there holds

det
(
D2 (uε + tw)

)
= det

(
D2uε

)
+ ttr

(
ΦεD2w

)
+ · · ·+ tndet

(
D2w

)
,
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where Φε := cof(D2uε). Thus, setting t = 0 after differentiating with respect to t we
find the linearization of M ε(uε) := −εΔ2uε + det(D2uε) at the solution uε to be

Luε(w) := −εΔ2w + tr
(
ΦεD2w

)
= −εΔ2w + Φε : D2w = −εΔ2w + div(ΦεDw),

where we have used (3.1) with v = Duε.
We now consider the following linear problem:

Luε(w) = q in Ω,(3.2)
w = 0 on ∂Ω,(3.3)

D2wν · ν = 0 on ∂Ω.(3.4)

To introduce a mixed formulation for (3.2)–(3.4), we rewrite the PDE as

χ−D2w = 0,(3.5)
−εΔtr(χ) + div(ΦεDw) = q.(3.6)

Its variational formulation is then defined as: Given q ∈ V ∗0 , find (χ,w) ∈ W0 × V0

such that

(χ, μ) + (div(μ), Dw) = 0 ∀μ ∈ W0,(3.7)

(div(χ), Dv)− 1
ε
(ΦεDw,Dv) =

1
ε
〈q, v〉 ∀v ∈ V0.(3.8)

It is not hard to show that if (χ,w) solves (3.7)–(3.8), then w ∈ H2(Ω) ∩H1
0 (Ω)

should be a weak solution to problem (3.2)–(3.4). On the other hand, by the elliptic
theory for linear PDEs (cf. [25]), we know that if q ∈ V ∗0 , then the solution to problem
(3.2)–(3.4) satisfies w ∈ H3(Ω), so that χ = D2w ∈ H1(Ω). It is easy to verify that
(w,χ) is a solution to (3.7)–(3.8).

3.2. Mixed finite element approximations of the linearized problem.
Our finite element method for (3.7)–(3.8) is defined by seeking (χh, wh) ∈ Wh

0 × V h0
such that

(χh, μh) + (div(μh), Dwh) = 0 ∀μh ∈ Wh
0 ,(3.9)

(div(χh), Dvh)− 1
ε
(ΦεDwh, Dvh) = 〈q, vh〉 ∀vh ∈ V h0 .(3.10)

The objectives of this subsection are to first prove existence and uniqueness for
problem (3.9)–(3.10) and then derive error estimates in various norms. First, we prove
the following inf-sup condition for the mixed finite element pair (Wh

0 , V
h
0 ).

Lemma 3.2. For every vh ∈ V h0 , there exists a constant β0 > 0, independent of
h, such that

(3.11) sup
μh∈Wh

0

(div(μh), Dvh)
‖μh‖H1

≥ β0‖vh‖H1 .

Proof. Given vh ∈ V h0 , set μh = In×nvh. Then (div(μh), Dvh) = ‖Dvh‖2L2 ≥
β0‖vh‖2H1 = β0‖vh‖H1‖μh‖H1 . Here we have used Poincaré inequality.

Remark 3.1. By [15, Proposition 1], (3.11) implies that there exists a linear
operator Πh : W →Wh such that

(3.12) (div(μ−Πhμ), Dvh) = 0 ∀vh ∈ V h0 ,
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and for μ ∈W ∩ [Hr(Ω)]n×n, r ≥ 1, there holds

(3.13) ‖μ−Πhμ‖Hj ≤ Chl−j‖μ‖Hl j = 0, 1, 1 ≤ l ≤ min{k + 1, r}.
We note that the above results were proved in the 2-D case in [15]; however, they also
hold in the 3-D case as (3.11) holds in 3-D.

Theorem 3.1. For any q ∈ V ∗0 , there exists a unique solution (χh, wh) ∈Wh
0 ×V h0

to problem (3.9)–(3.10).
Proof. Since we are in the finite dimensional case and the problem is linear, it

suffices to show uniqueness. Thus, suppose (χh, wh) ∈Wh
0 × V h0 solves

(χh, μh) + (div(μh), Dwh) = 0 ∀μh ∈Wh
0 ,

(div(χh), Dvh)− 1
ε
(ΦεDwh, Dvh) = 0 ∀vh ∈ V h0 .

Let μh = χh, vh = wh, and subtract two equations to obtain

(χh, χh) +
1
ε
(ΦεDwh, Dwh) = 0.

Since uε is strictly convex, then Φε is positive definite. Thus, there exists θ > 0 such
that

‖χh‖2L2 +
θ

ε
‖Dwh‖2L2 ≤ 0.

Hence, χh = 0, wh = 0, and the desired result follows.
Theorem 3.2. Let (χ,w) ∈ [Hr(Ω)]n×n∩W0×Hr(Ω)∩V0 (r ≥ 2) be the solution

to (3.7)–(3.8) and (χh, wh) ∈Wh
0 × V h0 solves (3.9)–(3.10). Then there hold

‖χ− χh‖L2 ≤ Cε− 3
2 hl−2 [‖χ‖Hl + ‖w‖Hl ] ,(3.14)

‖χ− χh‖H1 ≤ Cε− 3
2 hl−3 [‖χ‖Hl + ‖w‖Hl ] ,(3.15)

‖w − wh‖H1 ≤ Cε−3hl−1 [‖χ‖Hl + ‖w‖Hl ] ,(3.16)

where l := min{k + 1, r}. Moreover, for k ≥ 3 there also holds

‖w − wh‖L2 ≤ Cε−5hl [‖χ‖Hl + ‖w‖Hl ] .(3.17)

Proof. Let Ihw denote the standard finite element interpolant of w in V h0 . Then

(Πhχ− χh, μh) + (div(μh), D(Ihw − wh))(3.18)
= (Πhχ− χ, μh) + (div(μh), D(Ihw − w)),

(div(Πhχ− χh), Dvh)− 1
ε

(ΦεD(Ihw − wh), Dvh)(3.19)

= −1
ε

(ΦεD(Ihw − w), Dvh) .

Let μh = Πh − χh and vh = Ihw − wh and subtract (3.19) from (3.18) to get

(Πhχ− χh,Πhχ− χh) +
1
ε

(ΦεD(Ihw − wh), D(Ihw − wh))
= (Πhχ− χ,Πhχ− χh) + (div(Πhχ− χh), D(Ihw − w))

+
1
ε

(ΦεD(Ihw − w), D(Ihw − wh)) .
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Thus,

‖Πhχ− χh‖2L2 +
θ

ε
‖D(Ihw − wh)‖2L2

≤ ‖Πhχ− χ‖L2‖Πhχ− χh‖L2 + ‖Πhχ− χh‖H1‖D(Ihw − w)‖L2

+
C

ε2
‖D(Ihw − w)‖L2‖D(Ihw − wh)‖L2

≤ ‖Πhχ− χ‖L2‖Πhχ− χh‖L2 + Ch−1‖Πhχ− χh‖L2‖D(Ihw − w)‖L2

+
C

ε2
‖D(Ihw − w)‖L2‖D(Ihw − wh)‖L2 ,

where we have used the inverse inequality.
Using the Schwarz inequality and rearranging terms yield

‖Πhχ− χh‖2L2 +
1
ε
‖D(Ihw − wh)‖2L2(3.20)

≤ C (‖Πhχ− χ‖2L2 + h−2‖Ihw − w‖2H1 + ε−3‖Ihw − w‖2H1

)
.

Hence, by the standard interpolation results [5, 10] we have

‖Πhχ− χh‖L2 ≤ C
(
‖Πhχ− χ‖L2 + h−1‖Ihw − w‖H1 + ε−

3
2 ‖Ihw − w‖H1

)
≤ Cε− 3

2hl−2 (‖χ‖Hl + ‖w‖Hl) ,

which, by the triangle inequality, yield

‖χ− χh‖L2 ≤ Cε− 3
2hl−2 (‖χ‖Hl + ‖w‖Hl) .

The above estimate and the inverse inequality yield

‖χ− χh‖H1 ≤ ‖χ−Πhχ‖H1 + ‖Πhχ− χh‖H1

≤ ‖χ−Πhχ‖H1 + h−1‖Πhχ− χh‖L2

≤ Cε− 3
2hl−3 (‖χ‖Hl + ‖w‖Hl) .

Next, from (3.20) we have

‖D(Ihw − wh)‖L2 ≤ √εC
[
‖Πhχ− χ‖L2 + h−1‖D(Ihw − w)‖L2 + ε−

3
2 ‖Ihw − w‖H1

]
≤ Cε−1hl−2 (‖χ‖Hl + ‖w‖Hl) .(3.21)

To derive (3.16), we appeal to a version of the Aubin–Nitsche duality argument
(cf. [5, 10]). We consider the following auxiliary problem: Find z ∈ H2(Ω) ∩H1

0 (Ω)
such that

−εΔ2z + div(ΦεDz) = −Δ(w − wh) in Ω,

D2zν · ν = 0 on ∂Ω.

By the elliptic theory for linear PDEs (cf. [25]), we know that the above problem has
a unique solution z ∈ H1

0 (Ω) ∩H3(Ω) and

(3.22) ‖z‖H3 ≤ Cb(ε)‖D(w − wh)‖L2 where Cb(ε) = O
(
ε−1
)
.
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Setting κ = D2z, it is easy to verify that (κ, z) ∈W0 × V0 and

(κ, μ) + (div(μ), Dz) = 0 ∀μ ∈ W0,

(div(κ), Dv)− 1
ε

(ΦεDz,Dv) =
1
ε
(D(w − wh), Dv) ∀v ∈ V0.

It is easy to check that (3.9)–(3.10) produce the following error equations:

(χ− χh, μh) + (div(μh), D(w − wh)) = 0 ∀μh ∈ Wh
0 ,(3.23)

(div(χ− χh), Dvh)− 1
ε
(ΦεD(w − wh), Dvh) = 0 ∀vh ∈ V h0 .(3.24)

Thus,

1
ε
‖D(w − wh)‖2L2 = (div(κ), D(w − wh))− 1

ε
(ΦεDz,D(w − wh))

= (div(κ−Πhκ), D(w − wh))− 1
ε

(ΦεDz,D(w − wh))
+ (div(Πhκ), D(w − wh))

= (div(κ−Πhκ), D(w − Ihw))− 1
ε

(ΦεDz,D(w − wh))
+ (χh − χ,Πhκ)

= (div(κ−Πhκ), D(w − Ihw))− 1
ε

(ΦεDz,D(w − wh))
+ (χh − χ,Πhκ− κ) + (χh − χ, κ)

= (div(κ−Πhκ), D(w − Ihw))− 1
ε

(ΦεDz,D(w − wh))
+ (χh − χ,Πhκ− κ) + (div(χ− χh), Dz)

= (div(κ−Πhκ), D(w − Ihw)) + (χh − χ,Πhκ− κ)

+ (div(χ− χh), D(z − Ihz))− 1
ε

(ΦεD(w − wh), D(z − Ihz))
≤ ‖div(κ−Πhκ)‖L2‖D(w − Ihw)‖L2 + ‖χh − χ‖L2‖Πhκ− κ‖L2

+ ‖div(χ− χh)‖L2‖D(z − Ihz)‖L2

+
C

ε2
‖D(z − Ihz)‖L2‖D(w − wh)‖L2

≤ C
[
‖D(w − Ihw)‖L2 + h‖χh − χ‖L2 + h2‖div(χ− χh)‖L2

+
h2

ε2
‖D(w − wh)‖L2

]
‖z‖H3 .

Then, by (3.14), (3.15), (3.21), and (3.22), we have

‖D(w − wh)‖L2 ≤ Cb(ε)ε−2hl−1 [‖χ‖Hl + ‖w‖Hl ] .

Substituting Cb(ε) = O(ε−1) we get (3.16).
To derive the L2-norm estimate for w − wh, we consider the following auxiliary

problem: Find (κ, z) ∈ W0 × V0 such that

(κ, μ) + (div(μ), Dz) = 0 ∀μ ∈W0,

(div(κ), Dv)− 1
ε

(ΦεDz,Dv) =
1
ε
(w − wh, v) ∀v ∈ V0.
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Assume the above problem is H4 regular, that is, z ∈ H4(Ω) and

(3.25) ‖z‖H4 ≤ Cb(ε)‖w − wh‖L2 with Cb(ε) = O
(
ε−1
)
.

We then have
1
ε
‖w − wh‖2L2 = (div(κ), D(w − wh))− 1

ε
(ΦεD(w − wh), Dz)

= (div(Πhκ), D(w − wh))− 1
ε

(ΦεD(w − wh), Dz)
+ (div(κ−Πhκ), D(w − wh))

= (χh − χ,Πhκ)− 1
ε
(ΦεDz,D(w − wh))

+ (div(κ−Πhκ), D(w − Ihw))
= (χh − χ, κ) + (χh − χ,Πhκ− κ)

− 1
ε
(ΦεDz,D(w − wh)) + (div(κ−Πhκ), D(w − Ihw))

= (div(χ− χh), Dz)− 1
ε
(ΦεD(w − wh), Dz)

+ (χh − χ,Πhκ− κ) + (div(κ−Πhκ), D(w − Ihw))

= (div(χ− χh), D(z − Ihz))− 1
ε
(ΦεD(w − wh), D(z − Ihz))

+ (χh − χ,Πhκ− κ) + (div(κ−Πhκ), D(w − Ihw))

≤
[
‖div(χ− χh)‖L2 +

C

ε2
‖D(w − wh)‖L2

]
‖D(z − Ihz)‖L2

+ ‖χh − χ‖L2‖Πhκ− κ‖L2 + ‖div(κ−Πhκ)‖L2‖D(w − Ihw)‖L2

≤ Ch3

[
‖χ− χh‖H1 +

1
ε2
‖w − wh‖H1

]
‖z‖H4

+ Ch2‖χh − χ‖L2‖κ‖H2 + Ch‖w − Ihw‖H1‖κ‖H2

≤ Cε−5hl (‖χ‖Hl + ‖w‖Hl) ‖z‖H4

≤ CCb(ε)ε−5hl (‖χ‖Hl + ‖w‖Hl) ‖w − wh‖L2 ,

where we have used (3.14), (3.15), (3.16), (3.25), and the assumption k ≥ 3. Dividing
the above inequality by ‖w − wh‖L2 and substituting Cb(ε) = O(ε−1) we get (3.17).
The proof is complete.

4. Error analysis for finite element method (2.7)–(2.8). The goal of this
section is to derive error estimates for the finite element method (2.7)–(2.8). Our
main idea is to use a combined fixed point and linearization technique (cf. [20]).

Definition 4.1. Let T : Wh
ε × V hg → Wh

ε × V hg be a linear mapping such that
for any (μh, vh) ∈Wh

ε × V hg , T (μh, vh) = (T (1)(μh, vh), T (2)(μh, vh)) satisfies(
μh − T (1)(μh, vh), κh

)
+
(
div(κh), D

(
vh − T (2)(μh, vh)

))
(4.1)

= (μh, κh) + (div(κh), Dvh)− 〈g̃, κh〉 ∀κh ∈Wh
0 ,(

div
(
μh − T (1)(μh, vh)

)
, Dzh

)
− 1
ε

(
ΦεD

(
vh − T (2)(μh, vh)

)
, Dzh

)
(4.2)

= (div(μh), Dzh) +
1
ε

(det(μh), zh)− (fε, zh) ∀zh ∈ V0.
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By Theorem 3.1, we conclude that T (μh, vh) is well defined. Clearly, any fixed
point (χh, wh) of the mapping T (i.e., T (χh, wh) = (χh, wh)) is a solution to problem
(2.7)–(2.8), and vice-versa. The rest of this section shows that, indeed, the mapping
T has a unique fixed point in a small neighborhood of (Ihσε, Ihuε). To this end, we
define

B̃h(ρ) :=
{

(μh, vh) ∈ Wh
ε × V hg ; ‖μh − Ihσε‖L2 +

1√
ε
‖vh − Ihuε‖H1 ≤ ρ

}
.

Z̃h :=
{
(μh, vh) ∈Wh

ε × V hg ; (μh, κh) + (div(κh), Dvh) = 〈g̃, κh〉 ∀κh ∈ Wh
0

}
.

Bh(ρ) := B̃h(ρ) ∩ Z̃h.
We also assume σε ∈ Hr(Ω) and set l = min{k + 1, r}.

The next lemma measures the distance between the center of Bh(ρ) and its image
under the mapping T .

Lemma 4.1. The mapping T satisfies the following estimates:∥∥∥Ihσε − T (1)(Ihσε, Ihuε)
∥∥∥
H1
≤ C1(ε)hl−3 [‖σε‖Hl + ‖uε‖Hl ] ,(4.3) ∥∥∥Ihσε − T (1)(Ihσε, Ihuε)

∥∥∥
L2
≤ C2(ε)hl−2 [‖σε‖Hl + ‖uε‖Hl ] ,(4.4) ∥∥∥Ihuε − T (2)(Ihσε, Ihuε)

∥∥∥
H1
≤ C3(ε)hl−1 [‖σε‖Hl + ‖uε‖Hl ] ,(4.5)

where C1(ε) = O(ε−1), C2(ε) = O(ε−1), C3(ε) = O(ε−4) when n = 2, and C1(ε) =
O(ε−

5
2 ), C2(ε) = O(ε−

5
2 ), C3(ε) = O(ε−

11
2 ) when n = 3.

Proof. We divide the proof into four steps.
Step 1: To ease notation we set ωh = Ihσ

ε − T (1)(Ihσε, Ihuε), sh = Ihu
ε −

T (2)(Ihσε, Ihuε). By the definition of T , we have for any (μh, vh) ∈Wh
0 × V h0

(ωh, μh) + (div(μh), Dsh) = (Ihσε, μh) + (div(μh), D(Ihuε))− 〈g̃, μh〉,
(div(ωh), Dvh)− 1

ε
(ΦεDsh, Dvh) = (div(Ihσε), Dvh) +

1
ε

(det(Ihσε), vh)− (fε, vh).

It follows from (2.5)–(2.6) that, for any (μh, vh) ∈Wh
0 × V h0

(ωh, μh) + (div(μh), Dsh) = (Ihσε − σε, μh) + (div(μh), D(Ihuε − uε)) ,(4.6)

(div(ωh), Dvh)− 1
ε

(ΦεDsh, Dvh) = (div(Ihσε − σε), Dvh)(4.7)

+
1
ε

(det(Ihσε)− det(σε), vh) .

Letting vh = sh, μh = ωh in (4.6)–(4.7), subtracting the two equations and using
the mean value theorem we get

(ωh, ωh) +
1
ε

(ΦεDsh, Dsh) = (Ihσε − σε, ωh) + (div(ωh), D(Ihuε − uε))

+ (div(σ − Ihσε), Dsh) +
1
ε

(det(σε)− det(Ihσε), sh)

= (Ihσε − σε, ωh) + (div(ωh), D(Ihuε − uε))
+ (div(σ − Ihσε), Dsh) +

1
ε

(Ψε : (σε − Ihσε), sh) ,

where Ψε = cof(τIhσε + [1− τ ]σε) for τ ∈ [0, 1].
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Step 2: The case n = 2. Since Ψε is a 2× 2 matrix whose entries are the same as
those of τIhσε + [1− τ ]σε, then by (1.11) we have

‖Ψε‖L2 = ‖cof(τIhσε + [1− τ ]σε)‖L2 = ‖τIhσε + [1− τ ]σε‖L2

≤ ‖Ihσε‖L2 + ‖σε‖L2 ≤ C‖σε‖L2 = O
(
ε−

1
2

)
.

Step 3: The case n = 3. Note that (Ψε)ij = (cof(τIhσε + [1 − τ ]σε))ij =
det(τIhσε|ij + [1 − τ ]σε|ij), where σε|ij denotes the 2 × 2 matrix after deleting the
ith row and jth column of σε. We can, thus, conclude that

|(Ψε)ij | ≤ 2 max
s�=i,t�=j

(|τ(Ihσε)st + [1− τ ](σε)st|)2

≤ C max
s�=i,t�=j

|(σε)st|2 ≤ C‖σε‖2L∞ .

Thus, (1.11) implies that

‖Ψε‖L2 ≤ C‖σε‖2L∞ = O
(
ε−2
)
.

Step 4: Using the estimates of ‖Ψε‖L2 we have

‖ωh‖2L2 +
θ

ε
‖Dsh‖2L2 ≤ ‖Ihσε − σε‖L2‖ωh‖L2 + ‖ωh‖H1‖D(Ihuε − uε)‖L2

+ ‖Ihσε − σε‖H1‖Dsh‖L2 + Cε
3
2 (1−n)‖σε − Ihσε‖H1‖sh‖H1 ,

where we have used Sobolev inequality. It follows from Poincaré inequality, Schwarz
inequality, and the inverse inequality that

‖ωh‖2L2 +
θ

ε
‖sh‖2H1 ≤ Cε4−3n‖Ihσε − σε‖2H1 + C‖ωh‖H1‖Ihuε − uε‖H1(4.8)

≤ Cε4−3nh2l−2‖σε‖2Hl + Ch−1‖ωh‖L2‖Ihuε − uε‖H1 .

Hence,

‖ωh‖2L2 +
1
ε
‖sh‖2H1 ≤ Cε4−3nh2l−2‖σε‖2Hl + Ch2l−4‖uε‖2Hl .

Therefore,

‖ωh‖L2 ≤ C2(ε)hl−2 [‖σε‖Hl + ‖uε‖Hl ] ,

which and the inverse inequality yield

‖ωh‖H1 ≤ C1(ε)hl−3 [‖σε‖Hl + ‖uε‖Hl ] .

Next, from (4.6) we have

(div(μh), Dsh) ≤ ‖ωh‖L2‖μh‖L2 + ‖Ihσε − σε‖L2‖μh‖L2

+ ‖div(μh)‖L2‖D(Ihuε − uε)‖L2

≤ C2(ε)hl−2 [‖σε‖Hl + ‖uε‖Hl ] ‖μh‖H1 .

It follows from (3.11) that

(4.9) ‖Dsh‖L2 ≤ C(ε)hl−2 [‖σε‖Hl + ‖uε‖Hl ] .
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To prove (4.5), let (κ, z) be the solution to

(κ, μ) + (div(μ), Dz) = 0 ∀μ ∈ W0,

(div(κ), Dv)− 1
ε
(ΦεDz,Dv) =

1
ε
(Dsh, Dv) ∀v ∈ V0,

and satisfy

‖z‖H3 ≤ Cb(ε)‖Dsh‖L2 .

Then,

1
ε
‖Dsh‖2L2 = (div(κ), Dsh)− 1

ε
(ΦεDz,Dsh)

= (div(Πhκ), Dsh)− 1
ε
(ΦεDz,Dsh)

= −(ωh,Πhκ)− 1
ε
(ΦεDz,Dsh) + (Ihσε − σε,Πhκ)

+ (div(Πhκ), D(Ihuε − uε))
= −(ωh, κ) + (ωh, κ−Πhκ)− 1

ε
(ΦεDz,Dsh)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))
= (div(ωh), Dz)− 1

ε
(ΦεDsh, Dz) + (ωh, κ−Πhκ)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))
= (div(ωh), D(z − Ihz))− 1

ε
(ΦεDsh, D(z − Ihz)) + (ωh, κ−Πhκ)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))
+ (div(σε − Ihσε), Ihz) +

1
ε
(det(σε)− det(Ihσε), Ihz)

≤ ‖div(ωh)‖L2‖D(z − Ihz)‖L2 +
1
ε
‖Φε‖L∞‖Dsh‖L2‖D(z − Ihz)‖L2

+ ‖ωh‖L2‖κ−Πhκ‖L2 + ‖Ihσε − σε‖L2‖Πhκ‖L2

+ ‖div(Πhκ)‖L2‖D(Ihuε − uε)‖L2

+ ‖div(σε − Ihσε)‖L2‖Ihz‖L2 +
C

ε
‖Ψε‖L2‖σε − Ihσε‖H1‖Ihz‖H1

≤ Ch2

(
‖ω‖H1 +

1
ε2
‖Dsh‖L2

)
‖z‖H3

+ C(ε)hl−1 (‖Ihz‖L2 + ‖Ihz‖H1) ‖σε‖Hl

+ Ch‖ωh‖L2‖κ‖H1 + Chl‖σε‖Hl‖Πhκ‖L2 + Chl−1‖Πhκ‖H1‖uε‖Hl

≤ C2(ε)ε−2hl−1 [‖uε‖Hl + ‖σε‖Hl ] ‖z‖H3

≤ C2(ε)ε−2Cb(ε)hl−1 [‖uε‖Hl + ‖σε‖Hl ] ‖Dsh‖L2.

Dividing by ‖Dsh‖L2, we get (4.5). The proof is complete.
The next lemma shows the contractiveness of the mapping T .
Lemma 4.2. There exists an h0 = o(ε

19
12 ) and ρ0 = o(ε

19
12 | log h|n−3h

n
2−1), such

that for h ≤ h0, T is a contracting mapping in the ball Bh(ρ0) with a contraction
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factor 1
2 . That is, for any (μh, vh), (χh, wh) ∈ Bh(ρ0), there holds

∥∥∥T (1)(μh, vh)− T (1)(χh, wh)
∥∥∥
L2

+
1√
ε

∥∥∥T (2)(μh, vh)− T (2)(χh, wh)
∥∥∥
H1

(4.10)

≤ 1
2

(
‖μh − χh‖L2 +

1√
ε
‖vh − wh‖H1

)
.

Proof. We divide the proof into five steps.
Step 1: To ease notation, let

T (1) = T (1)(μh, vh)− T (1)(χh, wh), T (2) = T (2)(μh, vh)− T (2)(χh, wh).

By the definition of T (i), we get(
T (1), κh

)
+
(
div(κh), D

(
T (2)

))
= 0 ∀κh ∈ Wh

0 ,(4.11) (
div
(
T (1)

)
, Dzh

)
− 1
ε

(
ΦεD

(
T (2)

)
, Dzh

)
(4.12)

=
1
ε

[(ΦεD(wh − vh), Dzh) + (det(χh)− det(μh), zh)] ∀zh ∈ V h0 .

Letting zh = T (2) and κh = T (1), subtracting (4.12) from (4.11), and using the mean
value theorem we have(

T (1), T (1)
)

+
1
ε

(
ΦεDT (2), DT (2)

)
=

1
ε

[(
ΦεD(vh − wh), DT (2)

)
+
(
det(μh)− det(χh), T (2)

)]
=

1
ε

[(
ΦεD(vh − wh), DT (2)

)
+
(
Λh : (μh − χh), T (2)

)]
=

1
ε

[ (
ΦεD(vh − wh), DT (2)

)
+
(
Φε : (μh − χh), T (2)

)
+
(
(Λh − Φε) : (μh − χh), T (2)

) ]
=

1
ε

[ (
div
(
ΦεT (2)

)
, D(vh − wh)

)
+
(
μh − χh,ΦεT (2)

)
+
(
(Λh − Φε) : (μh − χh), T (2)

) ]
=

1
ε

[ (
div
(
Πh

(
ΦεT (2)

))
, D(vh − wh)

)
+
(
μh − χh,ΦεT (2)

)
+
(
(Λh − Φε) : (μh − χh), T (2)

) ]
=

1
ε

[(
ΦεT (2) −Πh

(
ΦεT (2)

)
, μh − χh

)
+
(
(Λh − Φε) : (μh − χh), T (2)

)]
≤ 1
ε

[ ∥∥∥ΦεT (2) −Πh

(
ΦεT (2)

)∥∥∥
L2
‖μh − χh‖L2

+ C‖Λh − Φε‖L2‖μh − χh‖L2

∥∥∥T (2)
∥∥∥
L∞

]
≤ 1
ε

[ ∥∥∥ΦεT (2) −Πh

(
ΦεT (2)

)∥∥∥
L2
‖μh − χh‖L2

+ | log h| 3−n
2 h1−n

2 ‖Λh − Φε‖L2‖μh − χh‖L2

∥∥∥T (2)
∥∥∥
H1

]
,
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where Λh = cof(μh + τ(χh − μh)), τ ∈ [0, 1]. n = 2, 3. We have used the inverse
inequality to get the last inequality above.

Step 2: The case of n = 2. We bound ‖Φε − Λh‖L2 as follows:

‖Φε − Λh‖L2 = ‖cof(σε)− cof(μh + τ(χh − μh))‖L2

= ‖σε − μh − τ(χh − μh)‖L2

≤ ‖σε − Ihσε‖L2 + ‖Ihσε − μh‖L2 + ‖χh − μh‖L2

≤ Chl‖σε‖Hl + 3ρ0.

Step 3: The case of n = 3. To bound ‖Φε − Λh‖L2 in this case, we first write

‖(Φε − Λh)ij‖L2 = ‖(cof(σε)ij)− cof(μh + τ(χh − μh))ij‖L2

= ‖det(σε|ij)− det(μh|ij + τ(χh|ij − μh|ij))‖L2 ,

where σ|ij denotes the 2× 2 matrix after deleting the ith row and jth column. Then,
use the mean value theorem to get

‖(Φε − Λh)ij‖L2 = ‖det(σε|ij)− det(μh|ij + τ(χh|ij − μh|ij))‖L2

= ‖Λij : (σε|ij − μh|ij − τ(χh|ij − μh|ij))‖L2

≤ ‖Λij‖L∞‖σε|ij − μh|ij − τ(χh|ij − μh|ij)‖L2 ,

where Λij = cof(σε|ij + λ(μ|ij − τ(χh|ij − μ|ij)− σε|ij)), λ ∈ [0, 1].
On noting that Λij ∈ R2, we have

‖Λij‖L∞ = ‖cof(σε|ij + λ(μ|ij − τ(χh|ij − μ|ij)− σε|ij))‖L∞

= ‖σε|ij + λ(μ|ij − τ(χh|ij − μ|ij)− σε|ij)‖L∞

≤ C‖σε‖L∞ ≤ C

ε
.

Combining the above estimates gives

‖(Φε − Λh)ij‖L2 ≤ C

ε
‖σε|ij − μh|ij − τ(χh|ij − μh|ij)‖L2

≤ C

ε

(
hl‖σε‖Hl + ρ0

)
.

Step 4: We now bound ‖ΦεT (2) −Πh(ΦεT (2))‖L2 as follows:∥∥∥ΦεT (2) −Πh

(
ΦεT (2)

)∥∥∥2

L2
≤ Ch2

∥∥∥ΦεT (2)
∥∥∥2

H1

= Ch2

(∥∥∥ΦεT (2)
∥∥∥2

L2
+
∥∥∥D (ΦεT (2)

)∥∥∥2

L2

)

≤ Ch2

(∥∥∥ΦεT (2)
∥∥∥2

L2
+
∥∥∥ΦεDT (2)

∥∥∥2

L2
+
∥∥∥DΦεT (2)

∥∥∥2

L2

)

≤ Ch2

(
‖Φε‖2L4

∥∥∥T (2)
∥∥∥2

L4
+ ‖Φε‖L∞

∥∥∥DT (2)
∥∥∥2

L2
+ ‖DΦε‖2L3

∥∥∥T (2)
∥∥∥2

L6

)

≤ Ch2

(
‖Φε‖2L4

∥∥∥T (2)
∥∥∥2

H1
+ ‖Φε‖2L∞

∥∥∥DT (2)
∥∥∥2

L2
+ ‖DΦε‖2L3

∥∥∥T (2)
∥∥∥2

H1

)

≤ Ch2
(‖Φε‖2L∞ + ‖DΦε‖2L3

) ∥∥∥DT (2)
∥∥∥2

L2

≤ Ch2

ε
13
6

∥∥∥DT (2)
∥∥∥2

L2
,
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where we have used Sobolev’s inequality followed by Poincaré’s inequality. Thus,

∥∥∥ΦεT (2) −Πh

(
ΦεT (2)

)∥∥∥
L2
≤ Ch

ε
13
12

∥∥∥DT (2)
∥∥∥
L2
.

Step 5: Finishing up. Substituting all estimates from Steps 2–4 into Step 1, and
using the fact that Φε is positive definite we obtain for n = 2, 3

∥∥∥T (1)
∥∥∥2

L2
+
θ

ε

∥∥∥DT (2)
∥∥∥2

L2
≤ Cε− 25

12

(
h+ | log h| 3−n

2 h1−n
2 ρ0

)
‖μh − χh‖L2

∥∥∥DT (2)
∥∥∥
L2
.

Using Schwarz’s inequality, we get

∥∥∥T (1)
∥∥∥
L2

+
1√
ε

∥∥∥T (2)
∥∥∥
H1
≤ Cε− 19

12

(
h+ | log h| 3−n

2 h1−n
2 ρ0

)
‖μh − χh‖L2 .

Choosing h0 = o(ε
19
12 ), for h ≤ h0 and ρ0 = o(ε

19
12 | log h|n−3

2 h
n
2−1), there holds

∥∥∥T (1)
∥∥∥
L2

+
1√
ε

∥∥∥T (2)
∥∥∥
H1
≤ 1

2
‖μh − χh‖L2

≤ 1
2

(
‖μh − χh‖L2 +

1√
ε
‖vh − wh‖H1

)
.

The proof is complete.
We are now ready to state and prove the main theorem of this paper.
Theorem 4.1. Let ρ1 = 2[C2(ε)hl−2 + C3(ε)√

ε
hl−1](‖σε‖Hl + ‖uε‖Hl). Then there

exists an h1 > 0 such that for h ≤ min{h0, h1}, there exists a unique solution (σεh, u
ε
h)

to (2.7)–(2.8) in the ball Bh(ρ1). Moreover,

‖σε − σεh‖L2 +
1√
ε
‖uε − uεh‖H1 ≤ C4(ε)hl−2 (‖σε‖Hl + ‖uε‖Hl) ,(4.13)

‖σε − σεh‖H1 ≤ C5(ε)hl−3 (‖σε‖Hl + ‖uε‖Hl) ,(4.14)

where C4(ε) = C5(ε) = O(ε−
9
2 ) when n = 2, C4(ε) = C5(ε) = O(ε−6) when n = 3.

Proof. Let (μh, vh) ∈ Bh(ρ1) and choose h1 > 0 such that

h1| log h1|
3−n
2l−n ≤ C

(
ε

25
12

C3(ε)(‖σε‖Hl + ‖uε‖Hl)

) 2
2l−n

and

h1| log h1|
3−n

2l−n−2 ≤ C
(

ε
19
12

C2(ε)(‖σε‖Hl + ‖uε‖Hl)

) 2
2l−n−2

.

Then h ≤ min{h0, h1} implies ρ1 ≤ ρ0. Thus, using the triangle inequality and
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Lemmas 4.1 and 4.2, we get∥∥∥Ihσε − T (1)(μh, vh)
∥∥∥
L2

+
1√
ε

∥∥∥Ihuε − T (2)(μh, vh)
∥∥∥
H1

≤
∥∥∥Ihσε − T (1)(Ihσε, Ihuε)

∥∥∥
L2

+
∥∥∥T (1)(Ihσε, Ihuε)− T (1)(μh, vh)

∥∥∥
L2

+
1√
ε

∥∥∥Ihuε − T (2)(Ihσε, Ihuε)
∥∥∥
H1

+
1√
ε

∥∥∥T (2)(Ihσε, Ihuε)− T (2)(μh, vh)
∥∥∥
H1

≤
[
C2(ε)hl−2 +

C3(ε)√
ε
hl−1

]
(‖σε‖Hl + ‖uε‖Hl)

+
1
2

(
‖Ihσε − μh‖L2 +

1√
ε
‖Ihuε − vh‖H1

)

≤ ρ1

2
+
ρ1

2
= ρ1 < 1.

So, T (μh, vh) ∈ Bh(ρ1). Clearly, T is a continuous mapping. Thus, T has a unique
fixed point (σεh, u

ε
h) ∈ Bh(ρ1), which is the unique solution to (2.7)–(2.8).

Next, we use the triangle inequality to get

‖σε − σεh‖L2 +
1√
ε
‖uε − uεh‖H1 ≤ ‖σε − Ihσε‖L2 + ‖Ihσε − σεh‖L2

+
1√
ε

(‖uε − Ihuε‖H1 + ‖Ihuε − uεh‖H1)

≤ ρ1 + Chl−1 (‖σε‖Hl + ‖uε‖Hl)

≤ C4(ε)hl−2 (‖σε‖Hl + ‖uε‖Hl) .

Finally, using the inverse inequality, we have

‖σε − σεh‖H1 ≤ ‖σε − Ihσε‖H1 + ‖Ihσε − σεh‖H1

≤ ‖σε − Ihσε‖H1 + Ch−1‖Ihσε − σεh‖L2

≤ Chl−1‖σε‖Hl + Ch−1ρ1

≤ C5(ε)hl−3 [‖σε‖Hl + ‖uε‖Hl ] .

The proof is complete.
Comparing with error estimates for the linearized problem in Theorem 3.2, we

see that the above H1 error for the scalar variable is not optimal. Next, we shall
employ a similar duality argument as used in the proof of Theorem 3.2 to show that
the estimate can be improved to optimal order.

Theorem 4.2. Under the same hypothesis of Theorem 4.1 there holds

(4.15) ‖uε − uεh‖H1 ≤ C4(ε)ε−2
[
hl−1 + C5(ε)h2(l−2)

]
(‖σε‖Hl + ‖uε‖Hl) .

Proof. The regularity assumption implies that there exists (κ, z) ∈ W0 × V0 ∩
H3(Ω) such that

(κ, μ) + (div(μ), Dz) = 0 ∀μ ∈ W0,(4.16)

(div(κ), Dv)− 1
ε
(ΦεDz,Dv) =

1
ε
(D(uε − uεh), Dv) ∀v ∈ V0,(4.17)
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with

(4.18) ‖z‖H3 ≤ Cb(ε)‖D(uε − uεh)‖L2 .

It is easy to check that σε − σεh and uε − uεh satisfy the following error equations:

(σε − σεh, μh) + (div(μh), D(uε − uεh)) = 0 ∀μh ∈Wh
0 ,(4.19)

(div(σε − σεh), Dvh) +
1
ε
(det(σε)− det(σεh), vh) = 0 ∀vh ∈ V h0 .(4.20)

By (4.16)–(4.20) and the mean value theorem, we get

1
ε
‖D(uε − uεh)‖2L2 = (div(κ), D(uε − uεh)) −

1
ε

(ΦεDz,D(uε − uεh))

= (div(Πhκ), D(uε − uεh))−
1
ε

(ΦεD(uε − uεh), Dz) + (div(κ−Πhκ), D(uε − uεh))

= (σεh − σε,Πhκ)− 1
ε

(ΦεD(uε − uεh), Dz) + (div(κ−Πhκ), D(uε − uεh))

= (σεh − σε, κ)− 1
ε

(ΦεD(uε − uεh), Dz)
+ (div(κ−Πhκ), D(uε − Ihuε)) + (σεh − σε,Πhκ− κ)

= (div(σε − σεh), Dz)−
1
ε

(ΦεD(uε − uεh), Dz)
+ (div(κ−Πhκ), D(uε − Ihuε)) + (σεh − σε,Πhκ− κ)

= (div(σε − σεh), D(z − Ihz))− 1
ε

(ΦεD(uε − uεh), D(z − Ihz))
+ (div(κ−Πhκ), D(uε − Ihuε)) + (σεh − σε,Πhκ− κ)

− 1
ε

(det(σε)− det(σεh), Ihz)−
1
ε

(ΦεD(uε − uεh), D(Ihz))

= (div(σε − σεh), D(z − Ihz))− 1
ε

(ΦεD(uε − uεh), D(z − Ihz))
+ (div(κ−Πhκ), D(uε − Ihuε)) + (σεh − σε,Πhκ− κ)

− 1
ε

(Ψε : (σε − σεh), Ihz)−
1
ε

(ΦεD(uε − uεh), D(Ihz)) ,

where Ψε = cof(σε + τ [σεh − σε]) for τ ∈ [0, 1].
Next, we note that

(Ψε : (σε − σεh), Ihz) + (ΦεD(uε − uεh), D(Ihz))

= (Φε : (σε − σεh), Ihz) + (div(ΦεIhz), D(uε − uεh)) + ((Ψε − Φε) : (σε − σεh), Ihz)
= (σε − σεh),ΦεIhz)+(div(Πh(ΦεIhz)), D(uε − uεh))+((Ψε − Φε) : (σε − σεh), Ihz)

+ (div(ΦεIhz −Πh(ΦεIhz)), D(uε − Ihuε))
= (σε − σεh,ΦεIhz −Πh(ΦεIhz)) + ((Ψε − Φε) : (σε − σεh), Ihz)

+ (div(ΦεIhz −Πh(ΦεIhz)), D(uε − Ihuε)) .
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Using this and the same technique used in Step 4 of Lemma 4.2, we have
1
ε
‖D(uε − uεh)‖2L2 = (div(σε − σεh), D(z − Ihz))− 1

ε
(ΦεD(uε − uεh), D(z − Ihz))

+
1
ε

[
((Φε −Ψε) : (σε − σεh), Ihz) + (σε − σεh,Πh(ΦεIhz)− ΦεIhz)

+ (div(Πh(ΦεIhz)− ΦεIhz), D(uε − Ihuε))
]
+ (σεh − σε,Πhκ− κ)

+ (div(κ−Πhκ), D(uε − Ihuε))

≤
[
‖div(σε − σεh)‖L2 +

C

ε2
‖D(uε − uεh)‖L2

]
‖D(z − Ihz)‖L2

+
C

ε

[
‖Φε −Ψε‖L2‖σε − σεh‖L2‖Ihz‖L∞ + ‖σε − σεh‖L2‖Πh(ΦεIhz)− ΦεIhz‖L2

+ ‖div(Πh(ΦεIhz)− ΦεIhz)‖L2‖D(uε − Ihuε)‖L2

]
+ ‖κ−Πhκ‖L2‖σε − σεh‖L2

+ ‖div(κ−Πhκ)‖L2‖D(uε − Ihuε)‖L2

≤ Ch2

(
‖σε − σεh‖H1 +

1
ε2
‖uε − uεh‖H1

)
‖z‖H3

+
C

ε2
(‖Φε −Ψε‖L2‖σε − σεh‖L2 + h‖σε − σεh‖L2 + ‖uε − Ihuε‖H1) ‖z‖H3

+ Ch‖σε − σεh‖L2‖κ‖H1 + C‖uε − Ihuε‖H1‖κ‖H1

≤
{

(C4(ε) + C5(ε))hl−1

ε
3
2

[‖σε‖Hl + ‖uε‖Hl ] +
C4(ε)hl−2

ε2
‖Φε −Ψε‖L2

}
‖z‖H3

≤ Cb(ε)
{

(C4(ε) + C5(ε))hl−1

ε
3
2

[‖σε‖Hl + ‖uε‖Hl ]

+
C4(ε)hl−2

ε2
‖Φε −Ψε‖L2

}
‖D(uε − uεh)‖L2.

We now bound ‖Φε − Ψε‖L2 separately for the cases n = 2 and n = 3. First,
when n = 2 we have
‖Φε −Ψε‖L2 = ‖cof(σε)− cof(σεh + τ [σε − σεh])‖L2 = ‖σε − (σεh + τ [σε − σεh])‖L2

≤ C4(ε)hl−2 [‖σε‖Hl + ‖uε‖Hl ] .

Second, when n = 3, on noting that
|(Φε −Ψε)ij | = |(cof(σε))ij − (cof(σεh + τ [σε − σεh]))ij |

= |det(σε|ij)− det(σε|ij + τ [σε|ij − σεh|ij ])|,
and, using the mean value theorem and Sobolev inequality, we get

‖(Ψε)ij − (Φε)ij‖L2 = (1 − τ)‖(Λε)ij : (σε|ij − σεh|ij)‖L2

≤ ‖(Λε)ij‖H1‖σε|ij − σεh|ij‖H1 ,

where (Λε)ij = cof(σε|ij + λ[σεh|ij − σε|ij ]) for λ ∈ [0, 1]. Since (Λε)ij ∈ R2×2, then

‖(Λε)ij‖H1 = ‖σε|ij + λ(σεh|ij − σε|ij)‖H1 ≤ C‖σε‖H1 = O
(
ε−1
)
.

Thus,
‖Φε −Ψε‖L2 ≤ C4(ε)ε−1hl−2 (‖σε‖Hl + ‖uε‖Hl) .

Finally, combining the above estimates we obtain

‖D(uε − uεh)‖L2 ≤ C4(ε)ε−2
[
hl−1 + C4(ε)h2(l−2)

]
(‖σε‖Hl + ‖uε‖Hl) .

We note that 2(l − 2) ≥ l− 1 for k ≥ 2. The proof is complete.
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5. Numerical experiments and rates of convergence. In this section, we
provide several 2-D numerical experiments to gauge the efficiency of the mixed finite
element method developed in the previous sections. We numerically determine the
“best” choice of the mesh size h in terms of ε, and rates of convergence for both
u0 − uε and uε − uεh. All tests given below are done on domain Ω = [0, 1]2. We refer
the reader to [18, 27] for more extensive 2-D and 3-D numerical simulations. Newton’s
method is employed as the (nonlinear) solver in all our numerical tests. We like to
remark that the mixed finite element methods we tested are often 10–20 times faster
than the Argyris finite element Galerkin method studied in [19]. We refer the reader
to [18] for more discussions and comparisons on the Galerkin and mixed methods.

Test 1. For this test, we calculate ‖u0− uεh‖ for fixed h = 0.015, while varying ε
in order to estimate ‖uε−u0‖. We use quadratic Lagrange element for both variables
and solve problem (2.5)–(2.6) with the following test functions:

(a) u0 = e
x2+y2

2 , f =
(
1 + x2 + y2

)
e

x2+y2
2 , g = e

x2+y2
2 ,

(b) u0 = x4 + y2, f = 24x2, g = x4 + y2.

After having computed the error, we divide it by various powers of ε to estimate
the rate at which each norm converges. The left column of Figure 5.1, which is the log-
log plots of the errors in various norms vs ε, clearly shows that ‖σ0−σεh‖L2 = O(ε

1
4 ).

Since h is very small, we then have ‖u0 − uε‖H2 ≈ ‖σ0 − σεh‖L2 = O(ε
1
4 ). Based on

this heuristic argument, we predict that ‖u0 − uε‖H2 = O(ε
1
4 ). Similarly, from the

left column of Figure 5.1, we see that ‖u0 − uε‖L2 ≈ O(ε) and ‖u0 − uε‖H1 ≈ O(ε
3
4 ).

Test 2. The purpose of this test is to calculate the rate of convergence of ‖uε−uεh‖
for fixed ε in various norms. We use quadratic Lagrange element for both variables
and solve problem (2.5)–(2.6) with boundary condition D2uεν · ν = ε on ∂Ω being
replaced by D2uεν · ν = hε on ∂Ω and using the following test functions:

(a) uε = 20x6 + y6, fε = 18000x4y4 − ε (7200x2 + 360y2
)
,

gε = 20x6 + y6, hε = 600x4ν2
x + 30y4ν2

y .

(b) uε = xsin(x) + ysin(y), fε = (2cos(x) − xsin(x))(2cos(y)− ysin(y))
− ε(xsin(x)− 4cos(x) + ysin(y)− 4cos(y)),

gε = xsin(x) + ysin(y), hε = (2cos(x)− xsin(x))ν2
x + (2cos(y)− ysin(y))ν2

y .

After having computed the error in different norms, we divided each value by a
power of h expected to be the convergence rate by the analysis in the previous section.
As seen from the right column of Figure 5.1, which is the log-log plots of the errors
in various norms vs h, the error converges exactly as expected in H1 norm, but σεh
appears to converge one order of h better than the analysis shows. In addition, the
error seems to converge optimally in L2 norm although a theoretical proof of such a
result has not yet been proved.

Test 3. In this test, we fix a relation between ε and h, and then determine the
“best” choice for h in terms of ε such that the global error u0 − uεh has the same
convergence rate as that of u0 − uε. We solve problem (2.5)–(2.6) with the following
test functions:

(a) u0 = x4 + y2, f = 24x2, g = x4 + y2.

To see which relation gives the sought-after convergence rate, we compare the
data with a function, y = βxα, where α = 1 in the L2 case, α = 3

4 in the H1 case, and
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Fig. 5.1. Log-log plots of change of ‖u− uε
h‖ w.r.t. ε for Test 1 (left column) and log-log plots

of change of ‖u− uε
h‖ w.r.t. h for Test 2 (right column).

α = 1
4 in the H2-case. The constant, β, is determined using a least squares fitting

algorithm based on the data.
As seen in the figures below, the best h − ε relation depends on which norm

one considers. Figures 5.2 and 5.3 indicate that when h = ε
1
2 , ‖u0 − uεh‖L2 ≈ O(ε),

and ‖σ0 − σεh‖L2 ≈ O(ε
1
4 ). It can also be seen from Figure 5.4 that when h = ε,

‖u0 − uεh‖H1 = O(ε
3
4 ).
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Fig. 5.2. Test 3a. L2-error of uε
h.

Fig. 5.3. Test 3a. L2-error of σε
h.
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Fig. 5.4. Test 3a. H1-error of uε
h.
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[26] I. Mozolevski and E. Süli, A priori error analysis for the hp-version of the discontinu-
ous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl.
Math., 3 (2003), pp. 596–607.

[27] M. Neilan, Numerical methods for fully nonlinear second order partial differential equations,
Ph.D. Dissertation, The University of Tennessee, in preparation.

[28] A. M. Oberman, Wide stencil finite difference schemes for elliptic Monge-Ampére equation
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Abstract. We present a new class of iterative schemes for large scale set-valued saddle point
problems as arising, e.g., from optimization problems in the presence of linear and inequality con-
straints. Our algorithms can be regarded either as nonsmooth Newton-type methods for the nonlinear
Schur complement or as Uzawa-type iterations with active set preconditioners. Numerical experi-
ments with a control constrained optimal control problem and a discretized Cahn–Hilliard equation
with obstacle potential illustrate the reliability and efficiency of the new approach.

Key words. set-valued saddle point problems, nonsmooth Newton methods, Uzawa algorithms,
active set preconditioners

AMS subject classifications. 49M29, 65H20, 65N22, 90C46

DOI. 10.1137/060671012

1. Introduction. We consider the iterative solution of large scale saddle point
problems of the form

(1.1) u∗ ∈ R
n, w∗ ∈ R

m :
(
F BT

B −C
)(

u∗

w∗

)
�
(
f
g

)
,

where B and C are suitable matrices and the set-valued operator F = ∂ϕ stands for
the subdifferential of a strictly convex functional ϕ. Such kind of problems typically
arise from the discretization of optimization or optimal control problems governed by
partial differential equations with inequality constraints (cf., e.g., [32, 45]). In the
case of a quadratic objective functional, we get

(1.2) F = A+ ∂IK ,

where IK is denoting the indicator functional of the admissible set K, A is a self-
adjoint positive definite, sometimes even diagonal matrix, and C = 0. Another rich
and still growing class of problems of the form (1.1) consists of discretized phase field
models, such as Cahn–Hilliard equations [5, 6, 8, 18, 19], Penrose–Fife equations [10],
or Stefan-type problems [48]. For example, discretization of Cahn–Hilliard equations
with logarithmic potential leads to the single-valued but singularly perturbed nonlin-
earity F (u) = Au+ T log((1 + u)/(1− u)) where the logarithmic term is understood
componentwise. Nonlinearities of the form (1.2) occur as singular limit for vanish-
ing temperature T . The matrices A and C are essentially stiffness matrices of the
Laplacian with A augmented by a nonlocal term reflecting mass conservation. Other
possible applications include discretized plasticity problems [21, 43].

Saddle point problems of the form (1.1) with single-valued, Lipschitz continuous
nonlinearities F have been considered in [12, 27]. Interior point methods (cf., e.g.,
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[50, 51]) are based on suitable regularizations of set-valued nonlinearities (1.2). It is
not immediately clear how this strategy should be generalized to single-valued but
singularly perturbed nonlinearities. Existing primal-dual active set methods [26, 46]
are based on the elimination of the state variables us and an active set approach to the
resulting constrained minimization problem for the controls uc. These methods are
applicable to (1.1) with u = (us, uc), provided that the corresponding partitioning of
B = (Bs, Bc) generates an invertible matrix Bs, that the set-valued nonlinearity (1.2)
constrains only uc, and finally that C = 0. For example, discretized Cahn–Hilliard
equations have none of these properties.

The novel approach presented in this paper relies on convexity rather than smooth-
ness. It is motivated by the fact that a variety of practically relevant nonlinearities
F can be either inverted in closed form or efficiently inverted by multigrid methods.
This includes, e.g., the nonlinearities mentioned above [4, 3, 24, 30, 31, 29].

The basic idea is to reformulate (1.1) as an unconstrained convex minimization
problem for the dual unknown w. The gradient of the objective functional h is just
the nonlinear Schur complement H of (1.1) and, thus, involves F−1. Minimization of
h is carried out by well-known gradient-related descent methods (cf., e.g., [36, 37, 38]).
Global convergence is enforced by standard Armijo damping [2] for simplicity. We
particularly concentrate on nonsmooth Newton or Newton-like methods for nonlin-
earities of the form (1.2) taking into account that the nonlinear Schur complement H
is Lipschitz but not differentiable in the classical sense. We prove global convergence
and local exactness. Inexact versions are shown to be globally convergent.

In the special case of discretized optimal control problems with control constraints
and diagonal matrix A, our algorithms reduce to well-known primal-dual active set
methods [25]. Hence, the algorithms presented in this paper can be regarded as a new
variational approach to primal-dual active set strategies, thus, providing a natural
globalization and generalization of these methods. Extensions to single-valued but
singularly perturbed nonlinearities F will be presented in a forthcoming paper [23].
Our approach also sheds new light on well-established algorithms in computational
plasticity [49].

From a computational point of view, our algorithms can be reinterpreted as non-
linear Uzawa iterations with active set preconditioners [22]. For nonlinearities of
the form (1.2), each iteration step requires the detection of the actual active set of
uν = F−1(f − BTwν) (not of uν itself!) and the sufficiently accurate evaluation of
a corresponding linear saddle point problem (the actual preconditioner). We found
in our numerical experiments with a discretized Cahn–Hilliard equation that, for bad
initial iterates, the overall computational work was dominated by Armijo damping,
because each Armijo test involves the exact evaluation of F−1, i.e., the solution of
a discrete elliptic obstacle problem. For reasonable initial iterates as obtained, e.g.,
from the preceding time step, almost no damping was necessary. In this case the
(inexact) evaluation of the linear saddle point problem clearly dominated the overall
computational cost.

The paper is organized as follows. After some notation and a precise formulation
of the assumptions, we derive the equivalent unconstrained minimization problem
which is fundamental for the rest of this paper. In section 3, we recall some general
convergence results for gradient-related descent methods for unconstrained minimiza-
tion, including damping strategies and inexact variants. Then we concentrate on the
selection of suitable descent directions for the special case of nonlinearities of the form
(1.2). More precisely, we investigate the B-subdifferential of F and later of H , giving
rise to various nonsmooth Newton-type methods. The main convergence results are
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collected in Theorems 4.1–4.3. Section 5 provides a more tangible reformulation of
these abstract schemes in terms of quadratic obstacle problems and linear saddle point
problems. Inexact evaluation of both of these subproblems and a heuristic damping
strategy are also discussed. In our numerical computations, we consider a control con-
strained optimal control problem and a discretized Cahn–Hilliard equation. We found
superlinear convergence and finite termination, supporting our theoretical findings.

2. Set-valued saddle point problems.

2.1. General assumptions and notation. Let 〈·, ·〉 denote the euclidian inner
product on R

m. We equip R
m with the norm ‖·‖M ,

‖x‖2M = 〈Mx, x〉 , x ∈ R
m,

induced by a fixed symmetric, positive definite (s.p.d.) matrix M ∈ R
m,m. Linear

mappings will be identified with their matrix representations with respect to the
canonical basis vectors ei with the coefficients (ei)j = δi,j (Kronecker-δ). Elements
x′ of the dual space (Rm)′ will be represented as x′ = 〈x, ·〉 with suitable x ∈ R

m.
Hence, using

|x′(y)| = | 〈x, y〉 | ≤
∥∥∥M− 1

2 x
∥∥∥∥∥∥M 1

2 y
∥∥∥ = ‖x‖M−1 ‖y‖M ,

the dual space (Rm, ‖·‖M )′ is identified with (Rm, ‖·‖M−1).
We impose the following conditions on the saddle point problem (1.1).

(A1) F = ∂ϕ is the subdifferential of a proper, lower semicontinuous, strictly
convex functional ϕ : R

n → R = R ∪ {∞}. The inverse F−1 : R
n → R

n is
single-valued and Lipschitz continuous.

(A2) C ∈ R
m,m is symmetric, positive semidefinite.

(A3) B ∈ R
m,n.

(A4) The saddle point problem (1.1) has a unique solution.
Nonlinearities F satisfying condition (A1) occur, e.g., in discretized Cahn–Hilliard
equations with logarithmic potential [5]. Later on, we will concentrate on the special
case

F = A+ ∂IK ,

where A ∈ R
n,n is s.p.d. and IK denotes the indicator functional of a closed convex

set K. In this case, (A1) holds with

ϕ(x) =
1
2
〈Ax, x〉 + IK ,

and x = F−1(y) is the unique solution of the variational inequality

x ∈ K : 〈Ax− y, v − x〉 ≥ 0 ∀v ∈ K.(2.1)

It is well known that the corresponding mapping F−1 : (Rn, ‖ · ‖A−1) → (Rn, ‖ · ‖A)
is Lipschitz continuous with constant LF−1 ≤ 1 (cf., e.g., [28, p. 24]).

2.2. Nonlinear Schur complement and unconstrained minimization. Our
aim is to reformulate the given saddle point problem as an unconstrained minimiza-
tion problem. In the first step, the inclusion (1.1) is transformed into a single-valued
equation.
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Proposition 2.1. The saddle point problem (1.1) is equivalent to

w∗ ∈ R
m : H(w∗) = 0(2.2)

with the Lipschitz continuous mapping

H(w) = −BF−1
(
f −BTw) + Cw + g , w ∈ R

m.(2.3)

Proof. Using (A1), the equivalence is easily obtained by straightforward block
elimination. Lipschitz continuity is clear since H consists of a sum and a composition
of the Lipschitz continuous function F−1 with linear and constant functions.

The operator H can be regarded as a nonlinear version of the well-known Schur
complement. In contrast to the linear case, the right-hand side f cannot be separated
from the part depending on w. Note that H is single-valued, because F−1 = (∂ϕ)−1 is
single-valued or, equivalently, the minimization of ϕ on R

n admits a unique solution.
Theorem 2.1. There is a Fréchet-differentiable, convex functional h : R

m → R

with the property ∇h = H and the representation

(2.4) h(w) = −L (F−1
(
f −BTw) , w) , w ∈ R

m,

where

L(u,w) = ϕ(u)− 〈f, u〉+ 〈Bu − g, w〉 − 1
2
〈Cw,w〉

denotes the Lagrange functional associated with (1.1).
Proof. The polar (or conjugate) functional ϕ∗ of ϕ is convex and, by Corollary 5.2

in [17, p. 22], has the property ∂ϕ∗ = (∂ϕ)−1 = F−1. Since F−1 is single-valued,
ϕ∗ is Gâteaux-differentiable. The continuity of F−1 implies that ϕ∗ is even Fréchet-
differentiable with ∇ϕ∗ = F−1. Setting

h(w) = ϕ∗
(
f −BTw) +

1
2
〈Cw,w〉 + 〈g, w〉(2.5)

we immediately get ∇h = H using the chain rule. By the definition of ϕ∗ we have

ϕ∗(y) = sup
x∈Rn

(〈y, x〉 − ϕ(x)) = − inf
x∈Rn

(ϕ(x) − 〈y, x〉)

= − (ϕ (F−1(y)
)− 〈y, F−1(y)

〉)
, y ∈ R

n.

Inserting this representation with y = f −BTw into (2.5), we get (2.4).
The convexity of ϕ implies the monotonicity of F−1. In combination with the

nonnegativity of C we get

(2.6) 〈w1 − w2, H(w1)−H(w2)〉
=
〈(
f −BTw1

)− (f −BTw2

)
, F−1

(
f −BTw1

)− F−1
(
f −BTw2

)〉
+ 〈C(w1 − w2), w1 − w2〉 ≥ 0

so that H is monotone. Therefore, h is convex.
Assuming, in addition to (A2), that C is positive definite, it is not difficult to

show that h is strongly convex; i.e., there is a constant μ > 0 such that

h(λx + (1− λ)y) ≤ λh(x) + (1− λ)h(y)− λ(1 − λ)
μ

2
‖x− y‖2M ∀λ ∈ [0, 1]

(2.7)
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holds for all x, y ∈ R
m. In general, however, h is not even strictly convex so that we

had to require uniqueness separately.
Combining Proposition 2.1 with Theorem 2.1, we are ready to state the main

result of this section.
Corollary 2.1. The set-valued saddle point problem (1.1) is equivalent to the

unconstrained convex minimization problem

w∗ ∈ R
m : h(w∗) ≤ h(w) ∀w ∈ R

m.(2.8)

Recall that the functional h is differentiable with Lipschitz continuous gradient
H = ∇h. However, the actual evaluation of h(w) and ∇h(w) might be expensive,
because it involves the solution of F (u) = f −BTw.

3. Gradient-related methods. Exploiting Corollary 2.1, existing algorithms
for the unconstrained minimization of convex, differentiable functionals now can be
utilized to solve the constrained saddle point problem (1.1). In this section, we con-
sider the fairly general class of gradient-related descent methods (see, for example,
[37]). In agreement with section 2.2, we assume that h : R

m → R denotes a convex
functional with Lipschitz continuous Fréchet derivative ∇h and the unique minimizer
w∗ ∈ R

m.

3.1. Global convergence results. We consider the iteration

wν+1 = wν + ρνdν , ν = 0, 1, . . . ,(3.1)

with given initial guess w0 ∈ R
m. In each step, first a search direction dν is chosen

according to the actual iterate wν and then a step size ρν is fixed according to wν

and dν , i.e.,

dν = d(ν, wν), ρν = ρ(ν, wν , dν), ν = 0, 1, . . . ,(3.2)

with suitable mappings d, ρ.
The search directions dν should allow for a sufficient descent of h.
Definition 3.1. The search directions dν = d(ν, wν), ν ∈ N, are called gradient-

related descent directions if for any sequence (wν) ⊂ R
m the conditions

∇h(wν) = 0 ⇐⇒ dν = 0 ∀ν ∈ N(3.3)

and

−〈∇h(wν), dν〉 ≥ cD ‖∇h(wν )‖M−1 ‖dν‖M ∀ν ∈ N(3.4)

hold with a constant cD > 0 independent of ν.
Note that the preconditioned gradients dν = −M−1∇h(wν) satisfy (3.4) with

equality and cD = 1. Obviously, (3.4) implies

−〈∇h(wν), dν〉 > 0(3.5)

if ∇h(wν) �= 0. Search directions dν = d(ν, wν), ν ∈ N, satisfying (3.3) and, instead of
(3.4), the weaker condition (3.5) for arbitrary (wν) ∈ R

m are called descent directions.
The step sizes ρν should realize a sufficient portion of possible descent.
Definition 3.2. Let dν = d(ν, wν), ν ∈ N, be descent directions. Then the step

sizes ρν = ρ(ν, wν , dν), ν ∈ N, are called efficient if for any sequence (wν) ⊂ R
m the

estimate

h(wν + ρνdν) ≤ h(wν)− cS
( 〈∇h(wν ), dν〉

‖dν‖M

)2

(3.6)

holds for all ν ∈ N such that ∇h(wν) �= 0 with a constant cS > 0 independent of ν.
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We are now ready to prove convergence.
Theorem 3.1. Assume that (3.2) provides gradient-related descent directions dν

and efficient step sizes ρν . Then, for arbitrary initial iterate w0 ∈ R
m, the iterates

wν , ν ∈ N, obtained from (3.1) converge to the minimizer w∗ of h.
Proof. Combining the properties of dν = d(ν, wν) and ρν = ρ(ν, wν , dν) we get

h(wν)− h (wν+1
) ≥ cSc2D ‖∇h (wν)‖2M−1 ∀ν ∈ N.(3.7)

Since h has a global minimizer, the sequence (h(wν)) is bounded from below and, by
(3.7), is monotonically decreasing. Hence, h(wν) converges to some h∗ ∈ R. Using
again (3.7), we get

0 ≤ cSc2D ‖∇h(wν )‖2M−1 ≤ h(wν)− h (wν+1
)→ 0(3.8)

so that ∇h(wν) must tend to zero.
The section S = {w ∈ R

m | h(w) ≤ h(w0)} is bounded. Otherwise, there would be
a sequence (wk) ⊂ S with the property λ−1

k := ‖wk−w∗‖ ≥ k. Then, by compactness
of the unit sphere with center w∗, the sequence w′k = w∗ + (wk −w∗)/‖wk −w∗‖ has
a convergent subsequence w′kj

→ w∗∗ �= w∗. By continuity and convexity of h this
leads to

h(w∗∗) = lim
j→∞

h(w′kj
) ≤ lim

j→∞
λkjh(wkj ) + (1− λkj )h(w∗) = h(w∗),

contradicting the uniqueness of w∗.
The section S is also closed and, therefore, compact. As a consequence, (wν) has

a convergent subsequence (wνi )→ w∗∗. The continuity of ∇h provides ∇h(w∗∗) = 0,
and uniqueness implies w∗∗ = w∗. Hence, each convergent subsequence must tend to
w∗. This proves the assertion.

In the proof, we have made extensive use of Heine–Borel’s theorem which is
restricted to finite dimensions. However, using weak compactness and the weak lower
semicontinuity of h, weak convergence of the iterates wν can be shown by similar
arguments in the infinite-dimensional case. Strong linear convergence can be shown
in any dimension under the additional assumption that h is strongly convex. The
proof is based on the following lemma summarizing well-known results (cf., e.g., [37]).

Lemma 3.1. Let h be strongly convex with constant μ > 0. Then h satisfies the
estimates

μ

2
‖w − w∗‖2M ≤ h(w) − h(w∗) ≤ 1

2μ
‖∇h(w)‖2M−1 ∀w ∈ R

m(3.9)

with the minimizer w∗ of h.
Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied and, in

addition, h is strongly convex with constant μ > 0. Then the iterates wν , ν ∈ N,
produced by (3.1) satisfy the error estimate

‖wν − w∗‖2M ≤ qν
2
μ

(
h
(
w0
)− h(w∗)

)
,(3.10)

where 0 ≤ q = (1 − 2cSc2Dμ) < 1 if w0 �= w∗.
The proof is straightforward using Lemma 3.1.
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3.2. Damping strategies. A variety of algorithms for efficient step size control
are available from surveys and textbooks like [16, 36, 37, 38]. For simplicity, we
consider the standard Armijo strategy [2], [16, p. 121], and [37, p. 491] based on the
actual decrease of the functional h. More precisely, for a fixed parameter δ ∈ (0, 1)
and each ν ∈ N a step size ρ ≥ 0 is called admissible if

(3.11) h(wν + ρdν) ≤ h(wν) + ρδ 〈∇h(wν), dν〉
is satisfied.

Proposition 3.1. Let (wν) ⊂ R
m, and let dν = d(ν, wν), ν ∈ N, be descent

directions. For suitably selected, fixed parameters α > 0 and δ, β ∈ (0, 1) determine
the step sizes ρν = ρ(ν, wν , dν) ≥ 0 by

(3.12) ρν = max
j∈N∪{0}

{
ρ = ανβ

j

∣∣∣∣∣ αν ≥ −α 〈∇h(wν), dν〉
‖dν‖2M

, ρ admissible

}

if dν �= 0 and set ρν = 0 otherwise. Then the efficiency condition (3.6) holds with

cS = δmin
{
α, β

(
1−δ
L

)}
.(3.13)

Here L stands for the Lipschitz constant of ∇h, i.e.,

‖∇h(v)−∇h(w)‖M−1 ≤ L ‖v − w‖M ∀v, w ∈ R
m.(3.14)

The proof of Proposition 3.1 adopts standard arguments, e.g., from [37]. Starting
with j = 0, efficient step sizes can be computed from (3.12) by a finite number of
tests. Observe that each of these tests might be expensive, because it requires the
evaluation of h and, therefore, the evaluation of F−1 (cf. Theorem 2.1).

3.3. Inexact versions. We consider inexact search directions d̃ν . This means
that for given ν and wν the exact evaluation dν = d(ν, wν) is replaced by some
approximation

d̃ν = d̃(ν, wν)(3.15)

based on some approximation d̃ of the exact mapping d.
Proposition 3.2. Let dν = d(ν, wν) be gradient-related descent directions with

constant cD. Assume that the approximations d̃ν = d̃(ν, wν) satisfy (3.3) and the
accuracy condition ∥∥dν − d̃ν∥∥

M
≤ c∥∥d̃ν∥∥

M
∀ν ∈ N, c <

cD
2
,(3.16)

for any sequence (wν). Then the approximations d̃ν = d̃(ν, wν) are also gradient-
related descent directions.

Proof. Let (wν) ⊂ R
m. Then the vectors dν = d(ν, wν), ν ∈ N, satisfy (3.4)

and we have to prove a similar estimate for the approximations d̃ν . This is trivial
for d̃ν = 0. Note that (3.16) implies dν = 0 in this case. In light of (3.3) there
is only the remaining case dν , d̃ν �= 0. Some elementary calculations involving the
Cauchy–Schwarz inequality and the triangle inequality yield∣∣∣∣∣

〈
∇h(wν )

‖∇h(wν)‖M−1
,

dν

‖dν‖M −
d̃ν∥∥d̃ν∥∥

M

〉∣∣∣∣∣ ≤ 2

∥∥dν − d̃ν∥∥
M∥∥d̃ν∥∥

M

.
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As ‖dν − d̃ν‖M/‖d̃ν‖M ≤ c < cD/2, it is clear that

−
〈
∇h(wν), d̃ν

〉
≥ c̃D‖∇h(wν)‖M−1

∥∥d̃ν∥∥
M

with c̃D = cD − 2c > 0.
Usually, the constant cD occurring in the accuracy condition (3.16) is not known.

Replacing (3.16) by the asymptotic criterion

lim
ν→∞

∥∥dν − d̃ν∥∥
M∥∥d̃ν∥∥

M

= 0(3.17)

the approximate directions d̃ν have the desired property (3.4) for sufficiently large ν.

4. Nonsmooth Newton methods and related algorithms. We now con-
sider the question of how to choose the descent directions dν = d(wν ). We will
concentrate on preconditioned gradients of h or, more precisely, on directions of the
form

dν = −S−1
ν H(wν), H = ∇h,(4.1)

with suitable s.p.d. matrices Sν = S(ν, wν). If H would be sufficiently smooth, the
derivative

Sν = H ′(wν) : R
m → R

m

would provide the classical Newton iteration. From our assumptions (A1)–(A4) and
the definition (2.3), we cannot expect H ′ to exist. Hence, related concepts from
nonsmooth analysis will be applied. To this end, (A1) is from now on replaced by the
stronger condition (A1’):

(A1’) F = A+∂IK , where A ∈ R
n,n is s.p.d. and IK denotes the indicator functional

of the closed convex set

K = {x ∈ R
n | a ≤ x ≤ b}, a, b ∈ (R ∪ {−∞,∞})n, a < 0 < b.(4.2)

Recall that F is the subdifferential of ϕ(x) = 1
2 〈Ax, x〉+ IK and Lipschitz continuous

with constant L ≤ 1 in this case. Nonlinearities F satisfying (A1’) occur, e.g., in
discretized optimal control problems with inequality constraints [32, 45] or discretized
phase field models with obstacle potentials [6, 8]. The condition a < 0 < b causes no
loss of generality and will be notationally convenient in what follows.

4.1. The B-subdifferential of F −1. Let c ∈ K with K ⊂ R
n defined in (4.2).

We introduce the subset of all active indices

N•c := {i ∈ N | ai = ci or ci = bi}
of the index set N = {1, . . . , n}. The mapping Tc : R

n → R
n, defined by

Tcx :=
∑

i∈N\N•
c

xiei , x ∈ R
n,

truncates all coefficients with active indices. Note that Tc is an orthogonal projection
with respect to the euclidian scalar product 〈·, ·〉. The finite set

C := {c ∈ K | (I − Tc)c = c}
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represents all possible configurations of active coefficients, i.e., of coefficients with
active indices. The active coefficients of x ∈ K are given by

TCx := (I − Tx)x ∈ C.(4.3)

As F : K → R
n is invertible, K and R

n can be decomposed according to

K =
⋃
c∈C
Ic, R

n =
⋃
c∈C

F (Ic), Ic := {x ∈ K | TCx = c} ,(4.4)

based on the subsets Ic of vectors with the same active coefficients. Note that

(I − Tc)x = c ∀x ∈ Ic, c ∈ C.
We now investigate the restriction of F to Ic. To this end, it is convenient to introduce
the mapping

Âc := TcATc + I − Tc : R
n → R

n.(4.5)

Observe that Âc : ranTc → ranTc and Âc reduces to the identity on the orthogonal
complement ran(I − Tc). Hence,

ÂcTc = TcATc = TcÂc, Âc(I − Tc) = I − Tc.(4.6)

Using 〈
Âcx, y

〉
= 〈ATcx, Tcy〉+ 〈(I − Tc)x, (I − Tc)y〉

it is easy to show that Âc is s.p.d. Multiplying (4.6) by Â−1
c we obtain

Â−1
c Tc = TcÂ

−1
c , Â−1

c (I − Tc) = I − Tc.(4.7)

Lemma 4.1. Let c ∈ C. Then the restriction of F to Ic takes the form

F (x) = Ax+
∑
i∈N•

c

[0,∞)si(c)ei, x ∈ Ic,(4.8)

denoting

si(c) =

{
+1 if ci = bi,

−1 if ci = ai, i ∈ N•c .
Conversely, the restriction of F−1 to F (Ic) takes the form

F−1(y) = TcÂ
−1
c Tcy +

(
I − TcÂ−1

c TcA
)
c, y ∈ F (Ic).(4.9)

Proof. Let x ∈ Ic. Using the representation

IK(x) =
∑
i∈N

I[ai,bi](xi), x =
∑
i∈N

xiei,

of the characteristic functional IK , we immediately get (cf. [17, p. 26])

∂IK(x) =
∑
i∈N

∂I[ai,bi](xi)ei =
∑
i∈N•

c

[0,∞)si(c)ei.

This proves (4.8).
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Let x ∈ Ic and y ∈ F (x). We apply Tc to the representation (4.8), insert the
splitting x = Tcx+ (I − Tc)x, and use the identity (I − Tc)x = c to obtain

Tcy = TcAx = TcATcx+ TcAc = Âcx− (I − TcA)c.

Multiplication by Â−1
c and reordering terms, we get

(4.10) x = Â−1
c Tcy + Â−1

c (I − TcA)c.

The left identity in (4.7) yields

Â−1
c Tc = Â−1

c TcTc = TcÂ
−1
c Tc .

Using c = (I − Tc)c and the right identity in (4.7), we obtain

Â−1
c c = Â−1

c (I − Tc)c = (I − Tc)c = c.

Inserting these representations into (4.10) the assertion (4.9) follows.
As a consequence of (4.4) and (4.9), F−1 is piecewise affine linear on R

n with the
linear part TcÂ−1

c Tc on each subset F (Ic), c ∈ C. In the extreme case, N•c = N , F−1

is even constant on F (Ic).
As F−1 is Lipschitz continuous, F−1 must be differentiable almost everywhere (cf.

Rademacher’s theorem [35]). Let DF−1 denote the set where F−1 is differentiable.
Then the B-subdifferential ∂B(F−1) (cf. [40, 46]) is defined by

∂B(F−1)(y) =

⎧⎨
⎩ lim

yn→y

yn∈DF−1

D
(
F−1

)
(yn)

⎫⎬
⎭ .

Note that

∂B
(
F−1

)
(y) ⊂ co ∂B

(
F−1

)
(y) = ∂

(
F−1

)
(y)

with ∂(F−1) denoting Clarke’s generalized derivative [13, Chapter 2].
Proposition 4.1. Let y ∈ R

n and c = TC(F−1(y)) ∈ C. Then

TcÂ
−1
c Tc ∈ ∂B

(
F−1

)
(y).(4.11)

Proof. Note that F−1(y) ∈ Ic by definition (4.4) of Ic. Inserting the decomposi-
tion x = Tcx+c of some arbitrary x ∈ Ic into (4.8), it turns out that F (Ic) is the paral-
lelepiped translated from the origin by Ac and spanned by the nonzero column vectors
of ATc and of I − Tc with coefficients zi ∈ (ai, bi), i ∈ N \ N•c , and zi ∈ [0,∞)si(c),
i ∈ N•c , respectively. Utilizing the identities ATc + I − Tc = Âc + (I − Tc)ATc, (4.7),
and the orthogonality Tc(I − Tc) = 0, it is easily checked that(

Â−1
c − (I − Tc)ATcÂ−1

c

)
(ATc + I − Tc) = I.

Hence, the interior of F (Ic) cannot be empty so that the convexity of F (Ic) yields

F (Ic) ⊂ intF (Ic).(4.12)

If y ∈ int F (Ic), then the representation (4.9) implies

D
(
F−1

)
(y) = TcÂ

−1
c Tc.
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F (I(b1,0))

F (I(b1,a2))

F (I(b1,b2))

F (I(a1,0))
F (I(0,0))

Fig. 4.1. Decomposition of R2 into parallelepipeds F (Ic), c ∈ C.

If y ∈ F (Ic) \ int F (Ic), then (4.12) implies that there is a sequence (yk) ⊂ int F (Ic)
with yk → y. Obviously,

lim
k→∞

DF−1(yk) = TcÂ
−1
c Tc

which proves the assertion.
Figure 4.1 illustrates the decomposition of R

n into the nondegenerating paral-
lelepipeds F (Ic), c ∈ C, for n = 2. The only bounded parallelepiped F (I(0,0)) is
spanned by the column vectors of A.

4.2. Algorithms and convergence results. Proposition 4.1 suggests using
B-subdifferentials TcÂ−1

c Tc, c ∈ C, for the linearization of the Schur complement

H(w) = −BF−1
(
f −BTw)+ Cw + g , w ∈ R

m,

as introduced in (2.3).
Proposition 4.2. Assume that rankB = n. Then

S(c) = BTcÂ
−1
c (BTc)T + C ∈ ∂BH(w), w ∈ R

m,(4.13)

where

c = c(w) = TCF−1
(
f − BTw) .(4.14)

Proof. Let G : R
m → R

n be defined by G(w) = F−1(f − BTw), w ∈ R
m.

We consider some fixed w ∈ R
m and c = TCG(w). As rankBT = n, the mapping

BT : R
m → R

n is surjective. Hence, the preimage G−1(Ic) of Ic is still a nondegen-
erate parallelepiped. Therefore, we can use the same arguments as in the proof of
Proposition 4.1 to show

−TcÂ−1
c TcB

T ∈ ∂BG(w).

As H is an affine transformation of G, the assertion follows.
Simple counterexamples show that (4.13) might not hold for rankBT < n.
Let us check whether S(c) is invertible. We immediately get

〈S(c)x, y〉 =
〈
Â−1
c (BTc)Tx, (BTc)T y

〉
+ 〈Cx, y〉 , x, y ∈ R

m.
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Hence, S(c) is symmetric and positive semidefinite. It is a sufficient (but not neces-
sary) condition for the regularity of S(c) that C is s.p.d.

Lemma 4.2. Assume that S(c) is s.p.d. for all c ∈ C. Then h is strongly convex.
Proof. Consider G(w) = F−1(f − BTw) as already introduced in the proof of

Proposition 4.2. Let c ∈ C. Then for all w ∈ G−1Ic the representation ∇h(w) =
H(w) = S(c)w+g̃(c) holds with suitable g̃(c) ∈ R

m independent of w (cf. Lemma 4.1).
As S(c) is s.p.d., we have

(4.15) 〈S(c)w,w〉 ≥ γc‖w‖2M ∀w ∈ G−1Ic
with some constant γc > 0. This means that h is quadratic and strongly convex on
each preimage G−1Ic. We now show strong convexity on the whole R

m =
⋃
c∈C G

−1Ic
with the constant μ = minc∈C γc > 0. To this end, we define the scalar functions

ψ1(λ) = ‖x− y‖−2
M h(λx + (1− λ)y),

ψ2(λ) = ‖x− y‖−2
M

(
λh(x) + (1− λ)h(y)

) − μ
2λ(1 − λ), λ ∈ [0, 1],

with some fixed x �= y ∈ R
m. It is sufficient to show ψ1 ≤ ψ2. Obviously, ψ1 is

piecewise quadratic, ψ2 is quadratic, and ψ1(λ) = ψ2(λ) at the boundary λ = 0, 1.
By definition,

ψ′′1 (λ) ≥ min
c∈C

γc = ψ′′2 (λ)

holds for almost all λ ∈ [0, 1]. Now ψ1 ≤ ψ2 follows either from elementary arguments
or from a weak maximum principle (cf. [20, Theorem 9.1]) as applied to ψ1−ψ2.

We are ready to state the basic convergence result of this section.
Theorem 4.1. Assume that S(c) is s.p.d. for all c ∈ C. Then, for arbitrary

initial iterate w0 ∈ R
m, the damped nonsmooth Newton-type method, as obtained by

inserting the search directions

dν = −S−1
ν H(wν), H(wν) = ∇h(wν),(4.16)

with

Sν = S(cν), cν = TCF−1
(
f −BTwν) ,

and step sizes ρν selected according to Proposition 3.1 into the basic algorithm (3.1),
converges linearly to the solution w∗ of (2.8). If (2.8) is nondegenerate in the sense
that

F−1
(
f −BTw∗) ∈ int Ic∗ , c∗ = TCF−1

(
f −BTw∗) ,(4.17)

then the algorithm terminates after a finite number of steps.
Proof. To prove convergence by Theorem 3.1, we have only to show that the

directions dν as defined in (4.16) are gradient-related. Let c ∈ C. Denoting the
norm of the linear mapping S(c) : (Rm, ‖·‖M ) to (Rm, ‖·‖M−1) by Γc and using the
coercivity (4.15), we get〈∇h(w), S(c)−1∇h(w)

〉 ≥ γc ∥∥S(c)−1∇h(w)
∥∥2

M
≥ γc

Γc

∥∥S(c)−1∇h(w)
∥∥
M
‖∇h(w)‖M−1

for all w ∈ R
m. Since C is finite, (3.4) now holds with

cD := min
c∈C

γc
Γc

> 0.
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Utilizing Lemma 4.2, linear convergence immediately follows from Theorem 3.2. If
(2.8) is nondegenerate, then F−1(f−BTwν0) ∈ Ic∗ holds for sufficiently large ν0. This
implies wν0+1 = w∗, because H is affine on all w with F−1(f − BTw)
∈ Ic∗ .

Under the additional assumption rankB = n, we obtain (cf. Proposition 4.2)

Sν = S(cν) ∈ ∂BH(w) ∀ν ∈ N

and, therefore, a nonsmooth Newton method. In order to allow for local superlinear
or even quadratic convergence (cf. [39, 40]), it is essential that ρν → 1 for ν → ∞
which, in general, does not hold for the standard Armijo strategy. Hence, nonsmooth
analogues of well-known affine-invariant damping strategies [16, section 3.4] will be
the subject of future research.

If h is not strongly convex, then S(c) is not invertible for certain c. Therefore,
we now modify S(c) to ensure invertibility.

By symmetry we have kerS(c) = (ranS(c))⊥. We introduce the mapping I(c) :
R
m → R

m by

I(c)|kerS(c) = I|kerS(c), I(c)|ran S(c) = 0,(4.18)

to define

Ŝ(c) = S(c) + I(c), c ∈ C.(4.19)

Observe that the orthogonal subspaces kerS(c) and ranS(c) are invariant with re-
spect to Ŝ(c). Decomposing x, y into their components from kerS(c) and ranS(c),
respectively, we get 〈

Ŝ(c)x, y
〉

= 〈S(c)xran, yran〉+ 〈xker, yker〉

so that Ŝ(c) is s.p.d. Note that Ŝ(c) can be rewritten as

Ŝ(c) = S(c) +
l∑
i=1

kik
T
i

‖ki‖2

with k1, . . . , kl denoting an orthogonal basis of kerS(c). If S(c) is replaced by Ŝ(c),
then nonsmooth Newton steps are carried out on ranSν , i.e., if possible, while simple
gradient steps are performed on kerSν .

Theorem 4.2. For arbitrary initial iterate w0 ∈ R
m, the nonsmooth Newton-like

method, as obtained by inserting the search directions

dν = −Ŝ−1
ν H(wν), H(wν) = ∇h(wν),(4.20)

with

Ŝν = Ŝ(cν), cν = TCF−1
(
f −BTwν) ,

and step sizes ρν selected according to Proposition 3.1 into the basic algorithm (3.1),
converges to the solution w∗ of (2.8). If the problem (2.8) is nondegenerate in the
sense of (4.17) and S(c∗), c∗ = TCF−1(f − BTw∗), is positive definite, then the
algorithm terminates after a finite number of steps.
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Proof. Using the same arguments as in the proof of Theorem 4.1 it can be shown
that the modified search directions dν defined in (4.20) are gradient-related. Hence,
convergence is a consequence of Theorem 3.1. Finite termination also follows by the
reasoning as in the proof of Theorem 4.1.

Remark. In general, one would expect local superlinear convergence of a Newton-
like method. However, straightforward application of this concept makes no sense in
the present, piecewise affine case, because, in a sufficiently small neighborhood, the
algorithms terminate with the exact solution after one step. Further insight could be
obtained by showing that the domain of superlinear convergence is larger than the do-
main of one step termination and, in particular, does not depend on the dimension m.

In order to determine dν = −Ŝ−1
ν H(wν), a linear saddle point problem associated

with the Schur complement matrix Ŝν = Ŝ(cν) has to be solved (see section 5 below).
A sufficiently accurate iterative solution preserves convergence.

Theorem 4.3. For arbitrary initial iterate w0 ∈ R
m, the inexact nonsmooth

Newton-like method, as obtained by inserting search directions d̃ν which satisfy (3.3)
and the accuracy condition (3.16) with dν = −Ŝ−1

ν H(wν) and step sizes ρν selected
according to Proposition 3.1 into the basic algorithm (3.1), converges to the solution
w∗ of (2.8). The iterates converge linearly if h is strongly convex, e.g., for positive
definite C.

Proof. As the directions dν are gradient-related (see the proof of Theorem 4.2
above) the convergence is an immediate consequence of Proposition 3.2. If C is
positive definite, then h is strongly convex. In this case linear convergence follows
from Theorem 3.2.

5. Computational aspects.

5.1. Preconditioned Uzawa methods. Denoting uν := F−1(f − BTwν) the
Newton-like method as introduced in Theorem 4.2 can be interpreted as the precon-
ditioned Uzawa iteration

uν = F−1
(
f −BTwν) ,(5.1a)

wν+1 = wν + ρν Ŝ−1
ν (Buν − Cwν − g)(5.1b)

for the saddle point problem (1.1).
The first substep (5.1a) amounts to the solution of the quadratic obstacle problem

uν = arg min
v∈K

(
1
2 〈Av, v〉 −

〈
f −BTwν , v〉) ,(5.2)

which has been extensively treated in the literature (cf., e.g., [14, 21, 30, 34, 44, 3]).
Inserting the definitions (4.19) and (4.13) of Ŝν and S(cν), the evaluation of the

preconditioned residual

dν = Ŝ−1
ν (Buν − Cwν − g)

in the second substep (5.1b) can be rewritten as the solution of the linear saddle point
problem (

Âcν (BTcν )T

(BTcν ) −(C + I(cν))

)(
ũν

dν

)
=
(

0
g + Cwν −Buν

)
,(5.3)

where, according to (4.3), cν = TCuν identifies the active coefficients of uν. Recall
that Âcν is obtained from A by replacing the ith row and the ith column by the unit
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vector ei if i is active, i.e., ci ∈ {ai, bi}. BTcν is obtained from B by annihilating
the ith column if i is active. Finally, I(cν) has been defined in (4.18). Thus, the
preconditioner Ŝν is approximating the original set-valued operator by essentially
eliminating the actual active coefficients [22]. A sufficiently accurate, iterative solution
of (5.3) preserves convergence of the overall iteration (5.1) (cf. Theorem 4.3). In
particular, multigrid methods have been investigated in [9, 42, 47, 52, 53].

5.2. Inexact evaluation of F −1. The exact solution uν = F−1(f − BTwν)
appears on the right-hand side of the linear saddle point problem (5.3). However, it
turns out that the preconditioned residual can be computed from wν and the active
coefficients cν of uν alone.

Proposition 5.1. For given wν ∈ R
m and cν = TCuν let (ũν , w̃ν) be the solution

of (
Âcν (BTcν )T

(BTcν ) −(C + I(cν))

)(
ũν

w̃ν

)
=
(

Tcνf − TcνAcν

g −Bcν − I(cν)wν
)
.(5.4)

Then

Ŝ−1
ν (Buν − Cwν − g) = w̃ν − wν .

Proof. Let dν = Ŝ−1
ν (Buν − Cwν − g) = −Ŝ−1

ν H(wν). Utilizing the definitions
(2.3) of H , the representation (4.9) of F−1, and the definitions (4.19) and (4.13) of
Ŝν and S(cν), respectively, we get

Ŝν(wν + dν) = Ŝνw
ν −H(wν)

= Ŝνw
ν +BTcν Â−1

cν Tcν

(
f −BTwν −Acν)+Bcν − Cwν − g

= (BTcν )Â−1
cν (Tcνf − TcνAcν)− (g −Bcν − I(cν)wν).

Hence, w̃ν = wν+dν is the second component of the solution of (5.4). This completes
the proof.

Usually, the active coefficients cν of uν can be computed much faster than uν

itself: For nondegenerate problems monotone multigrid methods [30] or even simple
projected Gauß–Seidel relaxations [21, Chapter V] provide cν in a finite number of
steps. Using the a priori estimate (cf., e.g., [28, p. 24])

(5.5) ‖u∗ − uν‖A ≤ ‖B(w∗ − wν)‖A−1

the accuracy of uν can be estimated without actual computation of uν .
In order to determine efficient step sizes ρν by Armijo’s strategy (cf. Proposi-

tion 3.1), we have to evaluate F−1 for each test j = 0, . . . in (3.12). Though it is
possible to develop straightforward inexact variants of existing damping strategies,
e.g., of the Curry–Altmann principle [37, p. 483], an even cheaper heuristic strategy
will be applied in the numerical computations to be reported below: We set ρν = 1 if
the condition

‖dν‖M ≤ σ
∥∥dν−1

∥∥
M

(5.6)

holds with some fixed parameter σ ∈ (0, 1) and compute ρν according to Armijo’s
strategy otherwise. Note that it is not hard to show convergence if (5.6) holds for
dν = Ŝ−1

ν H(wν) and all ν ∈ N.
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6. Numerical results. In the following examples Ω = (0, 1)× (0, 1) denotes the
unit square and the triangulation TJ of Ω is resulting from J uniform refinement steps
as applied to the initial partition T0 consisting of four congruent subtriangles. The
uniform refinement Tj+1 of Tj is obtained by connecting the midpoints of all triangles
T ∈ Tj . Hence, the mesh size of TJ is hJ = 2−J . The sequence T0 ⊂ T1 ⊂ · · · ⊂ TJ
of triangulations gives rise to a nested sequence S0 ⊂ S1 ⊂ · · · ⊂ SJ of finite element
spaces

Sj =
{
v ∈ C (Ω) | v|T is linear ∀T ∈ Tj

} ⊂ H1(Ω), j = 0, . . . , J.

The standard nodal basis of SJ is denoted by λp, p ∈ NJ , where NJ stands for the
set of vertices of TJ . Homogeneous Dirichlet conditions give rise to the subspace

SJ,0 = span{λp | p ∈ NJ,0} ⊂ H1
0 (Ω), NJ,0 = NJ ∩ Ω.

The scalar product in L2(Ω) and its lumped version in SJ are denoted by (·, ·) and
〈·, ·〉, respectively. The linear space of piecewise constant functions

PJ =
{
v ∈ L2(Ω) | v|T is constant ∀T ∈ TJ

} ⊂ L2(Ω)

is spanned by the canonical basis μT , T ∈ TJ , as defined by μT (x) = 1 for x ∈ int T
and μT (x) = 0 otherwise.

6.1. An optimal control problem with control constraints. For given y0 ∈
L4(Ω) and ε > 0, we consider the following optimal control problem [45].

Find y ∈ H1
0 (Ω) and u ∈ L∞(Ω) such that

(6.1) J (y, u) =
∫

Ω

1
2
‖y − y0‖2L2(Ω) +

ε

2
‖u‖2L2(Ω) dx

is minimal over all functions in H1
0 (Ω) and L∞(Ω) subject to the state equation

(6.2) (∇y,∇v) = (u, v) ∀v ∈ H1
0 (Ω)

and the control constraint

(6.3) u ∈ K = {v ∈ L∞(Ω) | |v(x)| ≤ 1 a.e. in Ω}.

Approximating H1
0 (Ω) by SJ,0 and K by

KJ = {v ∈ PJ |
∣∣v|T ∣∣ ≤ 1 ∀T ∈ TJ} ⊂ K,

we obtain a discrete analogue of the continuous problem. For existence and error
estimates, we refer to [1]. We restrict our considerations to this discretization only.
However, the algorithm behaves similar for other discretizations, e.g., with linear finite
elements for the control. After incorporating (6.2) by a Lagrange multiplier w, the
Kuhn–Tucker conditions of the discretized problem can be rewritten in the form (1.1)
with n = |NJ,0|+ |TJ |, m = |TJ |, F = A+ ∂KJ ,

A =
(
DS 0
0 εDP

)
, DS =

( 〈λp, λq〉 )p,q∈NJ,0
, DP =

(
(μT , μT ′)

)
T,T ′∈TJ

,

B =
(
AS −DSP

)
, AS =

((∇λp,∇λq))p,q∈NJ,0
, DSP =

((
λp, μT

))
p∈NJ,0,T∈TJ

,
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Fig. 6.1. Iteration history for ε = 10−4 (left) and ε = 10−8 (right). The filled dots indicate
ρν = 1.

C = 0, and suitable right-hand sides f and g. It is easily checked that the assumptions
(A1’), (A2), and (A3) are fulfilled. Moreover, it turns out that S(c) is s.p.d. ∀c ∈ C.
As a consequence, h must be strongly convex (cf. Lemma 4.2) providing uniqueness
(A4) and linear convergence of the Newton-type iteration to be called Newton as well
as its inexact version (cf. Theorems 4.1 and 4.3). In general, we have rankB = m < n
so that it is not clear from our present analysis that Sν = S(cν) ∈ ∂B(H(wν)) (cf.
Proposition 4.2). As A is diagonal, the quadratic obstacle problems (5.2) arising in
each iteration step can be easily solved by nodal projection. The linear saddle point
problems (5.3) are evaluated by the direct solver UMFPACK [15].

Following [41, Chapter 5], we select the desired state

y0(x) = 0.001

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if x ∈ [0, 0.75]× [0, 0.5],
−10 if x ∈ [0, 0.75]× [0.5, 1],
−2 if x ∈ [0.75, 1]× [0, 0.5],
50 if x ∈ [0.75, 1]× [0.5, 1]

in our numerical computations. The mesh size hJ = 2−J is resulting from J = 7
refinement steps. Finally, we choose the parameters

(6.4) α = 10−2, αν = max
{
1,−α 〈∇h(wν),dν〉

‖dν‖2M

}
, β = 0.5 , δ = 0.5

in the associated Armijo strategy (cf. Proposition 3.1).
Figure 6.1 shows the algebraic error ‖w∗ − wν‖M over the number of iteration

steps for the two problem parameters ε = 10−4 and ε = 10−8, respectively. The
algebraic error is measured in the energy norm induced by the Schur complement
M = BA−1BT providing

‖w∗ − wν‖M =
∥∥BT (w∗ − wν)∥∥

A−1 ≥ ‖u∗ − uν‖A
according to (5.5). The “exact” solution w∗ is precomputed to round-off errors. In
both cases, we observe superlinear convergence and finite termination, even exceeding
the findings of Theorem 4.1. The condition number of (6.1) is increasing for decreasing
regularization parameter ε. This is reflected by the large number of iteration steps for
the small value ε = 10−8. As the solution of the (diagonal!) obstacle problems (5.2)
is almost for free and, in addition, no more than two tests are necessary in Armijo
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Fig. 6.2. Mesh dependence for ε = 10−4 (left) and ε = 10−8 (right).

damping, almost 100% of cpu time is consumed by the solution of the linear saddle
point problems. For the given initial iterates the well-known (undamped) primal-dual
algorithm converges only for ε = 10−4 but not for ε = 10−8 as indicated by Figure 6.1.
On the other hand, in both cases the damping parameter ρν = 1 is accepted before
the correct active set is detected in the last iteration step.

We now investigate the mesh dependence of Newton. The two pictures in Fig-
ure 6.2 show the number of iteration steps required for the solution to round-off errors
over the refinement levels. For both values ε = 10−4 and ε = 10−8, the convergence
speed seems to saturate with increasing refinement. It is interesting that coarser
problems seem to become even harder for small ε. Note that the maximal number of
Armijo tests is also increasing from two to ten on the coarsest mesh.

6.2. A Cahn–Hilliard problem. For given ε > 0, final time T > 0, and initial
condition u0 ∈ K = {v ∈ H1(Ω) | |v| ≤ 1}, we consider the following initial value
problem for the Cahn–Hilliard equation with an obstacle potential [7, 11, 18].

Find u ∈ H1(0, T ; (H1(Ω))′) ∩ L∞(0, T ;H1(Ω)) and w ∈ L2(0, T ;H1(Ω)) with
u(0) = u0 such that u(t) ∈ K and〈

du

dt
, v

〉
H1(Ω)

+
(∇w,∇v) = 0 ∀v ∈ H1(Ω),(6.5a)

ε
(∇u,∇v −∇u)− (u, v − u) ≥ (w, v − u) ∀v ∈ K(6.5b)

hold a.e. for t ∈ (0, T ).
Here 〈·, ·〉H1(Ω) denotes the duality pairing of H1(Ω) and H1(Ω)′. The unknown

functions u and w are called order parameter and chemical potential, respectively. For
existence and uniqueness results we refer to [7]. Semi-implicit Euler discretization in
time and finite elements in space [6, 8] lead to the following discretized problem.

Find ukJ ∈ KJ and wkJ ∈ SJ such that〈
ukJ , v

〉
+ τ

(∇wkJ ,∇v) =
〈
uk−1
J , v

〉 ∀v ∈ SJ ,(6.6a)

ε
(∇ukJ ,∇ (v − ukJ))− 〈wkJ , v − ukJ〉 ≥ 〈uk−1

J , v − ukJ
〉 ∀v ∈ KJ(6.6b)

hold for each k = 1, . . . , N .
We have chosen a uniform time step size τ = T/N , and KJ = K ∩ SJ is the

nodal approximation of K. The initial condition u0
J ∈ KJ is obtained by discrete L2

projection 〈u0
J , v〉 = (u0, v) ∀v ∈ SJ . Existence, uniqueness, and error estimates have

been established in [8]. More precisely, there exists a discrete solution (ukJ , w
k
J) with
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uniquely determined ukJ , k = 1, . . . , N . Moreover, wkJ is also unique, provided that
the condition

(6.7) ∃p ∈ NJ :
∣∣ukJ(p)

∣∣ < 1

is fulfilled. Hence, (A4) is satisfied in this case. If (6.7) is violated, then either
the triangulation TJ is too coarse to resolve the diffuse interface or only one phase
is present; i.e., uJ is constant. For the iterative solution of each spatial problem
(6.6) a projected block Gauß–Seidel scheme [6] and an ADI-type iteration [33] are
widely used. Both algorithms suffer from rapidly deteriorating convergence rates for
increasing refinement.

Exploiting discrete mass conservation 〈ukJ , 1〉 = (u0, 1), each spatial problem (6.6)
takes the form (1.1) with n = m = |NJ |, F = A+ ∂IKJ ,

A = ε
(〈λp, 1〉 〈λq, 1〉+ (∇λp,∇λq))p,q∈NJ

,

B = − (〈λp, λq〉)p,q∈NJ
, C = τ

((∇λp,∇λq))p,q∈NJ
,

and suitable right-hand sides f and g. Assuming (6.7), it is easily checked that the
assumptions (A1’), (A2), and (A3) are satisfied. Observe that A is the sum of a
sparse stiffness matrix and a rank one matrix. We clearly have rankB = n so that
S(c) ∈ ∂BH(w) is a B-subdifferential ofH (cf. Proposition 4.2). However, as C is only
positive semidefinite, the kernel ker S(c) is trivial only if N•c �= N . In the singular
case N•c = N , ker S(c) is spanned by the constant vector k1 = (1, . . . , 1)T .

For our numerical computations, we select ε = 10−4 and the time step τ = ε,
and the mesh size hJ = 2−J is resulting from J = 9 refinement steps. The initial
condition u0 takes the values u0(x) = max{min{2 sin(4πx1) sin(4πx2), 1},−1}.

We compare the nonsmooth Newton-like method (cf. Theorem 4.2) called New-

ton-like, the inexact variant (cf. Theorem 4.3) called Inexact, and the projected
block Gauß–Seidel relaxation [6] called Gauß–Seidel. The actual active coefficients
are computed from the obstacle problem (5.2) by a monotone multigrid method [30].
The linear saddle point problems (5.4) are solved iteratively by a linear multigrid
method with block Gauß–Seidel smoother and canonical restriction and prolongation.
In the exact version Newton-like the solution wν is computed to machine accu-
racy, and we use Armijo damping (cf. Proposition 3.1) with δ = 10−3 and the other
parameters given in (6.4). In the νth outer iteration of Inexact we apply 3ν steps
of the linear multigrid method with V (3, 3) cycle to match the asymptotic accuracy
condition (3.17), and we use heuristic damping (5.6) with σ = 0.5.

Figure 6.3 illustrates the algebraic error ‖w∗ − wν‖M over the computational
work for the first two spatial problems. We choose the discrete H1-norm induced by
M = D + C with D = τ (〈λp, λq〉)p,q∈NJ

. Hence, ‖u∗ − uν‖A ≤ c‖w∗ − wν‖M with a
constant c independent of J (cf. (5.5) and Poincaré’s inequality). The “exact” solu-
tion w∗ is precomputed to round-off errors. For a fair comparison, the computational
work is now measured in work units (not in iteration steps). One work unit is the
cpu time required by one linear multigrid V (3, 3) cycle as applied to the linear saddle
point problem (5.4). The left and the right picture in Figure 6.3 show the iteration
histories for the spatial problems arising from the first and the second time step, re-
spectively. Each marker refers to one iteration step of Newton-like and Inexact,
respectively. As no initial data are available for the chemical potential w, we start
with the bad initial iterate w0 = 0 in the first problem, while the final approxima-
tion from the previous time step provides a reasonable initial iterate for the second
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Fig. 6.3. Iteration histories for good initial iterates (left) and bad initial iterates (right). The
filled dots indicate ρν = 1.

Table 6.1

Distribution of cpu time over the subtasks in each Uzawa step.

Inexact 1 2 3 4 5 6 7 8 9 10 11

# tests 7 3 5 3 3 1 3 1 0 0 0

% Armijo 88.7 85.9 88.1 76.1 74.2 49.2 69.3 44.4 0.1 0.1 0.1
% obstacle 7.2 0.0 −0.0 −0.0 0.0 0.0 0.0 −0.0 0.0 27.2 24.0

% linear 4.1 14.0 11.9 23.8 25.7 50.7 30.7 55.5 99.7 72.6 75.7

work units 106.1 50.1 78.5 49.0 56.4 24.5 40.5 21.8 11.0 13.4 10.9

one. This makes quite a difference. For the bad initial iterate, it takes about 400
work units (about 6 iteration steps) until Newton-like and Inexact finally display
superlinear convergence. Gauß–Seidel is even more efficient in the beginning of
the iteration, but not comparable later. For reasonable initial iterates, superlinear
convergence starts immediately (observe the different scaling of the x-axis). In both
cases, Inexact turns out to be more efficient than Newton-like.

Table 6.1 gives more detailed insight into the performance of the different building
blocks of Inexact as applied to the first problem. The number of tests involved in
Armijo damping is given in the first line. Due to the bad initial iterate, a considerable
number of tests are required in the beginning which later goes down to zero. The
following three lines show the actual percentage of cpu time required by damping
and the approximate solution of the obstacle problem and of the linear saddle point
problem, respectively. These numbers do not sum to 100 because minor computations
are neglected. Observe that the computational work is first dominated by Armijo
damping and later by the increasing number of multigrid sweeps for the linear saddle
point problem. Apart from the initial step, the detection of the active set takes not
more than 5 monotone multigrid sweeps, each of which is cheaper than a multigrid
sweep for the linear saddle point problem. As shown in the last line, the absolute
amount of computational work strongly depends on the number of Armijo tests, which
in turn strongly depends on the (problem dependent!) choice of the parameters.
Hence, the performance of Inexact could be probably improved by more careful
tuning of the damping parameters. Observe that, for bad initial iterates, neither the
exact nor the inexact method converges without damping. On the other hand, for
both versions the damping parameter ρν = 1 is accepted before the correct active
set is detected (cf. Figure 6.3). More efficient affine-invariant damping strategies for
nonsmooth Newton-type algorithms will be the subject of future research.
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Fig. 6.4. Mesh dependence for good initial iterates (left) and bad initial iterates (right).

We now investigate the mesh dependence of Newton-like and Inexact. Fig-
ure 6.4 shows the number of iteration steps required for the solution to round-off
errors over the refinement levels. For the first spatial problem (left), we always start
with wν = 0, while, for the second spatial problem (right), we always start from the
previous time level. In both cases, the overall convergence speed seems to be scarcely
affected by decreasing mesh size. It is astonishing that Inexact sometimes even needs
less iteration steps. Note that the averaged error reduction per work unit of Inexact

is about ρ = 0.6. We observed ρ ≈ 0.16 for the linear multigrid solver as applied to
the linear saddle point problems. Hence, for reasonable initial iterates, the solution
of the discrete Cahn–Hilliard problem by straightforward inexact versions required
about three to four times the cpu time for the solution of related linear saddle point
problems by standard multigrid methods.
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[23] C. Gräser and R. Kornhuber, Adaptive multigrid methods for the Cahn-Hilliard equation
with logarithmic potential, in preparation.
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1. Introduction. In this paper we shall study the C0 finite element method for
Maxwell equations with a nonsmooth solution (i.e., the solution not in H1). Consider
a simply connected nonconvex polyhedral domain Ω ⊂ R3 with a connected Lipschitz
continuous boundary Γ, and let u denote an unknown field and f a given function.
The problem we shall consider is to find u such that

(1.1) curl curlu = f in Ω, u× n = 0 on Γ.

The curl curl operator in (1.1) represents the principal part of a large number of
forms and models of Maxwell equations [15, 20], and problem (1.1) plays a central role
in most mathematical issues associated with Maxwell equations, such as regularity-
singularities (see [26, 23, 13, 27, 29]), solvability-uniqueness (see [12, 39, 24, 2, 34, 14,
35]), and numerical methods (see [13, 25, 41, 19, 7, 49, 43, 50, 51, 48, 5, 44, 37, 4,
18, 8, 42] and references therein). We are interested in using C0 finite elements of
piecewise polynomials for the numerical solution of (1.1) because of the availability of
numerous software packages. Also, C0 elements are highly preferred in practice for all
unknown variables of those problems coupled with Maxwell equations, e.g., for Mag-
netohydrodynamics coupling with Navier–Stokes equations and Maxwell equations,
since velocity and pressure in the Navier–Stokes equations part are approximated by
C0 elements; it is not desirable from the implementation point of view if using non C0

elements to approximate the magnetic field in the Maxwell equations part. Although
(1.1) looks quite simple, its discretization by the C0 finite element method is not
straightforward. This is associated with some main difficulties displayed in computa-
tional electromagnetics: (a) The infinite dimensional null-space (i.e., gradient field) of
the curl operator badly pollutes the finite element solutions (cf. [41, 43]); (b) In the
case where the solution is not in H1, the finite element solution would not converge

∗Received by the editors November 9, 2007; accepted for publication (in revised form) October 29,
2008; published electronically February 25, 2009. This work was supported by NUS academic research
grant R-146-000-064-112.

http://www.siam.org/journals/sinum/47-2/70774.html
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore

117543, Singapore (scidhy@nus.edu.sg, fjia2005@gmail.com, matlinp@nus.edu.sg, scitance@nus.edu.
sg).

1274



L2 PROJECTED FEM METHOD FOR MAXWELL PROBLEM 1275

to the true solution but to some other solution in H1; (c) The indefiniteness of the
resulting linear system would increase difficulty in implementation.

To avoid the problems of gradient field and indefiniteness, a plain regulariza-
tion (PR) method is widely used in practice (see [39, 13, 26, 43]), with a divergence
constraint imposed on u for a given g:

(1.2) divu = g in Ω.

Setting

(1.3) U =
{
v ∈ (L2(Ω)

)3
; curl v ∈ (L2(Ω)

)3
, divv ∈ L2(Ω),v × n|Γ = 0

}
and letting (·, ·) denote the L2-inner product, the variational form of the PR method
consists of finding u ∈ U such that

(1.4) (curlu, curl v) + s (divu, div v) = (f ,v) + s (g, div v) ∀v ∈ U,
where the real number s > 0 is referred to as penalty or regularization parameter and
can be taken as any positive constant [26]. The PR formulation (1.4) is well suited
for C0 finite element discretizations depicted in [21], since (1.4) is a second-order
elliptic problem with its bilinear form coercive on U (cf. [39, 13, 4, 24, 37, 34, 26]).
Consequently, a globallyC0 finite element solution may be produced, and the resulting
linear system can be solved by any of the numerous well-developed direct and iterative
solvers (e.g., conjugate gradient method) [38, 47] for symmetric, positive definite linear
systems.

Nevertheless, the C0 finite element discretization of (1.4) does not give a correct
approximation when the solution is not in H1. What is worse, even refining the
meshes with more elements cannot improve this situation. Readers are referred to
[27, 39, 13, 28, 41] for more details. The low regularity of the solution would occur
near reentrant corners and edges of nonsmooth domains, even if the right-hand sides
are smooth; see [26, 29]. Here we shall try to explain the incorrect convergence based
on our intuitive observation. Such an observation, together with the well-known
interpolation error estimate (1.6) below, essentially motivates the method developed
in this paper. Take s = 1, and let uh denote the C0 finite element solution of (1.4),
with h being the mesh size of the finite element triangulation of Ω. As h tends to zero,
the PR formulation (1.4) would force uh to converge to an element in H1, but not
to the solution u that does not belong to H1, due to the following fact (see [24, 27])
that

(1.5) (curl v, curl z) + (div v, div z) = (� v,� z) for all v, z ∈ U ∩ (H1(Ω)
)3
.

On the other hand, any function u in L2 (even in L1) can be well approximated by
C0 finite elements:

(1.6) ‖u− ũ‖0 ≤ C hr ‖u‖r if u ∈ Hr, r ≥ 0,

where ũ is a C0 interpolation of u, and ‖ · ‖0, ‖ · ‖r stand for L2- and Hr-norm,
respectively, cf. [10, 11, 52, 22, 21, 53, 17]. So, when the solution is not in H1,
there should be no problem in using C0 elements to obtain a correct and good C0

approximation, but we have to modify the PR formulation.
In this respect, there is an existing method: the weighted regularization (WR)

method [25]. The WR method is theoretically and numerically proven to be good in
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obtaining correct C0 approximations. It adds a suitable weight function in front of
the div operator in (1.4), i.e.,

(1.7) (curlu, curl v) + s (ω divu, div v) = (f ,v) + s (ω g, divv) ∀v ∈ Uω,

where ω(x) is a weight function and Uω is a ω-weighted Hilbert space. The weight
function ω is determined according to the geometric singularities of the domain bound-
ary. To approximate the solution the WR method employs a C0 finite element that
is required to contain the gradient of a C1 finite element space. Several C1 elements
[21] exist in two dimensions (2D), but, to our knowledge, in three-dimensional (3D)
case, either few C1 elements are known or C1 elements involve too many degrees of
freedoms and stringent conditions on the finite element triangulation of the domain
[45, 1, 54, 33, 55]. Thus, either it is not easy to find a C0 approximate space containing
the gradient of a 3D C1 element, or such a C0 approximate space is of relatively little
interest. It is also worth mentioning the singular function (SF) method [13, 39, 5, 6].
The SF method is successful for reduced 2D problems [40, 5]. Roughly speaking, the
SF method uses the PR formulation (1.4) but augments the C0 approximate space
by the singular functions associated with reentrant corners and edges, which would
span a space with an infinite dimension and should be precisely calculated in ad-
vance. Based on above reasons, it is rather inconvenient to apply these methods to
3D problems, especially when the geometric singularities of the domain boundary are
not explicitly known. It is also worth mentioning the weighted least-squares method
of a first-order system of (1.1) in [46] with additional independent variables, where
linear elements are used with fewer degrees of freedom.

In this paper, we develop a new C0 finite element method for solving problem
(1.1)–(1.2), based on the spirit of the L2 projection technique involved in the least-
squares minimization of the L2 projected residual of the Stokes first-order system
[32]. In our case here, the PR formulation (1.4) is not a least-squares minimization of
the residual of the curcurl-div second-order system (1.1)–(1.2), so we directly modify
(1.4) by applying element-local L2 projectors in front of both curl and div operators,
with suitable mesh-dependent (element-local) bilinear and linear forms added. In the
C0 linear element (enriched by suitable face- and element-bubbles) an approximation
behaving like (1.6) of the solution being not in H1 to problem (1.1)–(1.2) is obtained.

Specifically, let R̆h and Rh denote two local L2 projectors, respectively, for div
and curl operators, which are, respectively, defined element-by-element onto the dis-
continuous piecewise constant finite element space and the discontinuous piecewise
linear finite element space, and let Sh(·, ·) denote a mesh-dependent (element-local)
bilinear form which is called the stabilization term and corresponds to a right-hand
side mesh-dependent linear form Zh(·), and let Uh ⊂ U ∩ (H1(Ω))3 denote the ap-
proximate space. Then the L2 projection method for solving problem (1.1)–(1.2) is
to find uh ∈ Uh such that

(1.8)
Lh(uh,vh) := (Rh(curluh), Rh(curl vh)) + s

(
R̆h(divuh), R̆h(div vh)

)
+ αSh(uh,vh)

= (f ,vh) + s
(
g, R̆h(div vh)

)
+ αZh(vh) ∀vh ∈ Uh,

where the real number α > 0 is referred to as a stabilization parameter. As the
approximate space, Uh is chosen to be the C0 linear element (enriched with certain
higher degree face- and element-bubble functions; see (3.10)). We show that the
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following coercivity holds:

(1.9) Lh(v,v) ≥ C ‖v‖20 ∀v ∈ Uh,

and obtain the condition number O(h−2) of the resulting linear system. With the
help of the L2 projectors and the face- and element-bubbles in Uh, we construct an
appropriate C0 interpolation ũ ∈ Uh such that the exact solution u being not in H1

and the finite element solution uh ∈ Uh satisfies

(1.10) ‖u− uh‖0 � ‖u− ũ‖0.

Inequalities (1.10) and (1.6) indicate that even if u is not in H1, a correct and good
C0 approximation of u should be expected. In fact, when u and curlu are in Hr,
with a smooth f , we obtain the following desirable error estimate in an energy norm:

(1.11) ‖u− uh‖0 + ‖Rh(curl (u− uh))‖0 +
∥∥∥R̆h(div (u− uh))

∥∥∥
0
≤ C hr.

Before closing this section, we make several remarks. Firstly, the implementation
of the L2 projection method is almost the same as that of the PR method (1.4),
since in the former both additional L2 projections and mesh-dependent terms are
element-locally evaluated. Secondly, in comparison with the WR method (1.7), the
L2 projection method (1.8) does not involve the geometric singularities of the domain
boundary, and the approximate space Uh is not required to contain the gradient of a
C1 element. As a matter of fact, Uh here does not contain the gradient of any known
C1 elements. Thirdly, if the approximate space is chosen to contain the gradient of
some C1 element, then we can drop the L2 projector Rh before the curl operator and
use the following bilinear form:

(1.12) L∗h(u,v) := (curlu, curl v) + s
(
R̆h(divu), R̆h(div v)

)
+ αS∗h(u,v),

where S∗h is a part of the mesh-dependent bilinear form Sh. We note that both
(1.7) and (1.12) may employ the same approximate space containing the gradient of
some C1 element, but (1.12) involves only one element local L2 projector R̆h for the
div operator and an element local stabilization term. No geometric singularities are
explicitly involved in (1.12).

The outline of this paper is as follows. In section 2, we review the Maxwell
equations. In section 3, we describe the local L2 projected C0 finite element method.
Section 4 is devoted to the establishment of coercivity and the condition number. In
section 5 we obtain error bounds in an energy norm. In section 6, numerical tests are
performed to demonstrate the theoretical error bounds, and we make some conclusions
in the last section.

2. Preliminaries. Let Ω ⊂ R3 be a simply connected polyhedron with a con-
nected Lipschitz continuous boundary Γ. Let n denote the outward unit normal
vector to Γ. In addition to the usual Hilbert spaces: H1(Ω) with norm ‖ · ‖1; H1

0 (Ω)
and H1(Ω)/R with norm | · |1; Hr(Ω) with norm ‖ · ‖r for r ∈ R, we introduce some
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of the div and curl Hilbert spaces as follows:

H(div; Ω) =
{
v ∈ (L2(Ω))3, div v ∈ L2(Ω)

}
,

H0(div; Ω) = {v ∈ H(div; Ω);v · n|Γ = 0},
H
(
div0; Ω

)
= {v ∈ H(div; Ω); div v = 0},

H0

(
div0; Ω

)
= H0(div; Ω) ∩H (div0; Ω

)
,

H(curl; Ω) =
{
v ∈ (L2(Ω)

)3
, curl v ∈ (L2(Ω)

)3}
,

H0(curl; Ω) = {v ∈ H(curl; Ω),v × n|Γ = 0},
H
(
curl0; Ω

)
= {v ∈ H(curl; Ω); curl v = 0},

H0

(
curl0; Ω

)
= H0(curl; Ω) ∩H (curl0; Ω

)
,

where these div and curl space are, respectively, equipped with norms: ‖ · ‖0;div and
‖ · ‖0;curl:

‖v‖20;div = ‖v‖20 + ‖divv‖20, ‖v‖20;curl = ‖v‖20 + ‖curl v‖20,
where ‖ · ‖0 stands for the L2-norm. We have for U defined as in (1.3)

U = H(div; Ω) ∩H0(curl; Ω).

Assume that the right-hand sides

f ∈ H (div0; Ω
)

and g ∈ L2(Ω).

The 3D Maxwell problem we shall consider reads as follows:

Find u ∈ U such that

(2.1) curl curlu = f , divu = g in Ω,

(2.2) u× n|Γ = 0.

Remark 2.1. Setting

(2.3) z := curlu,

we see that z satisfies

(2.4) curl curl z = curl f , div z = 0 in Ω,

(2.5) z · n|Γ = 0, curl z × n|Γ = f × n|Γ,
if additionally f ∈ H(curl; Ω).

Remark 2.2. The time-harmonic Maxwell equations in 3D,

curlE − iωμH = 0 and curlH + (iεω − σ)E = J in Ω,
E × n|Γ = 0 and (μH) · n|Γ = 0,

are often considered in practice, where E is the electric field; H is the magnetic field;
ω > 0 is the frequency of the vibrations; ε, μ, σ are, respectively, the permittivity, the
permeability, and the conductivity of the materials occupying Ω; and J ∈ H(div; Ω) is
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the current density. Set f � := iωJ , κ2
� := ω2(ε+ iσ/ω), and g := J/(iω). Eliminating

H we see that E satisfies

curl
(
μ−1 curlE

)− κ2
� E = f �, div (ε+ iσ/ω)E = g in Ω.

Similarly, setting f � := curl (ε + iσ/ω)−1J and κ�
2 := ω2μ, and eliminating E we

see that H satisfies

curl
(
(ε+ iσ/ω)−1 curlH

)− κ�2H = f �, div (μH) = 0 in Ω.

In the case of μ = ε = 1 and σ = 0, we have the following models of Maxwell
equations:

(2.6) curl curlu− ω2u = f , divu = g in Ω,

(2.7) u× n|Γ = 0,

where u stands for the electric field, with f = i ω J ; or

(2.8) curl curlu− ω2u = curl f , divu = 0 in Ω,

(2.9) u · n|Γ = 0, curlu× n|Γ = f × n|Γ,

where u stands for the magnetic field, with f = J .
Since the corner and edge singularities of problem (2.1)–(2.2) (resp., (2.4)–(2.5))

have the same principal parts as those of problem (2.6)–(2.7) (resp., (2.8)–(2.9)), and
since the main difficulty in the C0 finite element discretization of (2.6)–(2.7) (resp.,
(2.8)–(2.9)) is due to the low regularity of the solution (not due to the presence of
ω2), it suffices for us to develop C0 finite element methods for problem (2.1)–(2.2)
(resp., (2.4)–(2.5)), which is in [26] called a Maxwell problem. In other words, the
finite element method for problem (2.1)–(2.2) can be applied to problem (2.6)–(2.7)
straightforwardly, as well as to the Maxwell eigenproblem (see Remark 2.3 below).

Remark 2.3. The 3D Maxwell eigenproblem relating to the source problem (2.6)–
(2.7) is to find u and ω2 such that

(2.10) curl curlu = ω2 u, divu = 0 in Ω, u× n|Γ = 0.

The PR variational formulation of (2.10) is to find u ∈ U and ω2 such that (cf. [27])

(2.11) (curlu, curl v) + s (divu, div v) = ω2 (u,v) ∀v ∈ U.

Note that, if the eigenfunction is not in H1, then (2.11) suffers the same difficulty as
the source problem when discretized by the C0 finite element method.

Now let us recall Green’s formula of integration by parts on Lipschitz domain D:

(div v, φ)0,D + (v,�φ)0,D =
∫
∂ D

v · nφ ∀v ∈ H(div;D), ∀φ ∈ H1(D),

(curl v,φ)0,D − (v, curlφ)0,D =
∫
∂ D

v × n · φ ∀v ∈ H(curl;D), ∀φ ∈ (H1(D)
)3
,

where v ·w =
∑3
i=1 viwi. Note that the last formula holds also for φ ∈ H(curl;D)

(in a suitable weak sense) on Lipschitz polyhedra, cf. [3], with
∫
∂ D

v × n · φ being
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written as
∫
∂ D

v × n · (n × φ× n). Here and in the sequel, (·, ·)0,D denotes the L2

inner product on D, and (·, ·) stands solely for the L2-inner product on Ω.
Before closing this section, we define a notation in 3D. For any vector-valued

function v = (v1, v2, v3) and a scalar function q, we define a notation (v, q)0,D ∈ R3

by

(2.12) (v, q)0,D := ((v1, q)0,D, (v2, q)0,D, (v3, q)0,D) ∈ R3.

For any v ∈ H(curl;D) and φ ∈ H1
0 (D), we have from the above Green’s formula

(2.13)
(curl v, φ)0,D

= (((v2, v3), curl23 φ)0,D, ((v3, v1), curl31 φ)0,D, ((v1, v2), curl12 φ)0,D) ∈ R3,

where curlij φ = (∂j φ,−∂i φ) is the curl of the scalar function φ with respect to
the coordinate components (xi, xj), and we also have for u,v ∈ H(curl;D) and
φ ∈ H1

0 (D)
(2.14)

(curlu, φ)0,D · (curl v, φ)0,D = ((u2, u3), curl23 φ)0,D((v2, v3), curl23 φ)0,D
+ ((u3, u1), curl31 φ)0,D((v3, v1), curl31 φ)0,D
+ ((u1, u2), curl12 φ)0,D((v1, v2), curl12 φ)0,D.

3. The L2 projected C0 finite element method. Let Ch denote the shape-
regular triangulation (see [21, 16, 37]) of Ω̄ into tetrahedra, with diameters hK for
K ∈ Ch bounded by h. Let Pk be the space of polynomials of degree not greater than
k ≥ 0, with k being a nonnegative integer. Set

Ph :=
{
q ∈ L2(Ω); q|K ∈ P1(K), ∀K ∈ Ch

}
,(3.1)

Qh :=
{
q ∈ L2(Ω); q|K ∈ P0(K), ∀K ∈ Ch

}
.(3.2)

LetK ∈ Ch be a tetrahedron with vertices ai, 1 ≤ i ≤ 4, and let Fi be the face opposite
ai. Denote by λi the barycentric coordinate of ai. In fact, P1(K) = span{λi, 1 ≤ i ≤
4} and λi is also called the shape function of P1(K); cf. [21]. Introduce the element-
bubble

(3.3) bK := λ1λ2λ3λ4 ∈ H1
0 (K),

and the face bubbles

(3.4) bF1 = λ2λ3λ4, bF2 = λ1λ3λ4, bF3 = λ1λ2λ4, bF4 = λ1λ2λ3.

We see that these face bubbles satisfy

(3.5) bFi |Fi ∈ H1
0 (Fi), bFi |Fj = 0 for all j 	= i.

Let φFi,j = pFi,j bFi ∈ H1(K), 1 ≤ j ≤ 3, be the shape (basis) functions of P4(K) on
Fi, 1 ≤ i ≤ 4, where

(3.6) P1(Fi) = span{pFi,j|Fi , 1 ≤ j ≤ 3}.
Let

(3.7) P Fi := span{qFi,l, 1 ≤ l ≤ 9} = (span{pFi,j , 1 ≤ j ≤ 3})3 .
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Clearly, we have P Fi |Fi = (P1(Fi))3. Introduce

(3.8)
Φh :=

{
v ∈ (H1(Ω))3;v|K ∈ (span{φFi,j , 1 ≤ j ≤ 3, 1 ≤ i ≤ 4})3 , ∀K ∈ Ch}

=
{
v ∈ (H1(Ω))3;v|K ∈ span{qFi,l bFi , 1 ≤ l ≤ 9, 1 ≤ i ≤ 4}, ∀K ∈ Ch

}
,

(3.9)
Bh :=

{
v ∈ (H1

0 (Ω))3;v|K ∈ (span{bK})3 , ∀K ∈ Ch
}

=
{
v ∈ (H1

0 (Ω))3;v|K ∈ (P0(K))3 bK , ∀K ∈ Ch
}
.

Define the C0 approximate space Uh ⊂ (H1(Ω))3 ∩H0(curl; Ω) ⊂ U as follows:

(3.10) Uh =
(
Ph ∩H1(Ω)

)3 ∩H0(curl; Ω) + Φh ∩H0(curl; Ω) + Bh.

Let θK,l, 1 ≤ l ≤ m = 20, denote the shape function of P3(K). Introduce a local set
of functions

(3.11) ΥK = {θK,l, 1 ≤ l ≤ m = 20},
and define mesh-dependent (elementwisely) bilinear and linear forms as follows:

Sh,div(u,v) :=
∑
K∈Ch

m∑
l=1

(u,� (θK,l bK))0,K (v,� (θK,l bK))0,K

m∑
l=1

‖� (θK,l bK)‖20,K
,(3.12)

Zh,div(g;v) := −
∑
K∈Ch

m∑
l=1

(g, θK,l bK)0,K (v,� (θK,l bK))0,K

m∑
l=1

‖� (θK,l bK)‖20,K
,(3.13)

Sh,curl(u,v) :=
∑
K∈Ch

m∑
l=1

(curlu, θK,l bK)0,K · (curl v, θK,l bK)0,K

m∑
l=1

‖� (θK,l bK)‖20,K
,(3.14)

where the notation in (2.12) was used in (3.14). We finally define R̆h(div v) ∈ Qh for
a given v ∈ H(div; Ω) ∩H(curl; Ω) by

(3.15) R̆h(div v)|K :=
1
|K|

∫
K

div v ∀K ∈ Ch,

where |K| denotes the volume of K, and define Rh(curlv) ∈ (Ph)3 by

(3.16) (Rh(curl v), q)0,K := (curl v, q)0,K ∀q ∈ (P1(K))3, ∀K ∈ Ch.
Setting

(3.17) Sh(u,v) := Sh,div(u,v) + Sh,curl(u,v), Zh(v) := Zh,div(g;v),

and letting s, α be two positive constants, we define the bilinear form on Uh × Uh as
follows:

(3.18) Lh(u,v) := (Rh(curlu), Rh(curl v))+s
(
R̆h(divu), R̆h(div v)

)
+αSh(u,v),
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and define the linear form on Uh as follows:

(3.19) Fh(v) := (f ,v) + s (g, R̆h(div v)) + αZh(v).

The L2 projected C0 finite element method to numerically solve problem (2.1)–
(2.2) reads as follows:

(3.20)
{

Find uh ∈ Uh such that
Lh(uh,v) = Fh(v) ∀v ∈ Uh.

Remark 3.1. The method (3.20) is not consistent in the usual sense [21], i.e.,
with u the exact solution and uh the finite element solution (See Lemma 5.1 for more
details),

(3.21) Lh(u− uh,vh) 	= 0 ∀vh ∈ Uh,

because the term Sh,curl(u,vh) does not correspond to any right-hand side term and

(3.22) (Rh(curlu), Rh(curl vh)) = (curlu, Rh(curl vh)) 	= (f ,vh) ∀vh ∈ Uh,

where u satisfies

(3.23) (curlu, curl v) = (f ,v) ∀v ∈ U.

As we shall see, the estimate of the inconsistency error in (3.22) will be involved with
the profound result on the regular-singular decomposition stated in Proposition 5.2
in the regularity theory for the Maxwell equations.

Remark 3.2. The role of the face- and element-bubbles in Uh is to eliminate the
effects of both curl and div partial derivatives on the solution u with the help of the
local L2 projectors Rh and R̆h (see (5.14) in Lemma 5.5). The local set ΥK , defined
as (3.11) and used in (3.12)–(3.14), ensures that the following element-local inclusion
properties hold:

(3.24) div (v|K) ∈ P3(K), curl (v|K) ∈ (P3(K))3 on K ∀v ∈ Uh, ∀K ∈ Ch,

where v|K is the restriction of v to K ∈ Ch. From (3.24) we have certain coercivity
properties for both Sh,div(u,v) and Sh,curl(u,v) (see Lemma 4.3). The stabilization
term Sh in (3.17) is to ‘remedy’ the loss in the coercivity, where the loss is caused by
the introduction of the L2 projectors in front of both curl and div operators (cf. the
coercive PR form (1.4) without L2 projectors); see (4.27) in proving the coercivity
property stated in Theorem 4.1.

Remark 3.3. In 2D, we just take the approximate space as the P3 element:

(3.25) Uh :=
{
v ∈ (H1(Ω)

)2 ∩H0(curl; Ω);v|K ∈ (P3(K))2, ∀K ∈ Ch
}
,

where H0(curl; Ω) = {v ∈ (L2(Ω))2; curlv ∈ L2(Ω),v · τ |∂ Ω = 0}, with curlv =
∂1v2−∂2v1 and τ being the tangential unit vector to ∂Ω, and the local set of functions

(3.26) ΥK := {θK,l, 1 ≤ l ≤ m = 6},

where θK,l, 1 ≤ l ≤ m = 6, is chosen as the shape function of P2(K), and other
definitions can be easily adjusted.
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Remark 3.4. If the approximate space could contain the gradient of some C1

element (i.e., the continuity of the functions is also imposed on the first-order partial
derivatives across adjacent finite elements), we can drop both the L2 projector Rh
of the curl operator and the mesh-dependent bilinear form Sh,curl(·, ·). Below for
the 2D problem we propose two finite element methods for which the approximate
space, respectively, contains the gradient of the Argyris C1 triangle element and the
Hsieh–Clough–Tocher (HCT) C1 macro triangle element (see [21]). As for 3D, the
approximate space containing the gradient of a C1 element is of relatively little interest
as pointed out in section 1.

The Argyris C1 element consists of polynomials of degree not greater than 5. The
HCT C1 macro-element consists of piecewise P3 polynomials, i.e, let Ti, 1 ≤ i ≤ 3,
denote the subtriangles which are obtained by connecting the barycentric point of the
triangle K ∈ Ch to the three vertices of K, then the HCT functions are P3 on each
Ti. Set

(3.27) Th/2 := ∪K∈Ch
∪3
i=1 Ti.

Define two approximate spaces as follows:

U∗h :=
{
v ∈ (H1(Ω)

)2 ∩H0(curl; Ω);v|K ∈ (P4(K))2, ∀K ∈ Ch
}
,(3.28)

U∗∗h :=
{
v ∈ (H1(Ω)

)2 ∩H0(curl; Ω);v|T ∈ (P2(T ))2, ∀T ∈ Th/2
}
,(3.29)

where U∗h contains the gradient of the Argyris C1 element, and U∗∗h contains the
gradient of the HCT C1 macro element. Corresponding to U∗h , we introduce the local
set of functions

(3.30) Υ∗K := {θK,l, 1 ≤ l ≤ m = 10},

where θK,l, 1 ≤ l ≤ m = 10, is chosen as the shape function of P3(K), and we define

L∗h(u,v) := (curlu, curl v) + s
(
R̆h(divu), R̆h(div v)

)
+ αSh,div(u,v),(3.31)

F∗h(v) := (f ,v) + s
(
g, R̆h(div v)

)
+ αZh,div(g;v),(3.32)

where Sh,div(u,v) and Zh,div(g;v) are, respectively, defined by (3.12) and (3.13) but
those functions θK,l, 1 ≤ l ≤ m, are in Υ∗K given by (3.30), and R̆h is defined by
(3.15). The finite element method is, thus, stated as follows:

(3.33)
{

Find u∗h ∈ U∗h such that
L∗h(u∗h,v) = F∗h(v) ∀v ∈ U∗h .

While corresponding to U∗∗h we introduce the local set of functions for T ∈ Th/2
(3.34) Υ∗∗T := {θT,l; 1 ≤ l ≤ m = 3},

where θT,l, 1 ≤ l ≤ m = 3, is chosen as the shape function of P1(T ), and we define

L∗∗h (u,v) := (curlu, curl v) + s
(
R̆h(divu), R̆h(div v)

)
+ αSh/2,div(u,v),(3.35)

F∗∗h (v) := (f ,v) + s
(
g, R̆h(div v)

)
+ αZh/2,div(g;v),(3.36)
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where, with respect to the subtriangulation Th/2 given by (3.27), Sh/2,div(u,v) and
Zh/2,div(g;v) are defined similarly to those in (3.12) and (3.13) with the choice Υ∗∗T
given by (3.34), and R̆h is still defined in (3.15) with respect to the triangulation Ch.
The finite element method reads as follows:

(3.37)
{

Find u∗∗h ∈ U∗∗h such that
L∗∗h (u∗∗h ,v) = F∗∗h (v) ∀v ∈ U∗∗h .

It can be easily seen that both the methods (3.33) and (3.37) are consistent in
the usual sense, i.e.,

(3.38) L∗h(u− u∗h,vh) = 0 ∀vh ∈ U∗h ,
for example, where u and u∗h are the exact solution and the finite element solution,
respectively. As we shall see, the advantage of the consistency is allowing the right-
hand side f to be less regular; see (5.50) and Remark 5.3.

4. Coercivity and condition number. We first investigate properties of the
mesh dependent bilinear forms.

Lemma 4.1. Under the shape-regular condition, there exist constants C1, C2 and
C3, C4, independent of h and K, such that

C1 h
3
K ≤

m∑
l=1

‖θK,l bK‖20,K ≤ C2 h
3
K ,(4.1)

C3 hK ≤
m∑
l=1

‖�(θK,l bK)‖20,K ≤ C4 hK ,(4.2)

where θK,l ∈ ΥK , 1 ≤ l ≤ m = 20, with ΥK given as in (3.11), and bK is defined by
(3.3).

Proof. Both (4.1) and (4.2) can be easily shown by the scaling argument [37, 21,
17], or by a direct approach as follows. Since bK = λ1 λ2 λ3 λ4, and θK,l is either
1
2 λi (3λi − 1) (3λi − 2) (at vertices), or 9

2 λi λj (3λi − 1), 9
2 λi λj (3λj − 1) (at two-

edge Gaussian nodes), or 27 λi λj λk (at face barycentric nodes), using the following
formula on tetrahedron K∫
K

λn1
1 λn2

2 λn3
3 λn4

4 = |K| (n1)!(n2)!(n3)!(n4)!
(n1 + n2 + n3 + n4 + 3)!

, (for nonnegative integers nj)

under the shape-regular condition [37, 16], it is not difficult to show that (4.1) and
(4.2) hold.

Lemma 4.2. We have

|Sh,div(u,v)| ≤ ‖u‖0 ‖v‖0,(4.3)
|Sh,curl(u,v)| ≤ 3 ‖u‖0 ‖v‖0,(4.4)

0 ≤ Sh,div(v,v) ≤ C
∑
K∈Ch

h2
K ‖divv‖20,K ,(4.5)

0 ≤ Sh,curl(v,v) ≤ C
∑
K∈Ch

h2
K ‖curl v‖20,K .(4.6)

Proof. The left-hand sides of (4.5)–(4.6) are obvious. We only prove (4.3) and the
right-hand side of (4.5) as examples, while (4.4) and the right-hand side of (4.6) can
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be estimated in the same way, only noting that (2.14) will be used in proving (4.4).
We first prove (4.3). From the Cauchy–Schwarz inequality we have∣∣∣∣∣
m∑
l=1

(u,� (θK,l bK))0,K (v,� (θK,l bK))0,K

∣∣∣∣∣ ≤ ‖u‖0,K ‖v‖0,K
m∑
l=1

‖� (θK,l bK)‖20,K ,

and

(4.7)

|Sh,div(u,v)| =

∣∣∣∣∣∣∣∣
∑
K∈Ch

m∑
l=1

(u,� (θK,l bK))0,K (v,� (θK,l bK))0,K

m∑
l=1

‖� (θK,l bK)‖20,K

∣∣∣∣∣∣∣∣
≤
∑
K∈Ch

‖u‖0,K ‖v‖0,K ≤
( ∑
K∈Ch

‖u‖20,K
) 1

2
( ∑
K∈Ch

‖v‖20,K
) 1

2

= ‖u‖0 ‖v‖0.

We next prove the right-hand side of (4.5). Since θK,l bK ∈ H1
0 (K), we have from

Green’s formula of integration by parts

(4.8) (v,� (θK,l bK))0,K = −(div v, θK,l bK)0,K ,

and then
(4.9)

Sh,div(v,v) =
∑
K∈Ch

m∑
l=1

((v,� (θK,l bK))0,K)2

m∑
l=1

‖� (θK,l bK)‖20,K
=
∑
K∈Ch

m∑
l=1

((div v, θK,l bK)0,K)2

m∑
l=1

‖� (θK,l bK)‖20,K
,

where, from the Cauchy–Schwarz inequality and the right-hand side of (4.1),

(4.10)
m∑
l=1

((div v, θK,l bK)0,K)2 ≤ ‖div v‖20,K
m∑
l=1

‖θK,l bK‖20,K ≤ C h3
K ‖divv‖20,K .

Combining (4.9)–(4.10) and the left-hand side of (4.2) obtains the right-hand side of
(4.5).

Now we introduce a mesh-dependent norm on Uh:

(4.11) ‖v‖2h :=
∑
K∈Ch

h2
K ‖divv‖20,K +

∑
K∈Ch

h2
K ‖curlv‖20,K .

Lemma 4.3. For all v ∈ Uh we have

Sh,div(v,v) ≥ C
∑
K∈Ch

h2
K ‖divv‖20,K ,(4.12)

Sh,curl(v,v) ≥ C
∑
K∈Ch

h2
K ‖curl v‖20,K .(4.13)

As a consequence, for Sh(u,v), defined as in (3.17), there holds

(4.14) Sh(v,v) ≥ C ‖v‖2h.
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Proof. We only prove (4.12), while (4.13) can be proven in the same way. Given
any v ∈ Uh. From the element-local inclusion properties in (3.24) we, thus, write on
K

(4.15) div v =
m∑
l=1

cl θK,l,

where cl ∈ R are coefficients, and θK,l ∈ ΥK defined by (3.11). We have

(4.16)
m∑
l=1

((v,� (θK,l bK))0,K)2 =
m∑
l=1

((div v, θK,l bK)0,K)2 =
m∑
l=1

(c′ dl)2 = c′ A2
K c,

where c = (c1, . . . , cm)′ ∈ Rm, dl = (d1,l, . . . , dm,l)′ ∈ Rm, 1 ≤ l ≤ m, with di,l =
(θK,i, θK,l bK)0,K , 1 ≤ i, l ≤ m, and AK is the ‘mass’ matrix with AK = [d1, . . . ,dm] ∈
Rm×m. Clearly, AK is symmetric and positive definite. Let T ∈ Rm×m be the
orthogonal matrix such that AK = T ′ diag (λ1, . . . , λm)T , where 0 < λ1 ≤ · · · ≤ λm
are the eigenvalues of AK . Using the scaling argument, we can easily show

(4.17) λ1 ≥ C h3
K .

Let c̄ = T c = (c̄1, . . . , c̄m)′ ∈ Rm, we have from (4.16) that

(4.18)
m∑
l=1

((v,� (θK,l bK))0,K)2 =
m∑
l=1

(c̄l λl)2.

On the other hand, by a similar argument we have from (4.15) that

(4.19) (div v, div v bK)0,K =
m∑
l=1

(c̄l)2 λl.

We then obtain

(4.20)
m∑
l=1

((v,� (θK,l bK))0,K)2 =
m∑
l=1

(c̄l λl)2 ≥ λ1

m∑
l=1

(c̄l)2 λl = λ1 (div v, div v bK)0,K .

But, using the scaling argument we can have

(4.21) (div v, div v bK)0,K ≥ C (div v, div v)0,K .

Hence, from (4.20), (4.21), and (4.17),

(4.22)
m∑
l=1

((v,� (θK,l bK))0,K)2 ≥ C h3
K ‖div v‖20,K .

Then we have from (4.22) and the right-hand side of (4.2)

(4.23) Sh,div(v,v) =
∑
K∈Ch

m∑
l=1

((v,� (θK,l bK))0,K)2

m∑
l=1

‖� (θK,l bK)‖20,K
≥ C

∑
K∈Ch

h2
K ‖div v‖20,K .

This completes the proof.
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Remark 4.1. With Sh(u,v) defined in (3.17), Lemmas 4.2 and 4.3 lead to

C ‖v‖2h ≤ Sh(v,v) ≤ C′ ‖v‖2h ∀v ∈ Uh.
One might, thus, think that, instead of using Sh(u,v), it would be more convenient
to use the following stabilization term S�h(u,v):

(4.24) S�h(u,v) :=
∑
K∈Ch

h2
K (divu, div v)0,K +

∑
K∈Ch

h2
K (curlu, curl v)0,K .

In that case, however, a correct convergent finite element solution may not be ob-
tained when the exact solution is not in H1. This was confirmed by our numerical
experiments (which is not reported in this paper). Such an incorrect convergence may
be explained as in section 1. In fact, taking hK = h for all K, we have

S�h(u,v) = h2 (divu, div v) + h2 (curlu, curl v) = h2 (�u,�v) ∀u,v ∈ Uh,
which may enforce a convergence of the finite element solution uh to an element in
H1. On the other hand, the Sh(u,v) defined as in (3.17) is suitable for the nonsmooth
solution that does not belong toH1, since no partial differential derivatives are applied
on both u and v (where, to see this point for Sh,curl(u,v), (2.14) was used).

For the analysis of coercivity, below we recall the L2-orthogonal decomposition
and the regular-singular decomposition of vector fields on Lipschitz polyhedra. The
following first two propositions are due to [34], see also [4, 14].

Proposition 4.1. We have the following L2-orthogonal decomposition of vector
fields with respect to the L2 inner product (·, ·):

(
L2(Ω)

)3
= �H1

0 (Ω)⊕ curl (H(curl; Ω) ∩H0

(
div0; Ω)

)
.

Proposition 4.2. For any v ∈ H(curl; Ω) ∩ H0(div0; Ω), or for any v ∈
H0(curl; Ω) ∩H(div0; Ω), we have

‖v‖0 ≤ C ‖curl v‖0.
Proposition 4.3 ([12, 13]). For any ψ ∈ H(curl; Ω) ∩ H0(div; Ω), it can be

written as the following regular-singular decomposition:

ψ = ψ0 + � q,

where ψ0 ∈ H0(div; Ω)∩(H1(Ω))3 is called “regular part” and q ∈ H1(Ω)\R “singular
part,” satisfying ∥∥ψ0

∥∥
1
≤ C {‖ψ‖0 + ‖curlψ‖0 + ‖divψ‖0}.

Theorem 4.1. Let the stabilization parameter α ≥ α0 > 0, with α0 being deter-
mined according to (4.27) below, i.e., α ≥ α0 = C6 as given in (4.28). We have

(4.25) Lh(v,v) ≥ C ‖v‖20 ∀v ∈ Uh.
As a consequence of Lax–Milgram lemma, problem (3.20) has a unique solution.

Proof. Since

(4.26) Lh(v,v) = ‖Rh(curl v)‖20 + s
∥∥∥R̆h(div v)

∥∥∥2

0
+ αSh(v,v),
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we need only prove that there exist positive constants C5 and C6 such that

(4.27) ‖Rh(curl v)‖20 + s
∥∥∥R̆h(div v)

∥∥∥2

0
≥ C5 ‖v‖20 − C6 Sh(v,v) ∀v ∈ Uh.

Then the theorem follows by choosing

(4.28) α ≥ α0 := C6.

Note that s may be chosen in advance as any given positive constant, say s = 1.
From Proposition 4.1 we write v as the following L2-orthogonal decomposition

with respect to the L2 inner product:

(4.29) v = � p+ curlψ,

with p ∈ H1
0 (Ω) and ψ ∈ H(curl; Ω) ∩H0(div0; Ω), satisfying

(4.30) ‖v‖20 = ‖� p‖20 + ‖curlψ‖20.
We also have from Proposition 4.2

(4.31) ‖ψ‖0 ≤ C ‖curlψ‖0.
From Proposition 4.3 we further write ψ as

(4.32) ψ = ψ0 + � q,

where ψ0 ∈ H0(div; Ω) ∩ (H1(Ω))3, � q ∈ H(curl0; Ω) with q ∈ H1(Ω)/R, and we
have from Proposition 4.3 and (4.31)

(4.33)
∥∥ψ0

∥∥
1
≤ C ‖curlψ‖0.

According to two components (p,ψ) in (4.29), we divide the proof of (4.27) into two
steps.

Step 1. We consider p. We take p̃ ∈ Qh as the local L2 projection of p such that
[30, 36]

(4.34) p̃|K =
1
|K|

∫
K

p ∀K ∈ Ch,

(4.35)

( ∑
K∈Ch

h−2
K ‖p− p̃‖20,K

) 1
2

+ ‖p̃‖0 ≤ C ‖p‖1.

Let δ > 0 be a constant to be determined. We have

(4.36)
∥∥∥R̆h(div v)

∥∥∥2

0
=
∥∥∥R̆h(div v) + δ p̃

∥∥∥2

0
− δ2 ‖p̃‖20 − 2 δ

(
R̆h(div v), p̃

)
,

where

(4.37) −δ2 ‖p̃‖20 ≥ −δ2 ‖p‖20 ≥ −δ2C ‖� p‖20,

(4.38)

−2 δ
(
R̆h(div v), p̃

)
= −2 δ

∑
K∈Ch

(div v, p̃)0,K

= 2 δ
∑
K∈Ch

(div v, p− p̃)0,K − 2 δ
∑
K∈Ch

(div v, p)0,K ,
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(4.39) −2 δ
∑
K∈Ch

(div v, p)0,K = 2 δ (v,� p) = 2 δ ‖� p‖20,

(4.40)

2 δ
∑
K∈Ch

(div v, p− p̃)0,K ≥ −2 δ

( ∑
K∈Ch

h2
K ‖divv‖20,K

)1/2 ( ∑
K∈Ch

h−2
K ‖p− p̃‖20,K

)1/2

≥ −2 δ C

( ∑
K∈Ch

h2
K ‖divv‖20,K

) 1
2

‖p‖1

≥ −
∑
K∈Ch

h2
K ‖divv‖20,K − C δ2 ‖� p‖20.

Summarizing (4.36)–(4.40) and choosing

(4.41) 0 < δ < 1/C,

we have

(4.42)
∥∥∥R̆h(div v)

∥∥∥2

0
≥ δ (2− 2C δ) ‖� p‖20 −

∑
K∈Ch

h2
K ‖divv‖20,K .

Step 2. We consider ψ (The argument is similar to that in Step 1, but we still

give the details). We take ψ̃0 ∈ (Ph)3 as the local L2 projection of ψ0 such that

(4.43)
∫
K

ψ̃0 · q =
∫
K

ψ0 · q ∀q ∈ (P1(K))3, ∀K ∈ Ch,

(4.44)

( ∑
K∈Ch

h−2
K

∥∥∥ψ0 − ψ̃0
∥∥∥2

0,K

) 1
2

+
∥∥∥ψ̃0

∥∥∥
0
≤ C ∥∥ψ0

∥∥
1
.

Let δ > 0 be a constant to be determined. We have

(4.45) ‖Rh(curl v)‖20 =
∥∥∥Rh(curl v)− δ ψ̃0

∥∥∥2

0
− δ2

∥∥∥ψ̃0
∥∥∥2

0
+ 2 δ

(
Rh(curl v), ψ̃0

)
,

where

(4.46) −δ2
∥∥∥ψ̃0

∥∥∥2

0
≥ −δ2C ∥∥ψ0

∥∥2

1
≥ −δ2 C ‖curlψ‖20, (by (4.44) and (4.33))

(4.47)

2 δ
(
Rh(curl v), ψ̃0

)
= 2 δ

∑
K∈Ch

(
curl v, ψ̃0

)
0,K

= 2 δ
∑
K∈Ch

(
curl v, ψ̃0 −ψ0

)
0,K

+ 2 δ
∑
K∈Ch

(
curl v,ψ0

)
0,K

,

(4.48)
2 δ

∑
K∈Ch

(
curl v,ψ0

)
0,K

= 2 δ
(
v, curlψ0

)
= 2 δ (v, curlψ) = 2 δ ‖curlψ‖20,
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(4.49) 2 δ
∑
K∈Ch

(
curl v, ψ̃0 −ψ0

)
0,K

≥ −2 δ

( ∑
K∈Ch

h−2
K ‖ψ̃0 −ψ0‖20,K

) 1
2
( ∑
K∈Ch

h2
K ‖curl v‖20,K

) 1
2

≥ −2 δ C ‖ψ0‖1
( ∑
K∈Ch

h2
K ‖curlv‖20,K

) 1
2

≥ −2 δ C ‖curlψ‖0
( ∑
K∈Ch

h2
K ‖curlv‖20,K

)1/2

≥ −
∑
K∈Ch

h2
K ‖curl v‖20,K − C δ2 ‖curlψ‖20.

Summarizing (4.45)–(4.49) and choosing 0 < δ < 1/C, we have

(4.50) ‖Rh(curl v)‖20 ≥ δ(2 − 2C δ) ‖curlψ‖20 −
∑
K∈Ch

h2
K ‖curlv‖20,K .

Finally, from (4.42), (4.50), (4.30), (4.14), and (4.11), we obtain

(4.51)
‖Rh(curl v)‖0 + s

∥∥∥R̆h(div v)
∥∥∥2

0
≥ C5

(‖� p‖20 + ‖curlψ‖20
)− ‖v‖2h

≥ C5 ‖v‖20 − C6 Sh(v,v),
where C5 and C6 are two positive constants independent of h and K. The proof is
finished.

Remark 4.2. In fact, the regularization parameter s and the stabilization param-
eter α can be both taken as any given positive constants, since Lh(·, ·) is nonnegative
no matter what α ≥ 0 and s ≥ 0 are, i.e., for all α, s ∈ [0,+∞),

Lh(v,v) ≥ 0 ∀v ∈ Uh.
For example, denoting by L1,1

h the bilinear form in (3.20) for the choice α = s = 1
and by Lα,s for the choice (4.28) and any s > 0, we still have the coercivity as stated
in (4.25) for L1,1

h , since we have from the above nonnegativeness property that

L1,1
h (v,v) = ‖Rh(curl v)‖20 +

∥∥∥R̆h(div v)
∥∥∥2

0
+ Sh(v,v) ≥ (max(1, α, s))−1 Lα,s(v,v).

On the other hand, a suitable large α will indeed yield smaller errors in their values,
although whatever value of α does not affect the convergence rate, see the numerical
experiments in section 6.

Remark 4.3. Regarding L∗h in (3.31), we can obtain the same coercivity as
in (4.25) by a similar argument, but replacing Step 2 by the following: since v ∈
H0(curl; Ω), we have from (4.29)

(4.52) curlψ ∈ H0(curl; Ω) ∩H (div0; Ω
)
,

and applying Proposition 4.2 with curlψ ∈ H0(curl; Ω) ∩H(div0; Ω) to obtain

(4.53) ‖curl v‖20 = ‖curl curlψ‖20 ≥ C ‖curlψ‖20,
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and both (4.53) and (4.42) yield an estimation similar to (4.27), i.e.,

(4.54) ‖curl v‖20 + s
∥∥∥R̆h(div v)

∥∥∥2

0
≥ C7 ‖v‖20 − C8 Sh,div(v,v),

from which we have the following coercivity for L∗h with the stabilization parameter
α > C8:

(4.55) L∗h(v,v) ≥ C
(
‖v‖20;curl +

∑
K∈Ch

h2
K ‖divv‖20,K

)
∀v ∈ U∗h .

The above argument goes also to the L∗∗h in (3.35) in the same way, only noting
that

(4.56) Sh/2,div(v,v) ≥ C
∑

T∈Th/2

h2
T ‖divv‖20,T ≥ C

∑
K∈Ch

h2
K ‖div v‖20,K

holds for all v ∈ U∗∗h , where (4.56) can be shown by a similar argument used for
Lemma 4.3.

Before closing this section, we give the condition number of the resulting linear
system.

Theorem 4.2. Assume that the meshes are uniform as usual. Then, the condi-
tion number of the resulting linear system of problem (3.20) is of O(h−2).

Proof. Since both Rh and R̆h are local L2 projectors, we have from the inverse
estimates [21] that for all v ∈ Uh

(4.57)
∥∥∥R̆h(div v)

∥∥∥
0
+ ‖Rh(curl v)‖0 ≤ ‖div v‖0 + ‖curl v‖0 ≤ C h−1 ‖v‖0.

On the other hand, from Lemma 4.2 we have for all v ∈ Uh
Sh(v,v) = Sh,div(v,v) + Sh,curl(v,v) ≤ C ‖v‖20.

Hence, we have

(4.58)

Lh(v,v) = ‖Rh(curl v)‖20 + s
∥∥∥R̆h(div v)

∥∥∥2

0
+ αSh(v,v) ≤ C h−2 ‖v‖20 ∀v ∈ Uh,

which, together with the L2 coercivity property in Theorem 4.1 and the symmetry
property of Lh, leads to the result.

5. Error estimates. In this section, we establish in an energy norm the error
bound between the exact solution and the finite element solution. This consists mainly
of how to estimate the inconsistent errors caused by the L2 projector Rh and how
to construct an appropriate interpolant of the exact solution to eliminate the effects
of the first order derivatives from both div and curl operators on the solution that is
not in H1, i.e., “eliminating” the div and curl operators in the context of (5.14) later
on. The former depends on a profound result on the regular-singular decomposition
of the curl of the solution and the latter resorts to the two L2 projectors.

We first give estimates of inconsistency errors from the curl operator.
Lemma 5.1. Let u and uh be the exact solution to problem (2.1)–(2.2) and the

finite element solution to problem (3.20), respectively. We have for all vh ∈ Uh
(5.1) Lh(u − uh,vh) = (curlu, Rh(curl vh))− (curlu, curl vh) + αSh,curl(u,vh).
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Proof. From (3.12), (3.13), and the second equation in (2.1) we clearly have on
Uh

(5.2) Sh,div(u,vh) = Zh,div(g;vh).

On the other hand, we have from (3.15), (3.16), (2.1), (2.2), and (3.23) on Uh

(5.3)
(
R̆h(divu), R̆h(div vh)

)
=
(
divu, R̆h(div vh)

)
=
(
g, R̆h(div vh)

)
,

(5.4)
(Rh(curlu), Rh(curl vh)) = (curlu, Rh(curl vh))

= (curlu, Rh(curl vh))
−(curlu, curl vh) + (f ,vh),

and we obtain (5.1).
Remark 5.1. Regarding (3.33) or (3.37), as pointed out in Remark 3.4, there are

no inconsistent errors, see (3.38).
Lemma 5.2. Let u be the solution of problem (2.1)–(2.2). We have for all vh ∈ Uh

(5.5) |Sh,curl(u,vh)| ≤ C h ‖curlu‖0
( ∑
K∈Ch

h2
K ‖curlvh‖20,K

) 1
2

.

Proof. Equation (5.5) is derived from the same argument as in proving
Lemma 4.2.

Proposition 5.1. For any v ∈ H0(curl; Ω)∩H(div; Ω) or for any v ∈ H(curl; Ω)
∩H0(div; Ω) we have v ∈ (Hr(Ω))3 for some real number r > 1/2, satisfying

‖v‖r ≤ C (‖div v‖0 + ‖curl v‖0).

Lemma 5.3. Let u ∈ U be the solution of problem (2.1)–(2.2). Then, we have
u, curlu ∈ (Hr(Ω))3 for some real number r > 1/2, satisfying

‖u‖r ≤ C (‖f‖0 + ‖g‖0), ‖curlu‖r ≤ C ‖f‖0.

Proof. Since u ∈ U = H(div; Ω) ∩H0(curl; Ω) is the solution of problem (2.1)–
(2.2), then for all v ∈ U

(curlu, curl v) + (divu, divv) = (f ,v) + (g, div v),

which, together with Proposition 5.1, leads to the stated result. Moreover, since
z = curlu satisfies

curl z = f , div z = 0 in Ω, z · n|Γ = 0,

we have from Proposition 5.1 again

‖curlu‖r = ‖z‖r ≤ C ‖curlz‖0 = C ‖f‖0.

Proposition 5.2 ([51, 29, 27, 26, 31]). Additionally, assume that f ∈ H(curl; Ω)
∩(Hr(Ω))3 for some real number r > 1/2. Let z be given as in (2.3), satisfying (2.4)–
(2.5). Then, z can be written into the following regular-singular decomposition

z = zH + �ϕ in Ω,
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where zH ∈ H(curl; Ω) ∩ (H1+r(Ω))3 and ϕ ∈ H1(Ω) ∩H1+r(Ω) satisfy

‖zH‖1+r + ‖ϕ‖1+r ≤ C (‖f‖r + ‖curlf‖0).

Lemma 5.4. Let u be the solution to problem (2.1)–(2.2), with the additional
assumption that f ∈ H(curl; Ω) ∩ (Hr(Ω))3 for some real number r > 1/2. We have
for all vh ∈ Uh

(5.6)

(curlu, Rh(curl vh))− (curlu, curl vh) ≤

C hr (‖f‖r + ‖curl f‖0)
⎛
⎝‖Rh(curl vh)‖0 +

( ∑
K∈Ch

h2
K ‖curl vh‖20,K

) 1
2
⎞
⎠ .

Proof. According to the regular-singular decomposition of z = curlu = zH+�ϕ

in Proposition 5.2, we define c̃urlu ∈ (Ph)3 as the interpolation to curlu by

(5.7) c̃urlu := z̃H + � ϕ̃,

where z̃H ∈ (Ph)3 is the local L2 projection of zH , and ϕ̃ ∈ Ph ∩H1(Ω) is the usual
interpolant of ϕ. We have

(5.8)

( ∑
K∈Ch

h−2
K ‖zH − z̃H‖20,K

)1/2

≤ C hr ‖zH‖1+r, ‖ϕ− ϕ̃‖1 ≤ C hr ‖ϕ‖1+r,

(5.9) ‖zH − z̃H‖0 ≤ C hr ‖zH‖r.

We, thus, have

(5.10)
∥∥∥curlu− c̃urlu

∥∥∥
0
≤ ‖zH − z̃H‖0 + ‖�(ϕ− ϕ̃)‖0 ≤ C hr (‖zH‖r + ‖ϕ‖1+r),

(5.11) (� (ϕ̃− ϕ), curl vh) = 0 ∀vh ∈ Uh.

Since we have from (3.16)

(5.12)
(
c̃urlu, Rh(curl vh)

)
=
(
c̃urlu, curl vh

)
,

we then have from (5.10)–(5.12)

(5.13)

(curlu, Rh(curl vh))−(curlu, curl vh)
=
(
curlu− c̃urlu, Rh(curl vh)

)
+
(
c̃urlu− curlu, curl vh

)
=
(
curlu− c̃urlu, Rh(curl vh)

)
+ (z̃H − zH , curl vh)

≤ C hr (‖zH‖r + ‖ϕ‖1+r) ‖Rh(curl vh)‖0

+ C hr ‖zH‖1+r
( ∑
K∈Ch

h2
K ‖curlvh‖20,K

)1/2

,

which, together with Proposition 5.2, leads to (5.6).
In what follows, we construct an interpolant ũ ∈ Uh of the solution u.
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Lemma 5.5. Let u ∈ U = H(div; Ω) ∩ H0(curl; Ω) be the solution to problem
(2.1)–(2.2). Then, there exists a ũ ∈ Uh defined as in (3.10) such that

(5.14)
∥∥∥R̆h (div (u− ũ))

∥∥∥2

0
= ‖Rh (curl (u− ũ))‖20 = 0,

(5.15) ‖u− ũ‖0 ≤ C hr ‖u‖r.
Proof. From Lemma 5.3 we know that u ∈ (Hr(Ω))3 for some real number

r > 1/2. We first let u0 ∈ (Ph∩H1(Ω))3∩H0(curl; Ω) be such that [10, 11, 22, 52, 53]

(5.16)
∥∥u− u0

∥∥
0

+

( ∑
K∈Ch

∑
F⊂∂ K

hF ‖u− u0‖20,F
)1/2

≤ C hr ‖u‖r, r >
1
2
.

We then define ũ ∈ Uh by the following (5.17)–(5.19):

(5.17) ũ(a) = u0(a) for all vertices a,

(5.18)
∫
Fi

(ũ− u) · qFi,l = 0 ∀qFi,l ∈ P Fi , ∀Fi ∈ ∂ K, ∀K ∈ Ch,

where P Fi is given by (3.7) and ∂ K = {Fi, 1 ≤ i ≤ 4},

(5.19)
∫
K

(ũ− u) = 0.

According to (3.10), on K with boundary ∂ K = {Fi, 1 ≤ i ≤ 4}, we write ũ ∈ Uh as
the following form:

(5.20) ũ = u0 +
4∑
i=1

9∑
l=1

ci,l qFi,l bFi + cK bK =: û+ cK bK ,

where ci,l ∈ R and cK ∈ R3 are all coefficients to be determined. Since the face
bubble and the element bubble take zero at all vertices, (5.17) determines the linear
part of ũ, and (5.18) is to determine the face bubble part because the element bubble
takes zero along all faces, and (5.19) is for the element bubble part. From (5.18) the
coefficients ci,l, 1 ≤ l ≤ 9, are determined uniquely by

(5.21)
9∑
l=1

ci,l

∫
Fi

qFi,l · qFi,k bFi =
∫
Fi

(
u− u0

) · qFi,k 1 ≤ k ≤ 9,

and from (5.19) the coefficient cK is given by

(5.22) cK =

∫
K (u− û)∫
K
bK

.

Using the scaling argument, we can easily obtain

(5.23) ‖u− û‖0,K ≤ C
∥∥u− u0

∥∥
0,K

+ C
∑

F⊂∂ K
h

1
2
F

∥∥u− u0
∥∥

0,F
,

and

(5.24) ‖u− ũ‖0,K ≤ C ‖u− û‖0,K .
From (5.24), (5.23), and (5.16) it follows that (5.15) holds.
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Equation (5.14) holds from the construction of ũ: we have from (3.15) and (5.18)
that

(5.25)

∥∥∥R̆h (div (u− ũ))
∥∥∥2

0
=
∑
K∈Ch

(
div (u− ũ) , R̆h (div (u− ũ))

)
0,K

=
∑
K∈Ch

∑
F⊂∂ K

∫
F

(u− ũ) ·
(
n R̆h(div (u− ũ))

)
= 0,

since n R̆h(div (u− ũ))|F ∈ P F |F . Similarly, we have from (3.16), (5.19), and (5.18)
that

(5.26)
‖Rh(curl (u− ũ))‖20 =

∑
K∈Ch

(curl (u− ũ), Rh(curl (u− ũ)))0,K

=
∑
K∈Ch

(u− ũ, curlRh(curl (u− ũ)))0,K

−
∑
K∈Ch

∑
F⊂∂ K

∫
F

(u− ũ) · (n×Rh(curl (u − ũ))) = 0,

since curlRh(curl (u− ũ))|K ∈ (P0(K))3, and n×Rh(curl (u− ũ))|F ∈ P F |F .
Lemma 5.6. We have on H(curl; Ω) ∩H(div; Ω)

Lh(u,v) ≤ (Lh(u,u))1/2 (Lh(v,v))1/2 .
Proof. Both the symmetry and the coercivity properties of Lh lead to the above

generalized Cauchy–Schwarz inequality.
Setting

(5.27) |||v|||2Lh
:= Lh(v,v),

we introduce an energy norm as follows:

(5.28)
|||v|||20;Lh

:= ‖v‖20 + |||v|||2Lh

= ‖v‖20 + ‖Rh(curl v)‖20 + s
∥∥∥R̆h(div v)

∥∥∥2

0
+ αSh(v,v).

Theorem 5.1. Let u ∈ U be the solution to problem (2.1)–(2.2) with the right-
hand sides f ∈ H(div0; Ω)∩H(curl; Ω)∩ (Hr(Ω))3 for some r > 1/2 and g ∈ L2(Ω),
and let uh ∈ Uh be the solution to the finite element problem (3.20). Then

(5.29) |||u− uh|||0;Lh
≤ C hr (‖f‖0;curl + ‖f‖r + ‖g‖0).

Proof. Let ũ ∈ Uh be constructed as in Lemma 5.5. We have from Lemmas 5.1,
5.2, 5.4, and 5.6 that

|||uh − ũ|||2Lh
= Lh(uh − ũ,uh − ũ)
= Lh(u− ũ,uh − ũ) + Lh(uh − u,uh − ũ)
≤ |||u− ũ|||Lh

|||uh − ũ|||Lh
+ C hr (‖f‖r + ‖curlf‖0) |||uh − ũ|||Lh

≤ C (|||u− ũ|||Lh
+ hr (‖f‖r + ‖curlf‖0)) |||uh − ũ|||Lh

,

that is,

(5.30) |||uh − ũ|||Lh
≤ C (|||u − ũ|||Lh

+ hr (‖f‖r + ‖curl f‖0)),
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where, from Lemma 5.5 and Lemma 4.2,

|||u− ũ|||2Lh
= Lh(u− ũ,u− ũ)

= ‖Rh(curl (u − ũ))‖20 + s
∥∥∥R̆h(div (u− ũ))

∥∥∥2

0
+ αSh,div(u− ũ,u− ũ) + αSh,curl(u − ũ,u− ũ)

= αSh,div(u − ũ,u− ũ) + αSh,curl(u− ũ,u− ũ)
≤ C ‖u− ũ‖20,

that is,

(5.31) |||u− ũ|||Lh
≤ C ‖u− ũ‖0.

Therefore, we have from the L2 coercivity in Theorem 4.1, (5.30), (5.31), and (5.15)

(5.32)

‖u− uh‖0 ≤ ‖u− ũ‖0 + ‖uh − ũ‖0 ≤ ‖u− ũ‖0 + C |||uh − ũ|||Lh

≤ ‖u− ũ‖0 + C (|||u− ũ|||Lh
+ hr (‖f‖r + ‖curl f‖0))

≤ C ‖u− ũ‖0 + C hr (‖f‖r + ‖curl f‖0)
≤ C hr (‖u‖r + ‖f‖r + ‖curlf‖0),

(5.33)
|||u − uh|||Lh

≤ |||u− ũ|||Lh
+ |||ũ− uh|||Lh

≤ C ‖u− ũ‖0 + C hr (‖f‖r + ‖curlf‖0)
≤ C hr (‖u‖r + ‖f‖r + ‖curl f‖0),

but from Lemma 5.3

(5.34) ‖u‖r ≤ C (‖f‖0 + ‖g‖0),

we, therefore, add (5.32) and (5.33) to obtain (5.29).
Remark 5.2. For the finite element method (3.33), since we have no inconsistent

errors, let ũ∗ ∈ U∗h be the interpolant to the solution u of problem (2.1)–(2.2), we
have

(5.35) |||u∗h − ũ∗|||L∗
h
≤ C |||u − ũ∗|||L∗

h
,

following a similar argument as in proving Theorem 5.1, where

(5.36)

|||u− ũ∗|||2L∗
h

= ‖curl (u− ũ∗)‖20 + s
∥∥∥R̆h(div (u− ũ∗))

∥∥∥2

0
+αSh,div(u− ũ∗,u− ũ∗).

We construct the interpolant ũ∗ ∈ U∗h to the solution u in a bit different way from
Lemma 5.5, but in a way similar to (5.7). So, we recall the regular-singular decom-
position for the solution u itself.

Proposition 5.3 ([51, 29, 27, 26, 31]). Let u ∈ U be the solution to problem
(2.1)–(2.2), with the right-hand sides f ∈ H(div0; Ω) and g ∈ L2(Ω). Then, u can be
written as the sum of a regular part and a singular part:

(5.37) u = uH + �ψ,

where

(5.38) uH ∈
(
H1+r(Ω)

)3 ∩H0(curl; Ω), ψ ∈ H1
0 (Ω) ∩H1+r(Ω)
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for some r > 1/2, and

(5.39) ‖uH‖1+r + ‖ψ‖1+r ≤ C (‖f‖0 + ‖g‖0).
We define the interpolant ũ∗ ∈ U∗h to the solution u as follows:

(5.40) ũ∗ := ũH + �ψ̃,

where ũH ∈ U∗h is the interpolant to uH ∈ (H1+r(Ω))3 with r > 1/2 and is constructed
in a similar way as in Lemma 5.5 such that

(5.41)
∥∥∥R̆h(div (uH − ũH))

∥∥∥
0

= 0,

(5.42) ‖uH − ũH‖0 + h |uH − ũH |1 ≤ C h1+r ‖uH‖1+r,
while ψ̃ is the interpolant to ψ ∈ H1

0 (Ω) ∩H1+r(Ω) with r > 1/2 and is constructed
in the Argyris C1 triangle element [21] such that

(5.43)
∫
F

∂n ψ̃ =
∫
F

∂n ψ for all F ∈ ∂ K, for all K ∈ Ch,
(5.44) ‖ψ − ψ̃‖1 ≤ C hr ‖ψ‖1+r.
From (5.43) we have

(5.45)
∫
K

div �
(
ψ − ψ̃

)
= 0,

that is to say, we have

(5.46)
∥∥∥R̆h (div �

(
ψ − ψ̃

))∥∥∥
0

= 0.

The combination of (5.46) and (5.41) results in

(5.47)
∥∥∥R̆h (div

(
u− ũ∗))∥∥∥

0
= 0.

We, therefore, have from the triangle-inequality, (5.35), (5.36), (5.42), (5.44), (5.47),
and Lemma 4.2 that

(5.48)

|||u− u∗h|||L∗
h
≤ |||u− ũ∗|||L∗

h
+ |||u∗h − ũ∗|||L∗

h≤ C |||u− ũ∗|||L∗
h≤ C (‖curl (uH − ũH)‖0 + ‖u− ũ∗‖0)

≤ C hr (‖uH‖1+r + ‖ψ‖1+r),
and from Remark 4.3, (5.35), (5.42), (5.44), and (5.48) that

(5.49)

‖u− u∗h‖0 ≤ ‖u− ũ∗‖0 + ‖ũ∗ − u∗h‖0
≤ C (‖u− ũ∗‖0 + |||ũ∗ − u∗h|||L∗

h
)

≤ C (‖u− ũ∗‖0 + |||u− ũ∗|||L∗
h
)

≤ C hr (‖uH‖1+r + ‖ψ‖1+r).
Finally, from (5.48), (5.49), and (5.39) we have the following error estimate in the
energy norm

(5.50) |||u− u∗h|||0;L∗
h
≤ C hr (‖f‖0 + ‖g‖0).

The above argument goes as well to the finite element method (3.37).
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Remark 5.3. We see that (5.50) involves only the L2 norm ‖f‖0 of the right-hand
side f . So, when the approximate space contains the gradient of some C1 element,
the right-hand side f can be less regular. In general, f is required to be a little
more regular (see (5.29)), since the regular-singular decomposition of the curl of the
solution is used (see Proposition 5.2) in estimating the inconsistent error caused by
the L2 projected curl term.

6. Numerical experiments. In this section we shall report some numerical
results which confirm the theoretical error bound, by considering a 3D source problem
and a 2D eigenproblem.

A 3D source problem. Take the thick L-domain Ω = ([−1, 1]2 \ ([0, 1] ×
[−1, 0]))× [0, 1] ⊂ R3, and consider the Maxwell source problem: Find u such that

curl curlu = f , divu = g in Ω, u× n = 0 on Γ = ∂Ω,

where n is the unit outer normal vector to Γ. We take the exact solution

u = η(x, y, z)�
(
�

2
3 sin

(
2 θ
3

))
= (u1, u2, u3 = 0),

where x = � cos(θ), y = � sin(θ) and z = z, with � being the distance to the reentrant
edge along the z-axis starting from the origin (0, 0, 0) of opening angle 3 π/2, and
η(x, y, z) = (1− x2)(1− y2)z(1− z) is a cut-off function so that u×n = 0 on Γ. The
right-hand sides f and g are obtained by evaluating the equations on the given exact
solution.

We partition Ω into tetrahedra with uniform meshes. We employ the conjugate
gradient method to solve the resulting symmetric and positive definite linear system,
with the stopping tolerance 10−10 and with the null vector as an initial guess. In this
numerical test we have two specific goals: (i) To verify the theoretical convergence rate,
by computing the relative errors in L2 norm using the exact solution u = (u1, u2, u3)
and the finite element solution uh = (u1,h, u2,h, u3,h); (ii) To examine the effect of
the stabilization parameter α, by considering several values of α as follows:

α = 0.1, 1, 1000, 10000.

In addition, we set the penalty/regularization parameter s = 1.
Since the regularity for the u and its curlu is H

2
3−ε for any ε ∈ (0, 1) (f is also

in H
2
3−ε), from the theoretical convergence rate stated in Theorem 5.1 we expect that

a mesh reduction of a factor of two (i.e., the mesh size decreases like h = 1
4 ,

1
8 ,

1
16 , · · · )

should result in an error reduction of 22/3 ≈ 1.586. This is clearly confirmed by
the computed results listed in Tables 1–4. On the other hand, we observe that the
stabilization parameter α does not affect the error reduction ratio (i.e., the ratios in
Tables 1–4 are almost the same), although it affects the sizes of errors in the way that
larger values of α yield smaller values of errors. This may be due to the fact that
suitable larger α would enhance the stability (cf. (4.27)–(4.28)) and, thus, make the
constant in front of the error bound (5.29) smaller. We also observe that the values
of errors are the same for both u1 and u2. This is because u1 and u2 are symmetric
with respect to the O − xyz coordinates system.

1In Tables 1–4 the 3rd row is the L2-norm values of u3,h for different mesh sizes, since u3 = 0.
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Table 1

Relative errors in L2 norm with α = 0.1.

h = 1
4

h = 1
8

h = 1
16

‖u1−u1,h‖0
‖u1‖0

=
‖u2−u2,h‖0

‖u2‖0
5092.13 3177.736 1975.3958

1 ‖ u3 − u3,h ‖0= ‖u3,h‖0 471.240 303.274 190.983

Table 2

Relative errors in L2 norm with α = 1.0.

h = 1
4

h = 1
8

h = 1
16

‖u1−u1,h‖0
‖u1‖0

=
‖u2−u2,h‖0

‖u2‖0
509.238 317.792 197.552

‖ u3 − u3,h ‖0= ‖u3,h‖0 47.1187 30.3241 19.0963

Table 3

Relative errors in L2 norm with α = 1000.0.

h = 1
4

h = 1
8

h = 1
16

‖u1−u1,h‖0
‖u1‖0

=
‖u2−u2,h‖0

‖u2‖0
0.622315 0.400576 0.254468

‖ u3 − u3,h ‖0= ‖u3,h‖0 0.050283 0.033089 0.021106

Table 4

Relative errors in L2 norm with α = 10000.0.

h = 1
4

h = 1
8

h = 1
16

‖u1−u1,h‖0
‖u1‖0

=
‖u2−u2,h‖0

‖u2‖0
0.292675 0.202238 0.153258

‖ u3 − u3,h ‖0= ‖u3,h‖0 0.016049 0.0139586 0.010769

A 2D eigenproblem. As an illustration of the application of the L2 projection
method to Maxwell eigenproblem, we perform the numerical test for a 2D eigenprob-
lem in the L-domain Ω = [−1, 1]2 \ ([0, 1] × [−1, 0]) ⊂ R2: Find eigenvalues ω2 and
eigenfunctions u such that

curl curlu = ω2u, divu = 0 in Ω, u · τ = 0 on Γ = ∂ Ω,

where τ is the unit tangential vector along Γ.
We partition Ω into triangles with uniform meshes. As mentioned in Remark 3.3,

the approximate space is of P3 element. We can set the penalty/regularization pa-
rameter s as any positive constant, say s = 2. Following the computational results in
Table 4 for the source problem, we take the stabilization parameter α as α = 10000.

We consider the benchmark example for the L-domain from the website at

http://www.maths.univ-rennes1.fr/ dauge/benchmax.html,

and take the first two computed eigenvalues therein as true solutions, i.e.,

ω1
2 = 1.47562182408, ω2

2 = 3.53403136678.

Note that the first eigenfunction has a strong singularity and is in H
2
3−ε, and the

second eigenfunction is smooth and belongs to H
4
3−ε for all ε > 0 (see [28]). We would

like to verify the error estimates in the case of eigenproblem: with the application
of the result of [9], we can conclude from Theorem 5.1 that the following theoretical
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Table 5

Relative errors and error reduction ratios of the first eigenvalue.

h = 1
4

h = 1
8

h = 1
16

h = 1
32

h = 1
64

h = 1
128

|ω1
2−ω1,h

2|
|ω12| 0.79882e0 0.48321e0 0.23809e0 0.10345e0 0.42512e − 1 0.17092e − 1

Ratio — 1.65315 2.02953 2.30150 2.43343 2.48725

Table 6

Relative errors and error reduction ratios of the second eigenvalue.

h = 1
4

h = 1
8

h = 1
16

h = 1
32

h = 1
64

h = 1
128

|ω2
2−ω2,h

2|
|ω22| 0.39675e − 1 0.94427e − 2 0.21858e − 2 0.51238e − 3 0.12298e − 3 0.30034e − 4

Ratio — 4.20166 4.32002 4.26597 4.16637 4.09469

convergence rate ∣∣ω1
2 − ω1,h

2
∣∣ ≤ C h2 r with r = 2

3 − ε

holds for the first eigenvalue corresponding to eigenfunction in Hr. Thus, the error
reduction ratio of the first eigenvalue should be about 2

4
3 ≈ 2.519, with a mesh

reduction of factor two. Regarding the second eigenvalue corresponding to a smooth
eigenfunction in H

4
3−ε, for the approximation of the P3 element, an error reduction

ratio would be about 2
8
3 ≈ 6.349 with a mesh reduction of factor two. But, due to the

inconsistent errors caused by both the L2 projected curl term and the mesh-dependent
term Sh,curl, the error reduction ratio is 4 only; i.e., the theoretical convergence rate
from Theorem 5.1 for the second eigenvalue is∣∣ω2

2 − ω2,h
2
∣∣ ≤ C h2.

From the computed error reduction ratios of eigenvalues listed in Tables 5 and 6
we see that the computational ratios are very close to the ones as predicted above.

7. Conclusions. We have proposed the element-local L2 projected C0 finite
element method for solving the Maxwell problem with the nonsmooth solution being
not in H1. The key feature is that some element-local L2 projectors are applied
to both the curl and div operators in the well-known plain regularization variational
formulation. The Maxwell problem under consideration is posed in a simply connected
polyhedron with a connected Lipschitz continuous boundary and has a solution that
may be in Hr with r < 1. We have established the coercivity and the condition
number O(h−2) of the resulting linear system. We have also obtained the desired
error bounds O(hr) in an energy norm for the C0 linear element (enriched by certain
higher degree face- and element-bubble functions), when the solution and its curl are
in Hr (1/2 < r < 1) with a smooth right-hand side. Performed for a 3D source
problem and a 2D eigenproblem, both of which are posed on nonsmooth domains
with reentrant corners and/or edges and have nonsmooth solutions being not in H1,
the numerical experiments have produced good and correct C0 approximations of
nonsmooth solutions and confirmed the theoretical convergence rate obtained.

For this L2 projection method, we do not require that the C0 approximate space
contain the gradient of some C1 element and we do not impose the information of
the geometric singularities of the domain boundary in the finite element variational
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formulation. These make the L2 projection method particularly attractive for Maxwell
equations posed on more complex 3D domains.

In addition, for 2D Maxwell problem we proposed two more L2 projection meth-
ods (only the divergence part involves the element-local L2 projector), where the
C0 approximate space contains the gradient of the Argyris C1 triangle element and
the Hsieh–Clough–Tocher C1 macro-triangle element, respectively. Coercivity is es-
tablished and error estimates for nonsmooth solution being not in H1 are obtained.
These last two methods are consistent and allow less regular right-hand sides. For 3D
Maxwell problem similar methods can be developed in the same routine.

A generalization of the L2 projection method to Maxwell interface problems with
discontinuous inhomogeneous anisotropic materials in a multiply connected nons-
mooth domain (existing reentrant corners and edges) and with mixed boundary con-
ditions is currently being studied and will be reported elsewhere.
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[33] G. Farin, Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design, 3 (1986),

pp. 83–127.
[34] P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic problems in inhomogeneous

anisotropic media with irregular boundary and mixed boundary conditions, Math. Models
Methods Appl. Sci., 7 (1997), pp. 957–991.

[35] P. Fernandes and I. Perugia, Vector potential formulation for magnetostatics and modelling
of permanent magnets, IMA J. Appl. Math., 66 (2001), pp. 293–318.

[36] V. Girault, A local projection operator for quadrilateral finite elements, Math. Comp.,
64(1995), pp. 1421-1431.

[37] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory
and Algorithms, Springer-Verlag, Berlin, 1986.

[38] G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd edition, Johns Hopkins University
Press, Baltimore, MD, 1996.

[39] C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for
Maxwell’s equations, SIAM J. Math. Anal., 27 (1996), pp. 1597–1630.

[40] C. Hazard and S. Lohrengel, A singular field method for Maxwell’s equations: Numerical
aspects for 2D magnetostatics, SIAM J. Numer. Anal., 40 (2003), pp. 1021–1040.

[41] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 2002, pp. 237–
339.

[42] P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for
indefinite time-harmonic Maxwell equations, Numer. Math., 100 (2005), pp. 485–518.

[43] J. M. Jin, The Finite Element Method in Electromagnetics (2nd Edition), John Wiley & Sons,
New York, 2002.

[44] F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue prob-
lem in electromagnetism, Comput. Methods Appl. Mech. Engrg., 64 (1987), pp. 509–521.
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ON THE EXISTENCE OF EXPLICIT hp-FINITE ELEMENT
METHODS USING GAUSS–LOBATTO INTEGRATION ON THE

TRIANGLE∗

B. T. HELENBROOK†

Abstract. Spectral-element simulations on quadrilaterals and hexahedra rely on the Gauss–
Lobatto (GL) integration rule to enable explicit simulations with optimal spatial convergence rates.
In this work, it is proved that a similar integration rule does not exist on triangles. The following
properties of the rule are sought: a (p+1)(p+2)/2 point integration rule capable of exactly integrating
the space given by T (2p − 1) ≡ {xmyn|0 ≤ m, n; m + n ≤ 2p− 1}, where p is an integer; integration
points located at each of the triangle vertices; p − 1 integration points located on each side; and
(p−1)(p−2)/2 integration points located in the interior of the element. The proof hinges on the fact
that the existence of such a rule implies the existence of a nodal basis with an approximate diagonal
mass matrix that can be inverted to obtain exact Galerkin projections of functions in T (p − 1). The
proof shows that vertex functions of a basis having this property exist and are unique, but on a
triangle these functions are not nodal, and therefore the GL rule does not exist. In spite of this, the
existence of the vertex functions indicates that there may be a nonnodal basis that has the above
property. This basis would enable explicit hp-finite element simulations on the triangle with optimal
spatial accuracy. The methodology developed in the paper gives insight into a possible way to find
such a basis.

Key words. triangles, quadrature, integration, Gauss, Lobatto, mass-lumping
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1. Introduction. Gauss–Lobatto (GL) integration [1, p. 888] provides the foun-
dation for spectral element simulations [20]. Not only does it provide a numerical
integration method, but the integration points also define a nodal basis that allows
easy enforcement of continuity constraints at element boundaries and gives an ap-
proximately diagonal mass matrix. This last point enables unsteady simulations that
do not require inversion of a globally coupled mass matrix and yet still obtain opti-
mal spatial convergence rates [20]. These properties are the main reason that spectral
element simulations can efficiently achieve a high order of accuracy.

Although GL integration rules can be defined for segments, quadrilaterals, and
hexahedra [16, p. 143], an equivalent integration rule has not been found for trian-
gles. This is not due to a lack of effort in searching. Much effort has been made to
find optimal interpolation points on the triangle [18, 2, 3, 27, 15] and also to find a
quadrature formula [28, 29, 14, 4, 5, 25, 17]. Cools and coworkers provide an excellent
summary of the current status of quadrature rules on triangles as well as other geome-
tries [9, 8, 10, 7, 6, 19, 11]. Because no completely satisfactory integration rule has
been found, researchers are still experimenting with different techniques for perform-
ing high-order continuous finite element simulations on triangles [23, 24, 12, 30, 21].

In this work, it is proved that there is no GL integration rule for a triangle
that has properties similar to those for segments, quadrilaterals, and hexahedra.
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On quadrilaterals, the tensor-product GL integration rule for the space Q(p) ≡
{xmyn | 0 ≤ m,n;m ≤ p;n ≤ p} has the following properties:

• a dim(Q(p)) = (p + 1)2 point integration rule capable of exactly integrating
the polynomial space Q(2p− 1);
• integration points located at each of the quadrilateral vertices;
• p− 1 integration points located on each quadrilateral side;
• (p− 1)2 integration points located in the interior of the element.

On triangles, the function space typically used is T (p) ≡ {xmyn | 0 ≤ m,n;m+ n ≤ p}
[27]. For this space an integration rule is sought with the following properties:

• a dim(T (p)) = (p + 1)(p + 2)/2 point integration rule capable of exactly
integrating the polynomial space T (2p− 1);
• integration points located at each of the triangle vertices;
• p− 1 integration points located on each side;
• (p− 1)(p− 2)/2 integration points located in the interior of the element.

Theoretical results for polynomial integration formulas on a triangle give a lower
bound for the number of points required to exactly integrate the space T (2p− 1) of
p(p+1)/2+ �p/2�, where the floor symbols � � denote truncation [8]. The rule sought
has more points than the lower bound for all p, but with special constraints on the
positions. Note that in both the quadrilateral case and the triangle case the problem
is overdetermined. On quadrilaterals, there are 4 + 2 × 4(p − 1) + 3 × (p − 1)2 =
3p2 + 2p − 1 degrees of freedom for the positions and weights, and there are 4p2

accuracy constraints. However, this solution exists. On triangles, there are 3 + 2 ×
3(p− 1) + 3× (p− 1)(p− 2)/2 = 3(p2 + p)/2 degrees of freedom for the positions and
weights and 2p2 + p accuracy constraints.

The basic steps of the proof are given in one dimension as a demonstration and
then subsequently applied to triangles. A positive result of the proof is that vertex
modes are found that allow “diagonal projection.” This is defined to mean that a
diagonal mass matrix can be inverted to obtain exact Galerkin projections of functions
in T (p− 1). A full basis that allows diagonal projection will enable explicit-unsteady,
continuous finite element simulations on the triangle with optimal spatial accuracy.

2. One-dimensional integration. The first part of the proof is to establish
some basic features of the GL integration rule on the domain x ∈ [−1, 1]. It is of
course well known that the GL integration rule exists on this domain, but nonetheless
it is instructive to go through the process in one dimension before applying it to
triangles. The GL integration rule in one dimension is defined by

(2.1)
∫ 1

−1

f(x)dx ≈
n∑
i=1

wif(xi),

where f(x) is the function to be integrated, n is the number of points in the GL
rule, wi is the integration weight associated with each integration point, and xi is the
location of the integration point. The first and last integration points are constrained
to be at the edge of the domain, x1 = −1 and xn = 1. The GL integration rule has
the following properties:

• an n-point formula integrates polynomials of order 2n− 3;
• the locations of the integration points are the roots of the derivative of the

(n− 1)st Legendre polynomials, P ′n−1(x);
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• the weights are given by

(2.2) wi =
2

n(n− 1) [Pn−1(xi)]
2 .

A (p + 1)-point GL integration rule can be used to generate an order p nodal
polynomial basis. This basis is defined by

φi(x) =
p+1∏

j=1,j �=i

x− xj
xi − xj , i ∈ [1, p+ 1],

where φi is the ith function of the basis vector. φi(x) is zero at all of the GL integration
points except the ith point where it has the value 1, i.e., φi(xj) = δi,j , where δi,j is the
Kronecker delta function. The basis φ is referred to as the Gauss–Lobatto–Lagrange
(GLL) basis. It spans P(p), which is the space of polynomials of degree p.

The standard method of projecting a function onto this basis is defined as

(2.3)
∫

Ω

φφT �udΩ =
∫

Ω

φf(x)dΩ,

where Ω is the domain [−1, 1]. This equation determines the coefficient vector, �u such
that φT �u approximates f(x). The matrix

∫
Ω φφ

T dΩ is typically called the mass matrix,
M . M is diagonal if the basis functions are orthogonal (Legendre polynomials). The
above equation gives an exact representation of f(x) if f(x) is contained in the space
spanned by φ.

The combination of the (p+ 1)-point GL integration rule and the order p nodal
basis leads to an approximate orthogonality property. If∫

Ω

φjφkdΩ

is approximated as

p+1∑
i=1

wiφj(xi)φk(xi),

this becomes
p+1∑
i=1

wiδj,iδk,i = δj,kwj .

This shows that the basis is orthogonal when integrated with the GL integration rule.
Because the GL integration is accurate only for polynomials of order 2p − 1, and
the integrand is of order 2p, this is not equivalent to showing that the basis itself is
orthogonal.

Theorem 2.1. The approximate orthogonality property of the GLL basis guaran-
tees the existence of a diagonal projection operation that gives an exact representation
of functions in P(p− 1). The diagonal projection operation is defined as

(2.4) D�u =
∫

Ω

φf(x)dΩ,

where D is a diagonal matrix.
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Proof. Let an entry of the matrix D be defined by

(2.5) dj,k =
p+1∑
i=1

wiφj(xi)φk(xi) = δj,kwj .

Because of the approximate orthogonality property, D is diagonal. Furthermore, all
of the weights of the GL integration rule are nonzero, so D is invertible. Thus there
is a unique solution to (2.4). It remains to show that the exact solution satisfies (2.4)
when f(x) is a polynomial of order p− 1. If f(x) is a polynomial of order p − 1 and
the inversion is exact, then φT �u is also a polynomial of order p − 1. Furthermore,
(2.4), with dj,k defined as in (2.5), is an approximation to (2.3). When φT �u is of order
p− 1, the integrand on the left-hand side of (2.3) is of order 2p− 1. Because the GL
integration rule is exact for polynomials of order 2p − 1, (2.4) and (2.5) are exact
approximations to (2.3). Since the exact solution satisfies (2.3), it must also satisfy
(2.4).

The above shows that a GL integration rule guarantees the existence of a nodal
basis that allows exact “diagonal projection” for functions of degree p − 1. Next, it
is shown that this basis can be derived based on accuracy considerations. First, the
nodal basis is divided into interior modes and vertex modes. The interior modes are
zero at element boundaries and can be constructed from the space

I(p) ≡ 1− x2

4
P(p− 2).

This is the space of all polynomials of degree ≤ p that are zero at both −1 and 1.
Because the GL integration rule must have an integration point at −1 and 1, the

nodal basis will always have a left and right vertex mode. The left vertex mode can
be defined as a polynomial that is 1 at x = −1 and 0 at x = 1. Polynomials of degree
p that satisfy these constraints can be constructed as

1− x
2

+ i(x) with i(x) ∈ I(p).

The function 1−x
2 and all of the interior modes have a root at x = 1, and therefore the

left vertex mode will always have a root at x = 1. Similar results hold for the right
vertex mode.

Theorem 2.2. There is one and only one left vertex mode, φ1, that allows exact
diagonal projection of polynomials of order p− 1.

Proof. Let the function to be projected, f(x), be described as

(2.6) f(x) = a1
1− x

2
+

1 + x

2

p∑
i=2

aix
i−2,

and let the left vertex function of the basis vector, φ1, be described as

(2.7) φ1(x) =
1− x

2
+

1− x2

4

p−1∑
i=1

bix
i−1.

Let the projection be represented as φT (x)�u. The first component of (2.4) is given by

d1,1u1 =
∫ 1

−1

φ1(x)f(x)dx,
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which is equivalent to

d1,1u1 =
∫ 1

−1

[
1− x

2
+

1− x2

4

p−1∑
i=1

bix
i−1

] [
a1

1− x
2

+
1 + x

2

p∑
i=2

aix
i−2

]
dx.

This equation must be true for all �a. Equating φT (−1)�u to f(−1) and using the
fact that the left vertex function is the only nonzero basis function at x = −1 gives
u1 = a1. a1 then gives

d1,1 =
∫ 1

−1

[
1− x

2
+

1− x2

4

p−1∑
i=1

bix
i−1

]
1− x

2
dx,

which determines d1,1. Each of the remaining a’s give a row of the equations

(2.8)
∫ 1

−1

⎡
⎢⎢⎢⎣

1
x
...

xp−2

⎤
⎥⎥⎥⎦ 1 + x

2
1− x2

4
[
1, x, . . . , xp−2

]
�b dx = −

∫ 1

−1

1− x2

4

⎡
⎢⎢⎢⎣

1
x
...

xp−2

⎤
⎥⎥⎥⎦ dx.

The above equations are a system of p − 1 equations in the p − 1 unknowns of �b. It
has a unique solution if the matrix on the left-hand side has a nonzero determinant.
This matrix is symmetric because any entry can be represented as

ci,j =
∫ 1

−1

(
1 + x

2

)(
1− x2

4

)
xi−1xj−1 dx.

It is also positive definite because

�bT
∫ 1

−1

(
1 + x

2

)(
1− x2

4

)
⎡
⎢⎢⎢⎣

1
x
...

xp−2

⎤
⎥⎥⎥⎦
[
1, x, . . . , xp−2

]
dx �b

=
∫ 1

−1

(
1 + x

2

)(
1− x2

4

)
b(x)2dx,

where b(x) =
[
1, x, . . . , xp−2

]
�b. The integrand is always positive over the domain

[−1, 1]. Because it is symmetric and positive definite, it is invertible, which proves
that the left vertex mode is unique. Similar results hold for the right vertex
mode.

The next theorem is similar to a more general theorem given by Mysovskikh [22]
for a multidimensional Gauss integration rule that states that “a necessary condition
for the existence of a quadrature formula of degree 2k+ 1 with N = dimP d

k points is
that the basic orthogonal polynomials of degree k + 1 have N common zeros” where
P d
k is the space of polynomials in dimension d with total degree less than k. (See [8,

Theorem 2].) The following theorem is more useful for analyzing the existence of GL
integration rules.

Theorem 2.3. If the left and right vertex modes satisfying the diagonal projection
property do not have p−1 roots at coincident locations in (−1, 1), then a GL integration
rule does not exist.
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Proof. Assume
1. a GL integration rule exists, and
2. a left and right vertex function exists satisfying the diagonal projection prop-

erty but with roots at different locations in (−1, 1).
By assumption 1 and Theorem 2.1, there exists a left and right vertex function satis-
fying the diagonal projection property. Furthermore, these functions are from a nodal
basis and thus share the same roots in (−1, 1). Because the left and right vertex func-
tions are unique by Theorem 2.2, this contradicts item 2 above. Thus assumption 2
excludes the existence of the GL integration rule.

To verify whether a GL integration rule can exist or not, the location of the roots
of the left (and right) vertex mode must be found using (2.8). By relaxing the form
specified for the left vertex mode, one can obtain an explicit expression, which then
makes it easy to determine the location of the roots. Instead of assuming the form
given by (2.7), the following form is used:

(2.9) φ1(x) =
1− x

2
φ̂1(x),

where φ̂1(x) ∈ P(p− 1). This enforces the constraint that the left vertex mode have a
root at x = 1, but does not constrain the value at −1. Following the same procedure
as used to prove Theorem 2.2, φT (−1)�u is equated to f(−1), giving u1φ̂1(−1) = a1.
Plugging (2.6) and (2.9) into (2.4) gives equations that must be true for all �a. As
before, the equation from a1 determines d1,1. The remaining equations can be written
as

(2.10)
∫ 1

−1

1− x2

4

⎡
⎢⎢⎢⎣

1
x
...

xp−2

⎤
⎥⎥⎥⎦ φ̂1 dx = 0.

This shows that the function φ̂1 must be orthogonal to P(p− 2) with respect to the
weighting 1−x2

4 . The Jacobi polynomials satisfy

∫ 1

−1

P (α,β)
m P (α,β)

n (1− x)α(1 + x)β = δm,n.

Because the space P(p−2) can be represented using the Jacobi polynomials P (1,1)
n (x)

for n ∈ [0, p− 2], the polynomial P (1,1)
p−1 (x) will satisfy (2.10). The left vertex function

can therefore be represented as 1−x
2 P

(1,1)
p−1 (x). Following the same procedure for the

right vertex function shows that it can be represented as 1+x
2 P

(1,1)
p−1 (x). The roots

of both polynomials in (−1, 1) are determined by P
(1,1)
p−1 (x) and thus have the same

locations. Not surprising, this shows that a GL integration rule may exist in one
dimension. Based on the already known expression for the locations of the GL points,
it also shows that P ′p(x) = P

(1,1)
p−1 (x).

3. Triangles. In this section, the same basic steps are used to show that a GL
integration rule does not exist on triangles. First, it is shown that the existence of a GL
integration rule with the properties defined in the introduction implies the existence
of a nodal basis for the space T (p) that has a diagonal projection operation that is
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exact for functions in the space T (p − 1). It is then shown that the basis satisfying
this property is unique and not nodal, proving that the GL integration rule does not
exist.

Before beginning, a standard triangle on which to perform the operations is de-
fined by {r, s | − 1 ≤ r ≤ 1,−1 ≤ s ≤ r}, as shown in Figure 1. Following Dubiner
[13], we introduce coordinates ξ = −1 + 2(1 + r)/(1− s) and η = s, which are shown
on the figure as well. In this coordinate system, the standard triangle is defined by
−1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1. Integration over the standard element is given by

∫ 1

−1

∫ r

−1

f(r, s)dsdr =
∫ 1

−1

∫ 1

−1

f(ξ, η)
1− η

2
dηdξ

in these coordinate systems.

s

r

-1-1
-1-1 1 1

11

η

ξ

Fig. 1. Standard triangle and coordinate systems.

As in one dimension, it is assumed that the GL integration rule has the form

∫ 1

−1

∫ r

−1

f(r, s)dsdr ≈
N(p)∑
i=1

wif(ri, si),

where f(r, s) is the function to be integrated, N(p) ≡ dim(T (p)) = (p+1)(p+2)/2 is
the number of points in the GL rule, and wi is the weight associated with the point
located at ri, si. Three of the points are required to be at the triangle vertices, r, s =
(−1,−1), (−1,1), and (1,−1), and p − 1 points are required to be along each side of
the element, r = −1, s = −1, and r = s. The remaining N(p− 3) = (p− 1)(p− 2)/2
points are assumed to be in the interior of the element. A formula is sought that can
integrate polynomials in the space T (2p− 1) exactly.

Some basic observations about the space T (p) are first given. This space can be
decomposed into interior, side, and vertex modes. Interior modes are zero on all sides
of the triangle and can be constructed from the space

I(p) ≡ (r + 1)(s+ 1)(r + s)T (p− 3).

This is a general space for the interior modes, and it contains all polynomials in T (p)
that have three component curves defined by r = −1, s = −1, and r = −s. (See [26,
section 1.8] for a definition of component curves.) In some cases, it will be convenient
to have an explicit representation of the interior space. In this case, the interior modes
of the modified Dubiner basis [13] will be used. These are described in ξ, η coordinates
as

φint,m,n =
(

1 + ξ

2

)(
1− ξ

2

)
P 2,2
m (ξ)

(
1− η

2

)m+2(1 + η

2

)
P 2m+5,2
n (η),
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where 0 ≤ m < p−2, 0 ≤ n < p−2−m. In some cases, a one-dimensional numbering
of the interior modes will be needed, in which case φint,m,n will be replaced by φint,j ,
where j = N(m+ n− 1) + n+ 1.

There are three distinct sets of side modes. The sides are numbered as shown in
Figure 2, with side 1 being opposite to vertex 1. General spaces for constructing the
side modes are

S1(p) ≡ (r + 1)(r + s)T (p− 2),

S2(p) ≡ (r + 1)(s+ 1)T (p− 2),

S3(p) ≡ (s+ 1)(r + s)T (p− 2).

v1

v2 v3
s1

s2s3

Fig. 2. Numbering of the vertices and sides of the triangle.

The side modes can be constructed from p− 1 modes that are nonzero along the
side and any linear combination of interior modes. Thus, each of these spaces includes
the interior space as a subset. For each side, the form of the p− 1 side modes in the
modified Dubiner basis is given by

φs1,m =
(

1 + ξ

2

)(
1− ξ

2

)
P 2,2
m (ξ)

(
1− η

2

)m+2

,

φs2,m =
(

1 + ξ

2

)(
1− η

2

)(
1 + η

2

)
P 2,2
m (η),

φs3,m = (−1)m
(

1− ξ
2

)(
1− η

2

)(
1 + η

2

)
P 2,2
m (η),

where (0 ≤ m < p− 1).
Vertex modes are constrained to be one at one vertex and zero along the opposing

side. General spaces for obtaining vertex modes are given by

V1 = (1 + s)T (p− 1),

V2 = (r + s)T (p− 1),

V3 = (1 + r)T (p− 1).

Vertex modes can be constructed using a vertex function and any combination of
modes from the two adjacent sides as well as interior modes. Thus, the vertex 1 space,
for example, contains the S2, S3, and I spaces as a subset. In the modified Dubiner
basis, the three vertex modes are linear functions that are one at one vertex and zero
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along the opposing side:

φv1 =
(

1 + η

2

)
,

φv2 =
(

1− ξ
2

)(
1− η

2

)
,

φv3 =
(

1 + ξ

2

)(
1− η

2

)
.

The vertex, side, and interior modes of the modified Dubiner basis are assembled into
a single basis vector, �φ, by listing first the three vertex modes, then the side 1 modes,
the side 2 modes, the side 3 modes, and lastly the interior modes. To distinguish
different basis orders, the notation �φp is used.

As in one dimension, the first step is to show that the existence of a GL integration
rule guarantees the existence of a nodal basis that allows exact diagonal projection
for functions in T (p− 1). The following theorem is slightly more difficult to prove in
two dimensions.

Theorem 3.1. The existence of a GL integration rule on the triangle guarantees
the existence of a nodal basis on the triangle.

Proof. If a function in T (p), say �φT�a, is to exactly reproduce the values of a
function u(r, s) at the GL points, the following must be true:

(3.1)
N(p)∑
j=1

aj φj(rk, sk) = u(rk, sk) ∀k ∈ [1, N(p)].

This can be written more compactly as

P�a = �u,

where P is an N(p)×N(p) square matrix with entries given by

pj,k = φj(rk, sk),

and �u is a column vector containing the values of u(r, s) at each GL point. To find
the ith mode of the nodal basis, ψi, u(rk, sk) is set to δi,k. If P is invertible, then the
nodal basis is uniquely determined. This is in agreement with Theorem 3.7-3 in [26]
which proves a similar result and then goes on to investigate the properties of these
functions.

Now assume P is singular. In this case, there are either an infinite number of
solutions to (3.1) or no solutions. If �u is chosen to be evaluated using a function in
T (p), then there is certainly a function in T (p) that can reproduce these values in
this particular case. This shows that there is at least one solution. To prove that this
solution is unique, assume that there are two distinct functions, u1 and u2, in T (p)
that produce the same values on the GL points. Let these functions be represented
using the modified Dubiner basis. Because there is a GL point located at each vertex,
the coefficients of the vertex modes for both functions must be identical. Furthermore,
because there are p− 1 GL points on each side, the coefficients of the side modes are
also uniquely determined. u1 and u2 can therefore differ only in the coefficients of
the interior modes. However, the GL integration rule integrates all polynomials in
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T (2p − 1) exactly, and both functions are assumed to have the same values on the
Gauss points. Therefore,

∫ 1

−1

∫ r

−1

�φp−3u1dsdr =
∫ 1

−1

∫ r

−1

�φp−3u2dsdr.

This actually holds for �φp−1, but the additional constraints are not necessary for the
proof. u1 and u2 have the same side and vertex modes, so they can be eliminated from
both sides of the equation. The interior space of functions can be represented as

I(p) = span
[
(1 + s)(1 + r)(r + s)�φp−3

]
.

In the same way that showed that (2.8) is symmetric positive definite, it can be shown
that the above equation results in a symmetric positive definite matrix. u1 and u2

must therefore be identical. Since there is a unique solution, then P is not singular
and the nodal basis is uniquely determined.

Given the nodal basis and the GL integration rule, Theorem 2.1 can be extended
to apply to triangles with no modification. This shows that if a GL integration rule
exists, there is a nodal basis, and there is an exact diagonal projection operation for
functions in T (p− 1). Following along with the one dimension logic, the next step is
to prove the following theorem.

Theorem 3.2. The three triangle vertex modes that allow exact diagonal projec-
tion of functions from T (p− 1) are unique.

Proof. Let the function to be projected, f(r, s), be contained in T (p − 1) and
described as

f(r, s) = �φTp−1�a,

and let the projected function be represented by

u(r, s) = �ψTp �u,

where ψ is the basis allowing diagonal projection. Let the first vertex mode, ψ1, be
described using the modified Dubiner basis as (1 + s)�φTp−1

�b. Since ψ1 is assumed to
be a vertex mode, b1 is not zero. The mode can be scaled by an arbitrary constant, so
b1 can be constrained to be 1. Because u(r, s) must equal f(r, s) at the vertex point,
u1 is then equal to a1. Diagonal projection requires that

d1,1u1 = d1,1a1 =
∫

Ω

(1 + s)�φTp−1
�b�φTp−1�adrds

hold for all �a. This again results in a set of symmetric positive definite matrices
for the coefficients from b2 to bN(p−1). To see this, the first component from the
vectors �b and �a is explicitly extracted and then the remaining part of the vectors is
represented as �b/1 = b2, . . . , bN(p−1). In the following, all subscripts of /1 indicate the
vector without the first component. The constraint corresponding to a1 determines
the diagonal projection constant d1,1. The remaining constraints are given by

(3.2)
∫

Ω

(1 + s)�φTp−1,/1
�b/1�φ

T
p−1,/1�a/1drds = −

∫
Ω

(1 + s)2

2
b1�φ

T
p−1,/1�a/1 dr ds.
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These are N(p− 1)− 1 equations in N(p− 1)− 1 unknowns (b1 is set to one). That
the matrix is positive definite can be seen by first letting �b/1 = �a/1 and then defining
g(r, s) as �φTp−1,/1�a/1. This results in

∫
Ω

(1 + s)(g(r, s))2drds,

which is positive over the triangle. Thus the matrix is positive definite, and the vertex
mode that allows diagonal projection is unique.

Theorem 3.3. If the zero curves of the three vertex modes do not coincide at
p − 1 locations along each side of the triangle, then a GL integration rule does not
exist.

Proof. Assume
1. a GL integration rule exists, and
2. vertex functions exist satisfying the diagonal projection property, but the zero

curves of these functions do not intersect at p− 1 locations along any side of
the triangle.

By assumption 1 and Theorem 3.1, there exist vertex functions satisfying the diagonal
projection property. Furthermore, these functions are from a nodal basis, and there
are p − 1 nodes along each side. This implies that all three functions are zero at
p − 1 locations on each triangle side. Because the vertex functions are unique by
Theorem 3.2, this contradicts item 2 above. Thus assumption 2 excludes the existence
of the GL integration rule.

The final step is to determine analytic expressions for the vertex functions. The
easiest way to find the vertex functions is to simply invert (3.2) numerically. This result
was used as a guide to determine an analytic description of the vertex functions. The
analytic expression can be found most easily using ξ, η coordinates on the triangle.
Treating b1 as an unknown and letting σ = �φTp−1

�b ∈ T (p− 1), (3.2) can be written as

(3.3)
∫ 1

−1

∫ 1

−1

(1 + η)σ�φTp−1,/1�a/1
1− η

2
dξdη = 0.

This shows that the function σ should be orthogonal (with respect to a weighting
function) to the space T (p− 1) excluding the vertex 1 mode. This space is formed by
the union of the two other vertex spaces, V2 ∪V3. The numerical results indicate that
σ is only a function of η. Therefore only the η components of this equation can be
considered. The basis for the space V2 ∪V3 consists of the two vertex modes, φv2 and
φv3, the side modes φs1,m, φs2,m, and φs3,m with 0 ≤ m < p − 2, and φint,m,n with
0 ≤ m < p−3, 0 ≤ n < p−3−m. All of these modes include the factor 1−η

2 and reach
a maximum degree in η of p − 1, and thus the η component of any function of the
space can be constructed from (1− η)P(p−2). The η component of the orthogonality
constraint is then

(3.4)
∫ 1

−1

σP(p− 2)(1− η)2(1 + η)dη = 0.

If σ is only a function of η, then σ ∈ P(p−1). To satisfy this orthogonality requirement,
σ must be the Jacobi polynomial P (2,1)

p−1 (η). Because this polynomial is orthogonal to

the functions P (2,1)
m (η) for m ∈ [0, p−2] and these functions span P(p−2), this choice
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satisfies (3.4), and thus (3.3) as well. The vertex 1 function that allows diagonal
projection on the triangle is thus

ψv1 =
1 + s

2
P

(2,1)
p−1 (s)

P
(2,1)
p−1 (1)

,

where it has been normalized such that the value of the function at the vertex is 1.
The other two vertex functions can be found by using the rotational symmetry of the
triangle. For example, to find ψv1, one can substitute −1− r − s for s to obtain

ψv2 =
−(r + s)

2
P

(2,1)
p−1 (−1− r − s)

P
(2,1)
p−1 (1)

.

For a GL rule to exist, these two functions should have the same roots along the
adjacent side, r = −1. If p − 1 is even, this implies that the function should be an
even function of s, and if p − 1 is odd, the function should be an odd function of s.
Based on the fact that the Jacobi polynomials, P (2,1)

n (x), are orthogonal with respect
to a nonsymmetric weighting function (1 − x)2(1 + x), it is fairly obvious that they
are not symmetric. To be sure, the polynomial form given by

P (α,β)
n (x) = (1− x)−α(1 + x)−β

dn

dxn

[
(1− x)(α+n)(1 + x)(β+n)

]
is examined. Letting α = 2 and β = 1, after some manipulation this can be rewritten
as

P (2,1)
n (x) =

1
1− x2

[
d

dx
− n

1− x
]
dn−1

dxn−1
(1− x2)n+1.

If n is even, this function must be even for a GL rule to exist, and if n is odd, it
should be odd. For the case of n even, the function dn−1

dxn−1 (1− x2)n+1 is odd. Denote
it as g(x). The above then becomes

P (2,1)
n (x) =

1
1− x2

[
dg(x)
dx

− n

1− xg(x)
]

and

P (2,1)
n (−x) =

1
1− x2

[
dg(x)
dx

− n

1 + x
(−g(x))

]
.

For P (2,1)
n (x) to be even, P (2,1)

n (x)− P (2,1)
n (−x) should equal 0. The above gives

P (2,1)
n (x)− P (2,1)

n (−x) =
1

1− x2

[ −2n
1− x2

g(x)
]
.

g(x) is not zero, so for any even n greater than zero the function is not even. A
similar argument can be made for the case of odd n. The only case where the function
is symmetric is n = 0.

Based on Theorem 3.3, because the roots of the diagonal projection vertex modes
do not coincide along the side, a GL integration rule does not exist on the triangle for
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p > 1. For p = 1, locating three Gauss points on the vertices does allow integration
of the space 1, r, s exactly.

Although no GL integration rule exists on the triangle, the fact that a diagonal
projection vertex function exists gives hope that a finite element method similar to
the spectral element method on quadrilaterals can still be developed. The diagonal
projection vertex mode is shown in Figure 3. The grayscale shows the values for vertex
mode 1, which has the value 1 at the top of the triangle. The solid black contour lines
are the zero contours for this function. The dashed contour lines are the zero contours
for vertex mode 2 and 3, which are rotations of vertex mode 1. These lines are shown
to further demonstrate that the zero intersection points do not coincide.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Contours of the vertex 1 mode that allows diagonal projection. Dashed lines are the zero
lines of the vertex 2 and vertex 3 modes.

The interesting thing about the function shown in Figure 3 is that it is localized
near the vertex and close to 0 elsewhere. This is similar to the GLL vertex functions
used in quadrilateral and hexahedral spectral element methods. The most important
point is that such a function allows a diagonal approximation to the mass matrix that
is accurate to order p− 1. On quadrilaterals this property allows optimal spatial con-
vergence rates to be obtained by unsteady explicit simulations [20]. Thus on triangles,
optimal explicit simulations using continuous high-order polynomial approximations
may still be possible even though a GL rule does not exist. Our continuing work is to
determine whether there exist side and interior modes which also have the diagonal
projection property.

4. Conclusions. It has been proven that a Gauss–Lobatto (GL) integration
rule for triangles that has characteristics similar to GL integration on line segments,
quadrilaterals, and hexahedra does not exist. Specifically, there is no integration rule
having a point at each triangle vertex, p−1 points on each triangle side, and (p−1)(p−
2)/2 points in the interior that is capable of exactly integrating the space T (2p− 1).
This also implies that there is no equivalent to the spectral element GLL nodal basis
on the triangle. However, the analysis also shows that there is a vertex mode that
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allows a diagonal approximation to the mass matrix accurate to order p − 1. This
function may be a key to developing explicit simulations using continuous high-order
polynomial approximations on triangles.
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UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN,
MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND

ORDER ELLIPTIC PROBLEMS∗
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Abstract. We introduce a unifying framework for hybridization of finite element methods for
second order elliptic problems. The methods fitting in the framework are a general class of mixed-dual
finite element methods including hybridized mixed, continuous Galerkin, nonconforming, and a new,
wide class of hybridizable discontinuous Galerkin methods. The distinctive feature of the methods
in this framework is that the only globally coupled degrees of freedom are those of an approximation
of the solution defined only on the boundaries of the elements. Since the associated matrix is
sparse, symmetric, and positive definite, these methods can be efficiently implemented. Moreover,
the framework allows, in a single implementation, the use of different methods in different elements
or subdomains of the computational domain, which are then automatically coupled. Finally, the
framework brings about a new point of view, thanks to which it is possible to see how to devise novel
methods displaying very localized and simple mortaring techniques, as well as methods permitting
an even further reduction of the number of globally coupled degrees of freedom.

Key words. discontinuous Galerkin methods, mixed methods, continuous methods, hybrid
methods, elliptic problems
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1. Introduction. We introduce a new unifying framework for hybridization of
finite element methods for second order elliptic problems. This framework is unifying
in the sense that it includes as particular cases hybridized versions of mixed methods
[4, 11, 26], the continuous Galerkin (CG) method [31], and a new, wide class of
hybridizable discontinuous Galerkin (DG) methods. The unifying framework allows
us to (i) significantly reduce the number of the globally coupled degrees of freedom
of DG methods, (ii) use different methods in different parts of the computational
domain and automatically couple them, and (iii) devise novel methods employing
new mortaring techniques. We develop the unifying framework on the following model
elliptic boundary value problem of second order written in mixed form:

q + agradu = 0 on Ω,(1.1a)
div q + d u = f on Ω,(1.1b)

u = g on ∂Ω.(1.1c)
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Here Ω ⊂ R
n is a polyhedral domain (n ≥ 2), d(x) is a scalar nonnegative function,

and a(x) is a matrix valued function that is symmetric and uniformly positive definite
on Ω. In addition, we assume that the function g is the restriction of a smooth scalar
function on ∂Ω and that the functions f , d, and a are smooth on Ω. These assumptions
can be vastly generalized, but we take them for the sake of a transparent presentation
of the design of our unifying framework.

1.1. The structure of the methods of the unifying framework. Let us
begin the description of our results by arguing that what makes possible the con-
struction of the unified framework is that all the numerical methods fitting in it are
constructed by using a discrete version of a single property of the exact solution of
problem (1.1). This property is a characterization of the values of the exact solution
u on the interior boundaries of each of the elements K of any triangulation of the
domain Ω, Th. Let us describe it.

If on the border of the element K, ∂K, we set u = λ+ g, where

(1.2) λ =

{
u on ∂K \ ∂Ω,
0 on ∂K ∩ ∂Ω,

and g =

{
0 on ∂K \ ∂Ω,
g on ∂K ∩ ∂Ω,

by the linearity of the problem, we have that

(1.3) (q, u) = (Qλ+ Qg + Qf, Uλ+ Ug + Uf) in Ω,

where the so-called local solvers (Q(·), U(·)) are defined on the element K ∈ Th as
follows. For any single-valued functions m on L2(∂K) and f on L2(K), the functions
(Qm, Um) and (Qf, Uf) are the solutions of

c Qm + gradUm = 0, div Qm + dUm = 0 on K, Um = m on ∂K,(1.4a)
c Qf + gradUf = 0, div Qf + dUf = f on K, Uf = 0 on ∂K,(1.4b)

where c = a−1 for each element K ∈ Th.
Conversely, the above property holds if and only if (see, for example, [46]) the

normal component of Qλ + Qg + Qf across interelement boundaries is continuous.
We thus see that this transmission condition, which we formally express as

[[Qλ+ Qg + Qf ]] = 0,(1.5)

completely characterizes the function λ. Here [[·]] denotes the jump of the normal
component of the a vector accross ∂K.

The finite element methods of the unified framework are those that can be ex-
pressed as a discrete version of the above property. In this way, the only globally
coupled degrees of freedom are bound to be those describing the approximation to λ.
Thus, each of those method provides an approximate solution of the form

(1.6) (qh, uh) = (Qλh + Qgh + Qf, Uλh + Ugh + Uf),

where λh, respectively, gh, is an approximation in some finite-dimensional space Mh,
respectively, Mh, of the values of u on the faces of the elements lying in the interior,
respectively, in the border of Ω, and (Qm, Um) and (Qf, Uf) are discrete versions
of the exact local solvers (1.4)—we keep the same notation for the sake of simplicity.
Moreover, the methods are such that λh can be determined by a discrete version of
transmission condition (1.5), which we write as follows:

(1.7) ah(λh, μ) = bh(μ) for all μ ∈Mh.



UNIFIED HYBRIDIZATION OF DG, MIXED, AND CG METHODS 1321

In [26], where the hybridization of mixed methods was considered, the equation deter-
mining λh was called the jump condition. In our setting, it is called the conservativity
condition to reflect the incorporation into the framework of DG and CG methods.

Note that all the methods in the unified framework provide approximations for
(q, u) in the interior of the elements K ∈ Th, (qh, uh), as well as an approximation of
u on the interior border of the elements λh; this is why they are called hybrid. This
is in agreement with the definition of hybrid methods proposed in [22, p. 421]: “we
may define more generally as a hybrid method any finite element method based on a
formulation where one unknown is a function, or some of its derivatives, on the set Ω,
and the other unknown is the trace of some of its derivatives of the same function, or
the trace of the function itself, along the boundaries of the set K.” Here K denotes
a typical element of the triangulation. A long list of hybrid methods can be found in
[22, 12, 51].

Of course, not every finite element method displays the above roughly described
structure; in particular, it might not even be a hybrid method. However, many such
methods can be rewritten as hybrid methods; this process is what can be called the
hybridization of a finite element method. We say that we can hybridize a given finite
element method if we can find a hybrid method (part) of whose solution coincides
with the solution of the given method. The original finite element method is called
hybridizable, and the hybrid method is then said to be a hybridization of the original
method; for short, we call it a hybridized method. Next, we give a brief overview of
the hybridization techniques of relevance for our purposes.

1.2. Hybridization of finite element methods. The first hybridization of a
finite element method was proposed in 1965 [39] for a numerical method for solving
the equations of linear elasticity. Perhaps because it was then intended as an imple-
mentation technique, the distinction between hybridization and static condensation,
a widely known algebraic manipulation for size reduction of already assembled matri-
ces, is seldom made in the engineering literature. However, in 1985 [4], hybridization
was shown to be more than an implementation trick as it was proven that the new
unknown λh, also interpreted to be the Lagrange multiplier associated with a conti-
nuity condition on the approximate flux, contains extra information about the exact
solution. This was used to enhance the accuracy of the approximation by means of a
local postprocessing [4, 11, 35]; see also [10].

After yet another two decades, a new perspective on hybridization emerged [26],
and the characterization of the approximate trace λh as the solution of weak formu-
lation (1.7) was introduced; this was done in the setting of the hybridization of the
Raviart–Thomas (RT) and Brezzi–Douglas–Marini (BDM) mixed methods of arbi-
trary degree. The special case of the lowest order RT method had been previously
considered in [21] within the framework of a study of the equivalence of mixed and
nonconforming methods. In [26], it was shown that formulation (1.7) not only sim-
plifies the task of assembling the stiffness matrix for the multiplier but can be used
to establish unsuspected links between apparently unrelated mixed methods. It was
also shown that it allows the devising and analysis of new, variable degree versions of
those methods [27].

This new hybridization approach was later extended to finite element methods for
the stationary Stokes equations using spaces of exactly divergence-free velocities; it
was intended as an effective technique to bypass the extremely difficult construction
of such spaces. It was successfully applied to a DG method [15] and to a mixed
method for Stokes flow [28, 29]. For a review of these results, see [30]. Recently [31],
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this hybridization approach was applied to the CG method to pave the way for the
computation of anH(div)-conforming approximation of the flux from the CG solution.

1.3. Hybridization of DG methods. In this paper, we continue this effort
and show how to hybridize a large class of DG methods. Thus, we show that their
approximate solution (qh, uh) can be expressed as in (1.6) and that the approximate
trace λh, which is nothing but the so-called numerical trace ûh on the interelement
boundaries (see [5]) satisfies weak formulation (1.7). In other words, we identify a class
of DG methods whose globally coupled degrees of freedom are those of the numerical
trace ûh only; this results in an efficient implementation of these methods, as we
argue below. In this way, the main disadvantages of DG methods for elliptic problems
compared to other methods, namely, a higher number of globally coupled degrees of
freedom for the same mesh and a lower sparsity of the corresponding stiffness matrices,
are eliminated to a significant extent.

The simplest examples of such methods are obtained by using a DG method to
define the local solvers and by taking what could be called the corresponding natural
choice for the space Mh for the approximate trace λh. For example, we can use the
local discontinuous Galerkin (LDG) method to define the local solvers and construct
a hybridizable DG method. Surprisingly, it turns out that the resulting DG method is
not an LDG method but one of the DG methods considered in [17]; see Corollary 3.2.
A similar result holds for the hybridizable DG methods whose local solvers are the
interior penalty (IP) method, that is, the resulting method is not the original IP
method but the IP-like method considered in [38]; see Corollary 3.4. This is in sharp
contrast with the RT, BDM, and CG methods, each of which can be hybridized by
using as local solvers the RT, BDM, and CG methods, respectively.

It is interesting to note that the only known DG methods that turn out to be
hybridizable by our technique are the following: a subset of the methods considered
in [17], the minimal dissipation DG methods considered in [20], the minimal dissipa-
tion LDG method analyzed in [24], and the DG method considered in [38] and then
rewritten as an IP method in [37]. With the exception of some LDG methods, none
of the DG methods considered in the unified analysis of DG methods carried out
in [5] is a hybridizable DG method. The reason is, roughly speaking, as follows. For
all methods considered in [5], the variable qh is easily eliminated from the equations
due to the fact that the numerical trace ûh is independent of qh or graduh; a primal
formulation can then be found solely in terms of uh. In contrast, in our approach, we
eliminate both qh and uh from the equations and obtain a formulation in terms of ûh
only, namely, (1.7). For this, it turns out that we need ûh to be dependent on qh or
graduh, except for a few special LDG methods.

1.4. Properties of the algebraic system of hybridizable DG methods.
As pointed out above, since the degrees of freedom of the functions μ in the finite
element space Mh are associated with the borders of the elements only, the stiffness
matrix associated with weak formulation (1.7) of the numerical trace ûh = λh is
significantly smaller than the one associated to the original variables (qh, uh). More-
over, the actual computation of the approximate solution of DG methods becomes
competitive with that of hybridized mixed methods. For example, as we show be-
low, on triangulations made of simplexes, the stiffness matrix associated with weak
formulation (1.7) of any hybridizable DG method has the same size, block structure,
and sparsity as the corresponding hybridized BDM [11] and RT [49] mixed meth-
ods; see [26] for details. Even more, it was recently proved (see [25, Property (iii)
of Theorem 2.4]) that the stiffness matrices of the hybridized BDM and RT meth-
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ods and the so-called single face hybridizable DG method are, in fact, identical pro-
vided d = 0.

1.5. New automatic coupling of different methods and mortaring tech-
niques. One of the main features of the unified framework is that it allows for a single
implementation of a vast class of finite element methods including DG, mixed, non-
conforming, and CG methods and for their automatic coupling. Since it can be done
even in the presence of nonmatching meshes, the unified framework provides a novel
coupling and mortaring technique. This induces a paradigm shift in the way we view
different finite element methods fitting in the framework, especially when considering
adaptive algorithms. Indeed, since all these methods can be implemented within a
single framework, the issue is now to investigate which method to use in what part of
the domain in order to fully exploit its individual advantages. Let us briefly compare
our new mortaring technique with the already established ones. Mortaring techniques
(see the pioneering work [9]) were introduced to accommodate methods that can be
defined in separate subdomains that could have been independently meshed. This
technique introduces an auxiliary space for a Lagrange multiplier associated with a
continuity constraint on the approximate solution. The resulting system could be
written either as a saddle point problem, symmetric but indefinite [8], or as a non-
conforming finite element approximation, which leads to a symmetric positive definite
system; see, for example, [9, 42]. This classical mortaring is a powerful technique to
achieve flexibility in the meshing and the choice of the finite element approximation.
The work in this direction also includes coupling of mixed and CG [53], mixed and
mixed finite element methods [2, 45], and DG and mixed methods [40].

However, this mortaring approach is very different from ours, since instead of
enforcing the continuity of the approximation to u, we enforce a continuity condition
on the approximation to the flux q. The way of coupling and mortaring provided
by the unified framework represents a simpler alternative to the above-mentioned
mortaring techniques, as well as to earlier works on the coupling of CG and DG
methods implicitly contained in [5] and explicitly emphasized in [48], as well as to the
coupling of DG and mixed methods introduced in [23] and in [50].

1.6. Devising new methods. The unified framework provides a new point of
view for constructing new methods. We provide three main examples of such methods.
The first one is a family of methods well suited for hp-adaptivity and for dealing with
nonmatching meshes. On each element K ∈ Th, it uses local solvers obtained from the
RT, BDM, LDG, or CG methods by means of a suitable modification of the definition
of the numerical trace of the flux of some faces of K only. For example, by modifying
the numerical trace of the CG-H method on the element faces lying on the non-
matching interface, we allow the method to handle nonmatching grids. This method
represents an alternative to the coupling of DG and CG methods proposed in [48].

The second example is a variable-degree RT method that can be used on some
classes of nonconforming meshes. The third example is called the embedded DG
(EDG) method; it was introduced in the setting of shell problems in [43]. An EDG
method is obtained from an already existing hybridizable method by simply modifying
the space Mh. This capability can be used as a new mortaring technique for dealing
with nonmatching meshes, as we are going to see. Moreover, some EDG methods give
rise to a stiffness matrix whose size and sparsity is exactly equal to that of the stat-
ically condensed stiffness matrix of the CG method, while retaining the stabilization
mechanisms typical of DG methods; see [43]. As a consequence, EDG methods can
immediately be incorporated into existing commercial codes. Related to EDG meth-
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ods are the so-called multiscale DG methods [44, 14], which were introduced with a
similar intention but a different approach.

1.7. Possibilities and recent developments. The unified framework could
be used to establish a single a priori and a single a posteriori error analysis of all
the methods fitting in it. It could be used to compare different methods or to es-
tablish new relations between them just as the unsuspected relation between the RT
and the BDM methods in [26] was recently uncovered by comparing their hybridized
versions. The framework could also be used to further explore the relation between
mixed and nonconforming methods like the relation between the RT method of lowest
order and a nonconforming method established in [4] and exploited in [47]. This work
was later generalized in [1], where links between a variety of mixed and nonconform-
ing methods were established; see also the references therein. Finally, the unifying
framework can be used to devise new preconditioners based on, for example, substruc-
turing techniques. However, in this paper, none of the above-mentioned issues will be
investigated.

On the other hand, several discoveries induced by the unifying framework have
already taken place. In particular, new DG methods which are more accurate and
efficient than any other known DG method have been uncovered. Indeed, by exploiting
the structure of the unified framework, a new DG method called the single face,
hybridizable (SFH) DG method was constructed, which lies in between the RT and
BDM methods; see [25]. It is the first known DG method, using polynomials of
degree k for both qh and uh, proven to converge with order k + 1 in both variables;
all other DG methods converge with order k in the flux only. Moreover, the SFH
method shares with the RT and BDM methods their remarkable superconvergence
properties; this allow for the element–by–element computation of a new approximation
u�h converging with order k+2. These results were then extended to other hybridizable
DG methods in [33]. Therein, it was shown that in order to achieve the above-
mentioned convergence properties, the interelement jumps of both unknowns have to
be penalized essentially in the same way. This goes against the established belief that
the interelement jumps of uh need to be strongly penalized, while the interelement
jumps of qh need not be.

Also recently, a study of EDG methods obtained from hybridizable DG methods
by forcing the numerical trace to be continuous has been carried out in [32]. It was
proven that these EDG methods lose the above-mentioned convergence properties
because the numerical trace q̂h is not single valued. Moreover, numerical evidence was
provided indicating that this loss of accuracy of the EDG method is not compensated
by the computational advantage of having a reduced amount of globally coupled
degrees of freedom. Hybridizable DG methods, with properly chosen penalization
parameters, are thus more efficient than their EDG counterparts.

1.8. Organization of the paper. The paper is organized as follows. In sec-
tion 2, we describe the general structure of the hybridized finite element methods
and prove that the approximate trace λh is characterized as the solution of a weak
formulation of the form (1.7); see Theorem 2.1. We then provide sufficient conditions
for the existence and uniqueness of the solution λh; see Theorem 2.4. Further in this
section we give some implementation details and compare the memory requirements
of hybridizable methods with those of some classical DG methods. In section 3, we
give several examples of hybridizable finite element methods. These include mixed
methods using RT and BDM finite element spaces, a large variety of DG, CG, and
some nonconforming finite element methods. In section 4, we build on the results of



UNIFIED HYBRIDIZATION OF DG, MIXED, AND CG METHODS 1325

the previous section and construct the above-mentioned novel hybridizable methods.
Finally, in section 5, we conclude the paper with a few extensions and some final
remarks.

2. The general framework of hybridization. In this section, we display the
structure of hybridized finite element methods for second order elliptic problem (1.1).
We begin by presenting the exact definition of the linear forms appearing in the weak
formulation of the form (1.7), determining the approximate trace λh. We then provide
sufficient conditions for the existence and uniqueness of λh and show that the assembly
of the corresponding matrix equation can be done in a typical finite element fashion.
We end by describing the sparsity structure of the stiffness matrix and comparing it
with that of the stiffness matrices of the hybridized RT, IP, and LDG methods.

2.1. Notation. We use the notation used in [5]; let us recall it. Let Th be a
collection of disjoint elements that partition Ω. The shape of the elements is not
important in this general framework. Moreover, triangulation Th need not be con-
forming (we say that a triangulation Th is conforming if whenever the intersection
of the boundaries of any two elements has nonzero (n − 1)-Lebesgue measure, the
intersection is a face of each of the elements). So, Th can be a collection of simplices,
quadrilaterals, cubes, or a mixture of them which are not required to align across
element interfaces. An interior “face” of Th is any planar set e of positive (n − 1)-
dimensional measure of the form e = ∂K+ ∩ ∂K− for some two elements K+ and
K− of the collection Th. (We use the word “face” even when n = 2.) We say that
e is a boundary face if there is an element K of Th such that e = ∂K ∩ ∂Ω and the
(n − 1)-Lebesgue measure of e is not zero. Let E◦h and E∂h denote the set of interior
and boundary faces of Th, respectively. We denote by Eh the union of all the faces in
E◦h and E∂h. In all our examples, elements of E◦h and E∂h are affine sets, although that
is not required for the considerations in this section.

Finite element methods based on the mesh Th typically use some finite-dimensional
polynomial approximation spaces on each element of Th. On an element K, we denote
by V (K) the polynomial space in which the flux q is approximated and by W (K) the
space in which the scalar solution u is approximated. The corresponding global finite
element spaces are defined by

(2.1) Vh = {v : v|K ∈ V (K)} and Wh = {w : w|K ∈W (K)}.

On an interior face e = ∂K+∩∂K−, we consider scalar and vector functions that
are, in general, double valued. For any discontinuous (scalar or vector) function q in
Wh or Vh, the trace q|e is a double-valued function, whose two branches are denoted
by (q|e)K+ and (q|e)K− . To simplify the notation, we often shorten these to qK+ and
qK− , respectively. These branches are defined by qK±(x) = limε↓0 q(x − εnK±) for
all x in e. Here and elsewhere, n denotes the double-valued function of unit normals
on Eh, so on any face e ⊆ ∂K, nK denotes the unit outward normal of K. The same
notations are used for vector functions. For any double-valued vector function r on
an interior face e, we define the jump of its normal component across the face e by

[[r]]e := rK+ · nK+ + rK− · nK− .

On any face e of K lying on the boundary, we set

[[r]]e := rK · nK .
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To simplify the exposition, we use [[r]] to denote the single-valued function on the
entire set Eh, which is equal to [[r]]e on every face e ∈ Eh. Similarly, for any e ∈ E◦h,
we define

{{ξ}}e =
1
2
(ξK+ +ξK−), {{q}}e =

1
2
(qK+ +qK−), [[ξ]]e = ξK+nK+ +ξK−nK− .

For a boundary face e in E∂h, the operator {{·}}e is also considered to be the identity,
so that we can put together local operators {{·}}e to form a global operator {{·}} on
Eh, just as we did for [[·]].

Our notation for inner products is standard: For functions u and v in L2(D), we
write (u, v)D =

∫
D uv dx if D is a domain of R

n and 〈u , v〉D =
∫
D uv dx if D is a

domain of R
n−1. To emphasize the mesh-dependent nature of certain integrals, we

introduce the notation

(v, w)Th
=
∑
K∈Th

(v, w)K and 〈μ , λ〉E =
∑
e∈E

〈μ , λ〉e

for functions v, w and μ, λ defined on Ω and Eh, respectively. Here E is any subset of
Eh.

2.2. The general structure of the methods. To describe the structure of
the methods fitting in the unified framework, we mimic the characterization of the
exact solution given in the Introduction.

Thus, we begin by choosing the space Mh of approximate traces, by taking the
approximation to λ, λh, in

(2.2) Mh := {μ ∈ Mh : μ = 0 on ∂Ω}
and by setting gh = Ihg, where Ih is a suitably defined interpolation operator with
image in Mh. Recall that g is the extension by zero of the Dirichlet data on ∂Ω to
E◦h; see (1.2).

Next, we introduce a discrete version of local solvers (1.4a) and (1.4b). The first
local solver maps each function m in Mh to the function (Qm, Um) on Ω, whose
restriction to any mesh element K is in V (K) ×W (K) and satisfies the following
discretization of (1.4a):

(cQm,v)K − (Um, div v)K = −〈m , v · n〉∂K for all v ∈ V (K),(2.3a)

−(gradw,Qm)K + 〈w , Q̂m· n〉∂K + (d Um, w)K = 0 for all w ∈W (K).(2.3b)

Here Q̂m represents the numerical trace of the flux, which is, in general, a double-
valued function on E◦h. In inner products involving Q̂m over a single simplex boundary
∂K, the integrand is assumed to be branch (Q̂m)K from that simplex. In all examples
we consider in this paper, numerical flux Q̂m is either expressed explicitly in terms of
(Qm, Um) or is an unknown function. In the examples where the latter case arises,
we introduce the space in which the unknown Q̂m lies and add new equations to
render the resulting formulation uniquely solvable. At this point, however, the precise
definition of Q̂m is not essential, as we are solely interested in displaying the structure
of the method for any Q̂m. Below, we formally require m 	→ (Qm, Q̂m, Um) to be a
well-defined linear map; see Assumption 2.1.

The second local solver is a discretization of the second boundary value problem
in (1.4b). It associates to any f ∈ L2(Ω) the pair (Qf, Uf), whose restriction to each
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element K is defined as the function in V (K)×W (K) satisfying

(cQf,v)K − (Uf, div v)K = 0 for all v ∈ V (K),

(2.4a)

−(gradw,Qf)K +
〈
w , Q̂f ·n

〉
∂K

+ (d Uf, w)K = (f, w)K for all w ∈W (K).

(2.4b)

Just as for the first local solver, we leave undefined the numerical trace Q̂f .
Obviously, while the functions (Qf, Uf)|K and (Qm, Um)|K are in V (K)×W (K),

the space in which Q̂f and Q̂m lie will vary from example to example. Now we make
our assumption about the local solvers.

Assumption 2.1 (existence and uniqueness of the local solvers). For every m in
Mh, there is a unique set of functions of m, (Qm, Q̂m, Um) depending linearly on
m and satisfying (2.3). Furthermore, for every f in L2(Ω), there is a unique set of
functions (Qf, Q̂f, Uf) depending linearly on f and satisfying (2.4).

Each of the methods under consideration define an approximation to (q, u),

(2.5) (qh, uh) = (Qλh + Qgh + Qf, Uλh + Ugh + Uf) ∈ (Vh ×Wh),

where λh is assumed to be determined by the following discrete version of transmission
condition (1.5):

(2.6)
〈
μ ,
[[
Q̂λh + Q̂gh + Q̂f

]]〉
Eh

= 0 for all μ ∈Mh.

If we define the numerical flux by

(2.7) q̂h := Q̂λh + Q̂gh + Q̂f,

and if the (extension by zero to Eh of the) function [[q̂h]]|E◦
h

belongs to the space Mh,
then condition (2.6) is simply stating that [[q̂h]]|E◦

h
= 0 pointwise, that is, the normal

component of the numerical trace q̂h is single valued, or, adopting the terminology
of [5], the function q̂h is a conservative numerical flux. It is for this reason we call (2.6)
the conservativity condition. If the function [[q̂h]]|E◦

h
does not belong to the space

Mh, the conservativity condition imposes only the weak continuity of the normal
component of the numerical trace q̂h, which, as a consequence, is not single valued.

It is worth noting that the method just described can be viewed as seeking the
approximation (qh, uh, λh) in Vh ×Wh ×Mh satisfying

(c qh, r)Th
− (uh, div r)Th

+
∑
K∈Th

〈λh , r · n〉∂K\∂Ω = −〈gh , r · n〉∂Ω for all r ∈ Vh,
(2.8a)

−(qh,gradw)Th
+
∑
K∈Th

〈q̂h · n , w〉∂K + (d uh, w)Th
= (f, w)Th

for all w ∈ Wh,

(2.8b)

∑
K∈Th

〈μ , q̂h · n〉∂K = 0 for all μ ∈Mh.(2.8c)

Note that the first two equations are used to define local solvers (2.3) and (2.4), while
the last is nothing but conservativity condition (2.6). This type of method is some-
times called a hybrid dual-mixed method. As pointed out in the Introduction, it is
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called mixed because we seek approximations for the flux qh, as well as the poten-
tial uh, on Ω. It is called hybrid dual because the approximate trace λh associated to
the conservativity condition is an approximation for the trace of the potential u on
the boundaries of the elements.

Many hybridized finite element methods admit this structure. For example, some
classic hybridized mixed methods [4, 26] are obtained by an appropriate choice of the
local spaces and by choosing Q̂(·) in such a way that we have q̂h = qh. Many DG
methods also fall into this form—although not all of them are hybridizable. Indeed,
the schemes considered in the unified analysis of DG methods in [5] can be written in
our notation as

(c qh,v)Th
−
∑
K∈Th

(uh, div v)K +
∑
K∈Th

〈ûh , v · n〉∂K\∂Ω = −〈gh , v · n〉∂Ω,

−(gradw, qh)Th
+
∑
K∈Th

〈w , q̂h · n〉∂K + (d uh, w)Th
= (f, w)Th

,

where ûh and q̂h are the so-called numerical traces of the DG method. Compar-
ing these equations with (2.8) of our general framework, we immediately realize that
ûh = λh on E◦h. We thus see that, for a finite element method to be hybridizable,
its numerical trace ûh must be single valued. This implies, in particular, that the
DG methods in [5] that are not adjoint consistent cannot be hybridized by using our
technique. In contrast, the (normal component of the) numerical trace q̂h is not re-
quired to be single valued, since conservativity condition (2.6) does not always ensure
a single-valued numerical trace. Thanks to this flexibility, the CG method and the
EDG methods turn out to be hybridizable.

This concludes the description of the general structure of the methods. Methods
with this structure include a wide class of DG and hybridized mixed and CG methods,
as we show in sections 3, 4, and 5.

2.3. The characterization of the variable λh. As we see next, the relevance
of the methods fitting the previously described general structure resides in the fact
that the λh can be characterized in terms of a simple weak formulation in which none
of the other variables appear.

Theorem 2.1. Suppose Assumption 2.1 on the existence and uniqueness of the
local solvers holds. Then λh ∈Mh satisfies conservativity condition (2.6) if and only
if it satisfies

(2.9) ah(λh, μ) = bh(μ) for all μ ∈Mh,

where

ah(η, μ) =(cQη,Qμ)Th
+ (d Uη, Uμ)Th

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂η −Qη

)]]〉
Eh

,

bh(μ) =
〈
gh ,

[[
Q̂μ
]]〉

Eh

+ (f, Uμ)Th
−
〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

+
〈
1 ,
[[

Uf
(
Q̂μ−Qμ

)]]〉
Eh

−
〈
1 ,
[[
(Uμ− μ)

(
Q̂gh −Qgh

)]]〉
Eh

+
〈
1 ,
[[
(Ugh − g)

(
Q̂μ−Qμ

)]]〉
Eh

for all η and μ ∈Mh.
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Note that, since λh is an approximation of the function u on E◦h, it is natural to
expect bilinear form ah(·, ·) to be symmetric. This motivates the following observation.
Bilinear form ah(·, ·) is symmetric if and only if numerical trace Q̂· is such that〈

1 ,
[[
(Uμ− μ)

(
Q̂η −Qη

)]]〉
Eh

=
〈
1 ,
[[
(Uη − η)

(
Q̂μ−Qμ

)]]〉
Eh

(2.10a)

for all η, μ ∈Mh. If we also have〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

=
〈
1 ,
[[

Uf
(
Q̂μ−Qμ

)]]〉
Eh

,(2.10b)

then

bh(μ) =
〈
gh ,

[[
Q̂μ
]]〉

Eh

+ (f, Uμ)Ω.

All the examples in this paper satisfy the above symmetry conditions.
Now we prove Theorem 2.1. Set

ah(λh, μ) =−
〈
μ ,
[[
Q̂λh

]]〉
Eh

,(2.11a)

bh(μ) =
〈
μ ,
[[
Q̂gh + Q̂f

]]〉
Eh

(2.11b)

so that conservativity condition (2.6) takes the form (2.9). Theorem 2.1 then follows
from the following result.

Lemma 2.2 (elementary identities). We have, for any m, μ ∈ Mh and f ∈ L2(Ω),

(i) −
〈
μ ,
[[
Q̂m

]]〉
Eh

= ( cQm,Qμ)Ω + (d Um, Uμ)Ω

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂m−Qm

)]]〉
Eh

,

(ii) −
〈
μ ,
[[
Q̂gh

]]〉
Eh

=−
〈
gh ,

[[
Q̂μ
]]〉

Eh

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂gh −Qgh

)]]〉
Eh

−
〈
1 ,
[[
(Ugh − gh)

(
Q̂μ−Qμ

)]]〉
Eh

,

(iii) −
〈
μ , [[Q̂f ]]

〉
Eh

=− (f, Uμ)Th

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

−
〈
1 ,
[[

Uf
(
Q̂μ−Qμ

)]]〉
Eh

.

To prove Lemma 2.2, we need some identities which follow from the equations
defining the local solvers by integration by parts.

Lemma 2.3 (relation between jumps and local residuals). For any m, μ ∈ Mh,
f ∈ L2(Ω), v ∈ V h, and w ∈Wh, the following identities hold:

( cQm + gradUm,v)Th
= + 〈1 , [[(Um−m)v]]〉Eh

,(2.12a)

( div Qm + d Um, w)Th
=−

〈
1 ,
[[
w
(
Q̂m−Qm

)]]〉
Eh

,(2.12b)

( cQf + gradUf,v)Th
= + 〈1 , [[ Uf v]]〉Eh

,(2.12c)

( div Qf + d Uf − f, w)Th
=−

〈
1 ,
[[
w
(
Q̂f −Qf

)]]〉
Eh

.(2.12d)
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Using these identities, we now prove Lemma 2.2.
Proof. Let us prove identity (i) of Lemma 2.2. We have

−
〈
μ ,
[[
Q̂m

]]〉
Eh

=− 〈μ , [[Qm]]〉Eh
−
〈
μ ,
[[(

Q̂m−Qm
)]]〉

Eh

= (cQμ,Qm)Th
− (Uμ, div Qm)Th

−
〈
μ ,
[[(

Q̂m−Qm
)]]〉

Eh

by (2.3a),

= (cQμ,Qm)Th
+ ( d Um, Uμ)Th

+
〈
1 ,
[[

Uμ
(
Q̂m−Qm

)]]〉
Eh

−
〈
μ ,
[[(

Q̂m−Qm
)]]〉

Eh

by (2.12b).

This proves identity (i) of Lemma 2.2.
Now we prove identity (ii) of Lemma 2.2. To do that, note that, by identity (i)

of Lemma 2.2, the bilinear form

B(m, μ) =
〈
μ ,
[[
Q̂m

]]〉
Eh

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂m−Qm

)]]〉
Eh

is symmetric. As a consequence, identity (ii) of Lemma 2.2 follows from equality
B(μ, gh) = B(gh, μ).

Finally, we prove identity (iii) of Lemma 2.2. We have

−
〈
μ ,
[[
Q̂f
]]〉

Eh

=− 〈μ , [[Qf ]]〉Eh
−
〈
μ ,
[[(

Q̂f −Qf
)]]〉

Eh

= (cQμ,Qf)Th
− (Uμ, div Qf)Th

−
〈
μ ,
[[(

Q̂f −Qf
)]]〉

Eh

by (2.3a),

=− (f, Uμ)Th
+ (cQμ,Qf)Th

+ ( d Uμ, Uf)Th

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

by (2.12d),

=− (f, Uμ)Th
+ (div Qμ, Uf)Th

+ ( d Uμ, Uf)Th

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

by (2.4a),

=− (f, Uμ)Th
−
〈
1 ,
[[

Uf
(
Q̂μ−Qμ

)]]〉
Eh

+
〈
1 ,
[[
(Uμ− μ)

(
Q̂f −Qf

)]]〉
Eh

by (2.12b).

This completes the proof of Lemma 2.2.

2.4. Sufficient conditions for the existence and uniqueness of λh. Next,
we provide two conditions which are sufficient for the existence and uniqueness of
λh. The first is a condition on the local solvers, and the second is a condition on
the relation between the local solvers, on each element K of triangulation Th and the
global space Mh of approximate traces. It is worth emphasizing that, by guaranteeing
the existence and uniqueness of λh, these simple conditions ensure the automatic
coupling of the different local solvers even across nonmatching meshes. Note that no
explicit conditions on triangulation Th are involved in these conditions.



UNIFIED HYBRIDIZATION OF DG, MIXED, AND CG METHODS 1331

Assumption 2.2 (on the positive semidefiniteness of the local solvers). The local
solvers and the numerical flux traces in (2.3) and (2.4) are such that, for everyK ∈ Th,
the following holds:

−
〈
μ , Q̂μ · n

〉
∂K
≥ 0 for all μ ∈ Mh.(2.13a)

Moreover, there exits a space M(∂K) containing the set {ν : ν|e ∈ P0(e) on each face
e ∈ E◦h lying on ∂K} such that

if
〈
μ , Q̂μ · n

〉
∂K

= 0 for some μ ∈ Mh, then P∂Kμ = CK(2.13b)

for some constant CK , where P∂K is the L2(∂K)-orthogonal projection onto M(∂K).
Note that auxiliary space M(∂K) is not necessarily finite-dimensional. Its use is

only theoretical; it is not used in practice in any way.
Let us argue that (2.13) is a reasonable condition on the positive semidefiniteness

of the bilinear forms corresponding to the local solvers. Indeed, taking v := Qμ
in (2.3a), m := μ and w := Um in (2.3b), and adding the equations, we get

−
〈
m , Q̂μ · n

〉
∂K

= (cQm,Qμ)K + (d Um, Uμ)K +
〈(

Q̂m−Qm
)
· n , Uμ− μ

〉
∂K

(2.14)

=: ah,K(m, μ).

Thus, (2.13a) ensures that bilinear form ah,K(·, ·), which coincides with form ah(·, ·)
when Ω is single element K, is positive semidefinite. Further, condition (2.13b) states
that those functions m ∈ Mh for which ah,K(m,m) = 0 yield constants under an
appropriate projection. This is a reasonable assumption, since it is a discrete version
of a similar property of the exact solution. Indeed, for the exact solution, such a
condition readily implies that Qm = 0 and, by (1.4a), that m = Um = constant on
∂K.

This argument suggests that it is reasonable to expect projection P∂K to be
strongly related to the identity, at least in parts of ∂K. The following assumption
captures this property. It will allow us to establish a link between the different local
solvers and, in so doing, to ensure the uniqueness of the solution of (1.7).

Assumption 2.3 (the “gluing condition”). If μ ∈ Mh, then on every interior face
e = ∂K+ ∩ ∂K−, either μ = P∂K+μ or μ = P∂K−μ.

We are now ready to state our result.
Theorem 2.4 (existence and uniqueness of λh). If Assumption 2.1 on the exis-

tence and the uniqueness of the local solvers, Assumption 2.2 on the positive semidef-
initeness of the local solvers, and Assumption 2.3, the gluing condition, hold, then
there is a unique solution λh of weak formulation (2.9).

Proof. By Theorem 2.1, Assumption 2.1 guarantees the existence and the unique-
ness of Q̂λh. Therefore, system (2.9) is well defined. Since it is a square system, to
prove the existence and the uniqueness of its solution, it is enough to show that if
ah(μ, μ) = 0 for some μ ∈Mh, we have that μ = 0.

By Lemma 2.2,

ah(μ, μ) = −
〈
μ ,
[[
Q̂μ
]]〉

Eh

= −
∑
K∈Th

〈
μ , Q̂μ · n

〉
∂K

.
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Now, since ah(μ, μ) = 0, by (2.13a) of Assumption 2.2 on on the positive semidefinite-
ness of the local solvers, each of the summands on the right-hand side must vanish.
Thus,

〈
μ , Q̂μ · n

〉
∂K

= 0 for all K ∈ Th.

By condition (2.13b), on any interior face e = ∂K+ ∩ ∂K−, this implies

CK+ = P∂K+μ =
1
| e | 〈μ , 1〉e = P∂K−μ = CK− ,

and by Assumption 2.3 (the gluing condition), we conclude that CK+ = μ = CK− on
the face e. This means that μ is a constant on Eh. Since μ = 0 on ∂Ω, we see that μ
is identically equal to zero on Eh. This completes the proof.

2.5. The sparsity structure of the stiffness matrix for λh. Next, we com-
ment on the sparsity structure of the stiffness matrix associated with weak formulation
(1.7). For any given basis of the space of approximate traces Mh, we denote by [μ]
the corresponding vector of coefficients of the representation of μ in a given basis of
Mh. Then, weak formulation (2.9)

A [λh] = b,

where

[μ]t A [λh] = ah(λh, μ) and [μ]t b = bh(μ).

Now, by (2.11),

ah(η, μ) = −
∑
K∈Th

〈
μ , Q̂η · n

〉
∂K

and bh(μ) =
∑
K∈Th

〈
μ ,
(
Q̂f + Q̂gh

)
· n
〉
∂K

,

we have that

A =
∑
K∈Th

AK and b =
∑
K∈Th

bK ,

where AK and bK are defined by

[μ]tAK [η] = −
〈
μ , Q̂η · n

〉
∂K

and [μ]t bK =
〈
μ ,
(
Q̂f + Q̂gh

)
· n
〉
∂K

.

Thus, the matrix equations for the multiplier can be obtained in a typical finite
element manner. Moreover, the sparsity of the matrices AK and bK can be deduced
from the following result.

Proposition 2.1. Suppose Assumption 2.1 on the existence and the uniqueness
of the local solvers holds. Then

(i) if the support of μ ∈Mh does not intersect ∂K, we have that [μ]t bK = 0;
(ii) if the support of μ ∈Mh or the support of η ∈Mh does not intersect ∂K, we

have that [μ]tAK [η] = 0.
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P

Q

Fig. 2.1. Interior edge e = PQ and the support of local solver (Qm, Um) for any m supported
on e. Numerical trace (Q̂m)K is generally nontrivial on the boundary of the two shadowed triangles
K, but it vanishes on the boundary of other triangles.

Proof. That [μ]t bK = 0 and [μ]tAK [η] = 0 if the support of μ does not inter-
sect ∂K follows immediately from the definition of bK and AK . Let us show that
[μ]tAK [η] = 0 if the support of η does not intersect ∂K. Since we are assuming that
the local solvers are well defined, if the support of η does not intersect ∂K, we have,
by Assumption 2.1, that (Q̂η)K = 0 on ∂K, and the result follows. This completes
the proof.

We emphasize that this result, illustrated in Figure 2.1, is possible due to the fact
that numerical trace Q̂· is double valued on all interior faces e ∈ E◦h. Indeed, take η
as in the above proof and further assume that its support intersects ∂K ′, where the
intersection of ∂K and ∂K ′ is a face e in E◦h. Then (Q̂η)K′ can be nontrivial on e, in
general. However, this does not contradict the fact that (Q̂η)K = 0 on e because the
function Q̂η is double valued on e.

In the remainder of this subsection, we compare the number of globally coupled
degrees of freedom and the number of nonzero entries of the stiffness matrix, restricting
our attention to the case of a conforming triangulation Th (no hanging nodes). First,
consider the case in which Mh := Mc

h,k, where

Mc
h,k := {μ ∈ C(Eh) : μ|e ∈ Pk(e) for all faces e ∈ Eh}.

Here, C(Eh) denotes the space of continuous functions on Eh and Pk(D) the set of
polynomials of degree at most k on a domain D. Then the sparsity structure of the
matrix A is exactly that of the statically condensed stiffness matrix of a CG method
using approximations whose restriction to each simplex K is in Pk(K).

If, instead, we take Mh := Mh,k, where

(2.15) Mh,k =
{
μ ∈ L2(Eh) : μ|e ∈ Pk(e) for all faces e ∈ E◦h

}
,

then by choosing basis functions whose support is always contained in a single face,
we obtain matrix A, which has a block structure with square blocks of order equal to
the dimension of Pk(e). The number of block rows and block columns is equal to the
number of interior faces of triangulation Ni.f., and, on each block row, there are at
most (2n+ 1) blocks that are not equal to zero. In other words, the size and sparsity
structure of matrix A is precisely that of the stiffness matrix for the hybridized RT
method using Mh as space of approximate traces; see [26]. This means that the order
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Table 2.1

Comparison between hybridizable DG methods and two typical DG methods on simplicial meshes.

n k Rd.o.f. Rsparsity n k Rd.o.f. Rsparsity

IP LDG IP LDG

2 1 1.00 1.20 3.00 3 1 0.67 0.63 2.16
2 1.33 2.13 5.33 2 0.83 0.99 3.37
3 1.67 3.33 8.33 3 1.00 1.42 4.86
4 2.00 4.80 12.00 4 1.17 1.94 6.61

of matrix A, which is equal to the number of degrees of freedom of λh, is given by

Nd.o.f. = Ni.f. dimPk(e)

and that the number of possibly nonvanishing entries of A is bounded by

Nsparsity = Ni.f. (2n+ 1) (dimPk(e))2.

Let us now compare the size and sparsity structure of this stiffness matrix with
those of the IP and the (Schur-complement matrix of the) LDG methods that use
polynomials of degree k. The number of globally coupled degrees of freedom for both
methods is

N IP
d.o.f. = NLDG

d.o.f. = Ns dimPk(K),

whereNs denotes the number of simplexes of the triangulation. Moreover, the stiffness
matrices in question have a block structure with square blocks of order equal to the
dimension of Pk(K). On each block-row, the number of blocks that are not equal to
zero are at most (n+2) for the IP method and ((n+1)2+1) for the LDG method; recall
that, for the LDG method, the degrees of freedom of the neighbors of the neighbors
are also involved. This means that the number of nonzero entries of the corresponding
stiffness matrices are (bounded by)

N IP
sparsity = Ns (n+ 2) (dimPk(K))2, NLDG

sparsity = Ns
(
(n+ 1)2 + 1

)
(dimPk(K))2.

To compare with the hybridized methods, we consider the ratio of the number
of globally coupled degrees of freedom Rd.o.f. := NDG

d.o.f./Nd.o.f. and the ratio of the
number of entries different from zero RIP

sparsity := N IP
sparsity/Nsparsity and RLDG

sparsity :=
NLDG

sparsity/Nsparsity. Since Ns/Ni.f. ≈ 2/(n + 1) (up to a lower order term related to
the faces on the boundary), then

RIP
sparsity =

2 (n+ 2)
(n+ 1) (2n+ 1)

(
k

n
+ 1
)2

, RLDG
sparsity =

2
(
(n+ 1)2 + 1

)
(n+ 1) (2n+ 1)

(
k

n
+ 1
)2

.

In Table 2.1, we see that in two- or three-space dimensions, the hybridizable
methods always have less degrees of freedom and have a stiffness matrix that is sparser
than the corresponding LDG methods. The same is valid for the IP method in two-
space dimensions and in three-space dimensions for k ≥ 3. In three-space dimensions,
the IP method with k = 1 is more advantageous than the corresponding hybridizable
DG method; for k = 2, its advantages are, however, marginal.

It is interesting to extend the comparison with the IP method for which static
condensation of the interior degrees of freedom has been carried out; of course, this
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Table 2.2

Comparison between hybridizable and the statically-condensed IP methods on simplicial meshes.

n k Rd.o.f. Rsparsity n k Rd.o.f. Rsparsity

2 3 1.50 2.70 3 4 1.13 1.86
4 1.60 3.07 5 1.23 2.19
5 1.67 3.33 6 1.32 2.49

can be done only if k ≥ n+ 1. In this case, the number of globally coupled degrees of
freedom is

N sc−IP
d.o.f. = Ns (dimPk(K)− dimPk−n−1(K)).

The stiffness matrix in question has again a block structure with square blocks of
order equal to (dimPk(K) − dimPk−n−1(K)). On each block-row, the number of
blocks that are not equal to zero are n+ 2. Indeed, it can be shown that the interior
degrees of freedom on a given simplex can be expressed in terms of the condensed
degrees of freedom of the simplex and those of its neighbors, and that the condensed
degrees of freedom can be expressed in terms of the interior degrees of freedom of the
simplex and those of its neighbors. We then have

N sc−IP
sparsity = Ns (n+ 2) (dimPk(K)− dimPk−n−1(K)2.

This implies that the corresponding ratios are

Rsc−IP
d.o.f. =

2
(n+ 1)

(
k

n
+ 1
) (

1−Πn
j=1

k − j
k + j

)
,

and

Rsc−IP
sparsity =

2 (n+ 2)
(n+ 1) (2n+ 1)

(
k

n
+ 1
)2(

1−Πn
j=1

k − j
k + j

)2

.

We show some results in Table 2.2. We see that the hybridized methods produce
smaller and more sparse matrices than the statically-condensed IP method.

The same argument could be made for DG methods on n-dimensional rectangular
finite elements. In this case, the DG approximations could be based on polynomials of
degree k (instead of polynomials of degree k in each variable in the case of continuous
elements). Then the ratio between the degrees of freedom (and the sparsity) will be
lower, since instead of the factor Ns/Ni.f. ≈ 2/(n+ 1), we have the factor Nr/Ni.f. ≈
2/2n.

A complete comparison of methods would require factoring in the costs of solving
the algebraic problem. While greater sparsity or lesser number of degrees of freedom
often yields faster solution methods, definitive conclusions can be made only after
numerical experiments with specific direct or iterative methods; see [16] for such
studies on older methods.

3. Examples of hybridizable methods. In this section, we give several ex-
amples of methods fitting the general structure described in the previous section. We
restrict ourselves to methods that use the same local solver in all the elements K
of triangulation Th. Throughout this section, we assume that Th is a conforming
simplicial triangulation.
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To define each of the methods, we have only to specify (1) the numerical trace
of the flux Q̂·, (2) the local spaces V (K), W (K), and (3) the space of approximate
traces Mh. We then verify that the local solvers are well posed and discuss the
conservativity condition by using Theorem 2.1. We use Theorem 2.4 to verify the
existence and the uniqueness of the approximate trace λh and end by relating these
results to relevant, earlier material.

Our examples are summarized Tables 3.1 and 3.2; some of them are schematicaly
related in Figure 3.1. The first column of the tables consists of method names. We
adopt the following convention: Suppose that we define the local solver on each ele-
ment by using a numerical method previously known as the “N” method. Then we
call the resulting hybridized formulation an “N-hybridizable method” or, in short, an
“N-H” method. For example, if we use the well-known IP method to define the local
solvers, then any hybridized formulation with such local solvers is denoted as IP-H.
We also say that a finite element method is an N-H method if there is a hybridization
of the method that is an N-H method.

In columns 2–4 of Table 3.1, we give the spaces of the local solvers and the
approximate trace. In the fifth column, we indicate whether the method gives a
single-valued flux trace q̂h so the conservativity condition is satisfied in a strong form
or q̂h is double-valued so the methods leads to a weak conservativity condition. In
the last two columns of Table 3.1, we define the numerical traces of the fluxes Q̂m
and Q̂f . The weak formulations for the approximate traces obtained via Theorem 2.1
for each type of method are listed in Table 3.2.

3.1. The RT-H method. This method is obtained by using the RT method to
define the local solvers. The three ingredients of the RT-H method are as follows:

1. For each K ∈ Th, we take

Q̂m = Qm, Q̂f = Qf on ∂K;

2. The finite element space V (K)×W (K) is defined as Raviart–Thomas space
of degree k:

V (K) = Pk(K)n + xPk(K), W (K) = Pk(K), k ≥ 0,

where Pk(K)n denotes the set of vector functions whose components are in
Pk(K);

3. We define the space of approximate traces as

Mh = Mh,k.

The fact that the local solvers are well defined can be established by realizing that
they are defined by using exactly the RT mixed finite element method. Indeed, if we
insert the expression of numerical traces Q̂m and Q̂f into the equations defining the
local solvers, we see that they are nothing but the RT discretizations of exact local
problems (1.4), as claimed. Since the RT method is well defined (see [49, 12]) local
solvers (Qm, Um) and (Qf, Uf) are also well defined.

Note that conservativity condition (2.6) forces numerical trace q̂h to be single
valued. Indeed, because (extension by zero from E◦h to Eh of) [[Q̂λh + Q̂gh + Q̂f ]]
and test functions μ belong to the same space, conservativity condition (2.6) forces
equality

[[q̂h]] = [[qh]] =
[[
Q̂λh + Q̂gh + Q̂f

]]
= 0 on E◦h,
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Fig. 3.1. Relations between some hybridizable methods in terms of stabilization parameter τ .

so the normal component of numerical trace q̂h is single-valued, and qh ∈H(div,Ω).
Moreover, Theorem 2.1 asserts that the conservativity condition is equivalent to (2.9)
with

ah(η, μ) = (cQη,Qμ)Th
+ (dUη, Uμ)Th

,

bh(μ) = 〈gh , Qμ · n〉∂Ω + (f, Uμ)Th
,

provided gh|E◦
h

= 0. This is, of course, a reasonable choice, since g|E◦
h

= 0 and Mh is
a space of discontinuous functions.

These results appeared earlier in [26, Theorem 2.1], where the hybridized RT
method of arbitrary order was considered; the case of the lowest order RT method
was previously considered in [21]. We can thus conclude that the original RT method
is an RT-H method. In [41], bilinear form ah(·, ·) was shown to be positive definite;
this implies that λh is uniquely determined. Next, we apply our general approach to
this method and verify Assumption 2.2 on the positive semidefiniteness of the local
solvers and Assumption 2.3, the gluing condition. By Theorem 2.4, this ensures the
existence and the uniqueness of λh and hence that of approximation (qh, uh).

Proposition 3.1. Assumption 2.1 on the existence and the uniqueness of the
local solvers, and Assumption 2.2 on the positive semidefiniteness of the local solvers
hold for the RT-H method. Assumption 2.3, the gluing condition, also holds with

M(∂K) = {μ : μ|e ∈ Pk(e) for all faces e of ∂K}.

Proof. Assumption 2.1 obviously holds. Let us prove Assumption 2.2. To do
that, we first show that condition (2.13a) holds. By identity (2.14) with μ := m, we
have that

−
〈
m , Q̂m · n

〉
∂K

=(cQm,Qm)K + (d Um, Um)K ,

by the definition of Q̂m. We thus see that condition (2.13a) is satisfied.
Now we verify condition (2.13b) with the given choice of M(∂K). If 〈m , Q̂m ·

n〉∂K = 0, we immediately obtain Qm|K = 0. This implies that (2.3a) can be rewritten
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as

(3.1) (grad Um,v)K − 〈Um−m , v · n〉∂K = 0 for all v ∈ V (K).

It is well known (see, for example, [12]) that for a given gradUm and Um−m, there
is a function v ∈ V (K) such that

(v,pk−1)K =(grad Um,pk−1)K for all pk−1 ∈ Pk−1(K),(3.2)
〈v · n , pk〉e =− 〈Um−m , pk〉e for all pk ∈ Pk(e)(3.3)

for all faces e of K. Using this v in (3.1), we find that

(grad Um,gradUm)K + (Um−m, Um−m)∂K = 0.

This implies that Um is a constant on K, so m is constant on ∂K. This proves that
condition (2.13b) is satisfied with M(∂K) as described.

It remains to verify Assumption 2.3. Since we are assuming that triangulation Th
is conforming, each interior face e = ∂K+ ∩ ∂K− is also a face of both K+ and K−.
Hence, since μ|e ∈ Pk(e), we have that P∂K+μ = μ = P∂K−μ on e. This completes
the proof.

3.2. The BDM-H method. To obtain the BDM-H method, we use the BDM
method to define the main three ingredients of the hybridization method:

1. For each K ∈ Th, we take

Q̂m = Qm, Q̂f = Qf on ∂K;

2. The finite element spaces are defined as

V (K) = Pk(K)n, W (K) = Pk−1(K), k ≥ 1;

3. The space of approximate traces is defined as Mh = Mh,k.
This defines the BDM-H method.

Everything said about the RT-H method in the previous subsection applies to the
BDM-H method. In particular, we have that the original BDM method is a BDM-H
method; see [41].

3.3. The LDG-H methods. The LDG-H methods are obtained by using the
LDG method to define the local solvers. The following specifications completely define
the class of LDG-H methods:

1. The numerical traces

(3.4) Q̂m = Qm + τK(Um−m)n, Q̂f = Qf + τK(Uf)n on ∂K,

where τK is a function that can vary on ∂K.
2. The space V (K)×W (K) as one of the following choices:

Pk(K)n × Pk−1(K), k ≥ 1 and τK ≥ 0 on ∂K;(3.5a)
Pk(K)n × Pk(K), k ≥ 0 and τK > 0 on at least(3.5b)

one face of the simplex K;
Pk−1(K)n × Pk(K), k ≥ 1 and τK > 0 on ∂K.(3.5c)



1340 B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV

3. The space of approximate traces is

(3.6) Mh = Mh,k.

Typically, the stabilization parameter τ of the LDG methods is a nonnegative
constant on each face in Eh. Here, we allow τ to be double valued on E◦h, with two
branches τ− = τK− and τ+ = τK+ defined on the edge e shared by the finite elements
K− and K+. Now the functions (Qm, Um) and (Qf, Uf) are the approximations
given by the LDG method to exact solutions of (1.4) on each element, as claimed.
As is well known (see [34, 17, 5]), the LDG method is uniquely solvable for τK > 0.
However, the above specifications define a wider class of LDG-H methods. We show
that the existence and the uniqueness of the solution of the method can be guaranteed
for each of choices (3.5).

Proposition 3.2. Assumption 2.1 on the existence and the uniqueness of the
local solvers holds for the numerical traces given by (3.4) and with any of choices (3.5)
for V (K)×W (K).

To prove this result for all the above-mentioned cases, we use the following aux-
iliary lemma.

Lemma 3.1. Let τK ≥ 0. With the choice of numerical traces in (3.4), local
problems (2.3) and (2.4) are uniquely solvable if V (K) ×W (K) defined by (3.5) is
such that whenever w ∈W (K) satisfies

(i) τK w = 0 on ∂K, and
(ii) (w, div v)K = 0 for all v ∈ V (K),

we have that w = 0.
Proof. Let us prove the result for first local solver (Qm, Um) defined by (2.3).

The result for the other local mapping (2.4) is similar. It suffices to prove uniqueness,
since this implies existence. To prove uniqueness, we must show that, when m = 0,
the only solution of (2.3) is the trivial one.

Taking v = Qm and w = Um in (2.3) and adding the resulting equations, we get

(cQm,Qm)K +
〈

Um ,
(
Q̂m−Qm

)
· n
〉
∂K

+ (d Um, Um)K = 0.

Inserting the definition of the numerical trace Q̂m, we get

(cQm,Qm)K + 〈Um , τK Um〉∂K + (d Um, Um)K = 0,

and since c is positive definite and symmetric, d ≥ 0, and τK ≥ 0, we have that
Qm = 0.

It remains to show that Um = 0. To do so, we note that the above equation
implies that (τ Um)K = 0 on ∂K. By (2.3a), we also have

(Um, div v)K = 0 for all v ∈ V (K).

By hypothesis (ii) of Lemma 3.1, this implies that Um = 0. This completes the
proof.

We are now ready to prove Proposition 3.2.
Proof. By Lemma 3.1, we have only to show that, for each of three choices (3.5),

if w ∈ W (K) satisfies τKw = 0 on ∂K and (w, div v)K = 0 for all v in V (K), then
w = 0 on K.

Let us show that this is true for the spaces given by (3.5a). Since div : V (K)→
W (K) is surjective, we know there is a v in V (K) such that div v = w. This implies
that (w,w)K = 0 and hence that w = 0 on K.
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Next, let us consider choice (3.5b). Since w must vanish on the face F where
τK > 0, we immediately have that w = 0 if k = 0. If k ≥ 1, it can be factored
as w = 	F pk−1, with pk−1 ∈ Pk−1(K) and 	F equal to the barycentric coordinate
function of K that vanishes on F . Then, choosing v in V (K) = Pk(K)n such that
div v = pk−1, equation

0 = (div v, w)K = (div v, 	F pk−1)K = (pk−1, 	F pk−1)K

implies that pk−1 vanishes on K, so w = 0 on K.
Finally, let us consider choice (3.5c). Since τK > 0 on ∂K, we have that w = 0

on ∂K, and a simple integration by parts gives that

(gradw,v)K = 0 for all v ∈ V (K) = Pk−1(K)n.

Taking v = gradw allows us to conclude that w is a constant on K and hence
identically zero on K. This completes the proof.

Note that choices (3.4) of the numerical traces, (3.5) of the finite elements spaces
V (K) ×W (K), and (3.6) for approximate trace space Mh clearly imply that, for all
these LDG-H methods, conservativity condition (2.6) is satisfied strongly. Moreover,
by Theorem 2.1, the conservativity condition is equivalent to ah(λh, μ) = bh(μ) for
all μ ∈Mh, where

ah(η, μ) = (cQη,Qμ)Th
+ (dUη, Uμ)Th

+ 〈1 , [[(Uμ− μ)(τ (Uη − η)n)]]〉Eh
,

bh(μ) = 〈gh , Qμ · n+ τ Uμ〉∂Ω + (f, Uμ)Th
,

provided gh|E◦
h

= 0.
Form ah(·, ·) is obviously symmetric. That it is also positive definite follows once

Assumption 2.2 on the positive semidefiniteness of the local solvers is verified. Set

(3.7)
M(∂K) = {μ : μ|e ∈ Pk(e) for all faces e where τK = 0, and

μ|e ∈ L2(e) for all faces e where τK > 0}.

Proposition 3.3. Let the numerical traces be set by (3.4), the local spaces be as
in any of choices (3.5), and the space of approximate traces be set by (3.6). Then, As-
sumption 2.2 on the positive semidefiniteness of the local solvers and Assumption 2.3,
the gluing condition, are satisfied with M(∂K) defined by (3.7).

Proof. We begin by showing that condition (2.13a) holds. By identity (2.14) with
μ := m and the definition of Q̂m, we have that

−
〈
m , Q̂m · n

〉
∂K

=(cQm,Qm)K + (d Um, Um)K + 〈τK(Um−m) , Um−m〉∂K .

Since τK ≥ 0 in all three cases (3.5), we see that condition (2.13a) is satisfied.
Now, let us verify condition (2.13b). If we assume that 〈m , Q̂m · n〉∂K = 0, we

immediately obtain that Qm|K = 0 and τ (Um − m)|∂K = 0. This implies that the
first equation defining first local solver (2.3a) can be rewritten as

(3.8) (grad Um,v)K − 〈Um−m , v · n〉∂K = 0 for all v ∈ V (K).

We use this equation to show that in all three cases (3.5), condition (2.13b) is satisfied
with P∂K defined, on the face e of K, as the L2-projection into Pk(e) if τ |e = 0 and
as the identity if τ |e > 0:
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(i) In case (3.5a), the result follows exactly as in the proof of Proposition 3.1.
(ii) In case (3.5b), we know (see [24]) that there is a function v ∈ Pk(K)n such

that

(v,pk−1)K =(grad Um,pk−1)K for all pk−1 ∈ Pk−1(K)n,(3.9)
〈v · n , pk〉e =− 〈Um−m , pk〉e for all pk ∈ Pk(e)(3.10)

for all the faces e of K except one, say, the face e′ on which τ > 0. Setting this v
in (3.8) and using the fact that on e′ we have that m = Um, we obtain that Um is a
constant on K and that m = Um on the remaining faces of ∂K. Thus, m is constant
on ∂K and condition (2.13b) is verified. Assumption 2.3, the gluing condition, is
trivially satisfied by virtue of the definition of M(∂K) in (3.7).

(iii) In case (3.5c), we immediately see that m = Um on ∂K. Now we take
v = gradUm in (3.8) to get that Um is a constant. This verifies Assumption 2.2 as
in the previous case. Assumption 2.3 obviously holds from the definition of M(∂K)
in (3.7).

Our next result sheds light into the nature of numerical traces q̂h and ûh of the
LDG-H schemes.

Proposition 3.4 (characterization of LDG-H methods). Let the numerical
traces be set by (3.4), the local spaces be as in any of choices (3.5), the space of
approximate traces be set by (3.6), and (qh, uh) be as defined in (2.5). Then conser-
vativity condition (2.6) holds on E◦h if and only if

λh = ûh =
(

τ+

τ− + τ+

)
u+
h +

(
τ−

τ− + τ+

)
u−h +

(
1

τ+ + τ−

)
[[qh]],(3.11a)

q̂h =
(

τ−

τ− + τ+

)
q+
h +

(
τ+

τ− + τ+

)
q−h +

(
τ+τ−

τ− + τ+

)
[[uh]].(3.11b)

Proof. Suppose the conservativity condition holds. We need to prove (3.11a)
and (3.11b). By the definition of q̂h (see (2.7)) we have

q̂h = Q̂λh + Q̂gh + Q̂f

= (Qλh + Qgh + Qf) + τ(Uλh + Ugh + Uf − λh − gh)n
= qh + τ(uh − λh − gh)n.

Inserting this expression into the conservativity condition and taking gh equal to zero
on E◦h, we obtain that, for any μ ∈Mh,

〈μ , [[q̂h]]〉E◦
h

= 〈μ , [[qh + τ(uh − λh)n]]〉E◦
h

= 0,

which implies, by our choice of spaces, that [[q̂h]] = 0 on E◦h or equivalently that

[[qh]] +
(
τ+ u+

h + τ− u−h
)− (τ+ + τ−

)
λh = 0 on E◦h.

Solving for λh, we obtain (3.11a). To prove (3.11b), we simply insert the expression
for λh into the identity

q̂+
h · n+ = q+

h · n+ + τ+
(
u+
h − λh

)
and perform a few algebraic manipulations.
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The converse asserted by the proposition is trivial: If identities (3.11) hold, then
the normal component of q̂h is single valued on E◦h and the conservativity condition
is satisfied. This completes the proof.

Corollary 3.2. The LDG method is not an LDG-H method for any finite τ .
Proof. On any interior face e ∈ E◦h, the LDG method has a numerical trace ûh

independent of qh; see [34, 17, 5]. On the other hand, by Proposition 3.4, the LDG-
H methods have numerical traces ûh that depend on [[qh]]. Since this dependence
cannot be removed for any finite value of τ , we see that no LDG method is an LDG-H
method. This completes the proof.

As known from [34, p. 2445] and [17, p. 1681], the independence of numerical
trace ûh of the LDG methods of qh on interior faces E◦h allows us to eliminate the
unknown qh from the equations and to obtain a primal formulation involving only uh.
In contrast, in the LDG-H methods, ûh must depend on qh as well. Both approaches
recover qh locally but using different mechanisms. Since the LDG-H methods lead
to a formulation involving only numerical trace λh, they have fewer globally coupled
unknowns than the LDG method for high order polynomials.

The LDG-H methods considered in this subsection were studied in [17] where it
was proven, in particular, that the method is well defined for τ > 0 on Eh. Methods
with τ = 0 do not fit in the framework proposed in [5]; they have been recently studied
in [24].

3.4. A limiting case of LDG-H methods. Here we consider hybridizable
Galerkin methods that can be obtained formally considering limiting values of the
penalty parameter in LDG-H methods. The motivation for doing this arises from the
previous corollary (Corollary 3.2), whereby we know that the only chance for showing
that an LDG method can be hybridized lies in cases where τ is allowed to be not
finite.

We first examine how numerical traces of the previous LDG-H method change
as we formally pass to a limit in τ . By letting τ+ go to infinity on the interior face
e = ∂K+ ∩ ∂K− while maintaining a fixed finite τ−, we find that the expressions for
the numerical traces obtained in Proposition 3.4 become

(3.12) ûh = u+
h and q̂h = q−h + τ− [[uh]].

Note that the above expression for primal numerical trace ûh is independent of the
fluxes, or, in other words, such traces will result in an LDG method. Indeed, the LDG
method defined by these numerical traces have been thoroughly studied in the case
τ− > 0; see [34, 17, 5].

In the special case τ− = 0, we get

ûh = u+
h and q̂h = q−h ,

which also defines a previously studied LDG method. For this scheme, the discon-
tinuities of the approximate solution across interior interelement boundaries do not
introduce any dissipation. The dissipative effect of the discontinuities is concentrated
on the boundary of the domain and hence reduced to a “minimum,” which is the
reason for its name, the minimal dissipation LDG method. Since this scheme does
not fit the unified analysis in [5], it was studied in [20] and [24] for problems in one
and several space dimensions, respectively.

The formal passage to limit solely in the expressions for numerical traces does
not clarify if the limiting methods are hybridizable. In particular, we must explain
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precisely what we mean by setting τK =∞ in the context of local solvers. To do so,
let FK be the union of one or more faces of the element K where we want to set the
branch τK to ∞. Since

Q̂m = Qm + τK(Um−m)n,

we expect that in the formal limit of τK =∞, we should have Um−m = 0. Then the
value of Q̂m on FK becomes an unknown because the last term above is an unknown
formal product of 0 with ∞. Motivated by this, we now define the local solvers with
Q̂m and Q̂f as new unknowns. More precisely, setting

W (K) = Pk(K), V (K) = Pk(K)n, TK(FK) = {nK w|FK : w ∈W (K)},

we define local solution (Qm, Um, (Q̂m)FK ) ∈ V (K) × W (K) × TK(FK) for any
m ∈ Mh by

(cQm,v)K − (Um, div v)K = −〈m , v · n〉∂K for all v ∈ V (K),(3.13a)

−(gradw,Qm)K +
〈
w , Q̂m· n

〉
∂K

+ (d Um, w)K = 0 for all w ∈ W (K),(3.13b)

Um = m on FK .(3.13c)

Here, just as for the LDG-H methods, we set

Q̂m = Qm + τK (Um−m)n on ∂K \ FK .

Similarly, we define (Qf, Uf, (Q̂f)FK ) as the element of V (K) ×W (K) × TK(FK)
such that

(cQf,v)K − (Uf, div v)K = 0 for all v ∈ V (K),(3.14a)

−(gradw,Qf)K +
〈
w, Q̂f · n

〉
∂K

+(d Uf, w)K = (f, w) for all w ∈W (K),(3.14b)

Uf = 0 on FK ,(3.14c)

where

Q̂f = Qf + τK (Uf)n on ∂K \ FK .
We set the space of approximate traces by

(3.15) Mh = {μ ∈Mh,k : μ|FK is continuous on FK for all K ∈ Th}.
Note that the continuity condition in the above definition reflects the fact that the
local solvers satisfy strong Dirichlet boundary conditions on FK for all K ∈ Th; see
(3.13c) and (3.14c). This completes the definition of the limiting case of the LDG-H
method when τK = ∞ on FK . From now on, the above modification of the LDG
local solvers is tacitly understood whenever we say that a branch of τ is infinity on
a face. It is easy to check, by arguments similar to that in Proposition 3.2, that
local problems (3.13) and (3.14) are uniquely solvable for every m in Mh and every
f ∈ L2(Ω) provided, for each element K ∈ Th, τK is not identically equal to zero on
∂K whenever FK is the empty set.

Note that, although the local solvers have been modified, Theorem 2.1 continues
to apply because its proof only relies on the form of the first two equations in the
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local problems. Indeed, (3.13a) and (3.13b) are identical in form to (2.3a) and (2.3b),
respectively; a similar remark applies to the equation of the second local solvers.
Therefore, Theorem 2.1 also holds in this case. In particular, we have that

ah(η, μ) = (cQη,Qμ)Th
+ (dUη, Uμ)Th

+
∑
K∈Th

〈τ(Uη − η) , (Uμ− μ)〉∂K\FK
.

Finally, it is not difficult to see that Proposition 3.3 also holds. By Theorem 2.4,
bilinear form ah(·, ·) is positive definite, and we can immediately see that λh is uniquely
determined.

Note that, unlike all previous examples, conservativity condition (2.6) for these
methods is only imposed weakly. This is because while the jumps of q̂h lie in Mh,k,
the approximate traces μ are in the space Mh, which is a strict subspace of Mh,k.
Since all LDG methods have single-valued numerical traces, this seems to suggest
that no LDG method can be a limiting case of the LDG-H method. However, this is
not the case, as we see next.

We consider the one-sided limiting case of the LDG-H method. This is the same
as the above-defined limiting case of the LDG-H method but with the following ad-
ditional assumption: For every interior face e in E◦h, one branch of τ is infinity, and
the other branch is finite-valued.

Corollary 3.3. The one-sided limiting case of the LDG-H method coincides
with the LDG method whose numerical traces on the interior faces are given by (3.12).

Proof. Let λ∞h denote the solution of the one-sided limiting case of the LDG-H
method, and let

q∞h = Qλ∞h + Qgh + Qf, u∞h = Uλ∞h + Ugh + Uf.

We will prove that q∞h and u∞h coincide with the corresponding solution compo-
nents q LDG

h and uLDG
h , respectively, of the LDG method with numerical traces set as

in (3.12).
By the definition of the LDG method, q LDG

h and uLDG satisfy (2.8a)–(2.8b) with
the λh and q̂h therein set, respectively, to ûh and q̂h of (3.12), which, for clarity, we
will rewrite as ûLDG

h and q̂LDG
h .

It suffices to show that q∞h and u∞h satisfy the same equations as q LDG
h and uLDG

h .
Adding local solver equations (3.13a) and (3.14a) over all elements, we find that q∞h
and u∞h satisfy the first equation of the LDG method with λ∞h in place of ûLDG

h . But,
since every interior edge has an infinite penalty branch and since

(3.16) λ∞h |FK = (u∞h )FK for all elements K,

we find that λ∞h is in the same form as LDG numerical trace ûLDG
h .

Also, summing local solver equations (3.13b) and (3.14b) over all elements, we
find that q∞h and u∞h satisfy the second equation of the LDG methods, with q̂∞h ≡
Q̂λ∞h + Q̂gh + Q̂f in place of q̂LDG

h . We will now show that the second equation, in
fact, holds with the LDG flux. For this, we use the fact that

(3.17) 〈 [[q̂∞h ]] , μ〉Eh
= 0

for all μ in the subspace Mh of functions in Mh (defined by (3.15)), with μ|∂Ω = 0.
Now, if w is any function in W (K), then w|FK , extended by zero to Eh, is in Mh.
Therefore, (3.17) implies

〈q̂∞h · n , w〉FK = −〈 (q̂∞h )Kc · (n)Kc , w〉FK

= −〈 (q̂∞h )Kc + (τ)Kc

(
(u∞h )Kc − λ∞h

)
(n)Kc , (n)Kcw 〉FK .
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Here, for notational convenience, we have denoted the branch of a multivalued function
f from outside K by (f)Kc . By (3.16), we can rewrite the right-hand side as

〈q̂∞h · n , w〉FK = −〈 (q̂∞h )Kc + (τ)Kc [[u∞h ]] , (n)Kcw 〉FK

and conclude that

(3.18)
∑
K

〈q̂∞h · n , w〉∂K =
∑
K

〈q̂LDG
h · n , w〉∂K .

Thus, q∞h and u∞h satisfy the same equations as the LDG method with the same
expressions for numerical traces as in the LDG case.

Note that in the above proof, q̂∞h and q̂LDG
h are not identical, in general, al-

though (3.18) holds. This explains why the normal component of the limiting LDG-H
numerical trace may not be single valued, although the numerical trace of its equiva-
lent LDG method is single valued.

3.5. The CG-H method. The CG-H methods are obtained by using the CG
method to define the local solvers. We are also going to see that they are also obtained
from LDG-H methods by letting τ go to infinity everywhere.

Again, we need to specify the main ingredients of the local solvers. Similarly
to the the limiting case of LDG-H methods, we need to give a new meaning of the
local solvers since τ = ∞. Since the numerical flux Q̂· will be unknown, we need an
appropriate space for its approximation.

1. For any k ≥ 1 and any K ∈ Th, we define the finite element spaces by

(3.19) V (K) = Pk−1(K)n, W (K) = Pk(K), and
T (∂K) := {nK w|∂K : w ∈W (K)}.

2. The numerical traces of fluxes Q̂· are unknown and will be determined by the
modified local solvers as follows: (Qm, Um, Q̂m) ∈ V (K)×W (K)× T (∂K)
is a solution to the problem

(cQm,v)K − (Um, div v)K = −〈m , v · n〉∂K ,(3.20a)

−(gradw,Qm)K +
〈
w , Q̂m · n

〉
∂K

+ (d Um, w)K = 0,(3.20b)

Um = m on ∂K.(3.20c)

for all v ∈ V (K) and w ∈W (K). Similarly, (Qf, Uf, Q̂f) ∈ V (K)×W (K)×
T (∂K) is defined by

(cQf,v)K − (Uf, div v)K = 0,(3.21a)

−(gradw,Qf)K+
〈
w, Q̂f · n

〉
∂K

+(d Uf, w)K = (f, w)K ,(3.21b)

Uf = 0 on ∂K.(3.21c)

for all v ∈ V (K) and v ∈W (K),
3. For the space of approximate traces, we take

(3.22) Mh := Mc
h,k.
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We begin our discussion regarding the above CG-H method by verifying the as-
sumptions required by Theorem 2.4.

Proposition 3.5. Assumption 2.1 on the existence and the uniqueness of the
local solvers holds for the CG-H local solver. Assumption 2.2 on the positive semidef-
initeness of the local solvers and Assumption 2.3, the gluing condition, hold with
M(∂K) = L2(∂K).

Proof. We prove the result for local solver (Qm, Um, Q̂m) defined by (3.20). The
result for the local mapping defined by (3.21) is similar. Since the resulting system is
square, we prove only uniqueness since this implies existence. Thus, we need to show
that if m = 0, then the only solution is the trivial one.

Taking v = Qm in (3.20a) and w = Um in (3.20b) and adding the resulting
equations, we get

(cQm,Qm)K +
〈

Um ,
(
Q̂m−Qm

)
· n
〉
∂K

+ (d Um, Um)K = 0.

Since, by (3.20c), Um = 0 on ∂K, we immediately obtain that Qm = 0. This implies
that (3.20a) can be rewritten as follows:

(grad Um,v)K = 0 for all v ∈ V (K),

which implies that Um = 0.
It remains to show that Q̂m = 0. To do that, we use (3.20b) rewritten as〈

w , Q̂m · n
〉
∂K

= 0 for all w ∈W (K).

By the definition of space T (∂K), we can find a function w ∈ W (K) such that
Q̂m = wn. This readily implies that Q̂m = 0. This completes the verification of
Assumption 2.1.

Inequality (2.13a) of Assumption 2.2 can easily be seen to hold. The second
part of Assumption 2.2 also holds, since M(∂K) = L2(∂K). Finally, Assumption 2.3
trivially holds.

Next, we discuss the conservativity condition. Flux approximation qh of the CG-
H method is, in general, not in H(div,Ω). Nonetheless, it is interesting to observe
that even the CG-H method has a weak conservativity property. This property holds
for numerical flux trace q̂h = Q̂λh + Q̂gh + Q̂f , a quantity that is not present in
the standard formulations of the CG methods but essential in our approach. Indeed,
Theorem 2.1 asserts that q̂h satisfies

〈μ , [[q̂h]]〉E◦
h

= 0 for all μ ∈ Mh,

which is a weak conservativity condition.
Observe that if a is a constant matrix on each element, by the definition of local

solvers (3.20) and (3.21), we have that

(3.23) Qm = −agradUm and Qf = −agradUf.

Hence, qh in (2.8a), being the sum of the local flux solutions, equals −agraduh on
each element. Substituting this in (2.8b) and using the conservativity condition, we
immediately see that uh satisfies the standard CG equations. In addition, the bound-
ary conditions defining local solvers (3.20c) and (3.21c) imply that uh is continuous.
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Thus, we conclude that this CG-H formulation coincides with the CG method when-
ever a is constant. In other words, the original CG method is a CG-H method when
the matrix-valued function a is a constant on each element. In this case, we can also
simplify the forms in (2.9) using (3.23) to

ah(η, μ) = (agrad Uη,gradUμ)Th
+ (dUη, Uμ)Th

,

bh(μ) =
〈
gh ,

[[
Q̂μ
]]〉

Eh

+ (f, Uμ)Th
.

Note that in our case, we do not necessarily have that gh|E◦
h

= 0. Hence, the corre-
sponding integral cannot be performed only on ∂Ω as in the previous cases.

Formulation (2.9) is nothing but the weak formulation for the CG method with
static condensation of its interior degrees of freedom. This hybridization approach for
the CG methods of degree k is explored in [31], where, in particular, a postprocessing
technique providing locally conservative flux approximations competitive with that
given by the RT methods of degree k − 1 is introduced.

When the matrix-valued funcion a is not constant on each element, we cannot
write (3.23) anymore. Instead, “a” has to be replaced by a function “a,” which is,
roughly speaking, the inverse of some local average of c, the inverse of a. In prac-
tice, however, we do not compute the matrix-valued function a; instead, we compute
directly the functions Qm and Qf by using the definition of the local solvers.

3.6. IP-H methods. The IP-H methods are obtained by using the numerical
traces and the local solvers of the IP method. Thus,

1. the numerical traces are given by

(3.24)
Q̂m = −agradUm+τK(Um−m)n,Q̂f = −agradUf+τK(Uf)n, on ∂K;

2. the finite element space V (K)×W (K) is defined for k ≥ 1 as

(3.25) V (K) = Pk(K)n, W (K) = Pk(K);

3. the space of approximate traces is chosen as

(3.26) Mh := Mh,k.

As before, τ is a double-valued function on E◦h, with two branches τ− = τK− and
τ+ = τK+ defined on the edge e shared by the finite elements K− and K+.

Note that IP methods can be defined by using a flux formulation, as the one
employed here to define the local solvers or by means of a primal formulation; see [5].
These two IP methods, however, do coincide whenever the function a is a constant
on each element K ∈ Th. For this reason, we are going to assume here that this is
the case. All the results for this case, however, can be easily extended to the case in
which a is not necessarily piecewise constant.

Next, we provide sufficient conditions for the IP-H method to be well defined. For
simplicity, we assume that mesh Th is shape regular, that is, that there is a constant
γ > 0 such that hK/ρK ≤ γ for all simplexes K ∈ Th, where hK is the diameter of K
and ρK the diameter of the largest ball contained in K.

Proposition 3.6. Let the numerical traces be given by (3.24) and the local
spaces by (3.25). Suppose a(x) is a constant matrix on each element K. Then As-
sumption (2.1) on the existence and the uniqueness of the local solvers holds provided
τK > c0/hK for some constant c0 > 0 depending on γ and a(x).
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For a proof, see [6, 3]. Having established that the local solvers are well defined,
we can apply Theorem 2.1. We find that the conservativity condition implies that λh
solves (2.9), with

ah(η, μ) =(cQη,Qμ)Th
+ (dUη, Uμ)Th

+ 〈1 , [[(μ− Uμ)(agrad Uη + Qη)]]〉Eh
,

+ 〈1 , [[(Uμ − μ)(τ (Uη − η)n)]]〉Eh
,

bh(μ) =〈gh , −agradUμ · n+ τ Uμ〉∂Ω + (f, Uμ)Th
,

provided gh|E◦
h

= 0. Using (2.12a) of Lemma 2.3 and the fact that a(x) is constant
on each K, we can simplify this expression as follows:

ah(η, μ) = (cQη,Qμ)Th
− (cQη + grad Uη,Qμ+ agradUμ)Th

+ (dUη, Uμ)Th

+ 〈1 , [[(Uμ− μ)(τ (Uη − η)n)]]〉Eh

= (agrad Uη,grad Uμ)Th
+ (dUη, Uμ)Th

+ 〈1 , [[
(
(Uη − η) agradUμ+ (Uμ− μ) agradUη

)
]]〉Eh

+ 〈1 , [[(Uμ− μ)(τ (Uη − η)n)]]〉Eh
.

The positive definiteness of the form ah(·, ·) can be proven as in the case of LDG-
H methods. Indeed, this fact is an immediate consequence of Theorem 2.4 and the
following result.

Proposition 3.7. Let the numerical traces of the fluxes be set by (3.24), the
local spaces be defined by (3.25), and the space of approximate traces be set by (3.26).
Suppose a(x) is a constant matrix on each element K. Then Assumption 2.2 on the
positive semidefiniteness of the local solvers and Assumption 2.3, the gluing condition,
are satisfied with M(∂K) = {μ : μ|e ∈ Pk(e) for all faces e ∈ ∂K} whenever τK >
c0/hK for some constant c0 > 0 depending on γ and a(x).

The proof of this result is similar to that of Proposition 3.3.
Just as for LDG-H methods, we can give a characterization of the IP-H methods.

It is given in the proposition below, which is an analog of Proposition 3.4 for the
LDG-H methods. Since the proof is similar, we omit it.

Proposition 3.8 (characterization of IP-H methods). Let the numerical traces
be set by (3.24), the spaces be as in (3.25), and (qh, uh) be as defined in (2.5). Then
conservativity condition (2.6) holds if and only if on E◦h

λh = ûh =
(

τ+

τ− + τ+

)
u+
h +

(
τ−

τ− + τ+

)
u−h −

(
1

τ+ + τ−

)
[[agraduh]],

(3.27a)

q̂h =−
(

τ−

τ− + τ+

)
a+gradu+

h −
(

τ+

τ− + τ+

)
a−gradu−h +

(
τ+τ−

τ− + τ+

)
[[uh]].

(3.27b)

We also have results analogous to Corollary 3.2.
Corollary 3.4. The standard IP method is not an IP-H method for any fi-

nite τ .
Proof. Comparing the numerical traces of the standard IP method (see [5, Ta-

ble 3.1]), namely,

û IP
h = {{uh}} and q̂ IP

h = −{{agraduh}}+ C [[uh]],
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with the expressions for the numerical traces in Proposition 3.8, we find that they
cannot coincide for any value of τ .

In spite of this negative result, a stabilized DG finite element method introduced
in [38] and rewritten in [37] as an IP method, turns out to be an IP-H method. To
describe this scheme in a simple setting, assume that d = 0 and g = 0. The method,
as presented in [38], does not use the function λh approximating u|Eh

. Instead, it uses
approximate fluxes 	h approximating the normal component of agradu. The space
in which 	h lies is the space of scalar double-valued functions defined by

Lh = {q : q|e ∈ Pk(e) for all e ∈ Eh and qK+ + qK− = 0 on e = ∂K+ ∩ ∂K−}.

The DG method of [38] seeks uh ∈ Wh, given by (2.1), with W (K) = Pk(K), and
	h ∈ Lh such that

(3.28)∑
K∈Th

{
(agraduh,gradv)K − 〈	h , v〉∂K − 〈η , uh〉∂K

}

− αh
∑
K∈Th

〈	h − agraduh · nK , η − agradv · nK〉∂K = (f, v)

for all v ∈ Wh and η ∈ Lh. Here, α > 0 is a constant stabilization parameter, and
h = maxK∈Th

hK .
Taking v ≡ 0 and using that {{η}} = 0 on E◦h, we get

(3.29) 	h =

{
{{agraduh}} · n− 1

2αh [[uh]] · n on E◦h,
agraduh · n− 1

αhuh on E∂h.

We see from the above equation that 	h is indeed an approximation to the normal
component of agradu. Next, taking η ≡ 0 in (3.28) and substituting therein the
expression for 	h from (3.29), we get that uh ∈Wh satisfies

(3.30)

(agraduh, gradv)Th
−〈 {{agradv}} , [[uh]]〉Eh

−
〈
{{agraduh}} − 1

2αh
[[uh]] , [[v]]

〉
E◦

h

−
〈
agraduh − 1

αh
uhn , vn

〉
E∂

h

−
〈
αh

2
[[agraduh]] , [[agradv]]

〉
E◦

h

= (f, v)

for all v ∈Wh.
Now, we show that this is an IP-H method. Comparing the above formulation

with the general primal formulation given by [5, equation (3.11)], we can easily verify
that if we take

(3.31)

ûh = {{uh}} − αh

2
[[agraduh]] on E◦h,

q̂h =

{
−{{agraduh}}+ 1

2αh [[uh]] on E◦h,
−agraduh + 1

αhuhn on E∂h,
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we recover (3.30). Hence, the above numerical traces are exactly the numerical traces
of the IP-H method given by Proposition 3.8 with τ+ = τ− = (αh)−1. This shows that
the DG method proposed in [38] is an IP-H method. The correspondence between their
flux approximation 	h and our numerical flux trace follows immediately from (3.31)
and (3.29):

q̂h · n = −	h.
It also follows from Proposition 3.6 that the IP method of (3.30) is well defined when
α > 0 is sufficiently small; a result already established in [38].

Let us end by pointing out that other IP–H-like methods can be obtained. For
example, we could take V (K) = Pk−1(K)n.

3.7. The NC-H methods. We now consider nonconforming hybridizable (NC-
H) methods and show that methods like the P1-nonconforming method introduced in
[36] in the framework of the stationary Stokes equations, are, in fact, NC-H methods.

Again the main components of the NC-H method are defined as follows:
1. For any k ≥ 1, set

V (K) = Pk−1(K)n, W (K) = Pk(K),
M(∂K) = {q : q|e ∈ Pk−1(e) for every face e of K},(3.32)
T (∂K) = {qnK : q|e ∈ Pk−1(e) for every face e of K}.

2. Define local solutions (Qm, Um, (Q̂m)K) and (Qf, Uf, (Q̂f)K) as the ele-
ments of V (K)×W (K)× T (∂K) satisfying

(cQm,v)K − (Um, div v)K = −〈m , v · n〉∂K ,(3.33a)

−(gradw,Qm)K +
〈
w , Q̂m· n

〉
∂K

+ (d Um, w)K = 0,(3.33b)

〈Um , μ〉∂K = 〈m , μ〉∂K ,(3.33c)

for all v ∈ V (K), w ∈W (K), and μ ∈M(∂K), and

(cQf,v)K − (Uf, div v)K = 0,(3.34a)

−(gradw,Qf)K +
〈
w, Q̂f · n

〉
∂K

+ (d Uf, w)K = (f, w),(3.34b)

〈Uf , μ〉∂K = 0,(3.34c)

v ∈ V (K), w ∈W (K), and μ ∈M(∂K).
3. The space of approximate traces is given by Mh = Mh,k−1.

Having completed the definition of the main ingredients of the method, we now
verify the assumptions of Theorem 2.4.

Sufficient conditions under which Assumption 2.1 on the existence and the unique-
ness of the local solvers hold are given next.

Proposition 3.9. For k = 1 and arbitrary n and for odd k > 1 and n = 2, local
solvers (3.33) and (3.34) have unique solutions.

Proof. We prove only the result for the first local solver, since the other can be
proven in a similar way. Since (3.33) is a square system, it suffices to prove that if
m = 0, then Qm = 0, Um = 0, and Q̂m = 0. Choosing v = Qm and w = Um,
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adding (3.33a) and (3.33b), and integrating by parts, we get

(cQm,Qm)K + (dUm, Um)K +
〈

Um ,
(
Q̂m−Qm

)
· n
〉
∂K

= 0.

If m = 0, (3.33c) implies that 〈Um , μ〉∂K = 0 for all μ ∈ M(∂K). Since (Q̂m −
Qm) · n ∈M(∂K), then the last term on the left-hand side above is zero, and hence,
Qm = 0 and d Um = 0. Substituting this into (3.33a), we have

0 = (Um, div v)K = −(gradUm,v)K for all v ∈ Pk−1(K)n,

where, while integrating by parts, we have again used that 〈Um , v ·n〉∂K = 0. Thus,
gradUm vanishes, so Um is a constant function, and 〈Um , μ〉∂K = 0 implies that it
vanishes identically.

It remains to show that Q̂m·n also vanishes. Since both Qm and d Um vanish,
(3.33b) implies that

(3.35)
〈
w , Q̂m · n

〉
∂K

= 0 for all w ∈ Pk(K).

For k = 1, that is, for Crouzeix–Raviart nonconforming finite elements, the result
follows easily for any dimension n ≥ 2. Indeed, let Q̂m ·n|ej = aj for some constants
aj , j = 1, . . . , n+ 1. Let w ∈ P1(K) be a linear function on K which takes values aj
at the centroids of the faces ej of K, j = 1, . . . , n + 1. Then 0 = 〈w , Q̂m · n〉∂K =∑n+1

j=1 |ej|a2
j implies aj = 0 for all faces, that is, Q̂m·n = 0.

Finally, we show the same for k odd and n = 2. Let e1, e2, and e3 denote the
three edges of K, and let L(j)

i denote the ith Legendre polynomial mapped affinely
to ej from [−1, 1]. Assume that the first vertex of the edge ej is mapped to the point
−1, and that, as we go from its first to its second vertex, the triangle K is to our left.
Since Q̂m · n|ej ∈ Pk−1(ej), we can write

(
Q̂m

)
K
· nK |ej =

k−1∑
i=0

a
(j)
i L

(j)
i .

Note that when i is even, L(j)
i takes the same value at the endpoints of ej. Therefore,

for any even i, we can choose a w in (3.35) such that w|e1 = L
(1)
i , w|e2 = −L(2)

k ,
and w|e3 = L

(3)
k (because with these choices w|∂K is continuous). Then (3.35) implies

that the coefficient a(1)
i vanishes. Repeating the argument for all edges, we find that

a
(j)
i = 0 for all even i and j = 1, 2, 3. Next, for odd i, choose w such that w|e1 = L

(1)
i ,

w|e2 = L
(2)
i−1, and w|e3 = −L(3)

k . Since k is odd, these choices make w|∂K continuous,
so such a w can be found. With this w, (3.35) now gives that a(1)

i = 0 for all odd i as
well. Repeating this argument for other edges, we find all coefficients to be zero, so
Q̂m vanishes.

Conservativity condition (2.6) with Mh = Mh,k−1 clearly implies strong conserva-
tivity. Using Theorem 2.1 and noting that the unknown fluxes Q̂· cancel off in weak
formulation (2.9), by boundary condition (3.33c) for the local solver, we have that the
bilinear form is symmetric:

ah(η, μ) = (cQη,Qμ)Th
+ (dUη, Uμ)Th

.

Its positive definiteness will follow from Theorem 2.4 once Assumptions 2.2 and 2.3
are verified, which we do next.
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Proposition 3.10. Assumption 2.2 on the positive semidefiniteness of the local
solvers and Assumption 2.3, the gluing condition, are satisfied with M(∂K) defined
as in (3.32).

Proof. First, we show that condition (2.13a) holds. Taking v = Qm in (3.33a),
w = Um in (3.33b), and adding the equations, we get, after a few simple algebraic
manipulations, that

−
〈
m , Q̂m · n

〉
∂K

= (cQm,Qm)K + (d Um, Um)K +
〈(̂

Qm−Qm
)
· n , Um−m

〉
∂K

= (cQm,Qm)K + (d Um, Um)K ,

by boundary condition (3.33c) for the local solver. This implies that (2.13a) of As-
sumption 2.2 is satisfied.

Now, we prove condition (2.13b). If 〈m , Q̂m · n〉∂K = 0, then Qm|K = 0 and
(3.33a) becomes

(grad Um,v)K = 〈Um−m , v · n〉∂K = 0 for all v ∈ V (K).

This implies that that Um is a constant. This shows that condition (2.13b) of As-
sumption 2.2 is satisfied.

Assumption 2.3 is trivially satisfied, and this completes the proof.
In Tables 3.1 and 3.2, we give the simplified weak formulation of the NC-H method

under the further assumption that c(x) is a constant matrix on each K in Th. In this
case, we can show that the original NC method is an NC-H method. To see why,
first observe that by summing up the last equation of the local solvers, we find that
uh = Uλh + Ugh + Uf satisfies

〈 [[uh]] , μ〉e = 0 for all μ ∈ Pk−1(e)

for all interior faces e, so the weak continuity constraints of the discontinuous method
are satisfied. Now, (2.12a) and (2.12c) become ( cQλh + grad Uλh,v)Th

= 0 and
( cQf + grad Uf,v)Th

= 0, which gives

qh = Qλh + Qgh + Qf = −agrad(Uλh + Ug + Uf) = −agraduh.

Then (2.8a) implies

(agraduh,gradvh)Th
+ (duh, vh)Th

= (f, vh)

for all vh ∈ {w : w ∈ Wh, 〈 [[w]] , μ〉E◦
h

= 0 for all μ ∈ Mh and 〈w , m〉∂Ω = 0 for
all m ∈ Mh}, which is the familiar primal form of this nonconforming method. Note
that although the information in gh disappears from the right-hand side above, it is
contained in uh as uh = Uλh + Ugh + Uf .

Let us end this subsection by pointing out that, in the case of lowest order poly-
nomials k = 1 and for the case in which d = 0 and both c and f are constant on
each simplex K of triangulation Th, our hybridization framework allows us to recover
a well-known relationship between the RT method of lowest degree and the noncon-
forming method [4, 47]. Let us sketch how to obtain it. In this case, we can easily
show that local solver Qm is the same for both this nonconforming method and that
of the RT method of lowest degree; see the computation of the RT method in [26].
Since we also have that Q̂m · n = Qm · n, we can conclude that the stiffness matrix
associated with bilinear form ah(·, ·) of both methods is also the same—if the degrees
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of freedom for the numerical traces are the barycenters of the faces. Moreover, since
the average on each simplex of the local solver Um coincides with the local solver
Um of the RT method under consideration, the matrix associated with linear form
bh(·) is also the same for both methods. Of course, in both cases, we take gh at the
barycenter of each face e ∈ E∂h to be the average of g on the face e. By Theorem
2.1, the degrees of freedom of the approximate traces are the same for both methods.
The above-mentioned relation between the two methods now easily follows from the
definition of approximate solutions (2.5).

4. Other novel methods. In this section, we build on the work done in the
previous section and construct what are perhaps the three most important examples
of methods of the unifying framework. The first is a class of methods employing
different local solvers in different parts of the domain, which can easily deal with
nonconforming meshes. The second is an RT method that can handle hanging nodes.
The third is the family of EDG methods; they are constructed from already known
hybridized methods in this unified framework in order to reduce their computational
complexity. As for the examples of the previous section, we assume that the mesh is
simplicial; however, we do not assume it to be necessarily conforming.

4.1. A class of hybridizable methods well suited for adaptivity. We in-
troduce here a class of hybridizable methods able to use different local solvers in
different elements and to easily handle nonconforming meshes. They are thus ideal to
use with adaptive strategies. After introducing the methods, we prove that they are
all well defined. We then discuss their main advantages and give several examples.

To define the methods, we need to specify the numerical fluxes, the local finite
element spaces, and the space of approximate traces:

1. For any simplex K ∈ Th, we take

(4.1) Q̂m = Qm + τK(Um−m)n, Q̂f = Qf + τK(Uf)n on ∂K;

the function τK is allowed to change on ∂K.
2. The local space V (K)×W (K) can be any of the following:(

Pk(K)(K)n + xPk(K)(K)
)× Pk(K)(K),(4.2a)

where k(K) ≥ 0 and τK ≥ 0 on ∂K,
Pk(K)(K)n × Pk(K)−1(K),(4.2b)

where k(K) ≥ 1 and τK ≥ 0 on ∂K,
Pk(K)(K)n × Pk(K)(K),(4.2c)

where k(K) ≥ 0 and τK > 0 on at least one face e of K,
Pk(K)−1(K)n × Pk(K)(K),(4.2d)

where k(K) ≥ 1 and τK > 0 on ∂K.

3. The space of approximate traces is

Mh = Mh ∩
{
μ : μ|∂K ∈ C({x ∈ ∂K : τK(x) =∞}) ∀K ∈ Th

}
,(4.3a)

where

Mh := {μ ∈ L2(Eh) : μ|e ∈ Pk(e)(e) for all e ∈ E◦h}.(4.3b)
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P

Q

R

K
S

Fig. 4.1. The interior edges e = PQ and e = QR are contained in the face PR of the element
K. Assumption 4.1 is satisfied for this element if τK |∂K ∈ [0,∞] and if τK |PQ and τK |QR are
taken in (0,∞).

Here, if e = ∂K+ ∩ ∂K−, we set

k(e) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{k(K+), k(K−)} if τ+ <∞ and τ− <∞,
k(K+) if τ+ =∞ and τ− <∞,
k(K−) if τ+ <∞ and τ− =∞,
min{k(K+), k(K−)} if τ+ =∞ and τ− =∞,

(4.3c)

and take gh = Ihg for some interpolation operator Ih into Mh.
Note that the choice τ = ∞ on some interior faces e ∈ E◦h is allowed. We follow the
convention that in this case, the definition of the local solvers has to be modified as
for the limiting cases of LDG-H methods; see subsection 3.4. The definition of the
methods is competed with the following assumption on the values of the stabilization
parameter τ .

Assumption 4.1. For each element K ∈ Th and each interior face e ∈ E◦h on ∂K,
τK |e ∈ [0,∞] and

(4.4) τK |e ∈ (0,∞) if e is not a face of K.

Let us briefly discuss this assumption. First, let us recall the difference between an
interior face e ∈ E◦h and the faces of the simplexes of the triangulation. Each simplex
K in the partition Th has n+ 1 faces determined by its vertices. On the other hand,
if e is an interior face, we have that e = ∂K+ ∩ ∂K− for some elements K+ and K−

in Th. We thus see that, for nonconforming meshes, although each interior face e is
contained in a face of K+ and a face of K−, it is not necessarily a face of K+ or K−.
See an example in Figure 4.1. The main motivation of the above assumption can now
be easily seen. Indeed, take any K ∈ Th. If e ⊂ ∂K is a face in E◦h which is not a face
of K, then the above assumption forces us to take the numerical trace corresponding
to an LDG-H method; in this way, the nonconformity of the mesh can be dealt with
in a very natural way. If, on the contrary, e is actually a face, the assumption allows
us to take either τK = 0, τK ∈ (0,∞), or even τK = ∞. In this way, the verification
of Assumptions 2.1, 2.2, and 2.3 becomes extremely easy, as we are going to see next.

Next, we show that the approximate solution (qh, uh), (2.5), provided by this
method is well defined.

Proposition 4.1. Consider the method defined by (4.1), (4.2), and (4.3), and
let Assumption 4.1 hold. Then Assumption 2.1 on the existence and the uniqueness of



1356 B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV

the local solvers, Assumption 2.2 on the positive semidefiniteness of the local solvers,
and Assumption 2.3, the gluing condition, hold with

(4.5)
M(∂K) = {μ : on any face e ∈ E◦h on ∂K, μ|e ∈ Pk(K)(e) if τK |e = 0,

and μ|e ∈ L2(e) if τK |e > 0}.

Proof. Thanks to Theorem 2.4, we have only to satisfy Assumptions 2.1, 2.2,
and 2.3. We begin by verifying Assumption 2.1 on the existence and the uniqueness
of the local solvers. Let K be an arbitrary simplex of triangulation Th. Then, as
discussed above, by condition (4.4), we have either τK = 0, τK ∈ (0,∞), or τK = ∞
on each of the faces of each simplex K of triangulation Th. As a consequence, the
fact that the local solvers are well defined can be easily obtained by a straightforward
modification of the proofs of similar results for the LDG-H methods, Proposition 3.5,
and the CG-H method, Proposition 3.5. For this reason, we do not present here the
proof. However, let us note that whenever τK |e =∞, we strongly impose a Dirichlet
boundary condition, and so the space of approximate traces restricted to ∂K and
local space W (K) must satisfy the following compatibility condition:

{μ|S : μ ∈ Mh} ⊂ {w|S : w ∈W (K)}, where S := {x ∈ ∂K : τK(x) =∞}.

This condition can be easily verified by noting that, if τ = ∞ on the interior face
e ∈ E◦h, then e must be a face of K by the conditions on the stabilization parameters
(4.4), and since, by the definition of k(e), (4.3c), we have that k(e) ≤ k(K).

Next, let us prove that Assumption 2.2 on the positive semidefiniteness of the
local solvers is satisfied with M(∂K) as in (4.5). For choice (4.2a), it is easy to see
that it follows from Proposition 3.1 and from the definition of k(e), (4.3c). For the
remaining choices, the result follows from Proposition 3.3 and the definition of k(e),
(4.3c).

Assumption 2.3, the gluing condition, also follows by using the arguments of the
previous section. Indeed, for an interior face e = ∂K+ ∩ ∂K−, if τ+ or τ− is positive,
the result trivially follows from condition (4.3c) and the fact that on e, one of the
projections P∂K+ or P∂K− becomes the identity by the definition of k(e), (4.3c). It
remains to consider the case τ+ = τ− = 0. By (4.3c), either k(K+) or k(K−) equals
k(e), say, k(e) = k(K+). Then we immediately have that P∂K+μ = μ. This completes
the proof.

Next, let us discuss the main features of these methods.
(i) Variable degree approximation spaces on conforming meshes. The

RT-H, BDM-H, and LDG-H methods considered in the previous section used a single
local solver in each of the elements K of the conforming triangulation Th. A variable-
degree version of each of these methods is a particular case of the class of methods
presented here. Note that the case of the variable degree RT method, introduced and
analyzed in [27], is exactly the variable-degree version of the method using the RT
method as local solvers.

(ii) Automatic coupling of different methods on conforming meshes. The
methods presented here allow for the use of different local solvers in different elements
K of Th, which are then automatically coupled. For example, if we are working with
the RT, LDG, and CG local solvers, the conservativity condition implicitly imposes
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the following expressions for the numerical traces:

ûh = uh|ΩLDG +
1

τLDG
[[qh]], q̂h = qh|ΩRT (coupling RT and LDG),

ûh = uh|ΩCG , q̂h = qh|ΩLDG + τLDG [[uh]] (coupling of LDG and CG),
ûh = uh|ΩCG , q̂h = qh|ΩRT . (coupling of CG and RT).

Note that this coupling holds even for nonconforming meshes.
It is interesting to compare the above couplings with other couplings in the avail-

able literature, namely,

ûh = uh|ΩLDG , q̂h = qh|ΩRT + C11 [[uh]] (coupling of RT and LDG in [23]),
ûh = uh|ΩCG , q̂h = qh|ΩLDG + τLDG [[uh]] (coupling of LDG and CG in [48]).

(iii) Mortaring capabilities (for nonconforming meshes). One of the ad-
vantageous features of DG methods is their ability to handle nonconforming meshes;
see [52] for an application to structural mechanics. The methods under consideration
incorporate this mortaring ability thanks to the very form that the numerical trace of
the flux on ∂K takes on an interior face e ∈ E◦h which is not a face of K, and thanks
to the definition of the stabilization parameter τ therein. Let us give two examples.

If we have a conforming mesh, we can take the first choice of local spaces (4.2a)
and set τ ≡ 0. The resulting method, as we have seen, is nothing but the RT-
H method. We can easily modify this method to handle nonconforming meshes by
simply taking τK ∈ (0,∞) on every interior face e ∈ E◦h which is not a face of K,
and otherwise, taking τK = 0. Thus, the resulting method can be considered as a
variation of the RT method, which is capable of handling nonconforming meshes.

We can do something similar with the CG method. Indeed, if the mesh is con-
forming, we can take the last choice of local spaces (4.2d) and set τ ≡ ∞ to obtain
the hybridized CG method. For nonconforming meshes, we can slightly modify the
method by simply taking τK ∈ (0,∞) on every interior face e ∈ E◦h which is not a
face of K, and otherwise, taking τK = ∞. The resulting method is thus a variation
of the CG method capable of handling nonconforming meshes. It constitutes an al-
ternative to the coupling of the CG and the LDG methods proposed in [48] to deal
with nonmatching meshes.

(iv) The conservativity condition. Let us end by noting that the stiffness
matrix associated to the approximate trace λh is always symmetric and positive defi-
nite. Moreover, on the interior faces on which τ <∞, the conservativity condition is
enforced strongly.

4.2. The RT method on meshes with hanging nodes. Consider the case of
the variable degree RT-H method. The method is obtained by taking the numerical
traces as in (4.1) with τ ≡ 0, the local space (4.2a), and the multiplier space as
in (4.3). This method does not belong to the family of methods described in the
previous subsection because our choice of stabilization parameter does not satisfy
condition (4.4). Thus, to ensure the existence and the uniqueness of the approximate
solution, we have to impose special conditions on the meshes and link the definition
of k(K) to the structure of the mesh.

Let us illustrate how to do this in the two-dimensional case. The meshes Th we
consider are constructed as follows. First, construct a conforming triangulation of Ω,
Th

(0) := {K(0)}. Then, take a subset of that triangulation Th
(0,1) and divide each

of its triangles into four congruent triangles; the set of those triangles is denoted by
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K0
l

Kt
l

Kb
l

Kr

Fig. 4.2. In the presence of hanging nodes like the above, an RT-H method with the spaces on
edges chosen to have the maximum degree from either side is well defined if k(Kt

l ) ≥ k(Kr) and

k(Kb
l ) ≥ k(Kr). The degree k(K0

l ) can be arbitrarily chosen.

Th
(1). Next, for j = 2, . . . , 	, given the set Th

(j−1), pick the subset Th
(j−1,j) and create

the set of smaller triangles Th
(j). The simple case 	 = 1 is illustrated in Figure 4.2.

Finally, we establish a link between the mesh and the definition of the polynomial
degree of the RT method on the triangle K, k(K), as follows. If e = ∂K+ ∩ ∂K−, we
take k(e) := max{k(K+), k(K−)} and require that

if e is not an edge of K−, then k(K+) ≥ k(K−).(4.6)

Next, we show that the method is well defined.
Proposition 4.2. The variable-degree RT-H method on meshes with hanging

nodes as described above is uniquely solvable.
Proof. If we proceed exactly as in Proposition 3.1, we can see that Assumption 2.1

on the existence and the uniqueness of the local solvers is verified and that Assump-
tion 2.2 on the positive semidefiniteness of the local solvers is also verified provided
we change the definition of the set M(∂K) to

M(∂K) = {μ : μ|e ∈ Pk(e)(e) for all edges e of ∂K}.
The result follows if we prove that there is only one solution λh ∈ Mh of weak
formulation (1.7).

To do that, we proceed exactly as in the proof of Theorem 2.4. First, since
Assumption 2.1 holds, we have that system (2.9) is well defined. Next, we show that
ah(μ, μ) = 0 for μ ∈ Mh implies μ = 0. By Assumption 2.2, we readily obtain that,
for any given K ∈ Th, we have that, on ∂K,

CK = P∂Kμ,

where P∂K is the L2-projection into M(∂K) as defined above. It remains to show
that this implies that μ is a constant on Eh. To do that, we use the structure of the
meshes and the definition of k(K) for all K ∈ Th.

We proceed as follows. We claim that, for j = 	, 	− 1, . . . , 0, we have that μ|∂K
is a constant for all K ∈ Th

(j). This immediately implies that μ is a constant on Eh,
and since μ|∂Ω = 0, that μ = 0 on Eh.

It remains to prove the claim. We proceed by induction on j. Let us prove the
inductive hypothesis for j = 	. Let K be any triangle in Th

(�) and pick any of its edges
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e. If the edge e lies on ∂Ω, we immediately have that μ = CK = 0. If e = ∂K ∩ ∂K ′
for some triangle K ′ ∈ Th

(�), we proceed as in the proof of Theorem 2.4 to conclude
that

μ = CK = CK′ on e.

The only other remaining possibility, by construction of triangulation Th
(�), is that

e = ∂K ∩ ∂K ′ for some triangle K ′ ∈ Th
(�′), with 	′ < 	. In this case, e is not an

edge of K ′, and, by condition (4.6) on k(K), we have that k(K) ≥ k(K ′) and hence
k(e) := max{k(K), k(K ′)} = k(K). This implies that

μ = CK on e.

Since edge e was picked arbitrarily, we conclude that μ|∂K is a constant, as wanted.
Now, let us assume that the inductive hypothesis holds for j = J and let us prove

it also holds for j = J − 1. Let K be any triangle in Th
(J−1) and pick any of its

edges e. Since, by the inductive hypothesis, μ|∂K is a constant for all K ∈ Th
(J), we

have that μ|∂K is a constant for all K ∈ Th
(J−1,J), since, by construction, each of the

triangles in Th
(J−1,J) is subdivided in four congruent triangles in K ∈ Th

(J). Hence,
μ = CK on e if the edge e lies in the border of any triangle in K ∈ Th

(J−1,J). To finish
the proof, we need only to prove the same result in the remaining three cases: (i) if
the edge e lies on ∂Ω, (ii) if e = ∂K ∩∂K ′ for some triangle K ′ ∈ Th

(J−1) \Th(J−1,J),
and (iii) if e = ∂K ∩ ∂K ′ for some triangle K ′ ∈ Th

(J′−1), with J ′ < J . This can be
done exactly as in the previous step.

4.3. The EDG methods. Now we show that new methods [33] can be imme-
diately generated from already existing hybridized methods by simply reducing the
space of their approximate traces. The main interest of these EDG methods, intro-
duced in the setting of shells problems in [43], stems from the further reduction in
globally coupled unknowns achieved by reducing the approximate trace space Mh.

To construct such methods, we begin with selecting any method defined by
uniquely solvable local problems (2.3), (2.4), and conservativity condition (2.6), yield-
ing a unique approximate trace λh. Then, by Theorem 2.1, λh ∈ Mh is the only
solution of the weak formulation

(4.7) ah(λh, μ) = bh(Ihg;μ) for all μ ∈Mh,

where we are writing bh(Ihg;μ) instead of just bh(μ) in order to stress its dependency
on Ihg ∈ Mh. We now define an EDG method by replacing the original approximate
trace space Mh by a subspace M̃h. This forces us to replace Ihg ∈ Mh by Ĩhg ∈ M̃h

and to change the conservativity condition, but the local solvers remain the same.
Now, define the operator Jh : M̃h → Mh as the identity operator representing the
natural embedding of M̃h into Mh, hence, the name of these methods, and set

M̃h :=
{
μ̃ ∈ M̃h : μ̃ = 0 on ∂Ω

}
.

Then by Theorem 2.1, the new conservativity condition is equivalent to

(4.8) ah

(
Jhλ̃h, Jhμ̃

)
= bh

(
JhĨhg; Jhμ̃

)
for all μ̃ ∈ M̃h,

where λ̃h ∈ M̃h is the new approximate trace. Note that we have that Jhμ̃|∂Ω = 0 for
all μ̃ ∈ M̃h.
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To show that this EDG method is well defined, it suffices to prove that
homogeneous equation (4.8) has only a trivial solution. For simplicity, let us as-
sume that ah(·, ·) is symmetric and positive definite. Thus, taking μ̃ = λ̃h, we get
ah(Jhλ̃h, Jhλ̃h) = 0. By the positive definiteness of ah(·, ·), we have Jhλ̃h = 0, which
implies λ̃h = 0. Hence, (4.8) is uniquely solvable.

Now, let us show that it is very easy to obtain the equations for the EDG method
once those of the original method have been obtained. Denote by [λh] the vector of
the degrees of freedom of the function λh with respect to some basis in Mh. Similarly,
denote by [λ̃h] the vector of degrees of freedom vector of the function λ̃h in M̃h. Equa-
tion (4.7) can be written in a matrix form as A [λh] = b(Ihg), and if [Jhλ̃h] = T [λ̃h],
then the equation for [λ̃h] is T tAT [λ̃h] = T t b(JhĨhg). Here T is the rectangular
matrix representing the basis of M̃h with respect to basis of Mh. Since M̃h ⊂ Mh,
if we use the Lagrange basis functions, T is nothing but a connectivity matrix whose
entries are zeroes and ones, so it is extremely easy to compute.

Note that the above considerations continue to hold if Jh is any injective operator
from M̃h into Mh such that Jhμ̃|∂Ω = 0 for all μ̃ ∈ M̃h. Thus, new methods can also
be created by using spaces M̃h that are not necessarily subspaces of Mh. The main
task here would be to find the matrix T which represents the basis of M̃h with respect
to basis of Mh.

Let us give some examples of EDG methods. The first example of an EDG method
was proposed in [43]: It is obtained from an LDG-H method using approximations of
degree k in each variable by forcing the continuity of the traces. Thus, whereas the
functions in the space of approximate traces for the LDG-H method Mh are discon-
tinuous on the borders of the elements, the functions of M̃h are continuous therein.
This allows the method to be immediately incorporated into commercial codes. On
the other hand, this also results in the degradation of the conservativity properties of
the EDG method, which hold only weakly. In some cases, this induces a degradation
in the approximating properties of the method as recently proven in [32].

Indeed, in that paper, it was shown that when the stabilization parameter τ is
taken to be of order one, the EDG method converges with order k for q and order
k+ 1 for u. This has to be contrasted with the fact that the original LDG-H method
converges with order k + 1 in both variables; see [33]. Moreover, in this case, the
LDG-H has superconvergence properties that allow us to compute, in an element–
by-element fashion, a new approximation to u converging with order k + 2; see also
[33]. Such property does not hold for the corresponding EDG method. Even more,
numerical experiments show that the computational advantage of the EDG method
does not compensate for its loss of accuracy. On the other hand, if the stabilization
parameter τ is taken to be of order h−1, both the EDG and the LDG-H methods
converge with the same orders, namely, k in q and order k + 1 in u.

The second example is associated with the constructions of subspaces M̃h of Mh

that could be required to be very smooth. For example, we could ask that they be
not only continuous on E◦h but C1-continuous. This might be reasonable to do if the
solution is very smooth and varies slowly in Ω.

The third and last example is associated to methods for nonmatching grids. Sup-
pose that Ω is divided into two domains Ω1 and Ω2 independently meshed, and that
we are using the variation of the CG method to handle nonconforming methods de-
scribed in the first subsection. Then, all the interior faces e lying on the interface
Γ := ∂Ω1 ∩ ∂Ω2 must be computed and used to define the space of traces Mh. (This
can be done, although it is a computational geometry tour de force, especially in
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three dimensions; see [52].) To reduce the size of the interface space on Γ, we can
alternately find a subspace of Mh of functions which are polynomials on the interior
faces determined by, say, the vertices of the triangulation of Ω1 lying on Γ.

5. Extensions and generalizations. Although in all examples we have given,
only simplicial elements have been considered, this is not essential. Obviously, quadri-
lateral, prismatic, and other elements could be handled easily by DG methods. Fur-
thermore, our framework is applicable for mixed methods using other types of ele-
ments; see [12].

Note also that the considered DG, mixed, CG, and nonconforming finite element
methods used to define the local solvers are not the only choices. Stabilized, Petrov–
Galerkin methods, boundary element, and even (if possible) the exact solution can
be used as local solvers. For example, the hybridization of the discontinuous Petrov–
Galerkin method can be found in [18, 19].

In what follows, we sketch how to extend our results to include Neumann bound-
ary conditions and interface transmission conditions. We also extend them to DG
methods using other stabilization mechanisms.

5.1. Other boundary and transmission conditions. The hybridization
method proposed here can be easily extended to other types of boundary and trans-
mission conditions.

Neumann boundary condition. For example, the case when on part ∂ΩN of the
boundary ∂Ω the Neumann boundary condition q ·n = qN is specified can be incorpo-
rated easily in the hybridization procedure. We simply require that the approximate
trace λh belongs to

Mh = {μ ∈ Mh : μ = 0 on ∂ΩD},
where ∂ΩD := ∂Ω\∂ΩN is the Dirichlet boundary and replace conservativity condition
(2.6) by 〈

μ ,
[[
Q̂λh + Q̂gh + Q̂f

]]〉
Eh

= 〈μ , qN 〉∂ΩN for all μ ∈Mh.

Transmission condition. To handle transmission condition [[q]] = t on the (n−1)-
dimensional surface Γt, we simply have to write〈

μ ,
[[
Q̂λh + Q̂gh + Q̂f

]]〉
Eh

= 〈μ , qN 〉∂ΩN + 〈μ , t〉Γt for all μ ∈Mh,

where we are assuming that Γt ⊂ Eh. This case is equivalent to having a right-hand
side that is a δ-function with a support on Γt.

Jump condition. Now, we can add jump condition [[u]] = j on the (n − 1)-
dimensional surface Γj , where j ·n is given. Then we take triangulation Th such that
Γj ⊂ Eh and proceed as follows. Since the exact solution is double valued on Γj , that
is, since its traces on Γj are u± := {{u}}+ 1/2n± · j, we take the approximation to
these traces to be λh + 1/2n± · j on Γj and define the function (Qmj , Umj) as the
solution of local solver (2.3), with mj given by

mj =

{
1
2 nK · j on ∂K ∩ Γj ,
0 elsewhere.

Then, we simply rewrite the conservativity condition as〈
μ ,
[[
Q̂λh + Q̂mj + Q̂gh + Q̂f

]]〉
Eh

= 〈μ , qN 〉∂ΩN + 〈μ , t〉Γt for all μ ∈Mh.
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We see that the global system for λh has the same matrix and a right-hand side
that incorporates the data related to the boundary and interface conditions. This
particular example shows the ease with which the hybridizable methods can handle
various types of boundary and transmission conditions for the differential equation.

5.2. Hybridizable DG methods with other stabilization mechanisms.
For each finite element K ∈ Th, the LDG-H method uses on ∂K the numerical trace
q̂h = qh + τ(uh − λh)n and the IP-H uses the numerical trace q̂h = −agraduh +
τ(uh − λh)n. However, these are not the only choices for numerical traces we could
use to generate stabilization through the difference between uh and λh. Indeed, in
the unified analysis of DG methods [5], we see that we can also take q̂h = qh +
αr((uh−λh)n) for the Brezzi–Manzini–Marini–Pietra–Russo (BMMPR) method [13]
and q̂h = −agraduh+αr((uh−λh)) for the Bassi–Rebay–Mariotti–Pedinotti–Savini
(BRMPS) method [7]. Here, for any ϕ ∈ L2(∂K), the vector αr(ϕ) is the element of
V (K) such that

αr(ϕ) = −τ re,K(ϕ) on each face e of K,
(re,K(ϕ),v)K = −〈ϕ , v〉e for all v ∈ V (K).

It is not difficult to verify that results similar to those obtained for the LDG-H and
IP-H methods can also be obtained for similar BMMPR-H and BRMPS-H methods,
respectively. Let us briefly comment on a couple of interesting details. To fix ideas,
we consider the BMMPR-H methods. For these methods, Theorem 2.1 holds with

ah(η, μ) = (cQη,Qμ)Th
+ (dUη, Uμ)Th

+ 〈1 , [[(Uμ− μ)(αr((Uη − η)n))]]〉Eh
,

bh(μ) = 〈gh , (Qμ+αr(Uμn)) · n〉∂Ω + (f, Uμ)Th
,

provided gh|E◦
h

= 0. It is not difficult to see that bilinear form ah(·, ·) is symmetric.
Indeed, we have that

〈(Uμ−μ)n , αr((Uη−η)n)〉∂K
=−

∑
e face of K

τK |e 〈(Uμ− μ)n , re,K((Uη − η)n)〉e

= +
∑

e face of K

τK |e (re,K((Uμ− μ)n), re,K((Uη − η)n))K .

The fact that bilinear form ah(·, ·) is positive definite follows from Theorem 2.4 and a
slight modification of Proposition 3.3; in it, we take M(∂K) = {v : v|e ∈ Pk(e), e ∈
∂K}. Note that Assumption 2.2 is then satisfied, since re,K(ϕ) = 0, if and only if
the L2-projection of ϕ|e into Pk(e) is zero.

Finally, note that the conservativity condition is enforced strongly. In this case,
however, we do not have an explicit expression of the approximate trace λh in terms
of (qh, uh) as we have for the LDG-H methods in Proposition 3.4. Instead, we have
only the relation

[[αr(λh n)]] = [[αr(uhn)]] + [[qh]] on E◦h.

Let us end by noting that extensions of this work to other problems arising in
continuum mechanics, fluid dynamics, and electromagnetism constitutes the subject
of ongoing work.
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Abstract. We consider semidiscrete approximation schemes for the linear Schrödinger equation
and analyze whether the classical dispersive properties of the continuous model hold for these ap-
proximations. For the conservative finite difference semidiscretization scheme we show that, as the
mesh size tends to zero, the semidiscrete approximate solutions lose the dispersion property. This
fact is proved by constructing solutions concentrated at the points of the spectrum where the second
order derivatives of the symbol of the discrete Laplacian vanish. Therefore this phenomenon is due
to the presence of numerical spurious high frequencies. To recover the dispersive properties of the
solutions at the discrete level, we introduce two numerical remedies: Fourier filtering and a two-grid
preconditioner. For each of them we prove Strichartz-like estimates and a local space smoothing ef-
fect, uniform in the mesh size. The methods we employ are based on classical estimates for oscillatory
integrals. These estimates allow us to treat nonlinear problems with L2-initial data, without addi-
tional regularity hypotheses. We prove the convergence of the two-grid method for nonlinearities that
cannot be handled by energy arguments and which, even in the continuous case, require Strichartz
estimates.
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1. Introduction. Let us consider the linear (LSE) and the nonlinear (NSE)
Schrödinger equations:

(1.1)

{
iut + Δu = 0, x ∈ Rd, t �= 0,
u(0, x) = ϕ(x), x ∈ Rd,

and

(1.2)

{
iut + Δu = F (u), x ∈ Rd, t �= 0,
u(0, x) = ϕ(x), x ∈ Rd,

respectively.
The linear equation (1.1) is solved by u(t, x) = S(t)ϕ(x), where S(t) = eitΔ is the

free Schrödinger operator. The linear semigroup has two important properties. First,
we have the conservation of the L2-norm

(1.3) ‖u(t)‖L2(Rd) = ‖ϕ‖L2(Rd)
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and then a dispersive estimate of the form

(1.4) |u(t, x)| = |S(t)ϕ(x)| ≤ 1
(4π|t|)d/2 ‖ϕ‖L1(Rd), x ∈ Rd, t �= 0.

The space-time estimate

(1.5) ‖S(·)ϕ‖L2+4/d(R, L2+4/d(Rd)) ≤ C‖ϕ‖L2(Rd),

due to Strichartz [27], is deeper. It guarantees that the solutions decay as t becomes
large and that they gain some spatial integrability.

Inequality (1.5) was generalized by Ginibre and Velo [8]. They proved the mixed
space-time estimate, well known as Strichartz’s estimate:

(1.6) ‖S(·)ϕ‖Lq(R, Lr(Rd)) ≤ C(q, r)‖ϕ‖L2(Rd)

for the so-called d/2-admissible pairs (q, r). We recall that the exponent pair (q, r) is
α-admissible (cf. [14]) if 2 ≤ q, r ≤ ∞, (q, r, α) �= (2,∞, 1), and

(1.7)
1
q

= α

(
1
2
− 1
r

)
.

The Strichartz estimates play an important role in the proof of the well-posedness
of the NSE. Typically they are used when the energy methods fail to provide well-
posedness results.

The nonlinear problem (1.2) with nonlinearity F (u) = |u|pu, p < 4/d and initial
data in L2(Rd) was first analyzed by Tsutsumi [30]. The author proved that, in this
case, the NSE is globally well posed in L∞(R, L2(Rd))∩Lqloc(R, Lr(Rd)), where (q, r)
is a d/2-admissible pair depending on the nonlinearity F .

The Schrödinger equation has another remarkable property guaranteeing the gain
of one half space derivative in L2

x,t (cf. [5] and [15]):

(1.8) sup
x0,R

1
R

∫
B(x0,R)

∫ ∞
−∞
|(−Δ)1/4eitΔϕ|2dtdx ≤ C‖ϕ‖2L2(Rd).

It has played a crucial role in the study of the NSE with nonlinearities involving
derivatives (see [16]). In particular, it is extremely useful when deriving compactness
properties.

For other properties on the Schrödinger equation we refer the reader to [3] and [28].
In this paper we analyze whether semidiscrete schemes for the LSE have dispersive

properties similar to (1.4), (1.6), and (1.8), uniform with respect to the mesh sizes.
The study of these dispersion properties for these approximation schemes is relevant
for introducing convergent schemes in the nonlinear context. Indeed, as mentioned
above, the proof of the well-posedness of the NSE requires a fine use of the dispersion
properties, and, consequently, it seems unlikely that the convergence of the numerical
schemes could be proved if these dispersion properties are not verified at the numerical
level.

Estimates similar to (1.6) for numerical solutions will allow proving uniform (on
the mesh-size parameter) bounds on discrete versions of the space L∞(R, L2(Rd)) ∩
Lqloc(R, L

r(Rd)). On the other hand, estimates similar to (1.8) on discrete solutions
will give sufficient conditions to guarantee their compactness and thus the convergence
towards the solution of the NSE (1.2).
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However, as we shall see, standard numerical approximation schemes often fail
to satisfy these dispersive estimates, uniformly in the mesh-size parameter, and im-
portant work needs to be done to develop numerical schemes that do fulfill these
estimates uniformly.

To better illustrate the problems we shall address, let us first consider the con-
servative semidiscrete numerical scheme

(1.9)

⎧⎪⎨
⎪⎩

i
duh

dt
+ Δhu

h = 0, t > 0,

uh(0) = ϕh.

Here uh stands for the infinite unknown vector {uhj }j∈Zd , uj(t) being the approxima-
tion of the solution at the node xj = jh, and Δh the classical second order finite
difference approximation of Δ:

(1.10) (Δhu
h)j = h−2

d∑
k=1

(uhj+ek
+ uhj−ek

− 2uhj ).

In the one-dimensional (1-d) case, the lack of uniform dispersive estimates for
the solutions of (1.9) has been observed by the authors in [12, 13]. The symbol
of the Laplacian, ξ2, in the numerical scheme (1.9) is replaced by 4/h2 sin2(ξh/2)
for the discrete Laplacian (1.10). The first and second derivatives of the latter vanish
at the points ±π/h and ±π/2h of the spectrum. By building wave packets concen-
trated at the pathological spectral points ±π/2h, it is possible to prove the lack of
any uniform estimate of the type (1.4) or (1.6). Similar negative results can be shown
to hold concerning (1.8) by building wave packets concentrated at ±π/h.

The paper is organized as follows. In section 2 we analyze the conservative ap-
proximation scheme (1.9). We extend the 1-d results mentioned above and prove that
this scheme does not ensure the gain of any uniform integrability or local smoothing
property of the solutions with respect to the initial data. The behavior of the Fourier
symbol of the numerical scheme provides a good insight to this pathological behavior.
We then propose a Fourier filtering method allowing recovery of both the integrability
and the local smoothing properties of the continuous model. The lack of dispersion
properties for the linear scheme makes it of little use to approximate nonlinear prob-
lems. In fact, in subsection 2.5, by an explicit construction we see that the solutions
of a cubic semidiscrete Schrödinger equation do not satisfy the dispersion property of
the continuous one, uniformly in the mesh-size parameter.

We then introduce a numerical scheme for which the dispersion estimates are
uniform. The proposed scheme involves a two-grid algorithm to precondition the initial
data. Based on this numerical scheme for the LSE we build a convergent numerical
scheme for the NSE in the class of L2(Rd)-initial data.

Section 3 is dedicated to the analysis of the method based on the two-grid precon-
ditioning of the initial data. We analyze the action of the linear semigroup exp(itΔh)
on the subspace of l2(hZd) consisting of the slowly oscillating sequences generated by
the two-grid method. Once we obtain Strichartz-like estimates in this subspace we
apply them to approximate the NSE. The nonlinear term is approximated in such a
way that it belongs to the class of slowly oscillating data which permits the use of the
uniform Strichartz estimates.

The results in this paper should be compared to those in [25]. In that paper the
authors analyze the Schrödinger equation on the lattice Zd without analyzing the
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dependence on the mesh-size parameter h. They obtain Strichartz-like estimates in a
class of exponents q and r larger than in the continuous one. But none of these results
is uniform when working on the scaled lattice hZd and letting h→ 0 as our results in
section 2 show.

In the context of equations on lattices we also mention [6, 19]. In these papers the
authors analyze the dynamics of infinite harmonic lattices in the limit of the lattice
distance ε tending to zero.

The analysis in this paper can be adapted to address fully discrete schemes. In
[10] necessary and sufficient conditions are given guaranteeing uniform dispersion
estimates for fully discrete schemes. The work of Nixon [20] is also worth mentioning.
There the 1-d KdV equation is considered and space-time estimates are proved for
the implicit Euler scheme.

2. A conservative scheme. In this section we analyze the conservative scheme
(1.9). This scheme satisfies the classical properties of consistency and stability which
imply L2-convergence. We construct pathological explicit solutions for (1.9) for which
neither (1.6) nor (1.8) holds uniformly with respect to the mesh-size parameter h.

In our analysis we make use of the semidiscrete Fourier transform (SDFT) (we
refer the reader to [29] for the main properties of the SDFT). For any vh ∈ l2(hZd)
we define its SDFT at the scale h by

(2.11) v̂h(ξ) = (Fhvh)(ξ) = hd
∑
j∈Zd

e−iξ·jhvhj , ξ ∈ [−π/h, π/h]d.

We will use the notation A � B to report the inequality A ≤ constant×B, where
the multiplicative constant is independent of h. The statement A 	 B is equivalent
to A � B and B � A.

Taking the SDFT in (1.9) we obtain that uh(t) = Sh(t)ϕh which is the solution
of (1.9) satisfies

(2.12) iûht (t, ξ) + ph(ξ)ûh(t, ξ) = 0, t ∈ R, ξ ∈ [−π/h, π/h]d,

where the function ph : [−π/h, π/h]d → R is defined by

(2.13) ph(ξ) =
4
h2

d∑
k=1

sin2

(
ξkh

2

)
.

Solving the ODE (2.12) we obtain that the Fourier transform of uh is given by

(2.14) ûh(t, ξ) = e−itph(ξ)ϕ̂h(ξ), ξ ∈ [−π/h, π/h]d.

Observe that the new symbol ph(ξ) is different from the continuous one, |ξ|2. In the
1-d case (see Figure 1), the symbol ph(ξ) changes convexity at the points ξ = ±π/2h
and has critical points also at ξ = ±π/h, two properties that the continuous symbol
does not have. Using that

inf
ξ∈[−π/h,π/h]

|p′′h(ξ)|+ |p′′′h (ξ)| > 0,

in [13] (see also [25] for h = 1) it has been proved that

(2.15) ‖uh(t)‖l∞(hZ) � ‖ϕh‖l1(hZ)

(|t|−1/2 + (|t|h)−1/3
)
, t �= 0.
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Fig. 1. The two symbols in dimension one.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

 

 

|u1(t)|
l
∞
(Z)

t−1/3

t−1/2

Fig. 2. Log-log plot of the time evolution of the l∞(Z)-norm of the fundamental solution u1 for
(1.9).

Note that estimate (2.15) blows up as h → 0. Therefore it does not yield uniform
Strichartz estimates.

Figure 2 shows that (2.15) could not be improved for large time t. In fact when
h = 1 and ϕ1 = δ0 (δ0 is the discrete Dirac function, where (δ0)0 is one and zero
otherwise) the solution u1(t) behaves as t−1/3 for large time t instead of t−1/2 in the
case of the LSE.

In dimension d, similar results can be obtained in terms of the number of nonvan-
ishing principal curvatures of the symbol and its gradient. Observe that, at the points
ξ = (±π/2h, . . . ,±π/2h), all the eigenvalues of the Hessian matrix Hph

= (∂ijph)ij
vanish. Moreover, if k-components of the vector ξ coincide with ±π/2h, the rank of
Hph

at this point is d− k instead of d, as in the continuous case. This will imply that
the solutions of (1.9), concentrated at these points of the spectrum, will behave as
t−(d−k)/2(th)−k/3 instead of t−d/2 as t → ∞. This shows that there are no uniform
estimates similar to (1.4) or (1.6) at the discrete level. But these inequalities are nec-
essary to prove the uniform boundedness of the semidiscrete solutions in the nonlinear
setting.

On the other hand, at the points ξ = (±π/h, . . . ,±π/h), the gradient of the sym-
bol ph(ξ) vanishes. As we will see, these pathologies affect the dispersive properties
of the semidiscrete scheme (1.9) and its solutions do not fulfill the regularizing prop-
erty (1.8), uniformly in h > 0, which is needed to guarantee the compactness of the
semidiscrete solutions. This constitutes an obstacle when passing to the limit as h→ 0
in the nonlinear semidiscrete models.

This section is organized as follows. Section 2.1 deals with the analysis of proper-
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ties (1.4) and (1.6) for the solutions of (1.9). The local smoothing property is analyzed
in section 2.2. In section 2.3 we prove uniform estimates similar to (1.4) and (1.8),
uniformly with respect to the parameter h, in the class of initial data whose Fourier
spectrum has been filtered conveniently. Strichartz-like estimates for filtered solutions
are given in section 2.4.

In section 2.5 we analyze a numerical scheme for the 1-d cubic NSE based on the
conservative approximation of the linear Schrödinger semigroup. We prove that its
solutions do not remain uniformly bounded in any auxiliary space Lqloc(R, L

r(hZ)).

2.1. Lack of uniform dispersive estimates. First, we construct explicit ex-
amples of solutions of (1.9) for which all the classical estimates of the continuous case
(1.6) blow up.

Theorem 2.1. Let T > 0, r0 ≥ 1, and r > r0. Then

(2.16) sup
h>0, ϕh∈lr0 (hZd)

‖Sh(T )ϕh‖lr(hZd)

‖ϕh‖lr0(hZd)

=∞

and

(2.17) sup
h>0, ϕh∈lr0 (hZd)

‖Sh(·)ϕh‖L1((0,T ), lr(hZd))

‖ϕh‖lr0(hZd)

=∞.

Remark 2.1. A finer analysis can be done. The same result holds if we take the
supremum in (2.16) and (2.17) over the set of functions ϕh ∈ lr0(hZd) such that the
support of their Fourier transform (2.11) contains at least one of the points of the set

(2.18) Mh
1 =

{
ξ = (ξ1, . . . , ξd) ∈

[
− π

h
,
π

h

]d
: ∃i ∈ {1, . . . , d} such that ξi =

π

2h

}
.

Observe that at the above points the rank of the Hessian matrix Hph
is at most d−1.

Remark 2.2. Let Ph be an interpolator, piecewise constant or linear. In view of
Theorem 2.1, for any fixed T > 0, the uniform boundedness principle guarantees the
existence of a function ϕ ∈ L2(Rd) and a sequence ϕh such that Phϕh → ϕ in L2(Rd)
and the corresponding solutions uh of (1.9) satisfy ‖Phuh‖L1((0,T ), Lr(Rd)) →∞.

Proof of Theorem 2.1. First, observe that it is sufficient to deal with the 1-d case.
Indeed, for any sequence {ψhj }j∈Z set ϕhj = ψhj1 . . . ψ

h
jd

, where j = (j1, j2, . . . , jd). We
are thus considering discrete functions in separated variables. Then, for any t the
following holds:

(Sh(t)ϕh)j = (S1,h(t)ψh)j1 (S
1,h(t)ψh)j2 . . . (S

1,h(t)ψh)jd ,

where S1,h(t) is the linear semigroup generated by (1.9) in the 1-d case. Thus it is
obvious that (2.16) and (2.17) hold in dimension d ≥ 2, once we prove them in the
1-d case d = 1.

In the following we will consider the 1-d case d = 1 and prove (2.16), the other
estimate (2.17) being similar. Using the properties of the SDFT it is easy to see that
(Sh(t)ϕh)j = (S1(t/h2)ϕ1)j , where ϕ1

j = ϕhj , j ∈ Z. A scaling argument in (2.16)
shows that

(2.19)
‖Sh(T )ϕh‖lq(hZ)

‖ϕh‖lq0 (hZ)
= h

1
q− 1

q0
‖S1(T/h2)ϕ1‖lq(Z)

‖ϕ1‖lq0 (Z)
.
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Let us introduce the operator S1(t) defined by

(2.20) (S1(t)ϕ)(x) =
∫ π

−π
e−itp1(ξ)eixξϕ̂(ξ)dξ,

which is the extension of the semigroup generated by (1.9) for h = 1 to all x ∈ R.
We point out that for any sequence {ϕ1

j}j∈Z, S1(t)ϕ1 as in (2.20), which is defined
for all x ∈ R, is in fact the band-limited interpolator of the semidiscrete function
S1(t)ϕ1. The results of Magyar, Stein, and Wainger [18] (see also Plancherel and
Pólya [21]) on band-limited functions show that the following inequalities hold for
any q ≥ 1 and for all continuous functions ϕ̂ supported in [−π, π]:

c(q)‖ϕ‖lq(Z) ≤ ‖ϕ‖Lq(R) ≤ C(q)‖ϕ‖lq(Z).

Thus for any q > q0 ≥ 1 the following holds for all functions ϕ1 whose Fourier
transform is supported in [−π, π]:

(2.21)
‖S1(t)ϕ1‖lq(Z)

‖ϕ1‖lq0(Z)
≥ c(q, q0)

‖S1(t)ϕ1‖Lq(R)

‖ϕ1‖Lq0(R)
.

In view of this property it is sufficient to deal with the operator S1(t).
Denoting τ = T/h2, by (2.19) the proof of (2.16) is reduced to the proof of the

following fact about the new operator S1(t):

(2.22) lim
τ→∞ τ

1
2

(
1

q0
− 1

q

)
sup

supp(ϕ̂)⊂[−π,π]

‖S1(τ)ϕ‖Lq(R)

‖ϕ‖Lq0(R)
=∞.

The following lemma is the key point in the proof of the last estimate.
Lemma 2.1. There exists a positive constant c such that for all τ sufficiently

large, there exists a function ϕτ such that ‖ϕτ‖Lp(R) 	 τ1/3p for all p ≥ 1 and

(2.23) |(S1(t)ϕτ )(x)| ≥ 1
2

for all |t| ≤ cτ and |x− tp′1(π/2)| ≤ cτ1/3.
Remark 2.3. Lemma 2.1 shows a lack of dispersion in the semidiscrete setting

when compared with the continuous one. In the latter, for any initial data ϕτ such
that ‖ϕτ‖L1(R) 	 τ1/3, the solution S(t)ϕτ of the LSE satisfies

‖S(t)ϕτ‖L∞(R) � τ1/3

|t|1/2 � 1
τ1/6

for all t 	 τ , which is incompatible with (2.23).
The proof of Lemma 2.1 will be given later.
Assuming for the moment that Lemma 2.1 holds, we now prove (2.22). In view of

Lemma 2.1, given q > q0 ≥ 1, for sufficiently large τ the following holds:

sup
supp(ϕ̂)⊂[−π,π]

‖S1(τ)ϕ‖Lq(R)

‖ϕ‖Lq0(R)
� τ

1
3q− 1

3q0 .

Thus (2.22) holds and the proof is done.
Proof of Lemma 2.1. The techniques used below are similar to those used in [7]

to get lower bounds on oscillatory integrals.
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We define the relevant initial data through its Fourier transform. Let us first fix
a positive function ϕ̂ supported on (−1, 1) such that

∫ π
−π ϕ̂ = 1. For all positive τ , we

set

ϕ̂τ (ξ) = τ1/3ϕ̂(τ1/3(ξ − π/2)).

We define ϕτ as the inverse Fourier transform of ϕ̂τ . Observe that ϕ̂τ is supported
in the interval (π/2 − τ−1/3, π/2 + τ−1/3) and

∫ π
−π ϕ̂τ = 1. Also using that ϕτ (x) =

ϕ1(τ−1/3x) we get ‖ϕτ‖Lp(R) 	 τ1/3p for any p ≥ 1.
The mean value theorem applied to the integral occurring in the right-hand side

of (2.20) shows that

(2.24) |S1(t)ϕτ (x)| ≥
(

1− 2τ−1/3 sup
ξ∈ supp(ϕ̂τ )

|x− tp′1(ξ)|
)∫ π

−π
ϕ̂τ (ξ)dξ.

Using that the second derivative of p1 vanishes at ξ = π/2 we obtain the existence of
a positive constant c1 such that

|x− tp′1(ξ)| ≤ |x− tp′1(π/2)|+ tc1|ξ − π/2|2, ξ 	 π/2.
In particular for all ξ ∈ [π/2− τ−1/3, π/2 + τ−1/3] the following holds:

|x− tp′1(ξ)| ≤ |x− tp′1(π/2)|+ tc1τ
−2/3.

Thus there exists a (small enough) positive constant c such that for all x and t
satisfying |x− tp′1(π/2)| ≤ cτ1/3 and t ≤ cτ

2τ−1/3 sup
ξ∈ supp(ϕ̂τ )

|x− tp′1(ξ)| ≤
1
2
.

In view of (2.24) this yields (2.23) and finishes the proof.

2.2. Lack of uniform local smoothing effect. In order to analyze the local
smoothing effect at the discrete level we introduce the discrete fractional derivatives
on the lattice hZd. We define, for any s ≥ 0, the fractional derivative (−Δh)s/2uh at
the scale h as

(2.25) ((−Δh)s/2uh)j =
∫

[−π/h,π/h]d
p
s/2
h (ξ)eij·ξhFh(uh)(ξ)dξ, j ∈ Zd,

where ph(·) is as in (2.13) and Fh(uh) is the SDFT of the sequence {uhj }j∈Zd at the
scale h .

Concerning the local smoothing effect we have the following result.
Theorem 2.2. Let T > 0 and s > 0. Then

(2.26) sup
h>0,ϕh∈l2(hZd)

hd
∑
|j|h≤1 |((−Δh)s/2Sh(T )ϕh)j|2

‖ϕh‖2
l2(hZd)

=∞

and

(2.27) sup
h>0,ϕh∈l2(hZd)

hd
∑
|j|h≤1

∫ T
0
|((−Δh)s/2Sh(t)ϕh)j|2dt
‖ϕh‖2

l2(hZd)

=∞.
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Remark 2.4. The same result holds if we take the supremum in (2.26) and (2.27)
over the set of functions ϕh ∈ l2(hZd) such that the support of ϕh contains at least
one of the points of the set

(2.28) Mh
2 =

{
ξ = (ξ1, . . . , ξd) ∈

[
− π

h
,
π

h

]d
: ξi = ±π

h
, i = 1, . . . , d

}
.

Observe that at the above points the gradient of ph vanishes.
In contrast with the proof of Theorem 2.1 we cannot reduce it to the 1-d case.

This is due to the extra factor ps/2h (ξ) which does not allow us to use separation of
variables. The proof consists in reducing (2.26) and (2.27) to the case h = 1 and then
using the following lemma.

Lemma 2.2. Let s > 0. There is a positive constant c such that for all τ sufficiently
large there exists a function ϕ1

τ with ‖ϕ1
τ‖l2(Zd) = τd/2 and

(2.29) |((−Δ1)s/2S1(t)ϕ1
τ )j| ≥ 1/2

for all |t| ≤ cτ2, |j| ≤ cτ .
We postpone the proof of Lemma 2.2 and proceed with the proof of Theorem 2.2.
Proof of Theorem 2.2. We prove (2.26), the other estimate (2.27) being similar.

As in the previous section we reduce the proof to the case h = 1. By the definition of
(−Δh)s/2 for any j ∈ Zd we have that

((−Δh)s/2Sh(t)ϕh)j = h−s((−Δ1)s/2S1(t/h2)ϕ1)j, j ∈ Zd,

where ϕhj = ϕ1
j , j ∈ Zd. Thus

hd
∑
|j|h≤1 |((−Δh)s/2Sh(T )ϕh)j|2

‖ϕh‖2
l2(hZd)

=
h−2s

∑
|j|≤1/h |((−Δ1)s/2S1(T/h2)ϕ1)j|2

‖ϕ1‖2
l2(Zd)

.

With c and ϕτ given by Lemma 2.2 and τ such that cτ2 = T/h2, i.e., τ = (T/c)1/2h−1,
we have ‖ϕ1

τ‖2l2(Z) = τd and

lim
τ→∞

h−2s
∑
|j|≤1/h |((−Δ1)s/2S1(T/h2)ϕ1

τ )j|2
‖ϕ1

τ‖2l2(Zd)

� lim
τ→∞

τ2sτd

τd
=∞.

This finishes the proof.
Proof of Lemma 2.2. We choose a positive function ϕ̂ supported in the unit ball

with
∫

Rd ϕ̂ = 1. Set for all τ ≥ 1 ϕ̂1
τ (ξ) = τdϕ̂ (τ(ξ − πd)) , where πd = (π, . . . , π). We

define ϕ1
τ as the inverse Fourier transform at scale h = 1 of ϕ̂1

τ . Thus ϕ̂1
τ is supported in

{ξ : |ξ−πd| ≤ τ−1}, it has mass one, and ‖ϕ1
τ‖l2(Zd) 	 τd/2. Applying the mean value

theorem to the oscillatory integral occurring in the definition of (−Δ1)s/2S1(t)ϕ1
τ and

using that p1(ξ) behaves as a positive constant in the support of ϕ̂1
τ we obtain that

for some positive constant c0

|((−Δ1)s/2S1(t)ϕ1
τ )j| ≥

(
1− 2τ−1 sup

ξ∈ supp(ϕ̂1
τ )

|j− t∇p1(ξ)|
)∫

[−π,π]d
p
s/2
1 (ξ)ϕ̂1

τ (ξ)dξ

≥ c0
(

1− 2τ−1 sup
ξ∈ supp(ϕ̂1

τ )

|j− t∇p1(ξ)|
)∫

[−π,π]d
ϕ̂1
τ (ξ)dξ.
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Using that ∇p1 vanishes at ξ = πd we obtain the existence of a positive constant
c1 such that

|j− t∇p1(ξ)| ≤ |j|+ tc1|ξ − πd|, ξ ∼ πd.
Then there exists a positive constant c such that for all j and t satisfying |j| ≤ cτ and
t ≤ cτ2 the following holds:

2τ−1 sup
ξ∈ supp(ϕ̂τ )

|j− t∇p1(ξ)| ≤ 1
2
.

Thus for all t and j as above (2.29) holds. This finishes the proof.

2.3. Filtering of the initial data. As we have seen in the previous section
the conservative scheme (1.9) does not reproduce the dispersive properties of the
continuous LSE. In this section we prove that a suitable filtering of the initial data
in the Fourier space provides uniform dispersive properties and a local smoothing
effect. The key point to recover the decay rates (1.4) at the discrete level is to choose
initial data with their SDFT supported away from the pathological points Mh

1 in
(2.18). Similarly, the local smoothing property holds uniformly on h if the SDFT of
the initial data is supported away from the pointsMh

2 in (2.28).
For any positive ε < π/2 we define Ωhε , the set of all the points in the cube

[−π/h, π/h]d whose distance is at least ε/h from the set in which some of the second
order derivatives of ph(ξ) vanish:

Ωhε,d =
{
ξ = (ξ1, . . . , ξd) ∈

[
− π

h
,
π

h

]d
:
∣∣∣ξi ∓ π

2h

∣∣∣ ≥ ε

h
, i = 1, . . . , d

}
.

Let us define the class of functions Ihε,d ⊂ l2(hZd), whose SDFT is supported on Ωhε,d:

(2.30) Ihε,d = {ϕh ∈ l2(hZd) : supp(ϕ̂h) ⊂ Ωhε,d}.
We can view this subspace of initial data as a subclass of filtered data in the sense
that the Fourier components corresponding to ξ such that |ξi±π/2h| ≤ ε/h have been
cut off or filtered out.

The following theorem shows that for initial data in this class the semigroup Sh(t)
has the same long time behavior as the continuous one, independently of h in what
concerns the lp

′
(hZd)− lp(hZd) decay property.

Theorem 2.3. Let 0 < ε < π/2 and p ≥ 2. There exists a positive constant
C(ε, p, d) such that

(2.31) ‖Sh(t)ϕh‖lp(hZd) ≤ C(ε, p, d)|t|− d
2 (1− 2

p )‖ϕh‖lp′(hZd), t �= 0,

holds for all ϕh ∈ lp′(hZd) ∩ Ihε,d, uniformly on h > 0.
Proof. A scaling argument reduces the proof to the case h = 1. For any ϕ1 ∈ I1

ε,d

the solution of (1.9) is given by S1(t)ϕ1 = K1
ε,d ∗ ϕ1, where

(2.32) K1
ε,d(t, j) =

∫
Ω1

ε,d

eitp1(ξ)eij·ξdξ, j ∈ Zd.

As a consequence of Young’s inequality it remains to prove that

(2.33) ‖K1
ε,d(t)‖lp(Zd) ≤ C(ε, p, d)|t|−d/2(1−1/p)
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for any p ≥ 2 and for all t �= 0. Observe that it is then sufficient to prove (2.33) in
the 1-d case. Using that the second derivative of the function sin2(ξ/2) is positive on
Ω1
ε,1 we obtain by the Van der Corput lemma (see [26, Prop. 2, Chap. 8, p. 332]) that
‖K1

ε,1(t)‖l∞(Z) ≤ c(ε)|t|−1/2 which finishes the proof.
A similar result can be stated for the local smoothing effect. For a positive ε, let

us define the set Ω̃hε,d of all points located at a distance of at least ε/h from the points
(±π/h)d:

Ω̃hε,d =
{
ξ ∈

[
− π

h
,
π

h

]d
:
∣∣∣ξi ∓ π

h

∣∣∣ ≥ ε

h
, i = 1, . . . , d

}
.

Observe that on Ω̃hε,d the symbol ph(ξ) has no critical points other than ξ = 0. A
similar argument as in [15] shows that the linear semigroup Sh(t) gains one half space
derivative in L2

t,x with respect to the initial datum filtered as above. More precisely,
if Ph

∗ denotes the band-limited interpolator (cf. [31, Chap. II])

(2.34) (Ph
∗u

h)(x) =
∫

[−π/h, π/h]d
ûh(ξ)eix·ξdξ, x ∈ Rd,

the following holds.
Theorem 2.4. Let ε > 0. There exists a positive constant C(ε, d) such that for

any R > 0 ∫
|x|>R

∫ ∞
−∞
|(−Δ)1/4Ph

∗e
itΔhϕh)|2dtdx ≤ C(ε, d)R‖ϕh‖2l2(hZd)

holds for all ϕh ∈ l2(hZd) with supp(ϕ̂h) ⊂ Ω̃hε,d, uniformly on h > 0.
To prove this result we make use of the following theorem.
Theorem 2.5 (see [15, Theorem 4.1]). Let O be an open set in Rd and ψ be a

C1(O) function such that ∇ψ(ξ) �= 0 for any ξ ∈ O. Assume that there is N ∈ N such
that for any (ξ1, . . . , ξd−1) ∈ Rd−1 and r ∈ R the equations

ψ(ξ1, . . . , ξk, ξ, ξk+1, . . . , ξd−1) = r, k = 0, . . . , d− 1,

have at most N solutions ξ ∈ R. For a ∈ L∞(Rd × R) and f ∈ S(Rd) define

W (t)f(x) =
∫
O
ei(tψ(ξ)+x·ξ)a(x, ψ(ξ))f̂ (ξ)dξ.

Then for any R > 0

(2.35)
∫
|x|≤R

∫ ∞
−∞
|W (t)f(x)|2dtdx ≤ cRN

∫
O

|f̂ (ξ)|2
|∇ψ(ξ)|dξ,

where c is independent of R and N and f .
Remark 2.5. The result remains true for domains O where |∇ψ| has zeros, pro-

vided that the right-hand side of (2.35) is finite.
Proof of Theorem 2.4. Observe that for any ϕh ∈ l2(hZd) with supp(ϕ̂h) ⊂ Ω̃hε,d

we have

(Ph
∗e
itΔhϕh)(x) =

∫
Ω̃h

ε,d

eitph(ξ)eix·ξϕ̂h(ξ)dξ, x ∈ Rd.
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Applying Theorem 2.5 with O = Ω̃hε,d, ψ = ph(ξ), and a ≡ 1 and using that
|∇ph(ξ)| ≥ c(ε, d)|ξ| for all ξ ∈ Ω̃hε,d we obtain that

∫
|x|<R

∫ ∞
−∞
|(−Δ)1/4Ph

∗e
itΔhϕh|2dtdx �

∫
Ω̃h

ε,d

|ϕ̂h(ξ)|2|ξ|
|∇ph(ξ)| dξ � ‖ϕh‖2l2(hZd).

This finishes the proof.

2.4. Strichartz estimates for filtered data. In this section we are interested
in deriving Strichartz-like estimates for the operator Sh(t) when it acts on functions
belonging to Ihε,d, the class of functions defined in (2.30).

The main ingredient in obtaining Strichartz estimates is the following result due
to Keel and Tao [14].

Theorem 2.6 (see [14, Theorem 1.2]). Let H be a Hilbert space, (X, dx) be a
measure space, and U(t) : H → L2(X) be a one parameter family of mappings, which
obey the energy estimate

(2.36) ‖U(t)f‖L2(X) ≤ C‖f‖H
and the decay estimate

(2.37) ‖U(t)U(s)∗g‖L∞(X) ≤ C|t− s|−σ‖g‖L1(X)

for some σ > 0. Then

‖U(t)f‖Lq(R, Lr(X)) ≤ C‖f‖H ∀ f ∈ H,

∥∥∥∥
∫

R

U(s)∗F (s, ·)ds
∥∥∥∥
H

≤ C‖F‖Lq′ (R, Lr′(X)) ∀ F ∈ Lq′(R, Lr′(X)),

(2.38)

∥∥∥∥
∫ t

0

U(t)U(s)∗F (s, ·)ds
∥∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′(R, Lr̃′ (X)) ∀ F ∈ Lq̃′(R, Lr̃′(X))

(2.39)

for any σ-admissible pairs (q, r) and (q̃, r̃).
Remark 2.6. With the same arguments as in [14], the following also holds for all

(q, r) and (q̃, r̃), σ-admissible pairs:

(2.40)
∥∥∥∥
∫ t

0

U(t− s)F (s, ·)ds
∥∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′(R, Lr̃′ (X)).

In the case of the Schrödinger semigroup, S(t − s) = S(t)S(s)∗, so (2.40) and (2.39)
coincide. However, in our applications we will often deal with operators that do not
satisfy S(t− s) = S(t)S(s)∗.

Let us choose 0 < ε < π/2, K1,ε
d as in (2.32) and U(t)ϕ1 = K1,ε

d ∗ϕ1. We apply the
above theorem to U(t), with X = Zd, dx being the counting measure, and H = l2(Zd).
In this way we obtain Strichartz estimates for the semigroup S1(t) when acting on
I1
ε,d, i.e., when h = 1. Then, by scaling, we obtain the following result in the class of

filtered initial data.
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Theorem 2.7. Let 0 < ε < π/2 and (q, r), (q̃, r̃) be two d/2-admissible pairs.
(i) There exists a positive constant C(d, r, ε) such that

(2.41) ‖Sh(·)ϕh‖Lq(R, lr(hZd)) ≤ C(d, r, ε)‖ϕh‖l2(hZd)

holds for all functions ϕh ∈ Ihε,d and for all h > 0.
(ii) There exists a positive constant C(d, r, r̃, ε) such that

(2.42)
∥∥∥∥
∫ t

0

Sh(t− s)fh(s)ds
∥∥∥∥
Lq(R, lr(hZd))

≤ C(d, r, r̃, ε)‖fh‖Lq̃′ (R, lr̃′ (hZd))

holds for all functions fh ∈ Lq̃′(R, lr̃′(hZd)) with f(t) ∈ Ihε,d for a.e. t ∈ R and for
all h > 0.

2.5. On the cubic NSE. In the previous sections we have seen that the linear
semidiscrete scheme (1.9) does not satisfy uniform (with respect to h) dispersive
estimates. Accordingly we cannot use it to get numerical approximations for the NSE
with uniform bounds on spaces of the form Lq((0, T ), lr(hZd)). However, one could
agree that, even if a perturbation argument based on the variation of constants formula
and the dispersive properties of the linear scheme does not provide uniform bounds
for the nonlinear problem, these estimates could still be true.

In this section we give an explicit example showing that a numerical scheme for the
cubic NSE based on the conservative scheme (1.9) does not satisfy uniform bounds in
Lq((0, T ), lr(hZd)). This shows that the conservative scheme (1.9) can be used neither
for the LSE nor for the NSE within the Lq((0, T ), lr(hZd))-setting.

We consider an approximation scheme to the 1-d NSE with nonlinearity 2|u|2u:

(2.43) i∂tu
h
n + (Δhu

h)n = |uhn|2(uhn+1 + uhn−1).

In what follows we shall refer to it as the Ablowitz–Ladik approximation [1] for the
NSE.

As we shall see, this scheme possesses explicit solutions which blow up in any
Lqloc(R, l

r(hZ))-norm with r > 2 and q ≥ 1. We point out that this is compatible with
the L2-convergence of the numerical scheme (2.43) for smooth initial data [1, 2].

Let us consider ϕ ∈ L2(R) as initial data for (1.2) with F (u) = 2u|u|2. As
initial condition for (2.43) we take uh(0) = ϕh, ϕh being an approximation of ϕ.
Let us assume the existence of a positive T such that for any h > 0, there exists
uh ∈ L∞([0, T ], l2(hZ)) a solution of (2.43). The uniform boundedness of {uh}h>0 in
L∞([0, T ], l2(hZ)) does not suffice to prove its convergence to the solution of (1.2).
One needs to analyze whether the solutions of (2.43) are uniformly bounded, with
respect to h, in one of the auxiliary spaces Lqloc(R, l

r(hZ)), a property that will guar-
antee that any possible limit point of {uh}h>0 belongs to Lq((0, T ), Lr(R)). We are
going to show that these uniform estimates do not hold in general.

To do that we look for explicit travelling wave solutions of (2.43). By scaling, the
problem can be reduced to the case h = 1. Indeed, uh is a solution of (2.43) if the
scaled function

u1
n(t) = huhn(th

2), n ∈ Z, t ≥ 0,

solves (2.43) for h = 1. In this case, h = 1, there are explicit solutions of (2.43) of the
form

(2.44) u1
n(t) = A exp(i(an− bt)) sech(cn− dt)
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for suitable constants A, a, b, c, d (for the explicit values we refer the reader to [2,
p. 84]).

In view of the structure of u1 it is easy to see that the solutions of (2.43), obtained
from u1 by scaling, are not uniformly bounded as h → 0 in any auxiliary space
Lq((0, T ), lr(hZ)) with r > 2. Indeed, a scaling argument shows that

‖uh‖Lq((0,T ), lr(hZ))

‖uh(0)‖l2(hZ)
= h

1
r + 2

q− 1
2
‖u1‖Lq((0,T/h2), lr(Z))

‖u1(0)‖l2(Z)
.

Observe that, for any t > 0, the lr(Z)-norm behaves as a constant:

‖u1(t)‖lr(Z) 	
(∫

R

sechr(cx− dt)dx
)1/r

=
(∫

R

sechr(cx)dx
)1/r

.

Thus, for all T > 0 and h > 0 the solution u1 satisfies

‖u1‖Lq((0,T/h2), lr(Z)) 	 (Th−2)1/q.

Consequently for any r > 2 the solution uh on the lattice hZ satisfies

‖uh‖Lq((0,T ), lr(hZ))

‖uh(0)‖l2(hZ)
	 h 1

r− 1
2 →∞, h→ 0.

This example shows that, in order to deal with the nonlinear problem, the linear
approximation scheme needs to be modified. In the following section we present a
method that preserves the dispersion properties and that can be used successfully at
the nonlinear level.

3. A two-grid algorithm. In this section we present a conservative scheme
that preserves the dispersive properties we discuss in the previous sections. In fact,
the scheme we shall consider is the standard one (1.9). But, this time, in order to avoid
the lack of dispersive properties associated with the high frequency components, the
scheme (1.9) will be restricted to the class of filtered data obtained by a two-grid
algorithm. The advantage of this filtering method with respect to the Fourier one is
that the filtering can be realized in the physical space.

The method, inspired by [9], that extends to several space variables the one intro-
duced in [11], is roughly as follows. We consider two meshes: the coarse one of size 4h,
4hZd, and the finer one, the computational one hZd, of size h > 0. The method relies
basically on solving the finite difference semidiscretization (1.9) on the fine mesh hZd,
but only for slowly oscillating data, interpolated from the coarse grid 4hZd. As we shall
see, the 1/4 ratio between the two meshes is important to guarantee the convergence
of the method. This particular structure of the data cancels the two pathologies of
the discrete symbol mentioned in section 2. Indeed, a careful Fourier analysis of those
initial data shows that their discrete Fourier transform vanishes quadratically in each
variable at the points ξ = (±π/2h)d and ξ = (±π/h)d. As we shall see, this suffices
to recover at the discrete level the dispersive properties of the continuous model.

Once the discrete version of the dispersive properties has been proved, we explain
how this method can be applied to a semidiscretization of the NSE with nonlinearity
f(u) = |u|pu. To do this, the nonlinearity has to be approximated in such a way that
the approximate discrete nonlinearities belong to the subspace of filtered data as well.
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Fig. 3. The action of the operator Π̃ between the grids 4hZ.

3.1. The two-grid algorithm in the linear framework. To be more precise
we introduce the following space of the slowly oscillating sequences. These sequences
on the fine one hZd are those which are obtained from the coarse grid 4hZd by an
interpolation process. Note that, by scaling, any function defined on the lattice hZd

can be viewed as a function on the lattice Zd. Thus it suffices to define this space for
h = 1.

Let us consider the piecewise and continuous interpolator P1
1 acting on the coarse

grid 4Zd. We define the extension operator Π̃ : l2(4Zd)→ l2(Zd) (see Figure 3) by

(3.45) (Π̃f)j = (P1
1f)j, j ∈ Zd, f : 4Zd → C.

We then define the space of the slowly oscillating sequences, Π̃(4hZd), as the image
of the operator Π̃ acting on functions defined on 4hZd. We will also make use of
Π̃∗ : l2(hZd)→ l2(4hZd), the adjoint of Π̃, defined by

(3.46) (Π̃g4h
1 , gh2 )l2(hZd) = (g4h

1 , Π̃∗gh2 )l2(4hZd) ∀ g4h
1 ∈ l2(4hZd), gh2 ∈ l2(hZd),

where (·, ·)l2(hZd) and (·, ·)l2(4hZd) are the inner products on l2(hZd) and l2(4hZd),
respectively.

In the 1-d case, the explicit expressions of Π̃ and Π̃∗ are given by

(Π̃g4h)4j+r =
4− r

4
g4h
4j +

r

4
g4h
4j+4, j ∈ Z, r ∈ {0, 1, 2, 3},

and

(Π̃∗gh)4j =
3∑
r=0

4− r
4

gh4j+r +
r

4
gh4j−4+r, j ∈ Z.

As we will see, Sh(t) has appropriate decay properties when it acts on the subspace
Π̃(4hZd), uniformly on h > 0. The main results concerning the gain of integrability
are given in the following theorem.

Theorem 3.1. Let p ≥ 2 and (q, r), (q̃, r̃) be two d/2-admissible pairs. The
following hold:

(i) There exists a positive constant C(d, p) such that

(3.47) ‖Sh(t)Π̃ϕ4h‖lp(hZd) ≤ C(d, p)|t|−d( 1
2− 1

p )‖Π̃ϕ4h‖lp′(hZd)

for all ϕ4h ∈ lp′(4hZd), h > 0, and t �= 0.
(ii) There exists a positive constant C(d, r) such that

(3.48) ‖Sh(t)Π̃ϕ4h‖Lq(R, lr(hZd)) ≤ C(d, r)‖Π̃ϕ4h‖l2(hZd)
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Fig. 4. Log-log plot of the time evolution of the l∞(Z)-norm of S1(t)Π̃δ0, where δ0 is one in
zero and vanishes otherwise.

for all ϕ4h ∈ l2(4hZd) and h > 0.
(iii) There exists a positive constant C(d, r) such that

(3.49)
∥∥∥∥
∫ ∞
−∞

Sh(t)∗Π̃f4h(s)ds
∥∥∥∥
l2(hZd)

≤ C(d, r)‖Π̃f4h‖Lq′ (R,lr′ (hZd))

for all f4h ∈ Lq′(R, lr̃′(4hZd)) and h > 0.
(iv) There exists a positive constant C(d, r, r̃) such that

(3.50)
∥∥∥∥
∫ t

0

Sh(t− s)Π̃f4h(s)ds
∥∥∥∥
Lq(R, lr(hZd))

≤ C(d, r, r̃)‖Π̃f4h‖Lq̃′ (R, lr̃′ (hZd))

for all f4h ∈ Lq̃′(R, lr̃′(4hZd)) and h > 0.
Remark 3.1. In the particular case p =∞, estimate (3.47) shows that the solution

of (1.9) with initial data in Π̃(4hZd) decays as t−d/2 when t becomes large which agrees
with the LSE. This can be seen in Figure 4, where the initial data has been chosen
as Π̃δ0 (δ0 being the discrete Dirac function defined on the coarse grid 4hZ). The
solution behaves as t−1/2 in contrast with the case presented in section 2, Figure 2,
where the initial data was δ0 (the discrete Dirac function defined on the fine grid hZ)
and the decay was as t−1/3.

The following lemma gives a Fourier characterization of the data that are obtained
by this two-grid algorithm involving the meshes 4hZd and hZd. Its proof uses only
the definition of the discrete Fourier transform and we omit it.

Lemma 3.1. Let ψ4h ∈ l2(4hZd). Then for all ξ ∈ [−π/h, π/h]d

(3.51) ̂̃Πψ4h(ξ) = 4dΠ̂ψ4h(ξ)
d∏

k=1

cos2(ξkh) cos2
(
ξkh

2

)
,

where (Πψ4h)j = ψ4h
j if j ∈ 4Zd and vanishes elsewhere.

Remark 3.2. Observe that the right-hand side product in (3.51) vanishes (see the
right of Figure 5 for the 1-d case) on the sets Mh

1 and Mh
2 defined in sections 2.1

and 2.2, respectively. This will allow us to recover the dispersive properties of the
numerical scheme introduced in this section.

Remark 3.3. A simpler two-grid construction could be done by interpolating 2hZd

sequences. We would get for all ψ2h ∈ l2(2hZd) and ξ ∈ [−π/h, π/h]d

̂̃Πψ2h(ξ) = 2dΠ̂ψ2h(ξ)
d∏

k=1

cos2
(
ξkh

2

)
,
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Fig. 5. Multiplicative factors introduced by the two-grid algorithm in dimension one in the case
of mesh ratio 1/2 and 1/4.

where (Πψ2h)j = ψ2h
j if j ∈ 2Zd and vanishes elsewhere. In the 1-d case the multiplier

introduced by this method is plotted in the left of Figure 5. This procedure would
cancel the spurious numerical solutions at the frequenciesMh

2 but not atMh
1 . In this

case, as we proved in section 2, the Strichartz estimates would fail to be uniform on h.
Thus we rather choose 1/4 as the ratio between the grids for the two-grid algorithm.
We also point out that 4 is the smallest quotient of the grids for which the decay
l1(hZd)− l∞(hZd) holds uniformly in the mesh parameter.

Proof of Theorem 3.1. Let us define the weighted operators Ahβ(t) : l2(hZd) →
l2(hZd) by

(3.52) ̂(Ahβ(t)ψh)(ξ) = e−itph(ξ)|g(ξh)|βψ̂h(ξ), ξ ∈ [−π/h, π/h],

where

g(ξ) =
d∏
k=1

cos(ξk) cos
(
ξk
2

)
.

We will prove that for any β ≥ 1/4, Ahβ(t) satisfies the hypotheses of Theorem 2.6.
Then, according to Lemma 3.1, observing that Sh(t)Π̃ϕ4h = 4dAh2 (t)Πϕ4h, we obtain
(3.48), (3.49), and (3.50).

It is easy to see that ‖Ahβ(t)ψh‖l2(hZd) ≤ ‖ψh‖l2(hZd). According to this, it remains
to prove that for any β ≥ 1/4 and t �= s the following holds:

(3.53) ‖Ahβ(t)Ahβ(s)∗ψh‖l∞(hZd) ≤ c(β, d)|t− s|−d/2‖ψh‖l1(hZd).

A scaling argument reduces the proof to the case h = 1. We claim that (3.53) holds
once

(3.54) ‖A1
γ(t)ψ

1‖l∞(Zd) ≤ c(γ, d)|t|−d/2‖ψ1‖l1(Zd)

is satisfied for all γ ≥ 1/2. Indeed, using that the operator A1
α(t) satisfies A1

α(t)∗ =
A1
α(−t) we obtain

‖A1
β(t)A

1
β(s)

∗ψ1‖l∞(Zd) = ‖A1
β(t)A

1
β(−s)ψ1‖l∞(Zd) = ‖A1

2β(t− s)ψ1‖l∞(Zd)

� |t− s|−d/2‖ψ‖l1(Zd)

for all t �= s and ψ1 ∈ l1(Zd).
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In the following we prove (3.54). We write A1
γ(t) as a convolution A1

γ(t)ψ
1 =

Kt
d,γ ∗ ψ1, where K̂t

d,γ(ξ) = e−itp1(ξ)|g(ξ)|γ . By Young’s inequality it is sufficient to
prove that for any γ ≥ 1/2 and t �= 0 the following holds:

(3.55) ‖Kt
d,γ‖l∞(Zd) ≤ c(γ, d)|t|−d/2.

We observe that Kt
d,γ can be written by separation of variables as

K̂t
d,γ(ξ) =

d∏
k=1

e−4it sin2(
ξk
2 )

∣∣∣∣cos(ξk) cos
(
ξk
2

)∣∣∣∣
γ d∏
j=1

K̂t
1,γ(ξj).

It remains to prove that (3.55) holds in one space dimension. We make use of the
following lemma.

Lemma 3.2 (see [15, Corollary 2.9]). Let (a, b) ⊂ R and ψ ∈ C3(a, b) be such that
ψ′′ changes monotonicity at finitely many points in the interval (a, b). Then∣∣∣∣∣

∫ b

a

ei(tψ(ξ)−xξ)|ψ′′(ξ)|1/2φ(ξ)dξ

∣∣∣∣∣ ≤ cψ|t|−1/2

{
‖φ‖L∞(a,b) +

∫ b

a

|φ′(ξ)|dξ
}

holds for all real numbers x and t.
Applying the above lemma with φ(ξ) = | cos ξ|γ−1/2| cos(ξ/2)|γ , γ ≥ 1/2, and

ψ(ξ) = −4 sin2(ξ/2), we obtain (3.55) for d = 1, which finishes the proof.

3.2. A conservative approximation of the NSE. We now build a convergent
numerical scheme for the semilinear NSE equation in Rd:

(3.56)

{
iut + Δu = |u|pu, t �= 0,
u(0, x) = ϕ(x), x ∈ Rd.

Our analysis applies for the nonlinearity f(u) = −|u|pu as well. In fact, the key point
for the proof of the global existence of the solutions is that the L2-scalar product
(f(u), u) is a real number. All the results extend to more general nonlinearities f(u)
satisfying this condition under natural growth assumptions for L2-solutions (see [3,
Chap. 4.6, p. 109]).

The first existence and uniqueness result for (3.56) with L2(Rd)-initial data is as
follows.

Theorem 3.2 (global existence in L2(Rd); see Tsutsumi [30]). For 0 ≤ p < 4/d
and ϕ ∈ L2(Rd), there exists a unique solution u in C(R, L2(Rd))∩Lqloc(R, Lp+2(Rd))
with q = 4(p + 1)/pd that satisfies the L2-norm conservation property and depends
continuously on the initial condition in L2(Rd).

The proof uses standard arguments, the key ingredient being to work in the space
C(R, L2(Rd)) ∩ Lqloc(R, Lp+2(Rd)). This can only be done using Strichartz estimates.
Local existence is proved by applying a fixed point argument to the integral formula-
tion of (3.56) in that space. Global existence holds because of the L2(Rd)-conservation
property which excludes finite-time blow-up.

In order to introduce a numerical approximation of (3.56) it is convenient to give
the definition of the weak solution of (3.56).

Definition 3.1. We say that u is a weak solution of (3.56) if the following hold:
(i) u ∈ C(R, L2(Rd)) ∩ Lqloc(R, Lp+2(Rd)).
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(ii) u(0) = ϕ a.e. and

(3.57)
∫

R

∫
Rd

u(−iψt + Δψ)dxdt =
∫

R

∫
Rd

|u|puψdxdt

for all ψ ∈ D(R, H2(Rd)), where p and q are as in the statement of Theorem 3.2.
In this section we consider the following numerical approximation scheme for

(3.56):

(3.58) i
duh

dt
+ Δhu

h = Π̃f(Π̃∗uh), t ∈ R; uh(0) = Π̃ϕ4h,

with f(u) = |u|pu.
In order to prove the global existence of solutions of (3.58), we will need to guar-

antee the conservation of the l2(hZd)-norm of solutions, a property that the solutions
of the NSE satisfy. The choice Π̃f(Π̃∗uh) as an approximation of the nonlinear term
f(u) is motivated by the fact that

(3.59) (Π̃f(Π̃∗uh), uh)l2(hZd) = (f(Π̃∗uh), Π̃∗uh)l2(4hZd) ∈ R,

that, as mentioned above, guarantees the conservation of the l2(hZd)-norm.
The following holds.
Theorem 3.3. Let p ∈ (0, 4/d) and q = 4(p + 2)/dp. Then for all h > 0 and

for every ϕ4h ∈ l2(4hZd), there exists a unique global solution uh ∈ C(R, l2(hZd)) ∩
Lqloc(R, l

p+2(hZd)) of (3.58). Moreover, uh satisfies

(3.60) ‖uh‖L∞(R, l2(hZd)) ≤ ‖Π̃ϕ4h‖l2(hZd)

and for all finite interval I

(3.61) ‖uh‖Lq(I, lp+2(hZd)) ≤ c(I)‖Π̃ϕ4h‖l2(hZd),

where the above constants are independent of h.
Proof of Theorem 3.3. The local existence and uniqueness can be proved, as in the

continuous case, by a combination of the Strichartz-like estimates in Theorem 3.1 and
of a fixed point argument in the space L∞((−T, T ), l2(hZd))∩Lq((−T, T ), lp+2(hZd)),
T being chosen small enough, depending on the initial data, but independent of h.
Identity (3.59) guarantees the conservation of the l2-norm of the solutions, and, con-
sequently, the lack of blow-up and the global existence of the solutions.

3.3. Convergence of the method. In what follows we use the piecewise con-
stant interpolator Ph

0 . Given the initial datum ϕ ∈ L2(Rd) for the PDE, we choose
the approximating discrete data (ϕ4h

j )j∈Zd such that Ph
0 Π̃ϕ4h converges strongly to ϕ

in L2(Rd). Thus, in particular, ‖Ph
0 Π̃ϕ4h‖L2(Rd) ≤ C(‖ϕ‖L2(Rd)).

The main convergence result is the following.
Theorem 3.4. Let p and q be as in Theorem 3.3 and uh be the unique solution

of (3.58) for the approximate initial data Π̃ϕ4h as above. Then the sequence Ph
0u

h

satisfies

Ph
0u

h �
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in Lqloc(R, L

p+2(Rd)),(3.62)

Ph
0u

h → u in L2
loc(R

d+1), Ph
0 Π̃f(Π̃∗uh) ⇀ |u|pu in Lq

′
loc(R, L

(p+2)′(Rd)),(3.63)
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where u is the unique solution of the NSE.
First, we sketch the main ideas of the proof. The main difficulty in the proof of

Theorem 3.4 is the strong convergence Ph
0u

h → u in L2
loc(R

d+1) which is needed to
pass to the limit in the nonlinear term. Once it is obtained, the second convergence in
(3.63) easily follows. Another technical difficulty comes from the fact that the inter-
polator Ph

0 is not compactly supported in the Fourier space. Thus we instead consider
the band-limited interpolator Ph∗ introduced in (2.34) and prove the compactness for
Ph
∗u

h. Once this is obtained, the L2-strong convergence of Ph
∗u

h is transferred to
Ph

0u
h. This is a consequence of the following property of both interpolators (cf. [22,

Thm. 3.4.2, p. 90]):

(3.64) ‖Ph
0u

h(t)−Ph
∗u

h(t)‖L2(Ω) ≤ h‖Ph
∗u

h(t)‖H1(Ω),

which holds for all real t and Ω ⊂ Rd.
To prove the L2-strong convergence of Ph

∗u
h we will show that it is uniformly

bounded in L2
loc(R, H

1/2
loc (Rd)). We shall also obtain estimates in L2

loc(R, H
1
loc(R

d))
which are not uniform on h but, according to (3.64), suffice to ensure that Ph

0u
h−Ph

∗u
h

strongly converges to zero in L2
loc(R

d+1). The following lemma provides local estimates
for Ph∗uh in the Hs-norm.

Lemma 3.3. Let s ≥ 1/2, let I ⊂ R be a bounded interval, and let χ ∈ C∞c (Rd).
Then there is a constant C(I, χ), independent of h, such that

(3.65) ‖χPh
∗(S

h(t)Π̃ϕ4h)‖L2(I,Hs(Rd)) ≤
C(I, χ)
hs−1/2

‖Π̃ϕ4h‖l2(hZd)

holds for all functions ϕ4h ∈ l2(4hZd) and h > 0. Moreover, for any d/2-admissible
pair (q, r)

(3.66)
∥∥∥∥χPh

∗

(∫ t

0

Sh(t− τ)Π̃f4h(τ)dτ
)∥∥∥∥

L2(I,Hs(Rd))

≤ C(I, χ)
hs−1/2

‖Π̃f4h‖Lq′(I,lr′ (hZd))

for all f4h ∈ Lq′(I, lr′(4hZd)) and h > 0.
Proof. We divide the proof into two steps. The first one concerns the homogeneous

estimate (3.65) and the second one (3.66).
Step 1. Regularity of the homogeneous term. To prove (3.65) it is sufficient to

prove, for any R > 0, the existence of a positive constant C(I, R) such that∫
I

∫
|x|<R

|(−Δ)s/2Ph
∗ (S

h(t)Π̃ϕ4h)|2dxdt ≤ C(I, R)
h2s−1

∫
[−π/h,π/h]d

|ϕ̂4h(ξ)|2dξ.

Let us consider ψh ∈ l2(hZd). Applying Theorem 2.5 to the function Ph∗(Sh(t)ψh)
we obtain∫

I

∫
|x|<R

|(−Δ)s/2Ph
∗(S

h(t)ψh)|2dxdt ≤ C(I, R)
∫

[−π/h,π/h]d

|ξ|2s|P̂h∗ψh(ξ)|2dξ
|∇ph(ξ)|

≤ C(I, R)
h2s−1

∫
[−π/h,π/h]d

(
∑d

j=1 ξ
2
j )

1/2|ψ̂h(ξ)|2dξ
(
∑d

j=1 sin2(ξjh)/h2)1/2

� C(I, R)
h2s−1

∫
[−π/h,π/h]d

|ψ̂h(ξ)|2dξ∏d
j=1 | cos(ξjh/2)|

,(3.67)
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provided that all terms make sense. Note that this estimate holds for all ψ ∈ l2(hZd).
Observe, however, that the term in the denominator in the right-hand side integral
may vanish for the high frequencies ξ = (±π/h)d. In order to compensate this fact
we consider initial data in the class of slowly oscillating sequences Π̃(4hZd). Now, we
apply the last estimates to ψh = Π̃ϕ4h. Thus

∫
I

∫
|x|<R

|(−Δ)s/2Ph
∗ (S

h(t)Π̃ϕ4h)|2dxdt ≤ C(I, R)
h2s−1

∫
[−π/h,π/h]d

|̂̃Πϕ4h(ξ)|2dξ∏d
j=1 | cos(ξjh/2)|

≤ C(I, R)
h2s−1

∫
[−π/h,π/h]d

|ϕ̂4h(ξ)|2
d∏
j=1

| cos(ξjh/2)|3dξ ≤ C(I, R)
h2s−1

‖Π̃ϕ4h‖l2(hZd).

Step 2. Regularity of the inhomogeneous term. In the following we prove (3.66).
This estimate will be reduced to the homogeneous one (3.65) by using the argument of
Christ and Kiselev [4] (see also [24] in the context of the PDE). A simplified version,
useful in PDE applications, is given in [24].

Lemma 3.4. Let X and Y be Banach spaces and assume that K(t, s) is a continu-
ous function taking its values in B(X,Y ), the space of bounded linear mappings from
X to Y . Suppose that −∞ ≤ a < b ≤ ∞ and set

Tf(t) =
∫ b

a

K(t, s)f(s)ds, Wf(t) =
∫ t

a

K(t, s)f(s)ds.

Assume that 1 ≤ p < q ≤ ∞ and ‖Tf‖Lq([a,b],Y ) ≤ ‖f‖Lp([a,b],X). Then

‖Wf‖Lq([a,b],Y ) ≤ ‖f‖Lp([a,b],X).

Without loss of generality we can consider I = [0, T ]. In view of the above lemma
it is sufficient to prove that the operator

Tf4h(t) = χPh
∗

(∫ T

0

Sh(t− τ)Π̃f4h(τ)dτ

)

satisfies

‖Tf4h‖L2([0,T ],Hs(Rd)) ≤
C(T, χ)
hs−1/2

‖Π̃f4h‖Lq′ ([0,T ], lr′ (hZd)).

We write Tf4h as Tf4h(t) = χPh
∗S

h(t)T1f
4h(t), where

T1f
4h(t) =

∫ T

0

Sh(s)∗Π̃f4h(s)ds.

Estimate (3.67) yields

‖Tf4h‖L2([0,T ],Hs(Rd)) ≤
C(I, χ)
hs−1/2

∥∥∥∥∥ T̂1f4h(ξ)∏d
j=1 | cos(ξjh/2)|1/2

∥∥∥∥∥
L2([−π/h,π/h]d)

� C(I, χ)
hs−1/2

∥∥∥∥∥ T̂1f4h(ξ)∏d
j=1 | cos(ξjh/2)|1/2| cos(ξjh)|1/2

∥∥∥∥∥
L2([−π/h,π/h]d)

,
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provided that all the above integrals are finite.
Explicit computations on T1f

4h show that

T̂1f4h(ξ)∏d
j=1 | cos(ξjh/2)|1/2| cos(ξjh)|1/2

= 4d
∫ T

0

eisph(ξ)
d∏
j=1

∣∣∣∣cos
(
ξjh

2

)∣∣∣∣
3/2

|cos(ξjh)|3/2 Π̂f4h(ξ, s)ds

= 4d
(∫ T

0

(Ah3/2(s))
∗Πf4h(s)ds

)
(̂ξ),

where the operator Ah3/2 is defined in (3.52).
Applying Theorem 2.6 to the operator Ah3/2 we obtain, by estimate (2.38), that∥∥∥∥∥

∫ T

0

(Ah3/2(s))
∗Πf4h(s)

∥∥∥∥∥
l2(hZd)

� ‖Πf4h‖Lq′ ([0,T ], lr′ (hZd)) � ‖Π̃f4h‖Lq′ ([0,T ], lr′ (hZd)).

The proof is now complete.
Proof of Theorem 3.4. Using (3.60) we obtain that Ph

0u
h is uniformly bounded in

L∞(R, L2(Rd)). This guarantees the existence of a function u ∈ L∞(R, L2(Rd)) such
that, up to a subsequence, Ph

0u
h⇀� u in L∞(R, L2(Rd)). By (3.61) we obtain that

u ∈ Lq(I, Lp+2(Rd)) and, up to a subsequence, Ph
0u

h ⇀ u in Lq(I, Lp+2(Rd)).
In the following we prove the strong convergence of Ph

0u
h. First, we prove that

Ph
0u

h−Ph
∗u

h → 0 in L2
loc(R×Rd). Second, we prove the compactness of Ph

∗u
h. Finally,

we obtain that Ph
0u

h → u in L2
loc(R× Rd).

For any Ω ⊂ Rd, classical properties of the interpolator Ph
0u

h (see [22, Thm. 3.4.2,
p. 90]) give us ∫

Ω

|Ph
0u

h −Ph
∗u

h|2dx ≤ h2‖Ph
∗u

h‖2H1(Ω).

Applying Lemma 3.3 with s = 1 we obtain, for any χ ∈ C∞c (Rd),∫
I

∫
Rd

χ2|Ph
0u

h −Ph
∗u

h|2dxdt ≤ h2

∫
I

∫
Rd

χ2|(I −Δ)1/2Ph
∗u

h|2dxdt

≤ hC(I, ‖Π̃ϕ4h‖2l2(hZd))→ 0, h→ 0.

This shows that Ph
0u

h −Ph
∗u

h → 0 in L2
loc(R× Rd).

Using Lemma 3.3 with s = 1/2 we obtain that for any smooth function χ, Ph
∗u

h

satisfies

‖χPh
∗u

h‖L2(I,H1/2(Rd)) ≤ C(I, χ, ‖Π̃ϕ4h‖l2(hZd)).

We can also prove the following uniform boundedness property of its time derivative:∥∥∥dPh
∗u

h

dt

∥∥∥
L1(I,H−2(Rd))

≤ ‖ΔhPh
∗u

h‖L1(I,H−2(Rd)) + ‖Ph
∗(|uh|puh)‖L1(I,H−2(Rd))

≤ ‖Ph
∗u

h‖L1(I, L2(Rd)) + ‖Ph
∗(|uh|puh)‖L1(I, L(p+2)′ (Rd)) ≤ C(I, ‖ϕ‖L2(Rd)).
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Using the embeddings Hs(Ω) ↪→compL
2(Ω) ↪→ H−2(Ω), Ω ⊂ Rd being a bounded do-

main, and the compactness results of [23] we obtain the existence of a function v such
that, up to subsequences, Ph

∗u
h → v in L2

loc(R × Rd). Using the strong convergence
of Ph∗uh towards v we obtain that v = u and Ph

0u
h → u in L2

loc(R× Rd).
Let Γ ⊂ Zd be a finite set. Thus for any s ∈ Γ we have Ph

0u
h(· + sh) → u in

L2
loc(R× Rd) and Ph

0u
h(·+ sh)→ u a.e. in R× Rd. The operators Π̃ and Π̃∗ involve

only a finite number of translations. Then Ph
0 Π̃f(Π̃∗uh) → |u|pu a.e. in R × Rd and

Ph
0 Π̃f(Π̃∗uh) ⇀ |u|pu in Lq

′
(I, L(p+2)′(Rd)).

Multiplying (3.58) by a function ψ ∈ C∞c (Rd+1), Ph
0u

h satisfies

(3.68)
∫

R

∫
Rd

Ph
0u

h(−iψt + Δhψ)dxdt =
∫

R

∫
Rd

Ph
0 Π̃f(Π̃∗uh)ψdxdt.

All the above weak convergences of Ph
0u

h and (3.68) show that u satisfies (3.57).
It remains to prove that u ∈ C(R, L2(Rd)) and u(0) = ϕ. To prove that

u ∈ C(R, L2(Rd)) we show its continuity at t = 0; the same argument works at
any time t.

For any positive 0 ≤ t ≤ T < 1, the Strichartz estimates in Theorem 3.1 and the
Hölder inequality in time variable applied to the variation of constants formula give
us

‖uh(t)− Sh(t)Π̃ϕ4h‖l2(hZd) ≤
∥∥∥∥
∫ t

0

Sh(t− s)Π̃f(Π̃∗uh)ds
∥∥∥∥
L∞([0,T ], l2(Zd))

� ‖|uh|puh‖Lq(h)′ ([0,T ], l(p+2)′ (hZd)) ≤ T (q−(p+2))/q‖uh‖p+1
Lq([0,T ], lp+2(hZd))

� T 1−pd/4C(‖ϕ‖L2(Rd)).

Using that Ph
0u

h⇀� u and Ph
0S

h(·)ϕh⇀∗ S(·)ϕ in L∞([0, T ], L2(Rd)) we get

‖u(t)− S(t)ϕ‖L2(Rd) ≤ lim inf
h→0

‖Ph
0u

h(·)−Ph
0S

h(·)Π̃ϕ4h‖L∞([0,T ], L2(Rd))

� T 1−pd/4C(‖ϕ‖L2(Rd)).

This proves that the solution u obtained as the limit of Ph
0u

h satisfies u(t) → ϕ in
L2(Rd) as t→ 0.

The uniqueness of the limit, a solution of the NSE (3.56), allows us to deduce
that the whole sequence Ph

0u
h converges without extracting subsequences.

The proof of Theorem 3.4 is now complete.

3.4. The critical case p = 4/d. Our method works similarly in the critical
case p = 4/d for small initial data. More precisely, the following holds.

Theorem 3.5. There exists a constant ε, independent of h, such that for all initial
data ϕh ∈ Π̃(4hZd) with ‖ϕh‖l2(hZd) < ε, the semidiscrete critical equation (3.58) with

p = 4/d has a unique global solution uh ∈ C(R, l2(hZd)) ∩ L2+4/d
loc (R, l2+4/d(hZd)).

Moreover, for any d/2-admissible pair (q, r), uh ∈ Lqloc(R, lr(hZd)) and

‖uh‖Lq(I, lr(hZd) ≤ C(q, I)‖ϕh‖l2(hZd)

for all finite intervals I, uniformly on h.
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With the same notation, as in the subcritical case, the following convergence result
holds.

Theorem 3.6. Let p = 4/d. Under the smallness assumption of Theorem 3.5, the
sequence Ph

0u
h satisfies

Ph
0u

h �
⇀u in L∞(R, L2(Rd)), Ph

0u
h ⇀ u in L

4/d+2
loc (R, L4/d+2(Rd)),

Ph
0u

h → u in L2
loc(R× Rd), Ph

0 Π̃(f(Π̃∗uh)) ⇀ |u|4/du in L
(4/d+2)′

loc (R, L(4/d+2)′(Rd)),

where u is the unique weak solution of the critical NSE with p = 4/d.
In contrast with the viscous numerical scheme introduced in [12] this time we do

not need to modify the exponent 4/d of the nonlinearity in the numerical scheme. In
the present case, the class of Strichartz estimates for the linear semidiscrete semigroup
hold for d/2-admissible pairs and not for the some α-admissible pairs, α > d/2. This
allows us to use, for the numerical scheme based on the two-grid method, exactly the
same nonlinearity as that given by the nonlinear problem after adapting it by means
of extension and restriction operators Π̃ and Π̃∗ as in (3.58).

We have analyzed here the case of small L2-initial data. In the continuous case,
the global well-posedness can be proved under a more general assumption:

(3.69) ‖eitΔϕ‖L2+4/d(R,L2+4/d(Rd)) ≤ c0
for some sufficiently small constant c0. Examples of ϕ satisfying (3.69) with large
L2(Rd)-norm are given in [17, Chap. 5, section 5.4, p. 108–109].

At the numerical level, condition (3.69) can be replaced by

(3.70) ‖Sh(t)ϕh‖L2+4/d(R, l2+4/d(hZd) ≤ c1,

where c1 is a positive, small enough constant and ϕh ∈ Π̃(4hZd). Clearly, for ϕh ∈
Π̃(4hZd) with small l2(hZd)-norm, estimate (3.48) shows (3.70). The construction of
ϕh ∈ Π̃(4hZd) with large l2(hZd)-norm satisfying (3.70) is an open problem.
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1. Introduction. In recent years discontinuous Galerkin (DG) methods have
become increasingly popular, and they have been used and analyzed for various kinds
of applications: see, e.g., [2] for second order elliptic problems, [4], [3] for Reissner–
Mindlin plates, and, for advection-diffusion problems, [13], [14], [23], [38], [20], [24],
and [10].

Most DG methods for advection-diffusion or hyperbolic problems are constructed
by specifying the numerical fluxes at the interelements, and, as far as we know, the ad-
vection field is mostly assumed to be either constant or divergence-free. In the present
paper we follow a different path. On one hand, we derive DG formulations by apply-
ing the so-called weighted-residual approach of [6]. In this approach a DG method is
written first in strong form, as a system of equations including the original PDE equa-
tion inside each element plus the necessary continuity conditions at interfaces. The
variational form is then obtained by combining all these equations. In this way, the
DG method establishes a linear relationship between the residual inside each element
and the jumps across interelement boundaries. Such a linear relation permits us to
recover DG methods proposed earlier in the literature, and at the same time provides
a framework for devising new DG methods with the desired stability and consistency
properties. As we shall show, this is possible, since stability and consistency can be
ensured through a proper selection of the weights in the linear relationship, which in
turn determines the DG method.

On the other hand, we deal with a variable reaction and a variable advection field
which is not divergence-free. With respect to other papers treating variable coefficients
(see, e.g., [17], [18], [11]) the novelty of the present paper is that we relax the usual
coercivity condition relating advection and reaction (see condition (2.2) in section 2).
To the best of our knowledge the weaker coercivity condition was assumed in [21], but
there the advection field is constant, while for variable coefficients similar assumptions
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in a different context were used in [19]. Clearly, the weaker condition (2.2), together
with variable coefficients, makes the analysis more complicated than usual, surely
more complicated than one could expect at first sight, if one wants to take care of
situations where advection and/or reaction dominate in different parts of the domain
or, more generally, when diffusion is (comparatively) very small.

To ease the presentation we apply the weighted-residual approach to derive two
DG methods proposed in the literature: the method introduced in [23], and that
proposed in [24] and further analyzed in [10]. The former uses the nonsymmetric NIPG
method for the diffusion terms and upwind for the convective part of the flux. In the
latter the diffusion terms are treated with three different DG methods, and the whole
physical flux is upwinded. This makes the approach well suited for strongly advection-
dominated problems (actually, the most interesting cases) but less adequate in the
diffusion-dominated or intermediate regimes. We also introduce two new methods.
One of them, that we refer to as minimal choice, contains the minimum number of
terms needed to get stability and optimal order of convergence in all regimes. The
other one is a more refined method, that contains as a particular case the method [20]
and the minimal choice.

Our formulation allows us also to recover easily, for each of the methods analyzed,
the corresponding SUPG-stabilized version. Many others methods could have been
considered, but this would have made the paper practically unreadable. Moreover,
our aim was not to compare the behavior of different schemes, but mostly to explore
the possibilities and the ductility of the weighted-residual approach for designing and
analyzing DG methods.

It is worth noticing that this approach seems to be particularly suited for un-
derstanding in a natural way which stabilization mechanisms are, hidden in each DG
method, responsible for the behavior of the DG approximation in the different regimes
of the problem. It also provides a way to perform stability and a priori error anal-
ysis in a unified framework. Furthermore, we think that it could be useful also for
applications to a posteriori error analysis, a field which is well developed for conform-
ing approximations but much less studied for DG approximations or even stabilized
methods. This surely deserves some further and future research.

Throughout the paper we shall use standard notation for norms and seminorms
in Sobolev spaces. To keep homogeneity of dimensions, we recall that on a domain Ω
of diameter L we define

‖v‖2k,Ω :=
k∑
s=0

L2s|v|2s,Ω, v ∈ Hk(Ω), k ≥ 0,(1.1)

‖v‖k,∞,Ω :=
k∑
s=0

Ls|v|s,∞,Ω, v ∈ W k,∞(Ω), k ≥ 0.(1.2)

The outline of the paper is as follows. In section 2 we present the problem with all the
assumptions necessary to the analysis, and we apply the weighted-residual approach.
In section 3 we show examples of choices of the “weights,” leading to four methods:
the methods of [23] and [24], and two new methods. In section 4 we deal with the
approximation and prove stability in a suitable DG norm. We also prove stability in a
norm of SUPG-type, thus providing control on the streamline derivative. Section 5 is
devoted to a priori error analysis, and optimal convergence is proved in both norms.
Finally, in section 6 we present an extensive set of numerical experiments to compare
the methods and to validate our theoretical results.
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2. Setting of the problem. To ease the presentation we shall restrict ourselves
to the two-dimensional case, although the results here presented also hold in three
dimensions. Let Ω be a bounded, convex, polygonal domain in R2, and let β =
(β1, β2)T be the velocity vector field defined on Ω with βi ∈ W 1,∞(Ω), i = 1, 2,
γ ∈ L∞(Ω) the reaction coefficient, and ε a positive constant diffusivity coefficient.
We define the inflow and outflow parts of Γ = ∂Ω in the usual fashion:

Γ− = {x ∈ Γ : β(x) · n(x) < 0} = inflow,

Γ+ = {x ∈ Γ : β(x) · n(x) ≥ 0} = outflow,

where n(x) denotes the unit outward normal vector to Γ at x ∈ Γ. Let ΓD �= ∅,
and let ΓN be the parts of the boundary Γ where Dirichlet and Neumann boundary
conditions are assigned, so that Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. Thus,

ΓD± = ΓD ∩ Γ±, ΓN± = ΓN ∩ Γ±.

Let f ∈ L2(Ω), gD ∈ H3/2(ΓD), gN ∈ H1/2(ΓN ). Consider the advection-
diffusion-reaction problem

(2.1)

divσ(u) + γu = f in Ω,

u = gD on ΓD,

(βuχΓ−
N
− ε∇u) · n = gN on ΓN ,

where σ(u) is the (physical) flux, given by

σ(u) = −ε∇u+ βu,

and χΓ−
N

is the characteristic function of Γ−N . The meaning of the boundary conditions
on ΓN is that the total flux is imposed on Γ−N while on Γ+

N only the diffusive flux is
specified (see [24]).

Since the first equation in (2.1) is equivalent to −εΔu+β ·∇u+(divβ+γ)u = f ,
we introduce the “effective” reaction function �(x) and we make the assumption

(2.2) �(x) := γ(x) +
1
2

divβ(x) ≥ �0 ≥ 0 ∀x ∈ Ω.

For the subsequent stability and error analysis we shall make the following assump-
tions on the coefficients: the advective field has neither closed curves nor stationary
points, i.e.,

(2.3) β has no closed curves and |β(x)| �= 0 ∀x ∈ Ω.

This implies, as we shall see later on (see Remark 2.1 and Appendix A), that

(H1) ∃ η ∈W k+1,∞(Ω) such that β ·∇η ≥ 2b0 := 2
‖β‖0,∞,Ω

L
in Ω.

Furthermore, we assume that

(H2) ∃ cβ > 0 such that |β(x)| ≥ cβ ||β||1,∞,Ω ∀x ∈ Ω,

and, given a shape-regular family Th of decompositions of Ω into triangles T ,

(H3) ∃ c� > 0 such that ∀T ∈ Th ‖�‖0,∞,T ≤ c�(min
T
�(x) + b0).
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Remark 2.1. Assumption (2.3), together with the regularity β ∈ W 1,∞(Ω), en-
sures the well-posedness of the continuous problem in the pure hyperbolic limit
(ε = 0). (See [16] and also [33] for details.) Condition (H1) is based on a result
first established in [16, Lemma 2.3] under more regularity assumptions on β. Namely,
for β ∈ Ck(U), k ≥ 1 satisfying (2.3), U being some neighborhood of Ω, the authors
show the existence of η ∈ Ck(U) verifying β · ∇η ≥ b0 > 0 in Ω. However, by revis-
ing the proof in [16], it can be seen that the result holds true also if β ∈ W 1,∞(Ω),
provided it satisfies (2.3) (see Appendix A for details).

Assumption (H2) excludes undesirable situations of a small but highly oscillatory
advection field and provides useful relations among norms. Indeed, from (1.2) we
deduce

(2.4)

cβ
||β||1,∞,Ω

L
≤ b0 :=

||β||0,∞,Ω
L

≤ ||β||1,∞,Ω
L

,

|β|1,∞,Ω ≤ ||β||1,∞,Ω
L

≤ 1
cβ

||β||0,∞,Ω
L

=
b0
cβ
.

Hypothesis (H3) is always verified in the advection-dominated regime (it says nothing
more than � ∈ L∞(Ω)). Instead, when the advection field is negligible, it forbids
the problem to shift from reaction-dominated to diffusion-dominated within a single
element. Note that, since we are interested in the case where the diffusion coefficient
ε is very small, what we refer to as diffusion-dominated problem (that is, when both
reaction and advection are also very small) has little practical interest.

Again let Th be a shape-regular family of decompositions of Ω into triangles T ,
such that each (open) boundary edge belongs either to ΓD, or to Γ+

N or to Γ−N (in
other words, we avoid edges that belong to two different types of boundaries). We
denote by hT the diameter of T , and we set h = maxT∈Th

hT . Since we look for a
solution of (2.1) a priori discontinuous, we need to recall the definition of typical tools
such as averages and jumps on the edges for scalar- and vector-valued functions. Let
T1 and T2 be two neighboring elements, let n1 and n2 be their outward normal unit
vectors, and let ϕi and τ i be the restrictions of ϕ and τ to Ti (i = 1, 2), respectively.
Following [2] we set

{ϕ} =
1
2
(ϕ1 + ϕ2), [[ϕ ]] = ϕ1n1 + ϕ2n2 on e ∈ E◦h,(2.5)

{τ} =
1
2
(τ 1 + τ 2), [[ τ ]] = τ 1 · n1 + τ 2 · n2 on e ∈ E◦h ,(2.6)

where E◦h is the set of interior edges e. For e ∈ E∂h , the set of boundary edges, we set

(2.7) [[ϕ ]] = ϕn, {ϕ} = ϕ, {τ} = τ .

For future purposes we also introduce a weighted average, for both scalar- and vector-
valued functions, as follows. With each internal edge e, shared by elements T1 and
T2, we associate two real nonnegative numbers α1 and α2, with α1 + α2 = 1, and we
define

(2.8) {τ}α = α1τ 1 + α2τ 2 on internal edges.

As shown, for instance, in [8] for a pure hyperbolic problem, a proper choice of α1 and
α2 will introduce a stabilizing effect of upwind type into the scheme. We note that the
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arithmetic average is obtained for α1 = α2 = 1/2, while the classical upwind flux is
obtained when αi = (sign(β · ni) + 1)/2 for i = 1, 2 (where, as usual, sign(x) = x/|x|
for x �= 0 and sign(0) = 0). Indeed, for vectors the following relation holds:

(2.9) {τ}α · ne =
(
{τ}+

[[α ]]
2

[[ τ ]]
)
· ne,

whenever ne is orthogonal to e. Thus, if, for instance, T1 is the upwind triangle, i.e.,
β · n1 > 0, then α = (1, 0) and

(2.10)

{τ}α · n1 =
(
{τ}+

n1

2
[[ τ ]]

)
· n1 = τ 1 · n1 =: {τ}upw · n1,

{τ}1−α · n2 =
(
{τ}+

n2

2
[[ τ ]]

)
· n2 = τ 2 · n2 =: {τ}dw · n2,

while for scalar functions we obviously have

{v}α = v1 =: {v}upw, {v}1−α = v2 =: {v}dw.
Taking αi = 1/2+t sign(β·ni) ( i = 1, 2) will allow us, choosing t with 0 < t0 ≤ t ≤ 1/2
on each edge, to tune up the quantity of upwind.

We shall make extensive use of the identity [2, formula (3.3)]

(2.11)
∑
T∈Th

∫
∂T

τ · nϕ =
∑
e∈Eh

∫
e

{τ} · [[ϕ ]] +
∑
e∈E◦h

∫
e

[[ τ ]]{ϕ},

of the trace inequality [1], [2]

(2.12) ||w||20,e ≤ C2
t (|e|−1||w||20,T + |e||w|21,T ), e ⊂ ∂T, w ∈ H1(T ),

with Ct a constant depending only on the minimum angle of T , and |e| = length of
the edge e, and finally of the DG–Poincaré inequality [5]

(2.13) ‖v‖0,Ω ≤ LCP
⎛
⎝|v|21,h +

∑
e/∈ΓN

1
|e| ||[[ v ]]||20,e

⎞
⎠

1/2

,

where CP is a positive constant depending on the minimum angle of Th, and | · |1,h
denotes the broken H1-seminorm. With the previous definitions, problem (2.1) is
equivalent to

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divσ(u) + γu = f in each T ∈ Th,
[[σ(u) ]] = 0 on each e ∈ E◦h,
[[u ]] = 0 on each e ∈ E◦h,
u = gD on each e ∈ ΓD,
(βuχΓ−

N
− ε∇u) · n = gN on each e ∈ ΓN .

Following the approach of [6], we shall introduce a variational formulation of (2.14)
in which each of the equations above has the same relevance and is therefore treated
in the same fashion. To do so, we introduce the space

V (Th) := {v ∈ L2(Ω) such that v|T ∈ Hs(T ) ∀T ∈ Th, s > 3/2},



1396 BLANCA AYUSO AND L. DONATELLA MARINI

and we assume that we have five operators B0, B1, B2, BD1 , BN2 from V (Th) to
L2(Ω),L2(E◦h), L2(E◦h), L2(ΓD), L2(ΓN ), respectively. Then we consider the problem

(2.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V (Th) such that ∀v ∈ V (Th)∫
Ω

(divhσ(u) + γu− f)B0v +
∑
e∈E◦h

∫
e

[[u ]] · B1v +
∑
e∈E◦h

∫
e

[[σ(u) ]]B2v

+
∑
e∈ΓD

∫
e

(u− gD)BD1 v +
∑
e∈ΓN

∫
e

((βuχΓ−
N
− ε∇u) · n− gN )BN2 v = 0,

where divh denotes the divergence element by element.
Different choices of the B’s operators will give rise to different formulations. Since

the solution of the original problem (2.1) is always a solution of (2.15), if we ensure
uniqueness of the solution of (2.15), such a solution will coincide with the solution of
the original problem. Sufficient conditions on the operators B to guarantee uniqueness
of the solution of (2.15) are given in [6, Theorem 1]. In the next section we shall present
some choices of the operators verifying the hypotheses of the cited theorem.

3. Variational formulations. We will present four examples of different choices
for the operators in (2.15). Two of them reproduce known formulations, while the other
two will give rise to new methods.

Example 1. We set

(3.1)

B0v|T = v ∀T ∈ Th, B1v|e = ce
ε

|e| [[ v ]] +
n+

2
[[βv ]] ∀e ∈ E◦h ,

B2v|e = −{v} ∀e ∈ E◦h ,
BD1 v|e = ce

ε

|e| [[ v ]] · n− β · nv ∀e ∈ Γ−D, BN2 v|e = −v ∀e ∈ Γ−N .

In (3.1) n+ is the normal to e such that β ·n+ ≥ 0, and ce is a positive constant such
that (see [2])

(3.2) ce ≥ η0 > 0 ∀e ∈ Eh.
We shall see that the definition of the operators on Γ+ can be made arbitrary, without
compromising the stability or consistency properties of the resulting methods. We can
choose, for instance,

BD1 v = ce
ε

|e|v on e ∈ Γ+
D, BN2 v = −v on Γ+

N .

With these choices, and setting

Se = ce
ε

|e| ,

problem (2.15) reads

(3.3)

0 =
∑
T∈Th

∫
T

(divσ(u) + γu− f)v +
∑
e∈E◦h

∫
e

[[u ]] ·
(
Se[[ v ]] +

n+

2
[[βv ]]

)

−
∑
e∈E◦h

∫
e

[[σ(u) ]]{v}+
∑
e∈Γ−

D

∫
e

(u − gD) · (Se[[ v ]]− βv) · n

+
∑
e∈Γ+

D

Se

∫
e

(u− gD) v −
∑
e∈ΓN

∫
e

((βuχΓ−
N
− ε∇hu) · n− gN)v.
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Using the identity (2.11) we have

∫
Ω

divhσ(u) v = −
∫

Ω

σ(u) ·∇hv +
∑
e∈E◦h

∫
e

[[σ(u) ]]{v}+
∑
e∈Eh

∫
e

{σ(u)} · [[ v ]].

Substituting in (3.3), and observing that the continuity of β and (2.10) implies

∑
e∈E◦h

∫
e

(
{βu} · [[ v ]] + [[u ]] · n

+

2
[[βv ]]

)
=
∑
e∈E◦h

∫
e

(
{βu}+

n+

2
[[βu ]]

)
· [[ v ]]

=
∑
e∈E◦h

∫
e

{βu}upw · n+(v+ − v−) =
∑
e∈E◦h

∫
e

{βu}upw · [[ v ]],

we obtain the following formulation:

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V (Th) such that ∀v ∈ V (Th)∫
Ω

(γuv − σ(u) ·∇hv) +
∑
e/∈ΓN

Se

∫
e

[[u ]] · [[ v ]] +
∑
e∈E◦

h

∫
e

{βu}upw · [[ v ]]

−
∑
e/∈ΓN

∫
e

{ε∇hu} · [[ v ]] +
∫

Γ+
β · nuv

=
∑
T∈Th

∫
T

f v +
∑
e∈ΓD

Se

∫
e

gD v −
∑
e∈Γ−

D

∫
e

β · ngDv −
∑
e∈ΓN

∫
e

gNv.

We observe that for the diffusive part this method gives the so-called incomplete
interior penalty Galerkin (IIPG) method proposed and analyzed in [36], while the
advective part is upwinded through the operator B1.

Example 2. We set

(3.5)

B0v|T = v ∀T ∈ Th,

B1v|e = ce
ε

|e| [[ v ]] + {ε∇hv}+
n+

2
[[βv ]] ∀e ∈ E◦h ,

B2v|e = −{v} ∀e ∈ E◦h, BN2 v|e = −v ∀e ∈ ΓN ,

BD1 v|e = ce
ε

|e|v + (ε∇hv − βvχΓ−
D

) · n ∀e ∈ ΓD.

These choices reproduce the method introduced in [23] for the case γ = 0 and different
boundary conditions. Indeed, in [23] the flux was not assigned at the inflow, and the
boundary conditions were, with our notation,

u = gD on ΓD ≡ Γ \ Γ+
N , (−ε∇u) · n = gN on Γ+

N , Γ−N = ∅.
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In (3.5) the diffusive part corresponds to the NIPG method of [32], and the advective
part is upwinded through B1. Substituting (3.5) in (2.15), and using (2.10) and the
continuity of β, leads to the problem

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V (Th) such that ∀ v ∈ V (Th)∫
Ω

(γuv − σ(u) ·∇hv) +
∑
e/∈ΓN

Se

∫
e

[[u ]] · [[ v ]] +
∑
e∈E◦h

∫
e

{βu}upw · [[ v ]]

−
∑
e/∈ΓN

∫
e

({ε∇hu} · [[ v ]]− [[u ]] · {ε∇hv}) +
∑
e∈Γ+

∫
e

β · nuv

=
∑
T∈Th

∫
T

f v +
∑
e∈ΓD

∫
e

gD(Sev + (ε∇hv − βvχΓ−
D

) · n)−
∑
e∈ΓN

∫
e

gNv.

Example 3. We set

B0v|T = v ∀T ∈ Th,
B1v|e = ce

ε

h
[[ v ]]− θ{ε∇v}upw ∀e ∈ E◦h,

B2v|e = −{v}dw ∀e ∈ E◦h, BN2 v|e = −v ∀e ∈ ΓN ,

BD1 v|e = ce
ε

h
v − (θε∇v + βvχΓ−

D
) · n ∀e ∈ Γ−D,

where θ is a parameter that allows us to include various formulations for treating
the diffusive part: symmetric for θ = 1, skew-symmetric for θ = −1, and neutral for
θ = 0. This choice of the operators corresponds to the method introduced in [24]
and analyzed in [10]. By substituting in (2.15), integrating by parts, and rearranging
terms we obtain the following scheme:

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V (Th) such that ∀v ∈ V (Th)∫
Ω

(γuv − σ(u) ·∇hv) +
∑
e/∈ΓN

Se

∫
e

[[u ]] · [[ v ]] +
∑
e∈E◦h

∫
e

{βu}upw · [[ v ]]

−
∑
e∈E◦h

∫
e

({ε∇hu}upw · [[ v ]] + θ[[u ]] · {ε∇hv}upw) +
∑
e∈Γ+

∫
e

β · nuv

−
∑
e∈ΓD

∫
e

(ε∇hu · nv + θuε∇hv · n)

=
∑
T∈Th

∫
T

fv +
∑
e∈ΓD

∫
e

gD(Se[[ v ]]− θε∇hv − βvχΓ−
D

) · n−
∑
e∈ΓN

∫
e

gNv.

In (3.7) the whole flux σ(u) is upwinded through the operator B2, but the upwind
effect for the advective part is exactly the same as in methods (3.4) and (3.6).
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Example 4. Let {·}α be the weighted average defined in (2.8)–(2.9). We set

B0v|T = v ∀T ∈ Th,

B1v|e = ce
ε

|e| [[ v ]] + θ({σ(v)}α − {βv}) ∀e ∈ E◦h ,

B2v|e = −{v}1−α ∀e ∈ E◦h, BN2 v|e = −v ∀e ∈ ΓN ,

BD1 v|e = ce
ε

h
v − (θε∇hv + βvχΓ−

D
) · n ∀e ∈ ΓD.

Substituting in (2.15) yields

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V (Th) such that ∀ v ∈ V (Th)∫
Ω

γuv − σ(u) ·∇hv +
∑
e/∈ΓN

Se

∫
e

[[u ]] · [[ v ]]− θ
∑
e∈E◦h

∫
e

[[u ]] · {βv}

+
∑
e∈E◦h

∫
e

({σ(u)}α · [[ v ]] + θ[[u ]] · {σ(v)}α) +
∑
e∈Γ+

∫
e

β · nuv

−
∑
e∈ΓD

∫
e

(ε∇hu · n v + θu ε∇hv · n)

=
∑
T∈Th

∫
T

fv +
∑
e∈ΓD

gD(Se[[ v ]]− θε∇hv − βvχΓ−
D

) · n−
∑
e∈ΓN

∫
e

gNv.

In (3.8) θ again is a parameter that allows us to include different treatments of the
diffusive part: symmetric for θ = 1 SIPG(α) (see [35], [22]), nonsymmetric for θ = −1,
and neutral for θ = 0. However, as we shall see in Remark 4.2, the case θ = −1 gives
rise to a formulation which is stable in a norm too weak, with a consequent loss of
accuracy in the error estimates. Thus, it will not be further considered. The upwind
is achieved in (3.8) through both operators B1 and B2. Moreover, the use of the
weighted average (2.8) should allow us to tune the amount of upwind on each edge.
As a consequence, the formulation enjoys the nice feature of adapting easily from the
advection-dominated to the diffusion-dominated regime.

All the above formulations share the common form{
Find u ∈ V (Th) such that
ah(u, v) = L(v) ∀v ∈ V (Th).

Remark 3.1. In all cases, for obtaining the corresponding SUPG-stabilized DG
formulations, one need only change the definition of the operator B0 into B0v =
v+ cTβ · ∇v on each T ∈ Th, cT being a constant varying elementwise and depending
on hT and the coefficients of the problem β, ε, γ (see [28], [25], and [24]).

4. Approximation. With any integer k ≥ 1 we associate the finite element
space of discontinuous piecewise polynomial functions

V kh = {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th},



1400 BLANCA AYUSO AND L. DONATELLA MARINI

where, as usual, Pk(T ) is the space of polynomials of degree at most k on T . Replacing
V (Th) by V kh , we get the discrete problems, all sharing the form

(4.1)

{
Find uh ∈ V kh such that
ah(uh, vh) = L(vh) ∀vh ∈ V kh .

Consistency. Consistency holds by construction in all the cases, so that

(4.2) ah(u− uh, vh) = 0 ∀vh ∈ V kh .
Stability. We shall prove stability in the norm

(4.3) |||v|||2 = |||v|||2d + |||v|||2rc,
with

|||v|||2d := ε|v|21,h + ε‖v‖2j := ε|v|21,h +
∑
e/∈ΓN

ε

|e| ||[[ v ]]||20,e,

|||v|||2rc := ||(�+ b0)1/2v||20,Ω +
∑
e∈Eh

|||β · n|1/2[[ v ]]||20,e,

where b0 = ||β||0,∞/L is defined in (H1), and � is the piecewise constant function
defined as

(4.4) �(x)|T = �|T , �|T = min
x∈T

�(x) ∀T ∈ Th.

Analogously, it will be useful to write the bilinear forms as

(4.5) ah(u, v) = adh(u, v) + arch (u, v).

For simplicity, we start by considering the method (3.4), which corresponds to the
“minimal choice” for the operators. Then we have

adh(u, v) =
∫

Ω

ε∇hu ·∇hv +
∑
e/∈ΓN

∫
e

(Se[[u ]]− {ε∇hu}) · [[ v ]],(4.6)

arch (u, v) =
∫

Ω

(γuv − uβ ·∇hv) +
∑
e∈E◦h

∫
e

{βu}upw · [[ v ]] +
∫

Γ+
β · nuv.(4.7)

We note that, using (2.12) and arguing as in [2], we can easily see that there exists
a (geometric) constant Cg, depending only on the degree of the polynomials and on
the minimum angle of the decomposition such that

(4.8)
∑
e/∈ΓN

∫
e

∣∣∣{ε∇hu}[[ v ]]
∣∣∣ ≤ Cgε|u|1,h ‖v‖j ∀u ∈ V kh , ∀v ∈ V (Th).

This implies that there exists a constant Cd > 0 such that

(4.9) adh(u, v) ≤ Cd |||u|||d|||v|||d, u ∈ V kh , v ∈ V (Th),
and, for η0 in (3.2) verifying

(4.10) η0 > C2
g/4,
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there exists a positive constant αd such that

(4.11) adh(v, v) ≥ αd|||v|||2d, v ∈ V kh .
We also note that, in general, one would rather require, say,

(4.12) η0 > max{C2
g , 1}

in order to have a quantifiable constant like αd = 1/2. In any case, the diffusive part
alone would easily verify stability in all the methods. However, the technique of taking
v = u, which is possibly the easiest way of proving stability, will not be sufficient when
the reactive-advective part is also present, as it does not provide control on the L2-
norm when advection dominates. Indeed, in all the cases we would have only

arch (v, v) ≥ ||�1/2v||20,Ω +
∑
e∈Eh

|||β · n|1/2[[ v ]]||20,e, v ∈ V kh .

We will then prove stability in the norm (4.3) through an inf-sup condition. For that,
following [28], we introduce the “weighting function” χ = exp(−η), with η defined in
(H1). The assumptions on η imply the existence of three positive constants χ∗1, χ

∗
2, χ
∗
3

such that

(4.13) χ∗1 ≤ χ ≤ χ∗2, |∇χ| ≤ χ∗3.
Our weighting function will be slightly different. Indeed, we shall take

(4.14) ϕ = χ+ κ,

where κ is a constant such that

(4.15) χ∗1 + κ > 6CP Lχ∗3, χ∗1 + κ > (χ∗2 + κ)/2,

and CP is the Poincaré constant appearing in (2.13).
The next lemma is a generalization to the case of variable β of that given in [26]

for pure hyperbolic problems. See also [28] for the equivalent result for the SUPG-
stabilized method and [34] for the conforming residual-free bubbles method. We point
out, however, that here, thanks to the choice (4.14), we were able to remove the
condition “ε sufficiently small.”

Lemma 4.1. Let ah(·, ·) be defined in (4.5)–(4.7), with

(4.16) η0 > max{9C2
g/4, 1}.

Then, for every κ satisfying (4.15), the corresponding ϕ defined in (4.14) verifies

adh(vh, ϕvh) ≥
χ∗1 + κ

6
|||vh|||2d,(4.17)

arch (vh, ϕvh) ≥ χ∗1
2
|||vh|||2rc,(4.18)

|||ϕvh||| ≤
√

145
6

(χ∗1 + κ)|||vh|||.(4.19)

Proof. To simplify the notation we shall write

α1 = χ∗1 + κ, α2 = χ∗2 + κ, α3 ≡ χ∗3
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so that

α1 ≤ ϕ ≤ α2, |∇ϕ| ≤ α3,(4.20)

(i) α1 > 6CP Lα3, (ii) 2α1 > α2.(4.21)

Conditions (4.8) and (4.20) give

adh(vh, ϕvh)

=
∫

Ω

ε|∇hvh|2ϕ+
∑
e/∈ΓN

∫
e

(Se[[ vh ]]− {ε∇hvh}) · [[ v ]]ϕ+
∫

Ω

ε∇hvh ·∇ϕvh

≥ ε
(
α1(|vh|21,h + η0‖vh‖2j)− α2 Cg|vh|1,h ‖vh‖j − α3|vh|1,h||vh||0,Ω

)
.

This, using (4.21(ii)) and (4.16), then η0 ≥ 1 and (2.13), and finally (4.21(i)), gives
easily

adh(vh, ϕvh) ≥ ε
(α1

3
(|vh|21,h + η0‖vh‖2j)− α3|vh|1,h||vh||0,Ω

)

≥ εα1

3

(
|vh|21,h + ‖vh‖2j

)
− α3 CP L |||vh|||2d ≥

α1

6
|||vh|||2d ,

that is, (4.17). As regards the reactive-convective part, we observe that, after integra-
tion by parts, using (2.11) and the continuity of β and ϕ we get

−
∫

Ω

β ·∇h(ϕvh)vh = −
∫

Ω

(β ·∇ϕ)v2
h −

1
2

∫
Ω

β ·∇h(v2
h)ϕ

= −1
2

∫
Ω

(β ·∇ϕ)v2
h +

1
2

∫
Ω

(divβ)ϕv2
h −

1
2

∑
e∈Eh

∫
e

{βϕ}[[ v2
h ]].(4.22)

Next, the continuity of β and ϕ easily imply that∑
e∈E◦h

∫
e

{βvh} · [[ϕvh ]] =
1
2

∑
e∈E◦h

∫
e

{βϕ} · [[ v2
h ]].

From this and (2.10) we then have

(4.23)
∑
e∈E◦h

∫
e

{βvh}upw[[ϕvh ]] =
1
2

∑
e∈E◦h

∫
e

{βϕ} · [[ v2
h ]] +

∑
e∈E◦h

∫
e

β · n+

2
ϕ|[[ vh ]]|2.

By noting that (H1) and (4.20) imply

−β ·∇ϕ = (β ·∇η)χ ≥ 2b0χ ≥ 2b0χ∗1,

from (4.22)–(4.23), using (4.20), (2.2), and (4.4), we obtain

arch (vh, ϕvh) =
∫

Ω

[
γ +

1
2
(divβ)

]
ϕv2

h −
1
2

∫
Ω

(β ·∇ϕ)v2
h

+
∑
e∈E◦h

∫
e

β · n+

2
ϕ|[[ vh ]]|2 − 1

2

∫
Γ−
β · nϕv2

h +
1
2

∫
Γ+
β · nϕv2

h

≥ χ∗1||(�+ b0)1/2vh||20,Ω +
α1

2

∑
e∈Eh

‖|β · n|1/2[[ vh ]]‖20,e ≥
χ∗1
2
|||vh|||2rc,
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that is, (4.18). On the other hand, (4.19) again is an easy consequence of (2.13) and
(4.20)–(4.21).

Remark 4.1. We point out that condition (4.16) has been taken in order to simplify
the computation and to provide an easily quantifiable constant in (4.17) (very much
in the spirit of (4.12) compared with the less demanding (4.10)). Looking at the proof,
however, we see that we could stick to (4.10) (changing the conditions on κ in (4.15)
in order to have α2/α1 as close to 1 as necessary). Hence, in some sense, the difficulty
of finding “how big should η0 be in practice” has not been worsened by the above
trick.

Remark 4.2. Concerning the other three methods (3.6), (3.7), and (3.8), they
exhibit essentially the same terms, with the only exception for the method (3.8),
where the advective part contains

∑
e∈E◦h

∫
e

((θ + 1){βvh}α − θ{βvh}) [[ϕvh ]] =: I1,

instead of the left-hand term in (4.23). Using the definition (2.9) of the weighted
average we obtain, instead of (4.23),

I1 =
1
2

∑
e∈E◦h

∫
e

{βϕ} · [[ v2
h ]] + (θ + 1)

∑
e∈E◦h

∫
e

β · [[α ]]
2

ϕ|[[ vh ]]|2,

where β · [[α ]] = (2α+−1)β ·n+ > 0 since α+, the weight associated with the upwind
triangle, is > 1/2. Hence, (4.18) holds also for method (3.8) (possibly with a different
constant) if θ > −1. As already said, choosing θ = −1 in (3.8) produces undesirable
cancellations which lead to having stability in a norm too weak to ensure control on
the advective part. Namely, we have

ah(vh, ϕvh) ≥ C
(
||(�+ b0)1/2vh||20,Ω + |||vh|||2d +

∑
e∈Γ

|||β · n|1/2[[ vh ]]||20,e
)
.

Suboptimal error estimates (O(hk)) in this norm can be obtained, but the method is
unstable in strongly advective regimes. Indeed, θ = −1 gives rise to a method without
any kind of upwind.

The following superapproximation results can be found in [29] and [37]. For con-
venience we briefly sketch the proof.

Lemma 4.2. Let ϕ ∈ W k+1,∞(Ω) be the function defined in (4.14). For vh ∈ V kh ,
let ϕ̃vh be the L2-projection of ϕvh in V kh . Then

||ϕvh − ϕ̃vh||0,Ω ≤ C ||χ||k+1,∞,Ω
L

h||vh||0,Ω,(4.24)

|ϕvh − ϕ̃vh|1,h ≤ C ||χ||k+1,∞,Ω
L

||vh||0,Ω,(4.25)

(∑
e∈Eh

||ϕvh − ϕ̃vh||20,e
)1/2

≤ C ||χ||k+1,∞,Ω
L

h1/2||vh||0,Ω,(4.26)

where L is the diameter of Ω.
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Proof. We shall deduce (4.24). Observe first that, since κ̃vh ≡ κvh,
ϕvh − ϕ̃vh ≡ χvh − χ̃vh.

Using classical interpolation results, the definition of the norm (1.2), the inverse in-
equality (see [12, Theorem 17.2, p. 135]), and h < L we have

(4.27)

||ϕvh − ϕ̃vh||0,T ≤ C hT k+1|χvh|k+1,T ≤ ChT k+1
k∑
j=0

|χ|k+1−j,∞,T |vh|j,T

≤ C||χ||k+1,∞,Ω
k∑
j=0

hT
k+1|vh|j,T
Lk+1−j

≤ C Cinv ||χ||k+1,∞,Ω
L

||vh||0,T
k∑
j=0

hT
k+1−j

Lk−j

≤ C (k + 1)hT
||χ||k+1,∞,Ω

L
||vh||0,T .

Hence, summing over all elements T ∈ Th we reach (4.24). Exactly in the same way
we prove (4.25), while (4.26) is a consequence of (4.24)–(4.25) via the trace inequality
(2.12).

Lemma 4.3. In the hypotheses of Lemma 4.1, there exist two positive constants
χ∗4, χ

∗
5 such that, for any value of κ, the corresponding ϕ verifies

adh(vh, ϕvh − ϕ̃vh) ≤ χ∗4|||vh|||2d ∀vh ∈ V kh ,(4.28)

arch (vh, ϕvh − ϕ̃vh) ≤ χ∗5
(
h

L

)1/2

|||vh|||2rc ∀vh ∈ V kh .(4.29)

Proof. Using estimates (4.25)–(4.26) from Lemma 4.2, and then (2.13), we see
that

|||ϕ̃vh − ϕvh|||d ≤ C ||χ||k+1,∞,Ω
L

ε1/2||vh||0,Ω ≤ CCP ||χ||k+1,∞,Ω|||vh|||d.
Hence, from (4.9) we have

adh(vh, ϕ̃vh − ϕvh) ≤ Cd|||vh|||d|||ϕ̃vh − ϕvh|||d ≤ CdCCP ||χ||k+1,∞,Ω|||vh|||2d,
that is, (4.28) with χ∗4 = CdCCP ||χ||k+1,∞,Ω. Before dealing with the reactive-convective
part we observe that, if P 0

hβ is the L2-projection of β onto constants, by definition
of ϕ̃vh it holds that ∫

Ω

P 0
hβ · ∇hvh(ϕvh − ϕ̃vh) = 0.

By integrating by parts and using (2.11) and (2.10) we then have

arch (vh, ϕ̃vh − ϕvh) =
∫

Ω

[γ + divβ]vh(ϕ̃vh − ϕvh) +
∫

Ω

[β − P 0
hβ] · ∇hvh(ϕ̃vh − ϕvh)

−
∑
e/∈Γ+

∫
e

β · [[ vh ]]{ϕ̃vh − ϕvh}+
∑
e∈Eh

o

∫
e

β · n+

2
[[ vh ]][[ ϕ̃vh − ϕvh ]]

= I + II + III + IV.
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From (2.2), (H3), and (2.4) we have

I =
∫

Ω

�vh(ϕ̃vh − ϕvh) +
1
2

∫
Ω

divβ vh(ϕ̃vh − ϕvh)

≤ c�||(�+ b0)1/2vh||0,Ω||(�+ b0)1/2(ϕ̃vh − ϕvh)||0,Ω +
b0
2cβ
||vh||0,Ω||ϕ̃vh − ϕvh||0,Ω.

On the other hand, the definition (4.4) of � and estimate (4.24) from Lemma 4.2 give

||(�+ b0)1/2(ϕ̃vh − ϕvh)||20,Ω =
∑
T∈Th

(�T + b0)||(ϕ̃vh − ϕvh)||20,T

≤ C||χ||2k+1,∞,Ω

(
h

L

)2 ∑
T∈Th

(�T + b0)||vh||20,T = C ||χ||2k+1,∞,Ω

(
h

L

)2

||(�+ b0)1/2vh||20,Ω,

so that

(4.30) I ≤ C||χ||k+1,∞,Ω
h

L
||(�+ b0)1/2vh||20,Ω.

Classical approximation results, (4.24), (2.4), and the inverse inequality give

(4.31) II ≤ Ch|β|1,∞,Ω|vh|1,h ||χ||k+1,∞,Ωh
L

||vh||0,Ω ≤ C||χ||k+1,∞,Ω
h

L

b0
cβ
||vh||20,Ω.

Finally, from (4.26) we deduce

III + IV ≤ C h1/2

L
‖β‖1/20,∞,Ω‖vh‖0,Ω

(∑
e∈Eh

‖|β · n|1/2[[ vh ]]‖20,e
)1/2

||χ||k+1,∞,Ω

≤ C
(
h

L

)1/2
(
b0||vh||20,Ω +

∑
e∈Eh

‖|β · n|1/2[[ vh ]]‖20,e
)
||χ||k+1,∞,Ω.(4.32)

Collecting (4.30)–(4.32) we then get

arch (vh, ϕ̃vh − ϕvh) ≤ C ||χ||k+1,∞,Ω

(
h

L

)1/2

|||vh|||2rc,

that is, (4.29) with χ∗5 = C||χ||k+1,∞,Ω.
The next theorem provides the first stability result for the variational formulations

presented in section 3.
Theorem 4.4. In the hypotheses of Lemma 4.1, there exists a positive constant

αS = αS(β,Ω), and h0 = h0(β) > 0, such that, for h < h0,

sup
vh∈V k

h

ah(uh, vh)
|||vh||| ≥ αS |||uh||| ∀uh ∈ V kh .

Proof. For uh ∈ V kh , let vh = ϕ̃uh ∈ V kh be the L2-projection of ϕuh as defined
previously. We shall prove that

|||vh||| ≤ c1|||uh|||,(4.33)

ah(uh, vh) ≥ c2|||uh|||2.(4.34)
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Adding and subtracting ϕuh, from (4.17) we have first

adh(uh, ϕ̃uh) = adh(uh, ϕ̃uh − ϕuh) + adh(uh, ϕuh)

≥ adh(uh, ϕ̃uh − ϕuh) +
χ∗1 + κ

6
|||uh|||2d.

Using estimate (4.28) we then have easily that for χ∗1 + κ bigger than 12χ∗4 we find

adh(uh, ϕ̃uh) ≥ χ∗4|||uh|||2d.
In a similar way, from (4.29) and (4.18) one has, for h < h0,

arch (uh, ϕ̃uh) ≥ C |||uh|||2rc,
with C depending only on χ∗1, χ∗5. On the other hand, using (4.19) and Lemma 4.2,
we have easily

|||ϕ̃uh||| ≤ c1|||uh|||,
that is, (4.33), with c1 depending on χ∗1 and ||χ||k+1,Ω.

Stability in a stronger norm. In a strongly advection-dominated regime it is
desirable to have a control also on the streamline derivative; that is, it is necessary to
have in (4.3) a term of SUPG type. We set

(4.35) |||v|||2DG := |||v|||2 + ||v||2S , ||v||2S :=
∑
T∈Th

hT
||β||0,∞,T ||P

k
h (β ·∇v)||20,T ,

where P kh again is the L2-projection on V kh .
Remark 4.3. The presence of the projection in (4.35) is due to the fact that we

assumed β to be a variable function, and hence β ·∇huh /∈ V kh . Clearly, whenever
β ·∇huh ∈ V kh , that is, if β is either constant (see [25], [20], [10]) or piecewise linear
(see [23]), the projection can be removed.

Stability in the norm (4.35) can again be achieved through an inf-sup condition.
Lemma 4.5. There exists a constant CS > 0, independent of h, ε,β, γ, such that

(4.36) sup
vh∈V k

h

ah(uh, vh)
|||vh||| ≥ CS(||uh||S − |||uh|||) ∀uh ∈ V kh .

Proof. For uh ∈ V kh , let P kh (β·∇huh) ∈ V kh be the L2-projection on V kh of β·∇huh,
for which the following estimates hold:

(4.37) ∀T ∈ Th : |P kh (β ·∇uh)|1,T ≤ CinvhT−1||P kh (β ·∇uh)||0,T ,
and, for any edge e, shared by two elements T+ and T−,

(4.38)
||[[P kh (β ·∇huh) ]]||20,e ≤ C|e|−1||P kh (β ·∇uh)||20,T+∪T− ,

||{P kh (β ·∇huh)}||20,e ≤ C|e|−1||P kh (β ·∇uh)||20,T+∪T− .

Inequality (4.37) is the usual inverse inequality, while (4.38) is deduced through the
trace inequality (2.12) and (4.37). We then set vh =

∑
T∈Th

cT (P kh (β · ∇huh))|T ,
where

cT =

⎧⎨
⎩

hT

‖β‖0,∞,T
if advection dominates in T,

0 otherwise.
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We shall prove that

|||vh||| ≤ C1||uh||S ,(4.39)

ah(uh, vh) ≥ C2(||uh||2S − |||uh|||||uh||S).(4.40)

We prove first (4.39), having in mind that, if advection dominates, then

(4.41) ε < hT ‖β‖0,∞,T /2, ||γ + divβ||0,∞,T < ‖β‖0,∞,T /hT ∀T ∈ Th.

From (4.37) and (4.41) we deduce

(4.42) ε|vh|21,h =
∑
T∈Th

ε

(
hT

‖β‖0,∞,T

)2

|P kh (β ·∇huh)|21,T ≤ C ||uh||2S .

Similarly, from (4.38) and (4.41) we have

(4.43)
∑
e/∈ΓN

Se||[[ vh ]]||20,e =
∑
e/∈ΓN

ce
ε

|e| ||[[ cTP
k
h (β ·∇huh) ]]||20,e ≤ C ||uh||2S

and

(4.44)
∑
e∈Eh

|||β · n|1/2[[ vh ]]||20,e =
∑
e∈Eh

|||β · n|1/2[[ cTP kh (β ·∇huh) ]]||20,e ≤ C ||uh||2S .

Since � = (γ + divβ)− 1
2divβ, in view of (4.41) and (2.4) we deduce

||�||0,∞,T ≤ ||γ + divβ||0,∞,T +
1
2
||divβ||0,∞,T ≤ ‖β‖0,∞,T

hT
+
‖β‖1,∞,Ω

2L
.

Hence, from (H2) and since hT ≤ h < L we deduce

cT ||�||0,∞,T ≤ 1 +
hT

2Lcβ
≤ 1 +

1
2cβ

.

Consequently,

(4.45) ||�1/2vh||20,Ω ≤
∑
T∈Th

||�||0,∞,T c2T ||P kh (β ·∇uh)||20,T ≤ C||uh||2S .

Finally, always from (H2),

(4.46) ||vh||20,Ω =
∑
T∈Th

(
hT

‖β‖0,∞,T

)2

||P kh (β ·∇huh)||20,T ≤
h

cβ‖β‖1,∞,Ω ||uh||
2
S ,

and then, since b0 = ‖β‖0,∞,Ω/L, ‖β‖0,∞,Ω ≤ ‖β‖1,∞,Ω, and h < L,

b0||vh||20,Ω ≤
1
cβ
||uh||2S .

This and (4.45) can be written as

(4.47) ||(�+ b0)1/2vh||20,Ω ≤ C||uh||2S ,
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and (4.39) is proved. We turn now to prove (4.40), again referring to formulation (3.4).
For the diffusive part we have, via the Cauchy–Schwarz inequality and (4.42),∫

Ω

ε∇huh∇hvh ≤ ε1/2|uh|1,hε1/2|vh|1,h ≤ Cε1/2|uh|1,h||uh||S .

For the integrals on the edges, the Cauchy–Schwarz inequality and (4.43) give

∑
e/∈ΓN

Se

∫
e

[[uh ]][[ vh ]] ≤ C
( ∑
e/∈ΓN

Se||uh||20,e
)1/2

||uh||S ≤ C||uh||j ||uh||S .

In an analogous way, the Cauchy–Schwarz inequality, trace inequality (2.12), the in-
verse inequality, and (4.43) give

∑
e/∈ΓN

∫
e

{ε∇huh} · [[ vh ]] ≤ C ε1/2|uh|1,h||uh||S ,

so that

(4.48) adh(uh, wh) ≤ C|||uh|||||uh||S .
For the reactive and advective terms, integration by parts, formula (2.11), and the
definition of the upwind average (2.10) give

arch (uh, vh) =
∫

Ω

�uhvh +
∫

Ω

(β ·∇huh)vh +
1
2

∫
Ω

divβuhvh

+
∑
e∈E◦

h

∫
e

β · n+

2
[[uh ]][[ vh ]]−

∑
e/∈Γ+

∫
e

β · [[uh ]]{vh}.

By definition of projection we have

(4.49)
∫

Ω

(β ·∇huh)vh =
∫

Ω

P kh (β · ∇huh) vh = ||uh||2S ,

and by the Cauchy–Schwarz inequality, (H2), and (4.47)

(4.50)∫
Ω

�uhvh ≤ c�‖(�+ b0)1/2uh‖0,Ω‖(�+ b0)1/2vh‖0,Ω ≤ C‖(�+ b0)1/2uh‖0,Ω||uh||S .

Using (2.4), (4.46), and (H2) we obtain

(4.51)

∫
Ω

divβuhvh ≤
( ||β||1,∞,Ω

L

)
‖uh‖0,Ω

(
h

cβ ||β||1,∞,Ω

)1/2

‖uh‖S

≤ b
1/2
0

cβ

(
h

L

)1/2

‖uh‖0,Ω‖uh‖S ≤ C|||uh|||‖uh‖S .

Finally, from the Cauchy–Schwarz inequality and (4.44) we easily obtain

(4.52)
∑
e∈Eh

∫
e

β · n+

2
[[uh ]][[ vh ]] ≤ C

( ∑
e∈E◦h
|||β · n|1/2[[uh ]]||20,e

)1/2

||uh||S .
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Collecting (4.49), (4.50), (4.51), and (4.52) we obtain

arch (uh, vh) ≥ ||uh||2S − C|||uh|||||uh||S .
From (4.48) and the above estimate we then have

ah(uh, vh) ≥ ||uh||2S − C|||uh|||||uh||S ,
which, together with (4.39), gives (4.36).

Theorem 4.6. There exists a constant CS = CS(β,Ω) > 0, and h0 = h0(β) > 0,
such that, for h < h0,

sup
vh∈V k

h

ah(uh, vh)
|||vh||| ≥ CS |||uh|||DG ∀uh ∈ V kh .

Proof. The result follows from Theorem 4.4 and Lemma 4.5.
We finally conclude by proving a result which provides stability in a norm of

SUPG type but without the projection. However, this requires stronger regularity
assumptions on β, dictated by the polynomial degree. More precisely, when using V kh ,
we can prove stability in the norm

(4.53) |||uh|||2SS := |||uh|||2 + ||uh||2β, with ||uh||2β =
∑
T∈Th

hT
‖β‖0,∞,T ‖β · ∇uh‖

2
0,T ,

only if β ∈ W k,∞(Ω). In other words, our initial assumption β ∈W 1,∞(Ω) guarantees
stability in the norm (4.53) only for piecewise linear approximations.

Theorem 4.7. Let β ∈ W k,∞(Ω), k ≥ 1 being the polynomial degree of V kh .
Assume that

(H2a) ∃ cβ > 0 such that |β(x)| ≥ cβ ||β||k,∞,Ω ∀x ∈ Ω.

Then, there exists a constant Css = Css(β,Ω) > 0, and h0 = h0(β) > 0, such that,
for h < h0,

(4.54) sup
vh∈V k

h

ah(uh, vh)
|||vh||| ≥ Css|||uh|||SS ∀uh ∈ V kh .

Proof. The proof is accomplished by proceeding similarly as for Theorem 4.6, and
we omit the details. Indeed, the only step that needs to be modified is (4.49), as all
the others hold with the norm ‖ · ‖S replaced by ‖ · ‖β, by simply using the stability
of the L2-projection. By adding and subtracting

∑
T∈Th

cT (β ·∇uh)|T we find∫
Ω

(β ·∇huh)vh = ‖uh‖2β +
∫

Ω

cT (β ·∇huh)[P kh (β ·∇huh)− β ·∇huh]

≥ ‖uh‖2β − ‖uh‖β
(∑
T∈Th

cT ||P kh (β ·∇uh)− β ·∇uh||20,T
)1/2

.

To estimate the second term, note that the regularity of β allows us to use the
superapproximation property (4.27) (with β now playing the role of ϕ, and ∇uh
playing the role of vh). This plus inverse inequality and (H2a) give

‖P kh (β ·∇uh)− β ·∇uh‖0,T ≤ ChT k|β ·∇uh|k,T ≤ Ck ‖β‖k,∞,Ω
L

hT ‖∇uh‖0,T

≤ C ||β||k,∞,Ω
L

‖uh‖0,T ≤ C ||β||0,∞,T
cβL

‖uh‖0,T .
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Since h < L we then have∑
T∈Th

cT ||P kh (β ·∇uh)− β ·∇uh||20,T ≤ C
∑
T∈Th

(
hT
L

) ||β||0,∞,T
c2βL

||uh||20,T ≤
C

c2β
b0||uh||20,Ω.

Thus, ∫
Ω

(β ·∇huh)vh ≥ ‖uh‖2β − C ‖uh‖β|||uh|||.

Then, the result (4.54) follows.

5. A priori error estimates. We next show a priori error estimates in the
norms (4.3) and (4.35) for the methods presented. Let P kh be the L2-projection in V kh ,
for which the following local approximation property holds:

||u− P khu||r,T ≤ Chk+1−r |u|k+1,T , r = 0, 1, 2, T ∈ Th ,(5.1)

||u− P khu||r,p,T ≤ Chk+1−r |u|k+1,p,T , 1 ≤ p ≤ ∞, r = 0, 1, T ∈ Th .(5.2)

Moreover, from (5.1) and (2.12) we deduce that

(5.3) ||u− P khu||0,e ≤ Chk+1/2
T |u|k+1,T ∀e ∈ Eh.

Theorem 5.1. Let u be the solution of (2.1), and let uh be the solution of the
discrete problems (4.1). There exists a constant C0 = C0(Ω), depending on the domain
Ω, the shape regularity of Th, and the polynomial degree (but independent of h and the
coefficients of the problem), such that

(5.4) |||u− uh||| ≤ C0(Ω)hk
(
ε1/2 + ‖β‖1/20,∞,Ω h

1/2 + ‖�‖1/20,∞,Ω h
)
.

Proof. We define

η = u− P khu, δ = uh − P khu.
From Theorem 4.4 and Galerkin orthogonality (4.2) we have

(5.5) αS |||δ||| ≤ ah(δ, vh)
|||vh||| =

ah(η, vh)
|||vh||| .

The diffusive part is standard and can be easily estimated through the trace inequality
(2.12), (5.1), and (5.3):

(5.6) adh(η, vh) ≤ Chkε1/2|u|k+1,Ω|||vh|||d.
Regarding the advective part, since P 0

hβ ·∇hvh ∈ V kh , by definition of projection∫
Ω

P 0
hβ ·∇hvhη = 0.

From this, the Cauchy–Schwarz inequality, (5.2), the inverse inequality, (2.4), and
(5.1) we have∫

Ω

−(β ·∇hvh)η =
∫

Ω

(P 0
hβ − β) ·∇hvhη ≤ Ch|β|1,∞,Ω|vh|1,h||η||0,Ω

≤ C ||β||1,∞,Ω
L

||vh||0,Ω||η||0,Ω ≤ C b0
cβ
||vh||0,Ωhk+1|u|k+1,Ω(5.7)

≤ Chk+1b
1/2
0 |u|k+1,Ω|||vh||| = C

(‖β‖0,∞,Ω
L

)1/2

hk+1|u|k+1,Ω|||vh|||.
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Using (5.3) we obtain∑
e

∫
e

{βη} · [[ vh ]]≤ ‖β‖1/20,∞,Ω
∑
e

||{η}||0,e|||β · n|1/2[[ vh ]]||0,e

≤ C‖β‖1/20,∞,Ωh
k+1/2|u|k+1,Ω|||vh|||,(5.8)

and, arguing similarly, we have

(5.9)
∑
e

∫
e

β · n+

2
[[ η ]] · [[ vh ]]≤ C‖β‖1/20,∞,Ωh

k+1/2|u|k+1,Ω|||vh|||.

Finally, by writing γ = �− divβ/2, using (H3), (2.4), and (5.1) we obtain

(5.10)

∫
Ω

γηvh ≤ ‖�‖1/20,∞,Ω||η||0,Ωc1/2ρ ||(�+ b0)1/2vh||0,Ω +
b
1/2
0

cβ
||η||0,Ωb1/20 ||vh||0,Ω

≤ C hk+1

(
‖�‖1/20,∞,Ω +

(‖β‖0,∞,Ω
L

)1/2
)
|u|k+1,Ω|||vh|||.

Then collecting (5.6)–(5.10) and using h/L < 1 we obtain

ah(η, vh) ≤ Chk
(
ε1/2 + ‖β‖1/20,∞,Ω h

1/2 + ‖�‖1/20,∞,Ω h
)
|u|k+1,Ω|||vh|||.

Hence, substituting this estimate into (5.5) gives

|||δ||| ≤ C(Ω)hk
(
ε1/2 + ‖β‖1/20,∞,Ω h

1/2 + ‖�‖1/20,∞,Ω h
)
|u|k+1,Ω.

The result (5.4) then follows by the triangle inequality.
Theorem 5.2. Let u be the solution of (2.1), and let uh be the solution of the

discrete problems (4.1). There exists a constant C1 = C1(Ω), depending on Ω, the
shape regularity of Th, and the polynomial degree (but independent of γ,β, ε, and h),
such that

|||u− uh|||DG ≤ C1(Ω)hk
(
ε1/2 + ‖β‖1/20,∞,Ω h

1/2 + ‖�‖1/20,∞,Ω h
)
|u|k+1,Ω.

Proof. The proof follows the same steps of Theorem 5.1, using the stability result
of Theorem 4.6. Hence we omit the details.

Remark 5.1. The same error estimates hold in the norm ||| · |||SS under the as-
sumption β ∈ W k,∞(Ω).

Remark 5.2. Theorems 5.1 and 5.2 provide robust a priori error estimates, which
are optimal in all regimes. More precisely, we have

|||u− uh|||, |||u− uh|||DG �

⎧⎪⎪⎨
⎪⎪⎩
O(hk+1/2) if advection dominates,

O(hk) if diffusion dominates,

O(hk+1) if reaction dominates.

Corollary 5.3. As a direct consequence of our error analysis we have the fol-
lowing result:

(5.11) ‖u− uh‖0,Ω ≤ C2|u|k+1,Ω

⎧⎪⎪⎨
⎪⎪⎩
hk+1/2 if advection dominates,

hk if diffusion dominates,

hk+1 if reaction dominates,
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where C2 depends on the domain Ω, the shape regularity of Th, the polynomial degree,
and the coefficients of the problem γ,β, and ε (but is independent of h).

Remark 5.3. Estimate (5.11) is suboptimal in the diffusion-dominated regime,
since it was simply obtained through (2.13) and (5.4). In the advection-dominated
regime, although suboptimal of 1/2, it is the best that one can expect for a regular
triangulation without any further assumption on the construction-orientation of the
mesh (see [30] for a counterexample in the pure hyperbolic case). Improved estimates
in the case of β constant have been rigorously shown in [31] (for the pure hyperbolic
case) under certain restrictions on the mesh and, more recently in [15], under milder
assumptions on the grid. The techniques used in these papers rely strongly on the
hypothesis that β is constant and do not seem to be easily extendable to the case of
variable β. However, as we shall see in the next section, in many test cases optimal
order of convergence in L2 is attained for quite general mesh partitions.

6. Numerical experiments. In this section we compare on various test prob-
lems the methods analyzed in the previous sections. All the experiments were per-
formed on the unit square Ω = (0, 1)2, using piecewise linear approximations on
triangular grids, structured and unstructured. In all the graphics, method (3.4) is
represented by − · − � · − ·−; method (3.6) with − − � − −; method (3.7) with
· · · ◦ · · · ; and method (3.8) with −x−. For formulations (3.7) and (3.8) we report the
results corresponding to θ = 1, i.e., the symmetric treatment of the diffusive part. All
the computations were done in MATLAB7, on a Powerbook 1.5 with 2GB of Ram
memory.

Example 1: Case of smooth solution. We take β = [1, 1]T and γ = 0, and
we vary the diffusion coefficient ε = 1, 10−3, 10−9. The forcing term f is chosen so
that the analytical solution of (2.1), with Dirichlet boundary conditions, is given by
u(x, y) = sin(2πx) sin(2πy). Figures 6.1 and 6.2 represent, on a log-log scale, the
convergence diagrams in the norm ||| · |||DG (and ||| · |||, resp.) versus the mesh size h =
maxT hT ≈ 1/5, 1/9, 1/18, 1/36. Clearly, the convergence rates are the same for all the
methods, in agreement with the theory of section 5: first order accuracy when diffusion
dominates and order 3/2 in the convection-dominated regime. Figure 6.3 depicts in
a log-log scale the convergence diagrams in the L2-norm with respect to the mesh
size, h = 2−2, 2−3, 2−4, 2−5, 2−6, on structured grids. Similar results, although not
reported here, were obtained on unstructured grids. Observe that, due to smoothness
of the solution, second order convergence is attained in all regimes for all the methods
but method (3.7), which is only first order accurate when diffusion dominates. This is
due to the fact that in the method (3.7) upwind is done on the whole flux. In method
(3.8) the whole flux is also upwinded, but the use of the weighted average (2.9) allows
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ε = 10−3
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10
−2

10
−1

ε = 10−9

3/2

Fig. 6.1. Example 1. Convergence diagrams in the ||| · |||DG-norm. Unstructured grids.
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Fig. 6.2. Example 1. Convergence diagrams in the ||| · |||-norm. Unstructured grids.
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Fig. 6.3. Example 1. Convergence diagrams in the L2-norm. Structured grids.

us to tune the amount of upwind as a function of the data. It would be worth devising
an automatic tuning. We did not yet, and found numerically the following “optimal
values”: (α1, α2) = (0.55, 0.45) for ε = 1, (α1, α2) = (0.64, 0.36) for ε = 10−3, and
(α1, α2) = (0.9, 0.1) for ε ≤ 10−5.

Example 2: Rotating flow. This example is taken from [24]. The data are
γ = 0, β = [y− 1/2, 1/2−x]T , and no external forces act on the system. The solution
u is prescribed along the slit 1/2× [0, 1/2] as follows:

u(1/2, y) = sin2(2πy), y ∈ [0, 1/2] .

In Figure 6.4, for ε = 10−9, we have represented the approximate solution obtained
with the four methods on a structured triangular grid of 512 elements. As can be seen,
all the methods perform similarly, and no significant differences can be appreciated.
An important feature of all the methods is the absence of crosswind diffusion which
occurs with stabilized conforming methods (see, e.g., [9], [7]). To better assess this
feature of the methods, we have plotted in Figure 6.5 the profile of the approximate
solutions at y = 1/2.
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Fig. 6.4. Example 2. Approximate solutions for ε = 10−9 on structured grids. From left to
right: methods (3.4), (3.6), (3.7), and (3.8).
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Fig. 6.5. Example 2. Profile of the approximate solutions at y = 1/2; ε = 1e − 07 . From left
to right: methods (3.4), (3.6), (3.7), and (3.8).

Example 3. Internal layers. The next example is devoted to assessing the
performance of the methods in the presence of interior layers. We set γ = 0, β =
[1/2,

√
3/2]T , and Dirichlet boundary conditions as follows:

u =

⎧⎪⎨
⎪⎩

1 on {y = 0, 0 ≤ x ≤ 1},
1 on {x = 0, y ≤ 1/5},
0 elsewhere.

The diffusion coefficient is varied from ε = 10−3 to the limit case ε = 0 (pure hyper-
bolic case). In Figure 6.6 we represent the approximate solutions obtained on struc-
tured grids of 512 triangles with all methods for ε = 10−3. They all behave poorly in
the intermediate regimes, as they produce wiggles close to the boundary. These os-
cillations disappear in the strongly advection-dominated regime (see Figure 6.7), and
the internal layer is sharply captured, with very small overshooting/undershooting.
This can be better observed in Figure 6.8, where we have represented the profiles of
the solutions at x = 0. Similar results were observed for the profiles at y = 0.5. We
notice that the boundary layers on the outflow are missed in all the methods. This is
a known drawback of DG approximations: as soon as advection dominates they be-
have as if the problem were purely hyperbolic. See also the next example for a similar
behavior.

Fig. 6.6. Example 3. Approximate solutions for ε = 10−3 on unstructured grids. From left to
right: methods (3.4), (3.6), (3.7), and (3.8).

Example 4. Boundary layers. In this example we apply the methods to a
boundary layer problem taken from [23]. The data are γ = 0 and β = [1, 1]T , and we
again vary the diffusion coefficient ε. The forcing term f is chosen so that the exact
solution is given by

u(x, y) = x+ y(1− x) +
e−1/ε − e−(1−x)(1−y)/ε

1− e−1/ε
, (x, y) ∈ Ω.

This problem can be regarded as a multidimensional variant of the one-dimensional
problem considered by Melenk and Schwab in [27]. Unlike the classical test case [38],
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Fig. 6.7. Example 3. Approximate solutions for ε = 10−9 on unstructured grids. From left to
right: methods (3.4), (3.6), (3.7), and (3.8).
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Fig. 6.8. Example 3. Profile of the approximate solutions at x = 0; ε = 1e − 09. From left to
right: methods (3.4), (3.6), (3.7), and (3.8).
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Fig. 6.9. Example 4. Exact solution (left), approximate solution with method (3.7) (right);
ε = 10−9.

u does not reduce, in the hyperbolic limit case, to a linear function in the interior
of the domain, as shown in Figure 6.9(left), for ε = 10−9. In Figure 6.9(right) only
the solution obtained with the method (3.7) is represented, as all the methods do not
exhibit visible differences in the strongly advective regime. Notice that, since boundary
conditions are imposed in a weak way, the boundary layer is not captured by the DG
approximations, although the solution is free of spurious oscillations. In Figure 6.10
we compare the methods for ε = 10−3 and structured grids with 24×24×2 triangles.
Again, no substantial differences can be observed, except for small oscillations in the
method (3.7) (third plot in the figure), probably due to the upwind treatment of the
diffusive part of the flux. For this test case we chose not to plot convergence diagrams
in the norms (4.3) or (4.35) since, due to the weak approximation of the boundary
conditions, the main contribution to the error comes from the error in the boundary
layer, which is O(1), as can be seen in Figures 6.9 and 6.10. Figure 6.11 represents
the convergence diagrams in the L1-norm for ε = 10−3 and h = 1/5, 1/9, 1/18, 1/36.
Note that as we would expect in this regime, and since we are measuring global
errors, first order convergence is achieved. Although there are no great differences
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between the methods, it seems that in this case method (3.4) gives the most accurate
approximation. This can also be checked from Figure 6.10. Finally, Figure 6.12 shows
the convergence diagrams in terms of h = 1/5, 1/9, 1/18, 1/36 on unstructured grids
for ε = 10−9 in the L2-norm (left), the ||| · |||d-norm in the interior of the domain (i.e.,
without the contribution of the boundary elements) (center), and in the norm ||| · |||S
defined in (4.35) (right). Note that all the methods give optimal order of convergence
in L2 in the advection-dominated regime (see Remark 5.3).

Example 5. Compressible advection-diffusion problem. We conclude with
a test where the advection field is not divergence-free. We set γ = 0 and β = [yx2 +
1, xy2 +1]T . The flow enters the computational domain Ω from two sides of Γ, namely
{x = 0} and {y = 0}. The forcing term is chosen as

f =

{
0 on 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/3,
−1 on 1/2 < x ≤ 1, 1/3 < y ≤ 1.

Nonhomogeneous Dirichlet boundary conditions were imposed on Γ−:

u =

{
2x on 0 ≤ x ≤ 1, y = 0,

3y on x = 0, 0 ≤ y ≤ 1,

and homogeneous Neumann conditions on Γ+ = {x = 1, 0 < y < 1} ∪ {y = 1, 0 <
x < 1}. Figure 6.13 shows a vector diagram of the advection field (left) and two
different views of the approximate solution obtained with method (3.8) for ε = 10−9

on a structured triangular mesh with h = 1/16. In Figure 6.14 we represent the
approximate solutions obtained on structured grids of 512 triangles (h = 1/16) with

Fig. 6.10. Example 4. Approximate solutions for ε = 10−3. From left to right: methods (3.4),
(3.6), (3.7), and (3.8).

Fig. 6.11. Example 4. Convergence diagrams in the L1-norm; ε = 10−3.
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Fig. 6.12. Example 4. Convergence diagrams in the norms L2 (left), interior ||| · |||d (center),
and ||| · |||S (right); ε = 10−9. Unstructured grids.
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Fig. 6.13. Example 5. Left: vector diagram of advection field. Center and right: two views of
the approximate solution obtained with method (3.8) for ε = 10−9 on a structured mesh.
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Fig. 6.14. Example 5. Approximate solutions for ε = 10−3 on structured meshes. From left to
right: methods (3.4), (3.6), (3.7), and (3.8).

all methods for ε = 10−3. From the graphics we observe that all methods behave
similarly and provide a good approximate solution also when divβ �= 0.

Remark 6.1. In general, it is neither easy to compare the performance of different
DG methods, nor to design a relevant test. For advection-diffusion-reaction problems
it is even more complicated, if one wants to take care of all the possible regimes and of
the variety of stabilizations. From the tests that we performed so far it seems that all
the methods presented in the paper behave similarly, at least in the strongly advection-
dominated case. Some differences appear in the intermediate regimes but not enough
to draw definite conclusions. From the computational point of view method (3.4) is
simpler than the others. On the other hand, method (3.8) seems promising to adjust
to varying regimes, provided a sound automatic tuning of the upwind could be found.

7. Conclusions. By using the weighted-residual approach of [6] we set a unified
framework for deriving and analyzing various methods for advection-diffusion-reaction
problems. The analysis carried out applies to the case of variable convection and reac-
tion fields, and shows that optimal estimates in DG norms are achieved. In particular,
we relaxed the usual coercivity condition (see assumption (2.2)), thus allowing for tak-
ing care of a variety of situations, if one wants to allow cases of a (comparatively)
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very small diffusion. All the methods considered in this paper seem to have the same
stability and accuracy properties, in all regimes. This is also confirmed numerically,
though the method (3.8) seems to be more flexible in the intermediate regimes, thanks
to the possibility of tuning the amount of upwind.

Appendix A. We briefly sketch how the function η ∈ W k+1,∞(Ω) in (H1) can
be constructed. Arguing as in [16] we can guarantee that, for β satisfying (2.3),

(A.1) if β ∈ [W 1,∞(Ω)]2 =⇒ ∃ η̃ ∈ W 1,∞(Ω) s.t. β · ∇η̃ ≥ 2b0 > 0 in Ω.

We next show how from this function η0 the more regular η in (H1) can be constructed.
Let {U+

α }α be a finite open covering of Ω such that each U+
α enjoys the following

property: there exists some ε1 > 0 (to be chosen later) such that

if x, y ∈ U+
α =⇒ ‖β(x)− β(y)‖0,∞ < ε1(A.2)

and

∀x, y ∈ U+
α β(x) · ∇η̃(y) ≥ b0.(A.3)

Inequality (A.3) is actually a consequence of (A.2) and (A.1). Indeed,

β(x) · ∇η̃(y) = β(y) · ∇η̃(y) + [β(x)− β(y)] · ∇η̃(y) ≥ 2b0 − ε1‖∇η̃‖0,∞.

Hence, by taking ε1 = b0/‖∇η̃‖0,∞ one can guarantee (A.3). Let U−α′ ⊂ U+
α be such

that (A.2) holds with such choice of ε1 (so that (A.3) is valid for all x and y ∈ U−α ),
and such that {U−α′}α′ is still an open covering of Ω. Next, on each U−α′ we mollify η̃ by
convolution with some ρδ mollifier; ηδα′ = η̃ ∗ ρδ in U−α′ . Then, by taking a partition of
unity {φα′}α′ associated with the covering {U−α′}α′ we can construct η as in (H1) by
gluing the mollified ηδα′ , that is, η =

∑
α′ ηδα′ ·φα′ . Thus, the existence of η sufficiently

smooth satisfying (H1) is guaranteed.
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uous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195 (2006),
pp. 3293–3310.

[7] F. Brezzi, L. D. Marini, and A. Russo, On the choice of a stabilizing subgrid for convection-
diffusion problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 127–148.
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[28] U. Nävert, A Finite Element Method for Convection-Diffusion Problems, Ph.D. thesis, De-
partment of Computer Science, Chalmers University of Technology, Göteborg, Sweden,
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ON MESH GEOMETRY AND STIFFNESS MATRIX CONDITIONING
FOR GENERAL FINITE ELEMENT SPACES∗

QIANG DU† , DESHENG WANG‡ , AND LIYONG ZHU§

Abstract. The performance of finite element computation depends strongly on the quality
of the geometric mesh and the efficiency of the numerical solution of the linear systems resulting
from the discretization of partial differential equation (PDE) models. It is common knowledge that
mesh geometry affects not only the approximation error of the finite element solution but also the
spectral properties of the corresponding stiffness matrix. In this paper, for typical second-order
elliptic problems, some refined relationships between the spectral condition number of the stiffness
matrix and the mesh geometry are established for general finite element spaces defined on simplicial
meshes. The derivation of such relations for general high-order elements is based on a new trace
formula for the element stiffness matrix. It is shown that a few universal geometric quantities have
the same dominant effect on the stiffness matrix conditioning for different finite element spaces.
These results provide guidance to the studies of both linear algebraic solvers and the unstructured
geometric meshing.
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1. Introduction. The finite element solution of partial differential equations
(PDEs) often involves mesh generation and optimization, the assembly of discrete
algebraic systems using the finite element basis, and the solution of these systems
by some algebraic solvers. Traditionally, the different components have often been
studied separately, so as to maximize the independence between the various software
components and to make the finite element method a versatile and popular method-
ology for many applications. In recent years, the finite element community has been
paying increasing attention to an integrated adaptive solution strategy. It thus be-
comes important to understand the interplay between the various components in order
to improve the overall performance of finite element simulations.

A major objective of the study we have undertaken recently is to explore the
relations among the mesh geometry, the efficiency of the linear solver for the result-
ing finite element linear system of equations, and the interpolation (or discretization)
error. While it has been common in the meshing community to examine the quality
of mesh with respect to various geometric measures, there have also been a number of
works relating mesh quality to interpolation or discretization errors; see, for instance,
[5, 7, 8, 10, 12, 33, 37, 39] and the references cited therein. Connections between
the performance of the algebraic solvers and general unstructured meshes have also
been made, but with much less rigor and generality. Perhaps the most widely known
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facts in this direction were based on the vast experiences in the application of finite
element technology, such as the belief that poorly shaped elements can give rise to
ill-conditioned matrices, which tend to slow down or even prevent the convergence of
iterative solvers. Even with the increasing popularity of the unstructured simplicial
meshing in finite element simulations, there were relatively few attempts at general
discussions on the precise connections between the solver performances and the qual-
ities of unstructured meshing. From among the notable works we recall [36], in which
the effect of the unstructured irregular grids on the performance of algebraic solvers
and preconditioners has been examined through numerical examples. In [6, 18], the
trade-offs associated with the cost of mesh improvement in terms of solution efficiency
have been analyzed numerically. In [37], comprehensive discussions have been made
on mesh quality measures, and in particular, on how a good element for resolving
the discretization error may at the same time be good for the efficient solution of the
resulting algebraic systems. More recently in [15], a mesh and solver co-adaptation
strategy has been studied in the context of finite element methods for anisotropic
problems.

In a more general arena, but closely related to our objective, the exploration of
the properties of the stiffness matrix resulting from the finite element discretizations
in relation to the underlying geometric meshes has remained a continuing theme in
the finite element literature for half a century. Precise and explicit descriptions of the
relations between mesh geometry and the spectral condition numbers are naturally
helpful to the understanding of the whole finite element solution process. Yet the
current understanding of such relations remains largely incomplete despite a number
of existing investigations [2, 21, 37, 38].

In this work, we are able to establish a precise relation between the mesh geometry
and the spectral condition number of the stiffness matrix for some typical second-order
elliptic equations discretized by general finite element methods based on unstructured
simplicial meshes in any space dimension. An important conclusion following from
our analysis is that the effect of the element geometry on the conditioning of the
stiffness matrices for more general finite element methods is similar to that of the
conforming linear Lagrange finite element. Consequently, a simplicial mesh that makes
the stiffness matrices less ill-conditioned for the linear element tends to do the same for
high-order elements as well. Results of such generality, to the best of our knowledge,
have not been presented before in the literature. They bring new understanding to
mesh generation and optimization and the solution of discrete algebraic systems.

Our analysis is based on the derivation of an explicit trace formula for the element
stiffness matrix corresponding to the finite element approximation to the Laplace
operator (presented in section 2). While requiring only routine calculations, the trace
formula appears to be new and quite elegant. It helps us to derive, in section 3, more
precise estimates on the extreme eigenvalues of element stiffness matrices for general
finite element spaces in terms of the element and mesh geometries, using an earlier
framework on the estimation of stiffness matrix conditioning in [20, 21]. Some known
calculations in the literature on the linear Lagrange finite element are also presented
there as comparisons. The new estimate not only makes some of the classical works
(such as those in [19, 20, 21]) more precise but also makes some observations for
special cases (such as those in [37]) more general. In addition, we specialize to various
cases and consider the relevant extensions (in section 4). The theoretical analysis is
also complemented by numerical experiments which serve as further validation.

2. Finite element approximation and a new trace formula. In this sec-
tion, we first derive a new trace formula for the element stiffness matrix for the
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Laplace operator using general finite element methods. We then recall briefly the
abstract framework on the condition number estimate for general symmetric second-
order elliptic equations given in [21] and the discussion on the linear Lagrange finite
element given in [37]. These results form the basis of discussions on the condition
number estimation for general high-order elements on general unstructured simplicial
meshes.

2.1. Basic finite element terminology. Given an open bounded convex do-
main Ω ∈ Rd with a Lipschitz-continuous boundary, we consider the following general
self-adjoint linear second-order elliptic boundary value problem:

(2.1)

⎧⎪⎨
⎪⎩
−

d∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u = f in Ω,

u = 0 on ∂Ω,

where the coefficient matrix Ã = (aij)di,j=1 is symmetric positive definite everywhere
in Ω and a0 ≥ 0 in Ω. Both Ã and a0 are assumed to be smooth and uniformly
bounded for simplicity. In addition, we let f ∈ L2(Ω). The corresponding variational
weak form is as follows: Find u ∈ H1

0 (Ω) such that

(2.2) aΩ(u, v) =
∫

Ω

d∑
i,j=1

(
aij

∂u

∂xi

∂v

∂xj

)
dx +

∫
Ω

a0uv dx =
∫

Ω

fv dx ∀v ∈ H1
0 (Ω).

It is well known that the above weak variational form (2.2) has a unique solution
in H1

0 (Ω) [11]. Let τ denote the finite element mesh (a triangulation, or equivalently,
a simplicial mesh for much of our discussion). Appropriate finite element spaces with
suitably chosen nodal basis functions {φj}Nj=1 may then be employed to discretize
the continuous problem (2.2), resulting in algebraic systems associated with the finite
element approximations. For any (simplicial) element t ∈ τ , we assume that the nodal
basis, when restricted to t, is given by a canonical transformation from a nodal basis
defined on a reference simplex described by the barycentric coordinates

(2.3) t0 =
{
(b1, b2, . . . , bd+1) | bi ≥ 0,

∑
bj = 1

}
.

Concerning the finite element space, we make an additional assumption that the
nodal basis on t0 is invariant with respect to the permutation of the vertices, a
property that is satisfied by most of the finite element spaces.

Let K and M be the N ×N stiffness and mass matrices, respectively, generated
by the finite element methods, that is,

K = (kij), kij = aΩ(φi, φj) and M = (mij), mij =
∫

Ω

ρφiφj dx.

Here, as in [20], a positive density function ρ = ρ(x) is introduced into the mass
matrix. While for much of the discussion we focus on the case when ρ = 1 is a
constant, a nonuniform density can be very useful in dealing with highly nonuniform
meshes. Without further complicating the discussion, we assume that ρ remains
positive and smooth in the domain of interest.

Obviously, both K and M are symmetric, with M being positive definite and
K being either positive or nonnegative definite. Denote the element matrices corre-
sponding to K and M by Kt and Mt, respectively, for any (simplicial) element t ∈ τ .
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We use n to denote the dimension of Kt and Mt, which corresponds to the degree of
freedom or the number of nodal basis functions for the element t.

The eigenvalues of K and M are denoted by {λKi }Ni=1 and {λMi }Ni=1, which are
ordered by

λK1 ≤ λK2 ≤ · · · ≤ λKN , λM1 ≤ λM2 ≤ · · · ≤ λMN .

In this notation, λK1 and λM1 are the minimal eigenvalues of K andM , and λKN and λMN
are the maximal eigenvalues, respectively. Similarly, we use {λKt

i }ni=1 and {λMt

i }ni=1

to denote the eigenvalues of Kt and Mt, respectively, which are also ordered by

λKt
1 ≤ λKt

2 ≤ · · · ≤ λKt
n , λMt

1 ≤ λMt
2 ≤ · · · ≤ λMt

n .

For the case of a conforming linear finite element, the nodal basis on the element
t is simply given by the coordinates {b1, b2, . . . , bd+1}. Let {zj}d+1

1 be the vertices of
t with zj having corresponding barycentric coordinates bj = 1 and bi = 0 for i �= j.
It is well known that for each i, bi = bi(x) is a linear function of x ∈ t, representing
the ratio of the volume formed by the simplex with vertices x ∪ {bj, j �= i} and the
volume of t. Moreover,

x =
∑
j

bjzj .

It is also trivial to see that ∇bi gives the normal direction of the (d− 1)-dimensional
face Ai of t, opposite to the vertex zi, and |∇bi| is the reciprocal of the height of the
simplex t corresponding to the vertex zi. Equivalently, we have [11]

(2.4) |∇bi| = |Ai|
d|t|

with |t| denoting the volume of t and |Ai| being the area of the face Ai for each
1 ≤ i ≤ d+ 1.

2.2. A trace formula for the element stiffness matrix. We now derive a
new trace formula for the stiffness matrix associated with the Laplace operator dis-
cretized by general simplicial finite element spaces. We adopt the notation introduced
in the previous subsection but specialize to the case of

(2.5) aΩ(u, v) =
∫

Ω

∇u · ∇v, dx

for any u, v in H1(Ω). In this case, (2.2) corresponds to the Poisson equation with a
homogeneous Dirichlet boundary condition if we take u, v ∈ H1

0 (Ω).
Given a simplex t, we use {Li({bj})}ni=1 to denote a general form of the nodal

basis functions on t, and the finite element approximation is given by functions whose
restrictions on t are linear combinations of {Li}.

Notice that it is assumed that the set of basis functions remains invariant un-
der any permutation to vertices, and thus under any permutation of the barycentric
coordinates.

Consider the element stiffness matrix Kt. Its (k, l)th entry is now given by

at(Lk, Ll) =
∫
t

∇Lk · ∇Lldx .
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In particular, we have the mth diagonal entry given by

at(Lm, Lm) =
∫
t

∇Lm · ∇Lmdx

=
d∑
i=1

∫
t

⎛
⎝d+1∑
j=1

∂Lm
∂bj

∂bj
∂xi

⎞
⎠

2

dx

=
d∑
i=1

d+1∑
j=1

d+1∑
k=1

∂bj
∂xi

∂bk
∂xi

∫
t

∂Lm
∂bj

∂Lm
∂bk

dx .

Here, we have used the fact that ∂bj

∂xi
and ∂bk

∂xi
are constants on t. Now, we sum over

m to get the trace of Kt,

Tr(Kt) =
n∑

m=1

at(Lm, Lm)

=
n∑

m=1

d∑
i=1

d+1∑
j=1

d+1∑
k=1

∂bj
∂xi

∂bk
∂xi

∫
t

∂Lm
∂bj

∂Lm
∂bk

dx

=
d∑
i=1

d+1∑
j=1

d+1∑
k=1

∂bj
∂xi

∂bk
∂xi

∫
t

n∑
m=1

∂Lm
∂bj

∂Lm
∂bk

dx .(2.6)

By the invariance of the set of basis functions under the permutation of the barycentric
coordinates, we see that there are two constants αdn and βdn such that

(2.7)
∫
t

n∑
m=1

(
∂Lm
∂bj

)2

dx = αdn|t| ∀j ,

(2.8)
∫
t

n∑
m=1

∂Lm
∂bj

∂Lm
∂bk

dx = βdn|t| ∀j �= k .

Thus, we may use (2.7) and (2.8) for the cases k = j and k �= j, respectively, to
complete the sum in (2.6) over the index m first. This leads to

Tr(Kt) = αdn|t|
d∑
i=1

d+1∑
j=1

(
∂bj
∂xi

)2

+ βdn|t|
d∑
i=1

d+1∑
j=1

∑
k �=j

∂bj
∂xi

∂bk
∂xi

.

Noticing from the definition of {bj} that

∇
⎛
⎝∑

j

bj

⎞
⎠ · ∇

⎛
⎝∑

j

bj

⎞
⎠ = 0 ,

we then further obtain

Tr(Kt) = (αdn − βdn)|t|
d∑
i=1

d+1∑
j=1

(
∂bj
∂xi

)2

= (αdn − βdn)|t|
d+1∑
j=1

|∇bj |2 = (αdn − βdn)d−2Qd(t) ,(2.9)
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where, according to (2.4), the term Qd(t) is given by

(2.10) Qd(t) =
1
|t|

d+1∑
i=1

|Ai|2

for any d-dimensional simplex t with |t| being its volume and {Ai}d+1
i=1 being the areas

(volumes) of its (d− 1)-dimensional faces.
Now, if we let γdn = (αdn − βdn)d−2, then by a symmetry consideration, we can get

the following equivalent form of γdn:

γdn =
1

d3(d+ 1)|t|
n∑

m=1

d+1∑
j=1

d+1∑
k=1

∫
t

(
∂Lm
∂bj

− ∂Lm
∂bk

)2

dx .

Moreover, with a change of variable in the integral, we get a geometry-independent
form of γdn as follows:

(2.11) γdn =
1

d3(d+ 1)|t0|
n∑

m=1

d+1∑
j=1

d+1∑
k=1

∫
t0

(
∂Lm
∂bj

− ∂Lm
∂bk

)2

dx ,

where t0 is the standard reference simplex defined in (2.3).
We thus arrive at the following theorem.
Theorem 2.1 (a new trace formula). For any general finite element spaces

defined on a simplicial mesh τ with the nodal basis on any d-dimensional simplex
t ∈ τ satisfying the invariance property specified above, the element stiffness matrix
for (2.5) has the trace formula

(2.12) Tr(Kt) = γdnQd(t),
where n is the cardinality of the set of local nodal basis functions, γdn is the positive
constant defined by (2.11), and Qd(t) is as defined by (2.10).

It is important to note that γdn is a positive constant that depends only on the
corresponding basis functions on the reference simplex t0 and is independent of the
geometry of the particular element t. Thus, we see the elegance of the above trace
formula: it implies that the trace of the element stiffness matrix for general finite
element spaces (with an invariant basis) is a product of two factors, with one being
γdn, which is completely independent of the element t, and the other being Qd(t), the
trace of Kt corresponding to the linear nodal basis consisting of {bj}d+1

j=1 , which is
completely independent of the choice of the finite element spaces (as long as they
take some invariant basis). While the calculation of the special case for the linear
element is widely known in standard finite element texts [2, 11, 38], to the best of
our knowledge, the more general cases have not been presented in the literature. Our
derivation of the results is indeed for general finite element spaces on simplicial meshes
that include the classical standard Lagrange finite element spaces of any order, and
other exotic spaces, such as the enrichment of the conforming linear element with
bubble functions or stabilized finite element spaces [1].

As a corollary, using the nonnegativeness of Kt, we can get an estimate for the
maximum eigenvalue λKt

n of the element stiffness matrix Kt.
Corollary 2.1. Under the above conditions, we have

(2.13)
γdn
n− 1

Qd(t) ≤ λKt
n ≤ γdnQd(t) .
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Though the upper and lower bounds in (2.13) differ by a factor of n−1, the above
estimate does provide a precise control on the contribution due to the mesh geometry
on the largest eigenvalue of the element stiffness matrix. To be discussed later, this
is crucial to the application of the framework developed in [20, 21] for estimating the
condition number of the assembled global stiffness matrix K on the whole domain.

Naturally, by summing over all elements, we may also get a trace formula for the
global stiffness matrix using the result of the above theorem. Let us consider

(2.14) −∇ · (μ∇u)) = f in Ω,

with a diffusion coefficient μ = μ(x) and Neumann boundary condition ∂u
∂n = g on

∂Ω. Assume that the f and g are compatible so that the equation is solvable.
Corollary 2.2. For any general finite element spaces defined on a simplicial

mesh τ with the nodal basis on any d-dimensional simplex t ∈ τ satisfying the in-
variance property specified above, let Kμ be the global stiffness matrix of (2.14) with
a Neumann boundary condition. If μ remains a constant on t for any t ∈ τ , then K
has the trace formula

(2.15) Tr(Kμ) = γdn
∑
t∈τ

μtQd(t) ,

where μt denotes the value of μ on t ∈ τ .
The trace formulae can be extended to more general cases, where μ is not neces-

sarily a constant on t but remains invariant under the transformation of permuting
the vertices. For example, in two dimensions, μ on an element t can take on a function
of the form c1 + c2b1b2b3, with {bi} being the barycentric coordinates on t and c1, c2
being some constants.

Note that for Dirichlet boundary conditions, contributions from the basis func-
tions corresponding to the boundary nodes are not normally assembled into the stiff-
ness matrix, which thus may lead to a minor alteration of the trace formula. We note
that in the literature, it has been suggested that the minimization of the trace of the
stiffness matrix can be used to optimize finite element grids; we see from (2.15) that
the dependence of the trace on the mesh geometry is in fact the same for general finite
element spaces.

In practical implementation of the finite element methods, especially with the use
of high-order finite element spaces, the assembly of the stiffness and mass matrices
is often done with the help of numerical integration. With enough precision in the
numerical quadrature, the order of accuracy of the finite element methods can be
preserved [38].

It is then natural to ask if the use of quadrature affects the discussions in this
paper and thus the relation between the mesh geometry and the conditioning of the
stiffness and mass matrices.

Let us consider first a simplex t which is mapped via an affine transform F to the
reference element t0. Let {wm, ym ∈ t} be a quadrature formula on t0, that is,∫

t0

g(y)dy ∼
∑
m

wm|t0|g(ym) .

Notice that a factor t0 is added in the quadrature so that a normalization condition∑
m wm = 1 is satisfied. We assume in addition that {wm, ym ∈ t} gives an invariant

quadrature; that is, it is invariant with respect to a permutation of the vertices of
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t0, which is satisfied, for instance, by the one point quadrature at the barycenter,
the midside rule, and other invariant high-order Gaussian quadratures [41]. For the
entries of the element stiffness matrix for the Poisson equation at(Lk, Ll), the integral
on t is approximated by

(2.16)
∫
t

g(x)dx ∼
∑
m

wm|t|g(F−1ym) .

Now, define the modified bilinear form as

ât(φ, ψ) =
∑
m

wm|t|∇φ(xm) · ∇ψ(xm)

for any polynomials φ and ψ defined on t and {xm = F−1ym}. We then can follow a
similar derivation given above to compute the trace of the modified element stiffness
matrix K̂t = (ât(Lk, Lj)) to get the following.

Theorem 2.2. For any general finite element spaces defined on a simplicial mesh
τ with the nodal basis on any d-dimensional simplex t ∈ τ satisfying the invariance
property specified above, we have the following trace formula for the modified element
stiffness matrix K̂t for (2.5) computed using an invariant numerical quadrature:

(2.17) Tr(K̂t) = γ̂dnQd(t) ,

where n and Qd(t) are as defined before, F is the affine map that maps t to t0, and
γ̂dn is a positive constant defined by

(2.18) γ̂dn =
1

d3(d+ 1)

n∑
i=1

d+1∑
j=1

d+1∑
k=1

∑
m

wm

(
∂Li
∂bj

(ym)− ∂Li
∂bk

(ym)
)2

.

The significance of Theorem 2.2 lies in the fact that the only geometric factor
affecting the trace remains to beQd(t) even with the use of a numerical integration. Of
course, the assumption that the quadrature is invariant is crucial for the observation
to hold.

Before we conclude the discussion on the trace formula, we make a few comments
on the constant γdn. First of all, it is possible to get some explicit estimates of γdn.
For instance, as seen before, for a linear finite element in any dimension, we have
γ1
d+1 = 1/d2. Naturally, it would be interesting to investigate the asymptotic behavior

of γdn as n gets larger. This would be of interest for the case of very high order Lagrange
elements and p or h−p finite element spaces. Such a behavior will be studied in future
works.

3. Mesh-dependent condition number estimates. In this section, we first
discuss some detailed computations given in [37] on the relation between condition
numbers of the stiffness matrices and the mesh geometry in some special cases. These
results provide insight into the type of estimates we can expect in general. Afterwards,
we recall some earlier estimates on the condition number of the stiffness matrices
presented in [21]. We then use the trace formula derived in the previous section to
reveal the detailed dependence of the condition numbers on the mesh geometry in the
more general settings.
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3.1. Some known results on the linear Lagrange finite element. We first
focus on a special case corresponding to the Poisson equation with a homogeneous
boundary condition:

(3.1)
{ −
u = f in Ω,
u = 0 on ∂Ω,

and its equivalent variational weak form: Find u ∈ H1
0 (Ω) such that

(3.2)
∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx ∀ v ∈ H1
0 (Ω).

While the explicit forms of the element stiffness matrices for linear triangular and
tetrahedral elements can be found in many standard finite element texts, a detailed
calculation can be found in [37], where careful discussions on the bounds of the eigen-
values of element stiffness matrices are also presented with respect to the mesh quality
corresponding to the linear Lagrange finite element. Here, we briefly recall the results
presented in [37]. Similar calculations have been given in many other works; see, for
example, [20, 38, 40]. In the two space dimension, let {li, θi} (i = 1, 2, 3) be the edge
lengths and internal angles of a triangle t ∈ τ with area |t|. Then the element stiffness
matrix on the triangle t is precisely [37]

Kt = |t| (∇bi · ∇bj) =
1

8|t|

⎛
⎝ 2l21 l23 − l21 − l22 l22 − l11 − l23

l23 − l21 − l22 2l22 l21 − l22 − l23
l22 − l21 − l23 l21 − l22 − l23 2l23

⎞
⎠

=
1
2

⎛
⎝ cot(θ2) + cot(θ3) − cot(θ3) − cot(θ2)

− cot(θ3) cot(θ1) + cot(θ3) − cot(θ1)
− cot(θ2) − cot(θ1) cot(θ1) + cot(θ2)

⎞
⎠ .(3.3)

In [37], the roots of its characteristic polynomial are computed as λ1 = 0 and

(3.4) λ2,3 =
1

8|t|
(
l21 + l22 + l23 ±

√
(l21 + l22 + l23)2 − 48|t|2

)
.

The largest root λKt
3 is a scale-invariant indicator of the quality of the triangle’s

shape in terms of (3.4). Similar calculations can be found in other works as well; see,
for example, [36], where eigenvalues of the diagonally preconditioned element stiffness
matrix have also been explicitly computed. Note that the eigenvalues are nonnegative
and λ1 = 0, so

(3.5)
1

8|t|
∑
j

l2j =
1
2

∑
cot(θj) ≤ λKt

3 ≤
∑

cot(θj) =
1

4|t|
∑
j

l2j .

The above equation is a special case of (2.13), and as explained in [37], it also shows
that if any of the angles approaches 0 or π, it would lead to large λKt

3 , thus affecting
the conditioning of the stiffness matrix. These angle conditions, as pointed out in [36],
reflect the common knowledge of minimizing the element distortion, a principle behind
the Delaunay triangulation [22, 37], and are compatible with the angle conditions for
guaranteeing the uniform finite element approximations of derivatives [3, 38].
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Similarly, the element stiffness matrix for the linear Lagrange element on a three-
dimensional tetrahedron t can be written as [37]

(3.6) Kt =
1
6

⎛
⎜⎜⎝

k11 −l34 cot(θ34) −l24 cot(θ24) −l23 cot(θ23)
−l34 cot(θ34) k22 −l14 cot(θ14) −l13 cot(θ13)
−l24 cot(θ24) −l14 cot(θ14) k33 −l12 cot(θ12)
−l23 cot(θ23) −l13 cot(θ13) −l12 cot(θ12) k44

⎞
⎟⎟⎠ ,

where lij is the edge of t with a corresponding dihedral angle θij , and the diagonal
entries {kii} are such that the row sums are all identically zero.

In [37], the characteristic polynomial of Kt is calculated as

(3.7) p(λ) = λ4 − 1
9|t|

4∑
i=1

|Ai|2λ3 +
1
36

∑
1≤j<k≤4

l2jkλ
2 − |t|

9
λ.

From (3.6), we can see that if one of the dihedral angles approaches 0, its cotangent
approaches infinity, and so does λKt

4 , the maximum eigenvalue of Kt. For a tetra-
hedron, it is possible for one dihedral angle to be arbitrarily close to π without any
dihedral angle of the tetrahedron being small (see [37]). Although an angle approach-
ing π has a cotangent approaching negative infinity, surprisingly, such a tetrahedron
does not induce a large eigenvalue in Kt because each entry on the diagonal of Kt

is nonnegative and has the form
∑

i,j lij cot θij . Therefore, if t has no dihedral angle
close to 0, the diagonal entries of Kt are bounded from the above, and thus so is λKt

4 .
This observation does not depend on whether t has planar angles near 0.

For λKt
4 of a tetrahedron t, the following equation holds [37]:

(3.8)
Q3(t)

27
≤ λKt

4 ≤ Q3(t)
9

,

where Q3(t) is as given in (2.10). This is again a special case of our general estimates
(2.13) for the linear tetrahedral element (with d = 3 and n = 4). It shows that λKt

4

(and thus λKN ) is not scale-invariant so that λKt
4 grows linearly with the longest edge,

as pointed out in [37].
These calculations give some insight into how the conditioning of the element

stiffness matrix for the linear element might be dependent on the mesh geometry. For
a general higher-order finite element, it is not always possible to analytically solve for
the eigenvalues of element stiffness matrices. Instead, the trace formula developed in
the previous section can help establishing the link between the mesh and the element
stiffness matrices for general finite element spaces. The only key step that remains to
be worked out is to see how the global stiffness matrix condition number is related to
that of the element stiffness matrix. This is to be addressed next.

3.2. Some known condition number estimates. As stated before, we are
interested in studying the stiffness matrix conditioning for general self-adjoint ellip-
tic equations discretized by general finite element spaces on unstructured simplicial
meshes. In [20, 21], a general estimate on the spectral properties of the global stiffness
matrix in relation to that of the element stiffness matrix was given:

(3.9) max
t∈τ (λKt

n ) ≤ λKN ≤ P∗max
t∈τ (λKt

n ),

(3.10) λ�1 min
t∈τ (λMt

1 ) ≤ λK1 ≤ λ�1P∗max
t∈τ (λMt

n ),
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where P∗ is the maximal number of elements in τ meeting at a nodal point, and λ�1
is the smallest eigenvalue of the following elliptic eigenproblem:

(3.11)

⎧⎪⎨
⎪⎩
−

d∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= λρu in Ω,

u = 0 on ∂Ω,

where λ denotes any of the eigenvalues and u denotes a corresponding nonzero eigen-
function. The density ρ can be taken to be the unit constant in most cases, but for
highly nonuniform meshes, a nonuniform density tends to give sharper estimates.
From (3.9) and (3.10), the spectral condition number of the stiffness matrix K,
Cond(K), satisfies the following inequalities [21]:

(3.12)
max
t∈τ (λKt

n )

λ�1P∗max
t∈τ (λMt

n )
≤ Cond(K) ≤

P∗max
t∈τ (λKt

n )

λ�1 min
t∈τ (λMt

1 )
.

The lowest exact eigenvalue λ�1 can be regarded as a constant that depends only on
the intrinsic properties of the continuous problem but does not depend on the dis-
cretization parameters. In this paper, we always consider those meshes with uniformly
bounded P∗.

It is certainly interesting to examine the sharpness of the estimates (3.12), or
rather, the corresponding estimates on the extreme eigenvalues in (3.9)–(3.10). As our
interests are to explore the connection between the mesh geometry and the condition
number estimates, it can be seen from (3.9) that the estimate on the largest eigenvalue
of the stiffness matrix is sharp up to at most a mesh-independent constant factor. But
the lower and upper bounds in (3.10) can be different by orders of magnitude in an
unstructured grid for a constant density ρ. A nonuniform density that matches the
element volumes can help make the bounds sharper, as shown in [20]. This issue will
be revisited in later sections. We note here that in cases where (3.12) is sharp, it
remains to find good estimates on the extreme eigenvalues of the element stiffness
and mass matrices.

3.3. Condition number estimates for general finite element spaces. For
a given PDE, the relation between mesh geometry and stiffness matrix conditioning
may vary with respect to different finite element spaces. To be able to utilize the
trace formula and the estimates on the maximum eigenvalues of the element stiffness
matrix established in the previous section, we again focus on the model problem (3.1)
with an appropriate finite element space. Hence, in this subsection, K denotes the
global stiffness matrix corresponding only to (3.1).

By (3.12), to bound the condition number of K, we need estimates on λMt
1 , λMt

n ,
and λKt

n for the element mass and stiffness matrices corresponding to (3.1).
The dependence of the spectral properties of the mass matrices on the mesh

geometry has been previously studied. Some detailed computation can be found, for
example, in [40]. For the element mass matrices, the computation is even simpler.
Given a general finite element basis function ψ = ψ(x) of the form

ψ(x) =
∑
|�k|1≤n

α�kb
k1
1 b

k2
2 · · · bkd+1

d+1 ,

where {bi} are the barycentric coordinates, k is a (d + 1)-dimensional multi-index
with |k|1 being the l1 norm, and the coefficients α�k depend only on the finite element



1432 QIANG DU, DESHENG WANG, AND LIYONG ZHU

space chosen, but are independent of mesh geometry. For the uniform density ρ = 1,
using a change of variable to the reference element t0, it is easy to get the following.

Lemma 3.1. For the model bilinear form aΩ in (2.5), for the constant density
ρ = 1, the element mass matrix Mt on the element t satisfies

(3.13) Mt =
|t|
|t0|Mt0 .

Consequently,

(3.14) min
t∈τ λ

Mt
1 = δn min

t∈τ |t| , max
t∈τ λ

Mt
n = σn max

t∈τ |t| ,

where δn and σn are two constants given by

(3.15) δn =
1
|t0|λ

Mt0
1 , σn =

1
|t0|λ

Mt0
n .

Note that the constants δn and σn are independent of the element t but only on
t0 and the corresponding local finite element basis. For a nonuniform density ρ, we
have the following.

Lemma 3.2. For the model bilinear form aΩ in (2.5), we have

(3.16) δn min
t∈τ {ρ

t
min|t|} ≤ min

t∈τ λ
Mt
1 ≤ δn min

t∈τ {ρ
t
max|t|} ,

(3.17) σn max
t∈τ {ρ

t
min|t|} ≤ max

t∈τ λ
Mt
n ≤ σn max

t∈τ {ρ
t
max|t|} ,

where ρtmin and ρtmax are the minimum and maximum values of ρ on the element t.
Proof. Given any z = (z1, . . . , zn)T , we define the function φ =

∑n
k=1 zkLk, where

{Lk} is the nodal basis of the finite element space on t. Obviously, we have

ρtmin

∫
t

φ2dt ≤
∫
t

ρφ2dt ≤ ρtmax

∫
t

φ2dt .

By the definition of the element mass matrices, it is then easy to see that

ρtminz
TM1

t z ≤ zTMtz ≤ ρtmaxz
TM1

t z ,

where M1
t corresponds to the element mass matrix with the constant density ρ = 1.

Then by Lemma 3.1 and the variational definitions of the extreme eigenvalues, we
immediately get the results in (3.16) and (3.17).

The above lemmas are valid for general finite element spaces, and it simply implies
that, by (3.10), a lower bound for the smallest eigenvalue λK1 of the global stiffness
matrix is proportional to the volume of the smallest element, while an upper bound
is proportional to the volume of the largest element; that is, see the following.

Lemma 3.3. Under the conditions on the finite element spaces described earlier,
for the model bilinear form aΩ in (2.5), the smallest eigenvalue of the global stiffness
matrix satisfies

(3.18) λ∗1δn min
t∈τ {ρ

t
min|t|} ≤ λK1 ≤ λ∗1P∗σn max

t∈τ {ρ
t
max|t|} ,

where δn and σn are two constants defined in (3.15).
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We note that the lower and upper bounds in (3.18) remain nearly on the same
order for meshes with quasi-uniform element volumes in terms of the dependence on
the mesh geometry. Thus, we expect that (3.18) may be less effective in highly graded
or adapted meshes containing elements of very different sizes. We will revisit this in
later discussions.

Now to complete the condition number estimate, we need only bound the largest
eigenvalue λKN . From (3.9), we know that λKN is related to the largest eigenvalues of
the element stiffness matrices. Given the bounds on the largest eigenvalues of the
element stiffness matrices in (2.13), bounds of λKN may be derived.

Lemma 3.4. Under the conditions on the finite element spaces described earlier,
for the model bilinear form aΩ in (2.5), the largest eigenvalue of the global stiffness
matrix satisfies

(3.19)
γdn

(n− 1)
max
t∈τ {Qd(t)} ≤ λ

K
N ≤ γdnP∗max

t∈τ {Qd(t)} .

Combining the results of Lemmas 3.3 and 3.4, we get the following.
Theorem 3.1. Under the assumptions on the finite element spaces made earlier,

we have, for the model bilinear form aΩ in (2.5), the following condition number
estimate:

(3.20)
γdnmaxt∈τ{Qd(t)}

(n− 1)λ∗1P∗σnmaxt∈τ{ρtmax|t|}
≤ Cond(K) ≤ γdnP∗maxt∈τ{Qd(t)}

λ∗1δnmint∈τ{ρtmin|t|}
.

The proof of the theorem simply follows directly from the application of Lemma
3.1, Corollary 2.1, and estimates (3.9) and (3.10).

The above result is for the Poisson equation (3.1), and the results for general
diffusion equations can also be derived. As our objective is to explore the mesh
dependence, we do not intend to get the optimal estimates with respect to all the
quantities and parameters involved. Instead, we focus on results that have precise
dependence on the geometric factors of the simplicial meshes. This can be easily
achieved. For example, let us consider the following diffusion equation with a variable
diffusion coefficient

(3.21)
{ −∇(A(x)∇u) = f in Ω,
u = 0 on ∂Ω

with A = A(x) a d× d symmetric positive definite tensor satisfying

(3.22) 0 < β1I ≤ A(x) ≤ β2I

uniformly for x ∈ Ω for some positive constants β1 and β2.
We use KA to denote the stiffness matrix associated with the finite element dis-

cretization of (3.21) to differentiate from the notation K, which is reserved to denote
the stiffness matrix for the Poisson equation (3.1) in this subsection. Then it is easy
to check that for any y ∈ RN , we have

yTKAy =
∫

Ω

(∇uh)TA(x)∇uhdx ≤ β2

∫
Ω

(∇uh)T∇uhdx = β2y
TKy ,

and similarly,

yTKAy ≥ β1y
TKy .
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Thus, using the standard variational characterization of the extreme eigenvalues, we
immediately get the result of the following theorem.

Theorem 3.2. Under the assumptions on the finite element spaces made earlier,
we have, for the stiffness matrix KA corresponding to (3.21), the estimate for the
smallest eigenvalue,

(3.23) β1λ
∗
1δn min

t∈τ {ρ
t
min|t|} ≤ λKA

1 ≤ β2λ
∗
1P∗σn max

t∈τ {ρ
t
max|t|} ,

and the estimate for the largest eigenvalue,

(3.24)
β1γ

d
n

(n− 1)
max
t∈τ {Qd(t)} ≤ λ

KA

N ≤ β2γ
d
nP∗max

t∈τ {Qd(t)} .

Consequently, we also have the following condition number estimates:

(3.25)
β1γ

d
nmaxt∈τ{Qd(t)}

(n− 1)β2λ∗1P∗σnmaxt∈τ{ρtmax|t|}
≤ Cond(KA) ≤ β2γ

d
nP∗maxt∈τ{Qd(t)}

β1λ∗1δnmint∈τ{ρtmin|t|}
.

The above theorem is very general and is valid in any space dimension for a general
diffusion equation and for a general and possibly high-order finite element space (with
an invariant nodal basis) defined on a general unstructured simplicial mesh. Despite
the appearance of many terms in the estimate (3.25), a very precise relation between
the conditioning of the global stiffness matrix and the mesh geometry is revealed by
the bounds. Indeed, the most relevant quantities in (3.25) to the meshing qualities
are simply the two ratios

max
t∈τ {Qd(t)}/max

t∈τ {ρ
t
max|t|} and max

t∈τ {Qd(t)}/min
t∈τ {ρ

t
min|t|},

assuming that P∗, the maximal number of elements meeting at a nodal point, is
under control. We note that for highly anisotropic problems or problems with strong
inhomogeneous coefficients, the difference between β1/β2 and β2/β1 can be large.
This issue is to be visited in later sections.

3.4. Mesh geometry and stiffness matrix conditioning. Based on Theorem
3.2, it can be said that, at least for problems that are not highly anisotropic, the
most important geometric quantities that affect the conditioning of the global finite
element stiffness matrix are the scaled volume ρtmin|t| of each element t (or ρtmax|t|,
as we anticipate that ρtmax and ρtmin are of the same order for a given t), and the
corresponding value of Qd(t). This is a rather universal property that is valid for
general finite element spaces and general model equations. An effective control on
these quantities in the meshing procedure may bear significance on the control of the
conditioning of the linear systems coming from the finite element approximations. In
the two-dimensional case, we know that Q2(t) corresponds to

∑
cot θi with {θi}3i=1

being the angles of the triangle t; thus, avoiding small angles in the triangulation is
always preferred, as in the case of the Delaunay triangulation [22, 34, 37]. In fact,
Qd(t) (for d = 2 or 3) has also been used as a mesh quality measure in many earlier
studies on unstructured triangular meshes [5, 27, 30]. It has been labeled as a (smooth)
conditioning quality measure in [37] based on the explicit calculation quoted earlier
for the special case of the Poisson equation with a piecewise linear element. Relations
between Qd(t) and other mesh quantity measures (see a nice summary in [37]) can
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also be established. For example, let rin(t) be the radius of the largest inner-sphere
of t; then

Qd(t)r2in(t) ≤ |t|−1
d+1∑
i=1

|Ai|2ĥ2
i (t) ≤ (d+ 1)3|t| ,

where {ĥi(t)} are the heights of the simplex t corresponding to the faces {Ai}. Sim-
ilarly, letting rmc(t) be the radius of the smallest containment sphere of t (the
min-containment radius [37]), we have

4Qd(t)r2mc(t) ≥ |t|−1
d+1∑
i=1

|Ai|2ĥ2
i (t) ≥ (d+ 1)3|t|.

These inequalities imply that

(3.26)
(d+ 1)3|t|
4r2mc(t)

≤ Qd(t) ≤ (d+ 1)3|t|
r2in(t)

.

Thus, how Qd(t) varies with respect to a scaled volume is very much related to the
traditional characterization of the dependence of rin(t) and rmc(t) on the volume. We
leave more discussions along this line for future work.

4. Numerical validation and applications. We now apply the general esti-
mates obtained in the previous section to various special cases. Some of these are
widely known and are consistent with the popular understanding in the finite ele-
ment and meshing community, while others are interesting on their own. Numerical
examples are provided to assess whether the estimates are sharp.

4.1. Two-dimensional uniform triangular element. As a special case, we
consider a two-dimensional rectangular domain with a uniform triangular mesh con-
sisting of right triangles, but with different aspect ratios; see Figure 4.1 for an illus-
tration. We take ρ = 1 in this case. Let h be the length of the diagonal of each right
triangle, and let θ and π/2 − θ be the two acute angles. Theorem 3.1 implies the
following.

Corollary 4.1. Given the uniform triangular mesh described above, and under
the assumptions on the finite element spaces made earlier, for the model bilinear form
aΩ in (2.5), we have the condition number estimate

(4.1)
c1

h2 sin2(2θ)
≤ Cond(K) ≤ c2

h2 sin2(2θ)

for some positive constants c1 and c2, independent of h and θ.
Proof. It follows from a simple calculation that for each triangle t, we have

|t| = h2 sin(2θ)/4 and Q2(t) = 8/sin(2θ). Substituting into the inequality (3.20), we
get (4.1) immediately.

The result in Corollary 4.1 is widely known in the finite element and meshing
community [2, 38]. It is in fact quite sharp. In Tables 4.1 and 4.2, we present some
numerical results computed on such uniform triangular meshes with the total number
of elements being fixed (= 8192), but with different values for the angle θ. Thus, we get
meshes of varying degrees of aspect ratio, and h2 is proportional to sin−1(2θ). The
estimate (4.1) in Corollary 4.1 predicts that the condition number is proportional
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Fig. 4.1. Uniform triangular meshes with isosceles right triangles (left) and right triangles with
small angles (right).

Table 4.1

The linear element case for the uniform triangular mesh.

Mesh λKt
max λK

max λK
min Condition number

4 × 1024 256.00 1024.011 0.004699 2.179372e+5
8 × 512 64.004 256.0577 0.004788 5.347539e+4
16 × 256 16.016 64.24519 0.004811 1.335275e+4
32 × 128 4.0655 16.99518 0.004817 3.528104e+3
64 × 64 1.5000 7.995182 0.004818 1.659380e+3

Table 4.2

The quadratic element case for uniform triangular mesh.

Mesh λKt
max λK

max λK
min Condition number

4 × 1024 682.67 1365.352 0.001198 1.140045e+6
8 × 512 170.69 341.4147 0.001204 2.836673e+5
16 × 256 42.750 85.66466 0.001205 7.108828e+4
32 × 128 11.023 22.66466 0.001205 1.880261e+4
64 × 64 4.7420 10.66466 0.001205 8.846961e+3

to sin−1(2θ), regardless of the order of the finite element spaces used. The same
proportionality is true for λKmax as predicted by Lemma 3.4 and the computation
above. In Tables 4.1 and 4.2, for each mesh we report the corresponding largest
eigenvalue of the element stiffness matrix, the extreme eigenvalues, and the condition
number of global stiffness matrix. The quantity λKmin is nearly unchanged, which is
consistent with the theoretical prediction in Lemma 3.3 since the elements have a
constant volume. Meanwhile, λKmax and Cond(K) both grow when θ approaches 0
or π/2, while their minimum values are attained for θ = π/4 corresponding to the
64× 64 mesh.

In Figure 4.2, we plot with respect to sin−1(2θ) (the horizontal axis) the curves of
the largest eigenvalue and the condition number, respectively, for both the linear and
the quadratic elements. The condition number for the quadratic case is normalized
by a factor of 5.12 so as to fit into the same plot range. The perfect linear behavior
verifies the theoretical prediction.

4.2. Finite element on quasi-volume-uniform, shape-regular meshes.
The previous example focuses on the effect of the shape regularity on the condition
number with a uniform element size (volume). We now discuss some effect of the
element size on the condition number when the shapes of the elements remain regular.
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Fig. 4.2. Plots against sin−1(2θ) (the horizontal axis) of Cond(K) and λmax(K) for the linear
element (left) and Cond(K)/5.12 and λmax(K) for the quadratic element (right). Here, the solid
lines represent λmax(K).

In this subsection, we consider a simplicial mesh τ with simplices t ∈ τ satisfying

(4.2) ρ1|t|2−2/d ≤
∑
i

A2
i ≤ ρ2|t|2−2/d ∀t ∈ τ

for some positive constants ρ1 and ρ2, independent of t. We refer to such meshes as
shape regular. In light of (3.26), to assure (4.2), it is sufficient to assume that

rmc(t) ≤ ρ3rin(t) ∀ t ∈ τ

for some constant ρ3. Note that the latter condition is consistent with the traditional
meaning of shape regularity given in standard texts (see, e.g., [11]).

Meanwhile, we refer to a simplicial mesh τ as being quasi volume-uniform if

(4.3) min
t∈τ |t| ≥ ρ3 max

t∈τ |t| ∀t ∈ τ

holds for some positive constant ρ3, independent of t. Note also that this is somewhat
different from the traditional notion of a quasi-uniform mesh, which is measured using
the diameters of the elements rather than the volumes [11].

First of all, we take d = 2 and consider the conforming linear element space on
a quasi-volume-uniform and shape-regular triangulation. Theorem 3.1 implies the
following.

Corollary 4.2. For the model bilinear form aΩ in (2.5) with a two-dimensional
linear triangular element space defined on a quasi-volume-uniform and shape-regular
triangulation, if h is the mesh parameter (diameter of the largest triangle), then

c1h
−2 ≤ Cond(K) ≤ c2h−2

for some constants c1 and c2, independent of h.
Proof. We notice that under the assumption on the triangulation, for each triangle

t, Q2(t) = |t|−1
∑3

i=1 |Ai|2 and |t|h−2 remains uniformly bounded below and above
by positive constants. Substituting into the inequality (3.20) with ρ = 1, we get the
corollary immediately.

While the above corollary is widely known, a lesser-known version about general
Lagrange triangular finite element spaces remains true [2].

Corollary 4.3. For the model bilinear form aΩ in (2.5) discretized by a finite el-
ement space with an invariant basis defined on a quasi-volume-uniform d-dimensional
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simplicial mesh with h being the mesh parameter (diameter of the largest simplex), if
we further assume that all the simplices are shape regular in the sense of (4.2), then

c
(n,d)
1 h−2 ≤ Cond(K) ≤ c(n,d)2 h−2

for some constants c(n,d)1 and c
(n,d)
2 , which are dependent on the finite element basis

on the reference element t0 and dimension d, but are independent of h.
The proof follows from the same line of argument as in the two-dimensional linear

element case. We note that these corollaries can of course be derived in other ways,
for instance, with the use of inverse inequality [11].

4.3. Finite element on nonuniform shape-regular meshes. We now con-
sider the case of shape-regular meshes, as specified by (4.2), but without the quasi-
volume-uniform assumption. Thus, the element sizes |t| are allowed to vary in a very
large range. We then have the following.

Corollary 4.4. For the model bilinear form aΩ in (2.5) with a general simplicial
finite element space satisfying the conditions given in Theorem 3.1, corresponding to
a d-dimensional simplicial mesh τ satisfying condition (4.2), we have

(4.4)
c1 maxt∈τ |t|1−2/d

maxt∈τ{ρtmax|t|}
≤ Cond(K) ≤ c2 maxt∈τ |t|1−2/d

mint∈τ{ρtmin|t|}
for some constants c1 and c2 which are dependent on the finite element space but are
independent of mesh geometry.

The above result is interesting, for example, in the context of adaptive finite
element simplicial meshes satisfying (4.2) but containing elements with considerable
variations in their sizes. Preserving shape regularity is often implemented in the local
mesh refinement procedure so that it is reasonable to expect that (4.2) is satisfied.

Let hmin be the diameter of the smallest element in an adaptive finite element
mesh satisfying (4.2). In both one and two space dimensions, we see that the use of
a constant density ρ = 1 would yield an upper bound proportional to h−2

min, which is
about the same order for the condition number of the linear system resulting from
a uniform mesh of the mesh size hmin, though the degree of freedom (and thus the
dimension of the global stiffness matrix) may be much smaller in the adaptive case
than in the uniform case. Yet, this is generally not sharp. In [20], it was shown that
with the element size distribution being inversely proportional to the nonuniform
density, that is,

(4.5) c1N
−1 ≤ ρtmin|t| ≤ ρtmax|t| ≤ c2N−1 ,

where N is the number of elements in τ , and c1 and c2 are some positive constants,
the sharper upper bound

(4.6) Cond(K) ≤ cNhmin

holds. This is naturally consistent with the estimate given in (4.4). The sharper
estimate indicates a much better condition number, and thus further demonstrates
the greater efficiency of the adaptive mesh in both representing the PDE solutions
and improving the conditioning of the resulting linear systems. For the inequalities
(4.5) to hold for a smoothly defined density function, the variation in the element
sizes needs to be properly controlled. Yet, we present a simple numerical example to
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Fig. 4.3. Plots of Cond(K)hmin (left) with respect to different m (horizontal axis) and the
logarithms of all 41 eigenvalues of K for m = 21 (right).

illustrate that the bound (4.6) remains quite accurate even for highly graded meshes.
We take a two point boundary value problem,

(4.7) −u′′ = f on (−1, 1) , and u(−1) = u(1) = 0,

and consider the discretization with the linear finite element on a geometrically graded
mesh xi = sgn(i − m)2|i−m|−m for 0 ≤ i ≤ 2m. For this mesh, hmin = 21−m and
N = 2m− 1. We note first that the bounds on the largest eigenvalue in Lemma 3.4
gives the sharp estimate

λK2m−1 = O(h−1
min) = O(2m).

In Figure 4.3, we plot, with respect to m (the horizontal axis in the left figure), the
product of hmin and Cond(K). The near linear scaling in m of Cond(K)hmin implies
that Cond(K) grows on the order of Nh−1

min rather than O(h−2
min), which is consistent

with the sharper estimate (4.6).
As mentioned in [37], a few small elements in a largely uniform mesh tend to

produce large condition numbers, but in fact, they may only lead to a few outliers in
the eigenvalue distributions and can thus be treated effectively. We also plot in Fig-
ure 4.3 the distribution of the logarithm of all 41 eigenvalues for the stiffness matrix
corresponding to m = 21. It shows that, rather than giving only a few outliers, the ge-
ometrically (exponentially) graded meshes produced nearly exponentially distributed
eigenvalues. The same numerical results can also be reproduced for two-dimensional
analogues as well.

Similar numerical examples can be constructed for two-dimensional problems. In
dimensions three or higher, if we take ρ = 1, then the upper bound of the condition
number estimate in Corollary 4.4 shows the dependence on h−dmin, which is even worse
than the dimension-independent estimate O(h−2

min) in Corollary 4.2 for a quasi-volume-
uniform shape-regular mesh with mesh size hmin. One may expect that it might be
possible to get sharper bounds using a nonuniform density. We will examine these
issues in greater detail in the future.

4.4. Finite element with three-dimensional tetrahedral meshes. Finite
element methods are very popular for many large-scale three-dimensional problems.
Three-dimensional unstructured tetrahedral mesh generation and optimization have
also attracted much attention. For most mesh generators, a mesh sizing measure is
introduced so that a mesh with suitably distributed sizing measure can be produced.
Yet, controlling the shape regularity of the elements in spaces of three and higher
dimensions remains a challenging task [17, 24, 31, 37].
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Table 4.3

Extreme eigenvalues for Poisson equation with three-dimensional coarser meshes.

Nτ max
t∈τ

Q3(t) min
t∈τ

|t| max
t∈τ

|t| λK1
min λK1

max λK2
min λK2

max

7553 934 0.00097 0.236 0.240 110.42 0.03 209
7838 472 .00193 0.269 0.253 60.64 0.03 107.3
7879 311 .00298 0.282 0.254 36.15 0.03 72
7837 181 .00491 0.264 0.254 26.51 0.03 42.5
7532 160 .00515 0.208 0.2401 17.30 0.03 37.51
7737 118 .00594 0.242 0.247 18.24 0.03 28.67
7584 108 .0103 0.235 0.240 16.68 0.03 25.72
7545 95 0.00932 0.202 0.240 13.61 0.03 23.02

Table 4.4

Extreme eigenvalues for Poisson equation with a three-dimensional finer mesh.

Nτ max
t∈τ

Q3(t) min
t∈τ

|t| max
t∈τ

|t| λK1
min λK1

max λK2
min λK2

max

21244 2013 1.43e-4 0.0702 0.0836 227.8 0.01 450.11
22180 1103 1.58e-4 0.105 0.0831 113.37 0.01 247
22098 599 4.34e-4 0.101 0.0833 59.53 0.01 137.1
22060 401 5.99e-4 0.0927 0.0833 49.25 0.01 91.17
22065 335 8.09e-4 0.0958 0.0833 43.32 0.01 75.81
21460 259 8.66e-4 0.0727 0.0833 33.51 0.01 58.67
21522 257 7.51e-4 0.0743 0.0834 33.92 0.01 59.4
21710 255 4.73e-4 0.0854 0.0835 25.15 0.01 58.10
21638 121 2.25e-3 0.0837 0.0834 17.23 0.01 28.13
21575 115 2.18e-3 0.0784 0.0834 18.79 0.01 26.93
21315 114 2.34e-4 0.0749 0.0834 17.05 0.01 26.4
21273 84 2.73e-3 0.0696 0.0835 13.75 0.01 20.33

We now present some examples of the condition numbers of the stiffness matrix
for the Poisson equation (2.5) in a cubic box [0, 10]3 with a homogeneous Dirichlet
boundary condition. The equation is solved based on some unstructured tetrahedral
meshes generated with a uniform sizing measure. For detailed discussions on the
related mesh generation procedures, we refer to [13, 14, 16, 17, 25] and the references
cited therein. In our numerical results, computations are performed on meshes having
two levels of resolution with the coarser meshes having element numbers ranging
from 7500 to 7900 and with the finer meshes having element numbers ranging from
21200 to 22100. The results of the corresponding extreme eigenvalues of the global
stiffness matrices denoted by {λKi

min , λ
Ki
max}2i=1 for the linear and quadratic elements,

respectively, are reported in Tables 4.3 and 4.4 for the various meshes.

It is of course straightforward to get the condition numbers from the ratios of the
extreme eigenvalues. In each case, we also list the number of elements (Nτ ) in the
mesh τ , the maximum (maxt∈τ |t|) and minimum (maxt∈τ |t|) values of the element
volumes, and the maximum value of Q3(t) for t ∈ τ . We may see from the tables
that the smallest eigenvalues {λKi

min}2i=1 remain nearly constant for meshes at the
same level with a ratio of nearly factor 8 between the linear and quadratic elements.
Notice that the smallest and the largest element volumes do vary between meshes at
the same level, so the lower and upper bounds in (3.18) are not tight in this case.
Meanwhile, for the largest eigenvalues, they follow proportionally to the values of
Qd(t) as predicted by estimate (3.19). More extensive computational studies for more
general equations and geometric domains are currently under investigation.
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4.5. Effect of anisotropy. Diffusion equations with highly anisotropic coeffi-
cients have wide applications in many practical problems. In [37], some discussions
have been given for the linear finite element corresponding to an anisotropic Poisson
equation of the form (3.21) with A = A(x) being replaced by a constant matrix B.

To simplify the notation, we take the two-dimensional case as an example. Let
v1, v2 denote the orthogonal unit eigenvectors of B, and let ξ1, ξ2 be the corresponding
eigenvalues. Then, B = ξ1v1v

T
1 + ξ2v2v

T
2 . Let

G =
1√
ξ1
v1v

T
1 +

1√
ξ2
v2v

T
2 , or equivalently, G = B−

1
2 .

Define the change of variable (x̃, ỹ)T = G(x, y)T and f̃(x̃, ỹ) = f(G−1(x̃, ỹ)). Let Ω̃
denote the image of Ω and t̃ denote the image of an element t for any t ∈ τ . With the
above change of variable, (3.21) with the constant coefficient matrix B becomes (2.5)
for variables (x̃, ỹ) ∈ Ω̃ with unknown solution ũ and right-hand side f̃ .

When the linear Lagrange finite element method is employed to solve the problem
(3.21) with coefficient matrix B, since G−1∇bi = ∇̃b̃i (∇̃ and {b̃i} are the gradient op-
erator and the linear Lagrange basis in the new variable, respectively), we see that the
element stiffness matrix Kt on a triangle t is identical to the element stiffness matrix
for t̃ corresponding to the Poisson equation (2.5). Consequently, equilateral elements
may not necessarily lead to good conditioning for stiffness matrices of anisotropic
equations [37]. In [33], it is argued that an optimal uniform triangular mesh is equi-
lateral with respect to the metric, which is the inverse of the coefficient matrix, which
is consistent to the computation given in [37].

With the help of transformation G, the computations given in [37] can be readily
applied to the case of more general finite element spaces, following similar discus-
sions given in the earlier sections. It can thus be seen that the important geometric
factors affecting the stiffness matrix conditioning, for highly anisotropic problems,
are ρt̃min|t̃| and ρt̃max|t̃| of the transformed element t̃, and the corresponding value of
|t̃|−1

∑d+1
i=1 |Ãi|2.

For instance, consider the two-dimensional case with B being a diagonal tensor
with diagonal entries 81 and 1. In this case, G is also diagonal with entries 1/9 and 1.
Hence, thin triangles with an aspect ratio of roughly nine, oriented parallel to the x-
axis, ideally provide the optimal stiffness matrix conditioning. The numerical results
in Table 4.5 are obtained by solving the anisotropic equation in a unit square with
a linear finite element on meshes shown in Figure 4.1. As predicted, the condition
number corresponding to the triangulation of the 27 × 243 rectangular mesh is the
smallest.

Table 4.5

The linear element case for the anisotropic Poisson problem.

Mesh λKt
max λK

max λK
min Condition number

3 × 2187 7.290278e+2 2.916332e+3 0.112615 2.589641e+4
9 × 729 81.252329 3.278779e+2 0.122119 2.684904e+3
27 × 243 13.500000 71.876786 0.123214 5.833500e+2
81 × 81 81.252329 3.278767e+2 0.123336 2.658407e+3
243 × 27 7.290278e+2 2.916321e+3 0.123348 2.364306e+4
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5. Conclusion and future work. In this paper, the relations between the
spectral condition number of stiffness matrix and mesh geometry are systematically
explored. Our main results are rigorously derived and yet applicable to very general
equations, finite element spaces, and geometric meshes. They may lead to more work
in the following two directions: better understanding of the effect of geometry on
the matrix conditioning can lead to the development of better iterative solvers; at
the same time, better mesh generation and optimization strategies and mesh quality
measures can be devised to generate meshes on which a compromise between the
efficiency of the solver and the discretization error can be reached so that optimal
performance of finite element computations can be obtained.

There remain many interesting issues to be investigated in the future; for in-
stance, preconditioning can greatly improve the performance of the linear algebraic
solvers, and for many practical applications, the discrete algebraic problems can be
tractable only if effective preconditioners are used. It will thus be interesting to study
the precise dependence of the condition number estimates on the mesh geometry for
preconditioned stiffness matrices [36]. Also, it is well known that the stiffness ma-
trix conditioning will be different when different basis functions are employed [4, 9].
Comparisons of different basis selections for high-order elements remain to the inves-
tigated. This is particularly important for the p-version or h−p version finite element
methods [23, 35]. In addition, we have not considered equations involving convec-
tion terms, which may be solved by stabilized finite elements; the streamline-upwind
Petrov/Galerkin methods; and the residual-free bubbles methods. Such discussions
may become more complex due to the possible lack of symmetry in the stiffness matrix
and the loss of variational structure. Extensions to other interesting physical models
such as the elasticity equations and Stokes equations, and to nonsimplicial meshes
such as quadrilateral and hexahedral meshes (see [32, 28]), can also be considered.
While many more issues remain to be examined, the present work complements ex-
isting work in the literature, and together, they provide a rigorous and systematic
foundation for future studies.
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1. Introduction. Suppose we seek a small number of eigenvalues (and the asso-
ciated eigenspace) of the non-Hermitian matrix A ∈ C

n×n, having at our disposal a
nonsingular matrix N ∈ C

n×n that approximates A. Given a starting vector p0 ∈ C
n,

compute

(1.1) pj+1 = pj + N−1(θj −A)pj ,

where θj −A is shorthand for Iθj −A, and

θj =
(Apj ,pj)
(pj ,pj)

for some inner product (·, ·). Knyazev, Neymeyr, and others have studied this iteration
for Hermitian positive definite A; see [21, 22] and references therein for convergence
analysis and numerical experiments.

Clearly the choice of N will influence the behavior of this iteration. With N = A,
the method (1.1) reduces to (scaled) inverse iteration:

pj+1 = A−1pjθj .

We are interested in the case where N approximates A, yet one can apply N−1 to a
vector much more efficiently than A−1 itself. Such a N acts as a preconditioner for
A, and, hence, (1.1) represents a preconditioned iteration.
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This method contrasts with a different class of algorithms, based on inverse itera-
tion (or the shift-invert Arnoldi algorithm), that apply a preconditioner to accelerate
an “inner iteration” that approximates the solution to a linear system at each step; see,
e.g., [24, 13, 16] and [6, Chapter 11]. For numerous practical large-scale non-Hermitian
eigenvalue problems, such as those described in [25, 41], these inner iterations can be
extremely expensive and highly dependent on the quality of the preconditioner. In
contrast, as we shall see, the iteration (1.1) can converge to a leftmost eigenpair even
when N is a suitable multiple of the identity.

This paper provides a rigorous convergence theory that establishes sufficient con-
ditions for (1.1) to converge to the leftmost eigenpair for non-Hermitian A. We obtain
these results by viewing this iteration as the forward Euler discretization of the au-
tonomous nonlinear differential equation

(1.2) ṗ = N−1
(
p

(Ap,p)
(p,p)

−Ap
)

with a unit step size. Here A and N are fixed but p depends on a parameter,
t; ṗ denotes differentiation with respect to t. In the absence of preconditioning,
the differential equation (1.2) has been studied in connection with power iteration
[10, 29], as described in more detail below. The nonzero steady-states of this system
correspond to (right) eigenvectors of A, and, hence, one might attempt to compute
eigenvalues by driving this differential equation to steady-state as swiftly as possible.
Properties of the preconditioner determine which of the eigenvectors is an attracting
steady-state.

The differential equation (1.2) enjoys a distinguished property, observed, for ex-
ample, in [10, 29] with N = I. Suppose that p solves (1.2), θ = (p,p)−1(Ap,p), and
N is self-adjoint and invertible (A may be non-self-adjoint). Then for all t,

d

dt
(p,Np) =

(
N−1(pθ −Ap),Np

)
+
(
p,NN−1(pθ −Ap)

)
= (pθ,p)− (Ap,p) + (p,pθ)− (p,Ap)
= 0.(1.3)

Thus, (p,Np) is an invariant (or first integral), as its value is independent of time;
see [19, section 1.3] for a discussion of the unpreconditioned case (N = I), and, e.g.,
[4, 18] for a general introduction to invariant theory and geometric integration.

The invariant describes a manifold in n-dimensional space, (p,Np) = (p0,Np0),
on which the solution to the differential equation with p(0) = p0 must fall. Simple
discretizations, such as Euler’s method (1.1), do not typically respect such invari-
ants, giving approximate solutions that drift from the manifold. Invariant-preserving
alternatives (see, e.g., [18, 26]) generally require significantly more computation per
step (though a tractable method for the unpreconditioned, Hermitian case has been
proposed by Nakamura, Kajiwara, and Shiotani [28]). Our goal is to explain the rela-
tionship between convergence and stability of the continuous and discrete dynamical
systems. In particular, the quadratic invariant is a crucial property of the continuous
system, and plays an important role in the convergence theory of the corresponding
discretization, even when that iteration does not preserve the invariant.

For a non-Hermitian problem, one naturally wonders how (1.1) can be modified
to incorporate estimates of both left and right eigenvectors. In this case, we obtain
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the coupled iteration (given here without preconditioning)

(1.4)
{
ṗ = pθ −Ap,
q̇ = qθ −A∗q,

θ =
(Ap,q)
(p,q)

,

and a simple derivation reveals that (p,q) is invariant. Our analysis demonstrates
that this two-sided dynamical system often suffers from finite-time blowup; in the
discrete scheme this is tantamount to incurable breakdown, a well-known ailment of
oblique projection methods (see [5] for a discussion and references to the literature
within the context of non-Hermitian Lanczos methods).

A longstanding association exists between eigenvalue iterations and differential
equations [1, 2, 3, 10, 11, 15, 19], often involving the observation that iterates of a
particular eigenvalue algorithm are exactly discrete-time samples of some underlying
continuous-time system. Notable examples include Rayleigh quotient gradient flow
[10, 27], connections between the QR algorithm for dense eigenproblems and Toda
flow [29, 39], and more general “isospectral flows” [42]. For example, Chu notes that
the iterates of the standard power method can be obtained as integer-time samples of
the solution to the system (1.2) with N = I and A replaced by logA [10, eq. (2.7)].

The present study draws upon this body of work, but takes a different perspec-
tive: we seek a better understanding of iterations such as (1.1) that provide only
approximate solutions (with a truncation error due to discretization) to continuous
time systems such as (1.2). The distinction is significant: for example, a continuous-
time generalization of the power method will converge, with mild caveats, to the
largest magnitude eigenvalue, whereas the related systems we study can potentially
converge to the leftmost eigenvalue at a shift-independent rate with little more work
per iteration than the power method; see Theorems 4.4 and 6.3.

The connection between eigensolvers and continuous-time dynamical systems also
arises in applications. For example, the Car–Parrinello method [8] determines the
Kohn–Sham eigenstates from a second-order ordinary differential equation, Newton’s
equations of motion (see [34, p. 1086] for a formulation using (1.2) with no precon-
ditioning). The heavy ball optimization method [35] also formulates the minimum of
the Rayleigh quotient via a second order ordinary differential equation. In [7], the
ground state solution of Bose–Einstein condensates are determined via a normalized
gradient flow discretized by several time integration schemes. (Both the Kohn–Sham
eigenstates and Bose–Einstein condensates give rise to self-adjoint nonlinear eigen-
value problems.)

We begin our investigation with a study of various unpreconditioned iterations
(N = I). Section 2 introduces basic differential equations for computation of invariant
subspaces of matrix pencils, and then identifies parameter choices that yield invariant-
preserving iterations. Near steady states, the solutions to these systems can be viewed
as exact invariant subspaces for nearby matrices, as observed in section 3. From this
point we focus on single vector iterations for standard eigenvalue problems. Section 4
describes exact solution formulas for two unpreconditioned continuous-time systems,
one-sided and two-sided methods. As such exact solutions for the preconditioned case
are elusive, we analyze such systems asymptotically using center manifold theory in
section 5. These two sections provide the foundation for the main result of section 6,
the development of sufficient conditions for convergence of (1.1) for non-Hermitian
matrices.

2. Dynamical systems and invariant manifolds. We first examine proper-
ties of the dynamical system (1.2) and various generalizations suitable for computing
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eigenvalues of non-Hermitian matrix pencils. Let A,B ∈ C
n×n be general matrices

with fixed (time-invariant) entries. For the generalized eigenvalue problem Ax = Bxλ
with N = I, the system (1.2) expands to

ṗ = Bpθ −Ap

for appropriate θ = θ(t). This equation suggests a generalization from a system with
the single vector p ∈ C

n to a system that evolves an entire subspace, given by the
range of a matrix P ∈ C

n×k:

Ṗ = BPL−AP,

where differentiation is still with respect to the autonomous variable t; we shall address
the choice of L(t) ∈ C

k×k momentarily. (Quantities such as L are t-dependent unless
explicitly stated otherwise; we typically suppress the t argument to simplify notation.)

For non-Hermitian problems one might simultaneously evolve an equation for the
adjoint to obtain approximations to the left eigenspace, which suggests the system

(2.1) Ṗ = BPL−AP
Q̇ = B∗QM∗ −A∗Q,

with initial conditions P(0) = P0 and Q(0) = Q0, where P,Q ∈ C
n×k, and L,M ∈

C
k×k. The choice we make for the time-dependent L,M ∈ C

k×k can potentially
couple P and Q as introduced in (1.4). Here ·∗ denotes the conjugate transpose and
(·, ·) the standard Euclidean inner product (though this analysis generalizes readily
to arbitrary inner products). If this system is at a steady state, i.e., Ṗ = Q̇ = 0, then

(2.2) BPL = AP, B∗QM∗ = A∗Q,

and, hence, provided P and Q have full column rank, the eigenvalues of L and M are
included in the spectrum of the pencil A− λB, while the columns of P and Q span
right- and left-invariant subspaces of the same pencil. We shall motivate the choice of
L and M through generalizations of the invariant discussed in the introduction. The
following notation facilitates the analysis of these subspace iterations.

Definition 2.1. Given P,Q ∈ C
n×k, define (P,Q) = Q∗P ∈ C

k×k; i.e., the
(i, j) entry of (P,Q) satisfies (P,Q)i,j := (Pej ,Qei), where e� denotes the �th column
of the k × k identity matrix.

In this notation, we have the homogeneity property (PL,Q) = Q∗PL = (P,Q)L.
Consider the pairs of (time-dependent) functions

(2.3) (Q,P), (P,Q) and (P,P), (Q,Q)

with derivatives

d

dt
(Q,P) =

(
Q̇,P

)
+
(
Q, Ṗ

)
,

d

dt
(P,Q) =

(
Ṗ,Q

)
+
(
P, Q̇

)
,

and

d

dt
(P,P) =

(
Ṗ,P

)
+
(
P, Ṗ

)
,

d

dt
(Q,Q) =

(
Q̇,Q

)
+
(
Q, Q̇

)
.

Inspired by (1.3), we next investigate how best to choose L and M to make either
pair in (2.3) invariant under the system (2.1).
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Theorem 2.2. For the system of ordinary differential equations (2.1) with initial
conditions P(0) = P0 ∈ C

n×k and Q(0) = Q0 ∈ C
n×k, the choices

(2.4) L = (BP,Q)−1(AP,Q), M∗ = (Q,BP)−1(Q,AP)

give

d

dt
(P,Q) =

d

dt
(Q,P) = 0,

and, hence, (P,Q) = (P0,Q0) and (Q,P) = (Q0,P0) hold for all t.
Proof. Note that

d

dt
(P,Q) =

(
Ṗ,Q

)
+
(
P, Q̇

)
= (BP,Q)L− (AP,Q) + M(P,B∗Q)− (P,A∗Q)(

d

dt
(Q,P)

)∗
=
(
P, Q̇

)
+
(
Ṗ,Q

)
= M(P,B∗Q)− (P,A∗Q) + (BP,Q)L− (AP,Q),

where we have used (2.1) and the homogeneity property. We can force (d/dt)(P,Q)
to zero by setting L and M as in (2.4).

The next result is a direct analogue of Theorem 2.2 for the second pair in (2.3).
We omit the proof, a minor adaptation of the last one.

Theorem 2.3. For the system of ordinary differential equations (2.1) with initial
conditions P(0) = P0 ∈ C

n×k and Q(0) = Q0 ∈ C
n×k, the choices

L = (BP,P)−1(AP,P), M∗ = (Q,BQ)−1(Q,AQ)

give

d

dt
(P,P) =

d

dt
(Q,Q) = 0,

and, hence, (P,P) = (P0,P0) and (Q,Q) = (Q0,Q0) for all t.
The formulations for L and M given in Theorems 2.2 and 2.3 are known as

generalized Rayleigh quotients [38]. With these values of L and M, we refer to (2.1) as
the two-sided and one-sided dynamical systems. Theorem 2.2 shows that if P∗0Q0 = I,
then the two-sided solutions will preserve this property (allowing for biorthogonal
bases for left and right invariant subspaces), though possibly at the expense of growing
‖P‖ or ‖Q‖. Theorem 2.3, on the other hand, shows that the one-sided iteration
maintains ‖P‖ and ‖Q‖, though biorthogonality will generally be lost. From the
invariants we also see that the system preserves the rank of solutions to both one-
and two-sided equations—provided they exist (see section 4). Since (P,P) is fixed for
the one-sided system, so too are all singular values (and, thus, the rank) of P. For the
two-sided system, if (P0,Q0) is full rank, (P,Q) must always be as well, and, hence,
P and Q individually have full rank.

We denote the dynamical systems (2.1) given the generalized Rayleigh quotients
of Theorems 2.2 and 2.3 as “two-sided” and “one-sided”, respectively. We refer to the
ensuing schemes that result from discretizing (2.1) as “two-sided” and “one-sided”
iterations.
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3. Invariants and backward stability. We saw in (2.2) that, at a steady
state, the eigenvalues of L and M are exact eigenvalues of the pencil A − λB. As
the system approaches a steady state, how well do the eigenvalues of the invariant-
preserving choices for L and M approximate the eigenvalues of the pencil?

First, consider the one-sided system, with L as given in Theorem 2.3 and P full
rank. The first part of (2.1) can then be written as

0 = BPL−
(
A + Ṗ(P,P)−1P∗

)
P,

from which we see that the eigenvalues of L form a subset of the spectrum of the
perturbed pencil (A + Ṗ(P,P)−1P∗) − λB. How large can such perturbations be?
Note that (P,P)−1P∗ = P+ is the pseudoinverse of P, and so

∥∥∥Ṗ(P,P)−1P∗
∥∥∥ ≤ ∥∥∥Ṗ∥∥∥∥∥P+

∥∥ =

∥∥∥Ṗ∥∥∥
σk

,

where σk is the smallest singular value of P ∈ C
n×k. As discussed at the end of

section 2, the choice of L in Theorem 2.3 that makes (P,P) invariant also makes σk
invariant. Thus, when ‖Ṗ‖ is small, i.e., near a steady state, we conclude that the
eigenvalues of L are the exact eigenvalues of a nearby pencil, with σ−1

k acting as a
condition number does in a backward error bound; that condition number can be set
to one simply by taking (P0,P0) = I. (This is related to an error bound for Rayleigh–
Ritz eigenvalue estimates for a Hermitian matrix using a nonorthogonal basis; see [32,
Theorem 11.10.1].) This analysis suggests that a departure from orthogonality in a
numerical integration of the differential equation is reflected in degrading accuracy of
the approximate eigenvalues.

Now consider the two-sided system with L and M as given by Theorem 2.2 with
nonsingular (BP,Q). We wish to rewrite (2.1) in the form

0 = BPL− (A + E)P
0 = B∗QM∗ − (A∗ + E∗)Q

for the same E in both iterations. Lemma 1 of [20] implies that such a perturbation
E exists if and only if

(BP,Q)L = M(BP,Q),

which holds for the choice of L and M given in Theorem 2.2. The perturbation E is
not unique, but EP = Ṗ and E∗Q = Q̇. Moreover, the “main theorem” of [20] gives

min ‖E‖2 = max
{∥∥Ṗ∥∥2,

∥∥Q̇∥∥2

}
if (P,P) = Ik and (Q,Q) = Ik. However, as the authors of [20] explain, a small ‖E‖2
is irrelevant unless ‖(P,Q)−1‖2 is also small. In particular, when P is orthogonal to
Q, min ‖E‖2 is undefined. The discussion following Theorem 4.1 in subsection 4.1
explains that a large (or undefined) ‖(P,Q)−1‖2 is equivalent to near breakdown (or
serious breakdown) of the two-sided dynamical system.

We caution the reader that backward stability alone does not provide information
on forward error, or accuracy, of the steady-states when A �= A∗. The relevance of
backward stability is that the solution of our one- and two-sided systems are, at all
times, steady-states for a related dynamical system. The distance to this related
perturbed system depends upon the norm of the residuals.
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4. Convergence analysis. At least for single-vector iterations (i.e., k = 1),
the analysis of the one- and two-sided dynamical systems follows readily from the
remarkable fact that, in many cases, simple formulas give the exact solutions of these
nonlinear differential equations. This observation, inspired by a lemma of Nanda [29],
informs convergence analysis of the eigeniterations that result from the discretization
of these equations. Though expressed for the standard eigenvalue problem, these re-
sults can naturally be adapted to the generalized case by replacing A with B−1A. We
discuss the solution operators for two-sided systems, followed by one-sided systems.

4.1. Two-sided systems. The following result generalizes a result of Nanda
[29, Lemma 1.4] for the two-sided dynamical system.

Theorem 4.1. Consider the partitioned set of ordinary differential equations

(4.1)
ṗ = pθ −Ap
q̇ = qθ̄ −A∗q,

with p(0) = p0 and q(0) = q0, where p,q ∈ C
n, (p0,q0) �= 0, and

θ =
(Ap,q)
(p,q)

.

Then there exists some tf > 0 such that for all t ∈ [0, tf),

p(t) = e−Atp0π(t), q(t) = e−A∗tq0π(t),

where

(4.2) π(t) =

√
(p0,q0)

(e−Atp0, e−A∗tq0)
.

Proof. We define p(t) = e−Atp0π(t) and q(t) = e−A∗tq0π(t), and will show that
these formulas satisfy the system (4.1). Note that

π̇ =
π

2

((
Ae−Atp0, e

−A∗tq0
)

+
(
e−Atp0,A∗e−A∗tq0

))
(e−Atp0, e−A∗tq0)

= π

(
Ae−Atp0, e

−A∗tq0
)

(e−Atp0, e−A∗tq0)

= π

(
Ae−Atp0π, e

−A∗tq0π̄
)

(e−Atp0π, e−A∗tq0π̄)
= π

(Ap,q)
(p,q)

= πθ.

Differentiating the formulas for p and q, thus, gives

ṗ = −Ae−Atp0π + e−Atp0π̇ = −Ap + θp

q̇ = −A∗e−A∗tq0π̄ + e−A∗tq0 ˙̄π = −A∗q + θ̄q,

as required. The hypothesis that (p0,q0) �= 0 ensures the existence of the solution at
time t = 0. The formula will hold for all t > 0, until potentially

(4.3)
(
e−Atp0, e

−A∗tq0

)
= 0.
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We define tf to be the smallest positive t for which (4.3) holds. If no such positive t
exists, the solution exists for all t > 0 and we can take tf =∞ in the statement of the
theorem.

Theorem 4.1 gives (p,q) = (p0,q0), precisely as Theorem 2.2 indicates. Under
the conditions of Theorem 4.1, solutions of the two-sided single-vector equations (4.1)
have the same direction as solutions of the simpler linear systems ẋ = −Ax, x(0) = p0
and ẏ = −A∗y, y(0) = q0, but the magnitudes of p and q vary nonlinearly with
(4.2). In particular, the inner product of p and q can be zero—even with both p and
q nonzero—leading to finite time blow-up of (4.1). Note that if(

e−Atp0√
(p0,q0)

,
e−A∗tq0√
(q0,p0)

)
= 0,

then π(t) is undefined. Hence, finite time blow-up is analogous to serious breakdown
[43, p. 389], a problem endemic to oblique projection methods (see, e.g., [5]). This
ratio will be nonzero but small in the vicinity of blow-up (or near-breakdown), a
situation that commonly occurs in discretizations of these equations. The salient
issue is that p and q are nearly orthogonal and so

(4.4)
(p,q)
‖p‖ ‖q‖ =

(
e−Atp0

‖e−Atp0‖ ,
e−A∗tq0

‖e−A∗tq0‖
)

is a useful quantity to measure. This number is small when the secant of the angle
between p and q is large. In section 6 we shall see the important consequences of
these observations for eigensolvers derived from the discretization of (4.1).

One can avoid breakdown altogether by using starting vectors p0 and q0 that are
sufficiently accurate approximations to the right and left eigenvectors of A associated
with the leftmost eigenvalue. Suppose A is diagonalizable with a simple leftmost
eigenvalue λ1, and all other eigenvalues strictly to the right of λ1. Thus, there exists
invertible X and diagonal Λ such that

A = XΛX−1

with Λ1,1 = λ1. Write λj = Λj,j , so that Reλj > Reλ1 for j = 2, . . . , n. Define
r = X−1p0 and s = X∗q0; i.e., r and s are the expansions of the starting vectors in
biorthogonal bases of right and left eigenvectors of A.

Theorem 4.2. Under the setting established in the last paragraph, the condition

|r1s1| >
n∑
j=2

|rjsj |

is sufficient to ensure that the dynamical system (4.1) has a solution for all t ≥ 0
given by Theorem 4.1; i.e., no incurable breakdown occurs.

Proof. First note that

(
e−Atp0, e

−A∗tq0
)

=
(
Xe−ΛtX−1p0,X−∗e−Λ∗tX∗q0

)
= (e−2Λtr, s) =

n∑
j=1

rjsje
−2λjt.

Since Reλ1 < Reλj for j > 2, we have |e−2λ1t| ≥ |e−2λjt| for all t ≥ 0. The hypothesis
involving r and s, thus, implies, for t ≥ 0, that

∣∣r1s1e−2λ1t
∣∣ ≥ n∑

j=2

∣∣rjsje−2λjt
∣∣ .
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Given this expression, we can twice apply the triangle inequality to conclude

0 <
∣∣r1s1e−2λ1t

∣∣− n∑
j=2

∣∣rjsje−2λjt
∣∣

≤ ∣∣r1s1e−2λ1t
∣∣−

∣∣∣∣∣∣
n∑
j=2

rjsje
−2λjt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n∑
j=1

rjsje
−2λjt

∣∣∣∣∣∣ =
∣∣∣(e−Atp0, e

−A∗tq0

)∣∣∣ .
Hence, π(t) in Theorem 4.1 is finite for all t ≥ 0, ensuring that the solution to the
dynamical system (4.1) does not blow up at finite time.

Theorem 4.2 implies that finite-time blow-up (or serious breakdown) is not generic
for (4.1). However, the sufficient condition provided suggests that excellent initial
approximations to the leftmost (left and right) eigenvectors are needed.

4.2. One-sided systems. The single vector one-sided system possesses a similar
exact solution, which has been studied in the context of gradient flows associated with
Rayleigh quotient iteration. We shall see that finite-time blow-up is never a concern
for such systems. The following is a modest restatement of a result of Nanda [29,
Lemma 1.4] (who considers the differential equation acting on the unit ball in R

n).
Theorem 4.3. Consider the ordinary differential equation

(4.5) ṗ = pθ −Ap,

with A ∈ R
n×n and initial condition p(0) = p0 ∈ R

n, where p0 �= 0 and

θ =
(Ap,p)
(p,p)

.

Then for all t ≥ 0, (4.5) has the exact solution

p(t) = e−Atp0ω(t),

where

ω(t) =

√
(p0,p0)

(e−Atp0, e−Atp0)
.

We omit the proof of this result, which closely mimics that of Theorem 4.1. Of
course, a similar formula can be written for the one-sided equation for q(t). The re-
striction to real matrices guarantees that (Ae−Atp0, e

−Atp0) = (e−Atp0,Ae−Atp0);
the result also hold for complex Hermitian A.

As before, p has the same direction as the solution to the dynamical system
ẋ = −Ax with x(0) = p0, but the magnitude is scaled by the nonlinear scalar ω.
Provided p0 �= 0, the one-sided system (4.5) cannot blow up in finite time, since
(p,p) �= 0, in stark contrast to the two-sided iteration. This collinearity implies that
the p vectors produced by the one- and two-sided systems provide equally accurate
approximations to the desired eigenvector, at least until the latter breaks down.

When A has a unique simple eigenvalue of smallest real part and the hypotheses
of Theorem 4.1 or 4.3 are met, the asymptotic analysis of the associated dynamical
system readily follows; cf. [19, section 1.3] for a generic asymptotic linear stability
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analysis of the one-sided iteration. In fact, one can develop explicit bounds on the
sine of the angle between p and the desired eigenvector x1, defined as

sin ∠(p,x1) := min
α∈C

‖αp− x1‖
‖x1‖ .

Theorem 4.4. Suppose A can be diagonalized, A = XΛX−1, and the eigenvalues
of A can be ordered as

Real(λ1) < Real(λ2) ≤ · · · ≤ Real(λn).

Let x1 and y1 denote right and left eigenvectors associated with λ1, with ‖x1‖ = 1
and y∗1x1 = 1. Then the solution p(t) to both systems (4.1) and (4.5) satisfies

sin∠(p(t),x1) ≤ ‖X‖ ‖X−1‖ ‖p0‖
|y∗1p0|e

Re(λ1−λ2)t

for all t ≥ 0 in the case of (4.5), and for all t ∈ [0, tf) in the case of (4.1).
Proof. Since x1 is a unit vector, we can write

sin ∠(p(t),x1) = min
α∈C

‖αp(t)− x1‖.

In both (4.5) and (4.1), p(t) is collinear with e−Atp0, so we can proceed with

sin ∠(p(t),x1) = min
α∈C

∥∥αXe−ΛtX−1p0 − x1
∥∥

≤
∥∥∥∥ eλ1t

y∗1p0
Xe−ΛtX−1p0 − x1

∥∥∥∥ ≤ ‖X‖ ∥∥X−1
∥∥ ‖p0‖
|y∗1p0|e

Re(λ1−λ2)t.

The first inequality follows from choosing a (suboptimal) value of α that cancels the
terms in the x1 direction. (For similar analysis of the Arnoldi eigenvalue iteration,
see [37, Proposition 2.1].)

An analogous bound could be developed for the convergence of q to the left
eigenvector y1. When A is far from normal, one typically observes a transient stage of
convergence that could be better described via analysis that avoids the diagonalization
of A; see, e.g., [40, section 28], which includes similar analysis for the power method.

The two-sided iteration converges to left and right eigenvectors of A associated
with the leftmost eigenvalue, provided the method does not breakdown on the way to
this limit. Several natural questions arise: How common is breakdown? How well
do discretizations mimic this dynamical system? Before investigating these issues in
section 6, we first address how preconditioning can accelerate—and complicate—the
convergence of these continuous-time systems.

5. Preconditioned dynamical systems. What does it mean to precondition
the eigenvalue problem? Several different strategies have been proposed in the lit-
erature (see especially the discussion in [21, pp. 109–110]); here we shall investigate
analogous approaches for our continuous time dynamical systems, and the implications
such modifications have on the convergence behavior described in the last section.

One might first consider applying to the generalized eigenvalue problem

Ap = Bpλ,

left and right preconditioners M and N, so as to obtain the equivalent pencil

(5.1)
(
M−1AN

) (
N−1p

)
=
(
M−1BN

) (
N−1p

)
λ.
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Provided B is invertible, one could then define

Â :=
(
M−1BN

)−1 (
M−1AN

)
= N−1B−1AN

p̂ := N−1p,

then apply the concepts from the preceding sections to the standard eigenvalue prob-
lem Âp̂ = p̂λ. For example, we could seek the leftmost eigenpair of Â by evolving
the dynamical system

˙̂p = p̂θ̂ − Âp̂,

with the (preconditioned) Rayleigh quotient

θ̂ =

(
Âp̂, p̂

)
(p̂, p̂)

=

(
N−1B−1Ap,N−1p

)
(N−1p,N−1p)

.

Note that Â and B−1A share the same spectrum because they are similar, and, hence,
the asymptotic rate in Theorem 4.4 is immune to the preconditioner. The application
of N could affect the system’s transient behavior, but M exerts no influence at all.1

Several choices for N are interesting. Taking N = A−1 gives Â = AB−1, an
alternative to the B−1A form suggested by the original problem. Similarity trans-
formations can also be used to balance a matrix to improve the conditioning of the
eigenvalue problem [31, 33], in which case N is constructed as a diagonal matrix
that reduces the norm of Â. Such balancing tends to decrease the departure from
normality associated with the largest magnitude eigenvalues. In fact, in the 1960 ar-
ticle that introduced this idea, Osborne refers to this procedure as “pre-conditioning”
[31]. A more extreme—if impractical—approach takes N to be a matrix that diago-
nalizes B−1A (provided such a matrix exists), a choice that minimizes the constant
‖X‖‖X−1‖ that describes the departure from normality in Theorem 4.4.

As useful as such improvements might be, these strategies fail to alter the asymp-
totic convergence rate described in Theorem 4.4. To potentially improve this rate,
one can apply the preconditioner N−1 directly to the residual pθ−Ap. Consider the
dynamical system

(5.2) ṗ = N−1(pθ −Ap),

where θ refers to the usual (unpreconditioned) Rayleigh quotient θ = (Ap,p)/(p,p).
Discretization of this system results in the familiar preconditioned eigensolver de-
scribed in (1.1). For this case, a generalization of Theorem 4.3 has proved elusive; we
have found no closed form for the exact solution. Indeed, as we shall next see, the
choice of preconditioner can even complicate the system’s local behavior.

Let x1 denote a unit eigenvector of A associated with the eigenvalue λ1. Note
that x1 is a steady-state of (5.2), linearizing about which gives the Jacobian

(5.3) J = N−1(I− x1x
∗
1)(λ1 −A).

As Jx1 = 0, the Jacobian J always has a zero eigenvalue, adding complexity to
conventional linear stability analysis. The challenge can be magnified by a poor

1Alternatively, by substituting (M−1BN)−1p̃ := N−1p in (5.1), we obtain a system driven by

Ã = M−1AB−1M that is independent of N.
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choice for N. For example, suppose

A =
[
1 0
0 2

]
, N = N−1 =

[
0 1
1 0

]
, x1 =

[
1
0

]
, λ1 = 1,

so that

J =
[
0 1
1 0

] [
0 0
0 1

] [
0 0
0 −1

]
=
[
0 −1
0 0

]
;

i.e., the Jacobian is a Jordan block with a double eigenvalue at zero.
To obtain a rough impression of the behavior of the continuous system when θ is

in the vicinity of λ1, consider the constant-coefficient equation ṗ = N−1(pλ1 −Ap),
whose solution obeys the simple formula

p(t) = eN
−1(λ1−A)tp(0).

Hence, the asymptotic behavior of p is controlled by the spectrum of N−1(λ1 −A).
Assuming that N−1(λ1 − A) has a simple zero eigenvalue, the convergence of this
system to the dominant eigenvector depends on the nonzero eigenvalues of N−1(λ1−
A): if this matrix has any other eigenvalues in the closed right half plane, the system
will not generically converge; if all nonzero eigenvalues are in the open left half plane,
then the convergence rate will be determined by the rightmost of them.

Specific choices for N−1 will naturally depend significantly on the application
problem at hand; in our general setting we seek to characterize basic traits of effec-
tive preconditioners. From the perspective of the convergence rate of the continuous
dynamical system, we seek a preconditioner N−1 such that the nonzero eigenvalues
of N−1(λ1 −A) are as far to the left as possible. While the leftmost eigenvalues of
N−1(λ1 − A) do not much affect the behavior of the continuous system, they can
have a significant effect on the stability of the discretized difference equation, i.e.,
the related eigensolvers. For example, if N−1(λ1 − A) moves all nonzero eigenval-
ues into the left half plane, then replacing N by 1

2N doubles the convergence rate of
the continuous system. (We shall see on page 1461 that there is “no free lunch” for
practical computations: the improved convergence rate of the continuous system is
counter-balanced by the need to use a smaller step size in the discretized system.)

To rigorously analyze the local behavior of the fully nonlinear system when p
approximates the eigenvector x1, we shall apply the center manifold theorem [9, 17],
a tool for studying a dynamical system whose Jacobian has an eigenvalue on the
imaginary axis. (Alternatively, we could restrict the system to the unit sphere in R

n.)
We assume that A ∈ R

n×n. Without loss of generality, assume that λ1 = 0, so that
the Jacobian at x1 (5.3) takes the form J = −N−1(I− x1x

∗
1)A. Thus, for p near x1

we have

ṗ = Jp + F(p)

for the nonlinear function F(p) = N−1(θ(p)p− (Ap,x1)x1) that, by definition of the
Jacobian, satisfies ‖F(p)‖ = o(‖p− x1‖).

Suppose that J has a simple zero eigenvalue, and the rest of its spectrum is in
the open left half plane. There exists some invertible (real, if J is real) matrix S with
first column x1 and

S−1JS =
[
0 0
0 C

]

for some C ∈ R
(n−1)×(n−1) whose spectrum is in the open left half plane.
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We now transform coordinates into a form in which the center manifold theorem
can most readily be applied. Define

r(t) = S−1(p(t)− x1),

so that

ṙ =
(
S−1JS

)
S−1(p− x1) + S−1F(p) =

[
0 0
0 C

]
r + G(r),

where G(r) := S−1F(Sr + x1) = S−1F(p). By design, S−1x1 = e1; hence, G(r)
satisfies

(5.4) G(r) = S−1N−1S
((

(ASr,Sr) + (ASr,x1)
(Sr,Sr) + 2(x1,Sr) + 1

)
(r + e1)− (ASr,x1)e1

)
.

Now we are prepared to cast this diagonalized problem into the conventional setting
for center manifold theory. We write

r =
[
α
b

]

for α ∈ R and b ∈ R
n−1. Using MATLAB index notation for convenience, the r

system is simply [
α̇

ḃ

]
=
[
0 0
0 C

] [
α
b

]
+
[

G([α;b])1
G([α;b])2:n

]
,

that is,

α̇ = G([α;b])1, ḃ = Cb + G([α;b])2:n.

Notice that the component α only figures in the nonlinear terms; we wish to
determine how that contribution affects the magnitude of the b component—that
is, the portion of the solution that we hope decays as t → ∞. Notice that b = 0
corresponds to the case when p is collinear with x1. In this case p may differ from
the unit eigenvector x1, but regardless it is a fixed point of the dynamical system,
and provided p �= 0 we are content. In particular, if b = 0, then ASr = 0 too (recall
that λ = 0), and we can see from (5.4) that G(r) = 0. In this case

α̇ = G([α;0])1 = 0, ḃ = C0 + G([α;0])2:n = 0,

so any such r is a fixed point of the dynamical system. We can put this in grander
language: there exists some δ > 0 such that if

r0 ∈
{[
α
0

]
: |x| < δ

}
=:M,

then the dynamical system with r(0) = r0 satisfies r(t) ∈ M for all t > 0. (In
particular, r(t) = r(0) ∈M.) The setM is called a local invariant manifold. We can
define this manifold (locally) by the requirement that

b = g(α) := 0,
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which trivially satisfies g(0) = 0 and the Jacobian of g at α = 0 is Dg(0) = 0;
furthermore, g is arbitrarily smooth near α = 0. Together, these properties ensure
thatM is a center manifold of the dynamical system. (We are fortunate in this case
to have an explicit, trivial expression for this manifold.)

All that remains is to apply Theorem 2 from Carr [9, p. 4]. Consider the equation

u̇ = G([u;g(u)])1 = G([u;0])1 = 0.

The solution u(t) = 0 is clearly stable—if u(t) = ε, then |u(t) − 0| = |ε| is bounded
for all t > 0—and, thus, Theorem 2(a) from [9] implies that the solution r(t) = 0 is
a stable solution of the system

ṙ =
[
0 0
0 C

]
r + G(r).

Note that the solution u(t) = 0 is not asymptotically stable, that is, we do not have
u(t) → 0 if u(0) = ε for small, nonzero ε. Were this the case, then we would be
able to conclude that the r system was asymptotically stable. This would contradict
our expectation that the original dynamical system will converge to something in
span{x1}, not necessarily to x1 itself. In particular, if N is self-adjoint, then (Np,p)
is an invariant of the system, and so we expect that p(t)→ ξx1 for ξ determined by

|ξ|2 =
(Np,p)

(Nx1,x1)
.

We now have stability of the zero state of the r system, but that only means
that solutions sufficiently close to r = 0 do not diverge. To say more—to say that
the solutions actually converge to the center manifold—we can apply Theorem 2(b)
of [9], which we slightly paraphrase here. Since the zero solution of the r equation
is stable, for ‖[α(0);b(0)]‖ sufficiently small, there exists some solution u(t) of the
equation u̇(t) = G([u;g(u)])1 = 0 and positive constant γ such that

α(t) = u(t) +O
(
e−γt

)
, b(t) = g(u(t)) +O

(
e−γt

)
.

In particular, in our setting such solutions u(t) will be constant: u(t) = c, and so
there exist

α(t) = c+O
(
e−γt

)
, b(t) = O

(
e−γt

)
,

and, in particular, ‖b(t)‖ → 0 as t→∞. Thus, for ‖r0‖ sufficiently small,

r(t) =
[
c
0

]
+O

(
e−γt

)
,

so that p(t) = Sr(t) +x1 = (1 + c)x1 +O(e−γt). The preceding discussion is summa-
rized in the following result.

Theorem 5.1. If ‖p(0)−x1‖ is sufficiently small and N−1(I−x1x
∗
1)(λ−A) has

a simple zero eigenvalue with all other eigenvalues in the open left half plane, then
there exists γ > 0 and ξ ∈ R such that, as t→∞,

‖p(t)− ξx1‖ = O
(
e−γt

)
.

In the case of self-adjoint, invertible N, |ξ| = |(p0,Np0)|.
Note that if N is Hermitian and invertible but indefinite, then there always exists

some unit vector p0 such that (p0,Np0) = 0. If this starting vector is sufficiently
close to the unit eigenvector x1 of A, then we have not ruled out the possibility that
the system converges to the zero vector, rather than a desired eigenvector.
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6. Discrete dynamical systems. The previous sections have addressed the
quadratic invariant and convergence behavior of the continuous-time, one- and two-
sided dynamical systems. For purposes of computation, one naturally wonders how
closely such properties are mimicked by the solutions to discretizations of these sys-
tems. The present section considers the convergence and preservation of the quadratic
invariant by the discrete flow under a forward Euler time integration. We focus on
this canonical integrator for three reasons: (1) this discretization leads to the algo-
rithm (1.1) proposed in the literature; (2) analysis for forward Euler serves as a first
step toward understanding more sophisticated algorithms; (3) more elaborate meth-
ods are not always practical. For example, the implicit midpoint rule will preserve
the quadratic invariant (p,Np) [18, IV.2.1] of the one-sided system (1.2), but since
this method takes the form

pj+1 = pj + hN−1
(
θj+1

(
pj + pj+1

2

)
−A

(
pj + pj+1

2

))

θj+1 =
(pj + pj+1)TA(pj + pj+1)
(pj + pj+1)T (pj + pj+1)

,

its implementation requires the solution of a (nonlinear) system of equations at each
step: a far more expensive proposition (per step) than the humble forward Euler
method. (For a more sophisticated discretization in the unpreconditioned Hermitian
case, along with a cautionary note about use of large step-size in the forward Euler
method, see [28].)

6.1. Departure from the manifold. Given A ∈ R
n×n, for notational conve-

nience we rewrite the two-sided system in the form

(6.1)
ṗ = pθ −Ap =: f(p,q)
q̇ = qθ −ATq =: g(p,q),

with θ = (qTp)−1qTAp = θT and initial conditions p(0) = p0 ∈ R
n and q(0) = q0 ∈

R
n. Similarly, the one-sided system (now including preconditioning) is

(6.2) ṗ = N−1(pθ −Ap) =: N−1f(p,p),

with θ = (pTp)−1pTAp = θT and p(0) = p0 ∈ R
n.

In section 2 we showed that this system preserves the quadratic invariant qTp.
To what extent do discretizations respect such conservation, and what are the impli-
cations of any drift from this manifold? To understand the role of discrete quadratic
invariants, we consider the error when using a forward Euler time integrator.

We begin with the two-sided iteration. The finite-time blow-up established in
Theorem 4.1 is a strike against this method. Before abandoning it altogether, we wish
to investigate the consequences of the blow-up on the discrete two-sided eigensolver.
The forward Euler applied to (6.1) leads to the iteration

pj+1 = pj + hfj(6.3)
qj+1 = qj + hgj,(6.4)

where fj := f(pj ,qj) and gj := g(pj ,qj). With the mild caveat that qTj pj �= 0, the
form of the Rayleigh quotient gives

qTj fj = 0 = pTj gj .
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This simple observation is critical to understanding the drift of the forward Euler
iterates from the invariant manifold. It implies, for example, that the first iteration
of (6.3)–(6.4) produces a iterate that is quadratically close to the manifold:

qT1 p1 = qT0 p0 + h2 (gT0 f0
)
,

which is perhaps surprising given the forward Euler method’s O(h) accuracy. Writing
the departure from the manifold as

dj = qTj pj − qT0 p0,

we, thus, have d1 = h2(gT0 f0). From this we can compute

d2 =
(
qT2 p2 − qT1 p1

)
+ d1 = h2 (gT1 f1 + gT0 f0

)
and, in general, dj+1 = h2∑j

k=0 gTk fk. (This result is a special case of one derived
in [18] for partitioned Runge–Kutta systems.) Thus, we can bound the relative drift
from the manifold as

(6.5)

∣∣qTj+1pj+1 − qT0 p0

∣∣∣∣qT0 p0

∣∣ ≤ h2
j∑

k=0

‖fk‖ ‖gk‖∣∣qT0 p0

∣∣ .

The definitions of f(p,q) and g(p,q) imply

‖fk‖ ≤ (|θk|+ ‖A‖) ‖pk‖ ≤
(

1 +
‖qk‖‖pk‖
|qTk pk|

)
‖A‖‖pk‖

‖gk‖ ≤ (|θk|+ ‖A‖) ‖qk‖ ≤
(

1 +
‖pk‖‖qk‖
|pTk qk|

)
‖A‖‖qk‖.

Substituting these formulas into (6.5), we arrive at the following result.
Theorem 6.1. The forward Euler iterates (6.3)–(6.4) for the two-sided dynamical

system (6.1) satisfy

(6.6)

∣∣qTj+1pj+1 − qT0 p0
∣∣∣∣qT0 p0

∣∣ ≤ h2 ‖A‖2∣∣qT0 p0
∣∣

j∑
k=0

(
1 +
‖qk‖‖pk‖
|qTk pk|

)2

‖qk‖‖pk‖.

This bound implies that the departure from the manifold is proportional to the
square of the step size, and involves the secants of the angles formed by qk and pk,
k = 0, . . . , j, as well as the norms of qk and pk. Moreover, unless the cosines of
the angles between qk and pk are bounded away from zero, there does not exist a
step size h such that all iterates remain near the quadratic manifold. The proof of the
theorem demonstrates that the secant of the angle is at least as large as the normalized
residuals. Numerical experiments indicate that these bounds are descriptive; see the
first example in section 6.3. A conclusion is that serious breakdown (as discussed after
Theorem 4.1) leads to incurable breakdown of the two-sided iteration because forward
Euler mimics the continuous solution and cannot “step-over” the point of blow-up.

Given the shortcomings of the two-sided iteration, we shall, henceforth, focus on
the one-sided dynamical system, and also include preconditioning (6.2). The associ-
ated forward Euler discretization takes the form

(6.7) pj+1 = pj + hN−1fj ,
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where now fj = f(pj ,pj). (Here we see that the time-step h directly multiplies the
preconditioner N, so that the effect of scaling N to improve the convergence rate of
the continuous-time system, as discussed on page 1456, is equivalent to choosing a
smaller time-step in the discrete setting.)

The following analysis will play a useful role in our main convergence result,
Theorem 6.3. For the rest of the paper we assume that N is symmetric and invertible,
which, as seen in the Introduction, ensures that solutions of the continuous system
reside on an invariant manifold pTNp = constant. At each time step, the discrete
iteration incurs a local departure from that manifold of

ej+1 := pTj+1Npj+1 − pTj Npj = h2fTj N−1fj .

Hence, if N−1 is additionally positive definite (e.g., N−1 = I), the drift is monotone
increasing—an important property for the forthcoming convergence theory.

When N is positive definite, we can define vector norms

‖z‖2N−1 := zTN−1z, ‖z‖2N := zTNz

(which in turn induce matrix norms), with ‖z‖N−1 ≤ ‖N−1‖‖z‖N. Thus, we write

ej+1 = h2‖fj‖2N−1 ≤ h2
∥∥N−1

∥∥2 ‖fj‖2N = h2
∥∥N−1

∥∥2 ‖rj‖2N‖pj‖2N,
where we use the normalized residual rj := fj/‖pj‖N = (θj − A)pj/‖pj‖N. Now
consider the aggregate, global drift from the manifold:

dj+1 := pTj+1Npj+1 − pT0 Np0

=
j+1∑
k=1

ek ≤ h2
∥∥N−1

∥∥2
j∑

k=0

‖rk‖2N
(
dk + ‖p0‖2N

)
.

In particular, dj+1 is determined by the step size, the residual norms, and the growth
in the norm of the iterates. For further simplification, choose some M > 0 such that
‖rk‖2N ≤M for all k = 0, . . . , j. One coarse (but j-independent) possibility is

(6.8) M := inf
s∈R

4‖A− s‖2N ≥ inf
s∈R

‖(A− s)− (θk − s)‖2N ≥ ‖rk‖2N,

which is invariant to shifts in A. (In terms of the Euclidean norm, we, thus, have
M ≤ 4κ(N) infs∈R ‖A− s‖2, where κ(N) = ‖N‖‖N−1‖.) Hence,

dj+1 ≤ h2M
∥∥N−1

∥∥2
j∑

k=0

(dk + ‖p0‖N)2 = h2M
∥∥N−1

∥∥2

(
(j + 1)‖p0‖2N +

j∑
k=1

dk

)

(since d0 = 0). Thus, if we define the sequence {d̂k} by

(6.9) d̂j+1 = h2M
∥∥N−1

∥∥2

(
(j + 1) +

j∑
k=1

d̂k

)
,

then the departure from the manifold obeys dj+1 ≤ d̂j+1‖p0‖2N. Equation (6.9) is a
binomial recurrence whose solution can be written explicitly:

d̂j+1 =
j+1∑
k=1

(
j + 1
k

)(
h2M‖N−1‖2)k =

(
1 + h2M‖N−1‖2)j+1 − 1.
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Theorem 6.2. Let N ∈ R
n×n be symmetric and positive definite, and define

M by (6.8). Then the forward Euler iterates (6.7) for the preconditioned one-sided
dynamical system (6.2) satisfy

(6.10) 0 ≤ pTj+1Npj+1 − pT0 Np0

pT0 Np0
≤ (1 + h2M‖N−1‖2)j+1 − 1,

the upper bound being asymptotic to (j + 1)h2‖N−1‖2M as h→ 0.
Note that a small eigenvalue of N results in a small time-step h. The bound also

provides an estimate of a critical time-step

h
√
j + 1 � 1

‖N−1‖√M
for forward Euler, limiting the departure from the quadratic manifold. Highly non-
normal problems for which ‖A− s‖ 
 maxk |λk − s| also result in tiny time-steps.

Theorem 6.2 leads to an interesting observation—despite the fact that the for-
ward Euler method generally incurs an O(h) truncation error and the global error
grows exponentially in j for fixed h (see (6.12) and, e.g., [14, section 1.3]), for a
one-sided iteration the drift from the quadratic manifold is O(h2) and both linear
and nondecreasing in j for all starting vectors, under mild restrictions. This mono-
tone departure from the manifold is exploited in the discrete convergence analysis to
follow. So, although explicit Runge–Kutta methods (such as forward Euler) do not
preserve quadratic invariants (see [18, Chapter IV]), the forward Euler iterates for
the one-sided systems remain nearby. The reader is referred to [18, Chapter IV] for
further information and references, including the use of projection to remain on the
quadratic manifold.

6.2. Discrete convergence theory. Just as the local drift from the manifold at
each iteration contributes to the global drift, so local truncation errors committed by
each step of an ODE solver aggregate into a global error. How does this accumulated
error affect convergence of the discrete method as we compute pj with j →∞?

In this section, we seek conditions that will ensure that the discrete preconditioned
one-sided iteration (6.7) converges to the same eigenvector as the continuous system.

First, we establish the setting that will be used through this rest of this sec-
tion. Suppose A ∈ R

n×n has a simple eigenvalue λ1 strictly to the left of all other
eigenvalues (and, hence, real). Without loss of generality (via a unitary similarity
transformation) we can assume that A takes the form

(6.11) A =
[
λ1 dT

0 C

]
.

Let x1 and y1 denote unit-length right and left eigenvectors associated with λ1; in
these coordinates we can take x1 = [1, 0, . . . , 0]T . Theorems 4.3, 4.4, and 5.1 provide
conditions under which the solution p(t) of the continuous system converges in angle
to the eigenvector x1 (e.g., if N = I and yT1 p0 �= 0).

Before beginning the convergence analysis, one should appreciate that the con-
ditions established in the last paragraph are not sufficient to guarantee convergence
of the discrete iteration. Consider the following example. When N = I, the forward
Euler iterate of the one-sided system at step k can be written as

pk =
k−1∏
j=0

ϕj(A)p0
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for linear factors ϕj(z) = 1+h(θj−z). If any of these factors has λ1 as a root, then pk
will have no component in the direction of the eigenvector x1, and so λ1 and x1 will
not influence the iteration: convergence of pk to x1 is impossible. Concrete matrices
that exhibit such behavior are simple to construct. For any fixed h > 0, set

A =
[
0 −1− 2/h
0 1

]
, p0 =

[
1
1

]
.

Theorem 4.3 guarantees that the continuous one-sided system will converge for this A
and p0. At the first step of the forward Euler method θ0 = −1/h, so that ϕ0(0) = 0
and p1 = [h+2,−h]T is an eigenvector for λ2 = 1, and pk will never have a component
in the x1 direction for any k ≥ 1. (Note that ϕj(λ1) = 1+h(θj−λ1) = 0 implies that
θj − λ1 = −1/h < 0, and this is impossible if A is normal. As h is reduced, complete
deflation requires an increasing departure from normality.) The more sophisticated
restarted Arnoldi algorithm exhibits a similar phenomenon; see [12].

Under what circumstances can we guarantee convergence? To answer this ques-
tion, we first review the conventional global error analysis for the forward Euler
method; for details, see, e.g., [14, section 1.3]. The first step begins with the ex-
act solution at time t = 0: p0 = p(0). Each subsequent step introduces a local
truncation error, while also magnifying the global error aggregated at previous steps.
Suppose we wish to integrate for t ∈ [0, τ ] with τ = kh for some integer k. With the
local truncation error at each step bounded by

Th := max
0≤t≤τ

1
2h‖p̈(t)‖,

one can show that

(6.12) ‖pk − p(τ)‖ ≤ Th
L

(
eτL − 1

)
,

where L is a Lipschitz constant for our differential equation; in Appendix A we show
that L = 10‖N−1‖‖A‖ will suffice. This expression for the global error captures an
essential feature: for fixed τ , the fact that Th = O(h) implies that we can always
select h > 0 sufficiently small as to make the difference between the forward Euler
iterate pτ/h and the exact solution p(τ) arbitrarily small. However, if we increase k
with h > 0 fixed, the bound indicates an exponential growth in the error. To show
that pk converges (in angle) to an eigenvector as k →∞, further work is required. In
this effort, the preservation of the quadratic invariant characterized in Theorem 6.2
plays an essential role.

Preconditioning significantly complicates the convergence theory. For simplicity,
our analysis imposes the stringent requirement that, in the coordinates in which A
takes the form (6.11), we have

(6.13) N−1 =
[
η 0
0 M

]

in addition to the requirement that N−1 be symmetric and positive definite. The triv-
ial off-diagonal blocks prevent the preconditioner from using the growing component
of pk in x1 to enlarge the component in the unwanted eigenspace.

A crucial ingredient in our convergence analysis is the constant

γ := ‖Π1(I + hN(λ1 −A))‖ = ‖I + hM(λ1 −C)‖,
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where Π1 := I − x1x
T
1 is a projector onto the complement of the desired invariant

subspace. This constant γ, a function of h, measures the potency of the preconditioner:
the smaller, the better. For example, in the ideal case that M = (C−λ1)−1, we have
γ = |1− h|, giving γ = 0 for the large step size h = 1, and that γ → 1 as h→ 0.

With γ in hand, we are prepared to state our convergence result. Here, κ(N) =
‖N‖‖N−1‖ denotes the condition number of the preconditioner.

Theorem 6.3. Given (6.11), (6.13), and assumptions on λ1, x1, and N estab-
lished in the previous paragraphs, suppose that p0 is chosen so that the continuous
dynamical system converges in angle to an eigenvector associated with the distinct,
simple leftmost eigenvalue λ1 (e.g., yT1 p0 �= 0 suffices if N = I). Furthermore, sup-
pose there exists h > 0 for which

(6.14) γ ∈ [0, 1/
√
κ(N)).

Then after preliminary iteration with a sufficiently small time-step h0, the forward
Euler method with time-step h will converge (in angle) to the desired eigenvector:

(6.15) sin(∠(pk,x1)) = O
(
γk
)
.

Asymptotically, the Rayleigh quotient converges to λ at the same rate:

(6.16) |θk − λ| = O
(
γk
)
,

which in the case d = 0 improves to |θk − λ| = O(γ2k).
Proof. Denote the kth iterate by

pk =
[
αk
bk

]
.

• Convergence of the forward Euler method to the continuous solution, and conver-
gence of the continuous solution to the eigenvector, together ensure that preliminary
forward Euler steps will get close to the eigenvector. To show that sin(∠(pk,x1))→ 0
as k → ∞, we will show that ‖bk‖ → 0 while |αk| is bounded away from zero. The
convergence of the forward Euler method at a fixed time τ ≥ 0 (see (6.12)), with the
assumption that the continuous system converges for the given p0 (as described in
sections 4–5), ensures that we can run the forward Euler iteration with a sufficiently
small time-step that, after k ≥ 0 iterations, ‖bk‖ is sufficiently small that

(6.17)
‖bk‖2‖λ1 −C‖
α2
k + ‖bk‖2 +

‖bk‖‖d‖√
α2
k + ‖bk‖2

≤ ε

h‖M‖

for some ε ∈ [0, 1/
√
κ(N) − γ); here γ ∈ [0, 1/

√
κ(N)) and h > 0 are as in the

statement of the theorem. Note that the left-hand side of (6.17) will get small when
‖bk‖ is small, since |αk| is bounded away from zero. This follows from Theorem 6.2
(monotonic drift of the invariant) and the fact that N is symmetric positive definite,
which imply that for any j,

(6.18) ‖pj‖2 ≥ 1
‖N‖p

T
j Npj ≥

1
‖N‖p

T
j−1Npj−1 ≥

1
κ(N)

‖pj−1‖2.

• Condition (6.17) ensures that θk is close to λ1. Since

θk =
λ1α

2
k + αkdTbk + bTkCbk

α2
k + ‖bk‖2 ,
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we have

|θk − λ1| =
∣∣λ1α

2
k + αkdTbk + bTkCbk − λ1

(
α2
k + bTk bk

)∣∣
α2
k + ‖bk‖2

≤
∣∣bTk (C− λ1)bk

∣∣
α2
k + ‖bk‖2

+
|αk|‖bk‖‖d‖
α2
k + ‖bk‖2

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖bk‖‖d‖√
α2
k + ‖bk‖2

,(6.19)

where the last inequality uses the fact that |αk| ≤
√
α2
k + ‖bk‖2. Now condition

(6.17) implies that the Rayleigh quotient θk is sufficiently close to the eigenvalue λ1:

(6.20) |θk − λ1| ≤ ε

h‖M‖ .

The next step of the iteration, with time-step h > 0 specified in the statement of the
theorem, produces[

αk+1
bk+1

]
= pk+1 = pk + hN−1(θk −A)pk =

[
αk + ηh

(
(θk − λ1)αk − dTbk

)
(I + hM(θk −C))bk

]
.

Adding zero in a convenient way gives

‖bk+1‖ = ‖(I + hM(λ1 −C))bk + h(θk − λ1)Mbk‖
≤ ‖I + hM(λ1 −C)‖‖bk‖+ h|λ1 − θk|‖M‖‖bk‖
≤ (γ + ε)‖bk‖.(6.21)

In particular, since 0 ≤ γ + ε < 1/κ(N) ≤ 1, this guarantees a fixed reduction in
the component of the forward Euler iterate in the unwanted eigenspace. (The second
inequality follows from condition (6.14) and bound (6.20).) After checking a few
details, we shall see that this condition is the key to convergence.
• Subsequent Rayleigh quotients must also remain close to λ1. We now show that the
new Rayleigh quotient, θk+1, automatically satisfies the requirement (6.20) with the
same ε > 0 and time-step. Repeating the calculation that culminated in (6.19), we
obtain

|θk+1 − λ1| ≤ ‖bk+1‖2 ‖C− λ1‖
α2
k+1 + ‖bk+1‖2

+
‖d‖‖bk+1‖√
α2
k+1 + ‖bk+1‖2

.

Now we use (6.18), a consequence of the monotonic drift from the invariant manifold,
to deduce that

|θk+1 − λ1| ≤ κ(N)(γ + ε)2‖bk‖2 ‖C− λ1‖
α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)‖d‖‖bk‖√

α2
k + ‖bk‖2

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖d‖‖bk‖√
α2
k + ‖bk‖2

,

since γ + ε < 1/
√
κ(N). The condition (6.17) then implies that

|θk+1 − λ1| ≤ ε

h‖M‖ ,

which guarantees that the Rayleigh quotient cannot wander too far from λ1.
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• Subsequent iterates and Rayleigh quotients must eventually converge. The bound
on |θk+1 −λ1| just established allows us to repeat the argument resulting in (6.21) at
future steps, giving

‖bk+m‖ ≤ (γ + ε)m‖bk‖

along with, via a slight modification of (6.18),

|θk+m − λ1| ≤ κ(N)(γ + ε)2m‖bk‖2 ‖C− λ1‖
α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)m‖d‖‖bk‖√

α2
k + ‖bk‖2

(6.22)

≤ ‖bk‖
2 ‖C− λ1‖

α2
k + ‖bk‖2

+
‖d‖‖bk‖√
α2
k + ‖bk‖2

.

Thus, |θk+m− λ1| ≤ ε/(h‖M‖) for all m ≥ 1. As ‖bk+m‖ → 0, the component in the
desired eigenvector does not vanish, as again a generalization of (6.18) gives

‖pk+m‖ ≥ 1√
κ(N)

‖p0‖.

Thus, with x1 = e1, we have

sin ∠(pk+m,x1) = min
ξ

‖ξpk+m − x1‖
‖x1‖ = min

ξ

∥∥∥∥
[
ξαk+m − 1
ξbk+m

] ∥∥∥∥
≤ ‖bk+m‖|αk+m| ≤ (γ + ε)m

‖bk‖
|αk+m| ,

where we have taken ξ = α−1
k+m for the first inequality. As |αk+m| is bounded away

from zero, we have sin∠(pk+m,x1) = O((γ + ε)m) as m → ∞. Since ‖bk+m‖ → 0
as m → ∞, we can take the ε used in (6.19) to be arbitrarily small as the iterations
progress, giving the asymptotic rate given in (6.15). Similarly, from (6.22) we observe
that the Rayleigh quotient converges as in (6.16). The O(γm) term in that bound
falls out if d = 0.

We now make several remarks concerning Theorem 6.14 and its proof. (1) As N
becomes increasingly ill-conditioned, the hypothesis (6.14) in the theorem becomes
more and more difficult to satisfy. We can only guarantee convergence for an ill-
conditioned preconditioner if that preconditioner gives a small value of γ, i.e., if it gives
a rapid convergence rate. (2) A curiosity of condition (6.17) is that the requirement
is more strict when convergence is slower, i.e., when γ is near κ(N)−1/2. (3) One does
not in general know whether θk falls to the left or right of λ1. If A is normal, then as
θk must fall the convex hull of its spectrum, and so θk ≥ λ1; for nonnormal A, it is
possible that θk < λ1. (4) The proof of the theorem exploits the monotonic drift from
the manifold described by Theorem 6.2. This drift is easily monitored, so providing
a useful (and cheap) check on convergence of the iteration during computation. If
this drift reaches a point where it is not small, projection to the quadratic manifold
is easily undertaken; see [18, Chapter IV] for further information.

Theorem 6.3 considers the general case of nonsymmetric A and a somewhat strin-
gent notion of preconditioning. For the important special case of symmetric positive
definite A, Knyazev and Neymeyr [23] provide convergence estimates (and review
much literature) for the one-sided forward Euler discretization (6.3). They provide
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rates of convergence given a symmetric positive definite preconditioner N for A. How-
ever, a connection with dynamical systems is not made and instead optimization is
applied to the Rayleigh quotient.

If M = I, and C is normal (which is possible even if A itself is not normal due
to d �= 0) with spectrum given by σ(C) = {λ2, . . . , λn}, we can estimate an optimal
time-step as follows. We wish to minimize

γ = max
i=2,...,n

|1 + h(λ1 − λi)|,

a simple minimax approximation problem on a discrete set; see, e.g., [36, section 8.5].
In particular, if all the eigenvalues are real (i.e., C is symmetric) and λ2 ≤ λ3 ≤ · · · ≤
λn, then the best h must give

1 + h(λ1 − λ2) = −1− h(λ1 − λn).
This can be solved to obtain h = 2/(λ2 + λn − 2λ1), from which we compute

γ =
λn − λ2

λn + λ2 − 2λ1
.

Notice that this agrees with the convergence rate of the power method applied to
A− σI for the optimal shift σ = 1

2 (λ2 + λn) to the leftmost eigenvector x1; see, e.g.,
[43, p. 572]. With the optimal choice of h, the forward Euler method recovers the
convergence rate of an optimally shifted power method to x1.

Again, suppose that M = I, so that γ = γ(h) → 1 as h → 0. However, this
limit need not be approached from below; that is, for some matrices C we will have
γ(h) > 1 for all h sufficiently small.2 The behavior of γ in this limit bears a close
connection to the logarithmic norm of λ1 −C, which is defined as

β(λ1 −C) := lim
h↓0
‖I + h(λ1 −C)‖ − 1

h
;

see, e.g., [30], [40, Chapter 17]. In particular, γ(h) < 1 for all sufficiently small
h > 0 provided β(λ1 −C) < 0. One can show that the logarithmic norm of a matrix
coincides with the numerical abscissa, that is, the real part of the rightmost point in
the numerical range:

β(λ1 −C) = max
v∈Cn−1,‖v‖=1

Re v∗(λ1 −C)v

= max
{
η : η ∈ σ(1

2

(
(λ1 −C) +

(
λ1 −CT

))}
;

see, e.g., [40, Theorem 17.4]. When is γ(h) > 1? That is, for what matrices can we
not apply our convergence theory by taking h arbitrarily small? We can answer this
question by finding requirements on C that ensure β(λ1 −C) < 0. From the above
analysis we see that

β(λ1 −C) = λ1 − min
v∈Cn−1,‖v=1‖

Re v∗Cv.

Since C is essentially the restriction A|x⊥
1

of A to the orthogonal complement of the
eigenvector x1, we can summarize as follows.

Lemma 6.4. Suppose N = I. Then γ < 1 for all h sufficiently small if and only
if λ1 is not in the numerical range of A|x⊥

1
(equivalently, C).

2In this case the matrix A does not satisfy the hypotheses of the theorem; convergence is still
possible. Experiments with a small example gave convergence after a bit of initial irregularity.
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(c) FE residual norms (‖fk‖, ‖gk‖), h = 0.025
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Fig. 6.1. Sampled flow and forward Euler (FE) approximations for the two-sided system with
T100

ρ and ρ = 1/(20 · 101). The horizontal axis denotes time. Note the blow-up of the exact solution
near t = 0.675, and the consequences of this behavior for the discretized method.

6.3. Numerical experiments. In this section we investigate Theorems 4.1, 6.1,
and 6.3 through several computational examples. Our first experiment applies to the
tridiagonal matrix

Tn
ρ ≡

⎡
⎢⎢⎢⎢⎣

2 −1 + ρ 0

−1− ρ 2
. . .

. . . . . . −1 + ρ
0 −1− ρ 2

⎤
⎥⎥⎥⎥⎦ ∈ R

n×n,

where n = 100 and ρ = 1/(20(n+ 1)). The eigenvalues are all real and the condition
number of the matrix of eigenvectors is modest. All computations in Figure 6.1 use
the same starting vectors p0 and q0, which are taken to be (different) random vectors.
(Results vary with the other choices for these vectors.)

Figures 6.1(a) and 6.1(b) show the exact solution to the two-sided unprecondi-
tioned system, as given by Theorem 4.1. The residuals ‖ · p‖ = ‖pθ − Ap‖ and
‖ · q‖ = ‖qθ −A∗q‖ begin to decrease, but then rise as t approaches a critical point
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Fig. 6.2. Computational confirmation of Theorem 6.3 for a normal matrix (left) and a non-
normal matrix (right), both with N = I. In the normal case, the residual |θk −λ| converges like γ2k,
while in the nonnormal case |θk − λ| only converges like γk. The vertical lines denote the point at
which the hypotheses of the convergence theorem hold.

near t = 0.675, where cusps develop, indicating that a pole as given by π(t) of Theo-
rem 4.1 is encountered by the flow. The same behavior is seen in a plot of the secant of
the angle between p and q. Figures 6.1(c) and 6.1(d) display the discrete flow associ-
ated with a forward Euler time integrator with a time step of h = 0.025. As expected,
when the iterates depart from the quadratic manifold, the residuals explode in size,
as in the exact solution. One can also show that the secant of the angle between pj
and qj , and the norms of pj and qj , also begin to grow near t ≈ .675, consistent with
Theorem 6.1.

Decreasing the time-step h does not avoid the blow-up—in fact, the time at which
the explosive growth occurs is largely independent of the time-step because of the onset
of incurable breakdown associated with the continuous dynamical system. In contrast
to the latter, the discrete dynamical system cannot simply step over the pole asso-
ciated with continuous dynamical system. Aside from special cases such as the one
described by Theorem 4.2, these results appear to be common and do not significantly
depend on specially engineered starting vectors (though breakdown will occur at dif-
ferent points in time, of course). We also implemented the symplectic Euler method
(that preserves quadratic invariants) for this class of matrices and observed behavior
consistent with the forward Euler method combined with a projection. In contrast,
the one-sided discretized forward Euler iterations converge to the left eigenvalue and
associated eigenvector.

Next, we investigate the convergence analysis described in Theorem 6.3 for a
simple example with N = I. Let A be the matrix with aj,j = (j − 1)/(N − 1)
for j = 1, . . . , N , and all other entries equal to zero except perhaps for the vector
dT in entries 2 through N of the first row; cf. (6.11). The plots in Figure 6.2 use
N = 64, comparing dT = 0 (left) and dT = [1, . . . , 1] (right). In both cases we take
h = 1/2, for which (6.14) gives γ = 0.992 . . . ∈ [0, 1) as required. We take p0 to
be the same randomly generated unit vector in both cases. This initial vector does
not satisfy (6.17), but this condition is eventually met after a number of iterations,
denoted by the vertical line in each plot. For the normal case in the left plot, ‖bk‖
converges like γk, while the error in the Rayleigh quotient |θk−λ1| converges like γ2k

as predicted. The nonnormality induced by the d vector spoils this convergence for
the Rayleigh quotient, as seen in the right plot; now both ‖bk‖ and |θk−λ1| converge
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like γk, consistent with Theorem 6.3. The spikes in the latter plot correspond to points
where the Rayleigh quotient θk crossed over the desired eigenvalue λ1, something only
possible for nonnormal iterations.

7. Summary. This paper demonstrates the fruitful relationship between several
nonlinear dynamical systems and certain simple preconditioned eigensolvers for non-
symmetric eigenvalue problems. Properties of the continuous-time systems, such as
system invariants and the asymptotic behavior of the exact solution, can inform the
convergence theory for practical algorithms derived from discretizations, as we illus-
trate with Theorem 6.1 for the forward Euler discretization. Generalizations to more
sophisticated discretizations, along with relaxation of the stringent requirements on
the preconditioner in Theorem 6.1, are natural avenues for future research.

Appendix A. Lipschitz constant for Euler’s method. To apply the stan-
dard convergence theory for the forward Euler method applied to the system

ṗ = N−1(θ(p)p −Ap),

we seek a constant L > 0 such that∥∥N−1(θ(u)u−Au)−N−1(θ(v)v −Av)
∥∥ ≤ L‖u− v‖

for all u,v ∈ R
n. First we note that

‖(θ(u)u −Au)− (θ(v)v −Av)‖ ≤ ‖θ(u)u− θ(v)v‖ + ‖A‖‖u− v‖.
We focus attention on the first term on the right:

‖θ(u)u− θ(v)v‖ ≤ ‖θ(u)u− θ(v)u + θ(v)u − θ(v)v‖
≤ |θ(u)− θ(v)|‖u‖ + |θ(v)|‖u − v‖
≤ |θ(u)− θ(v)|‖u‖ + ‖A‖‖u− v‖.(A.1)

(In this last inequality and others that follow, we neglect the opportunity to take
tighter bounds that would lead to smaller constants but greater analytical complexity.)

Next, we need to bound |θ(u) − θ(v)|‖u‖ in terms of ‖u − v‖. For convenience
(assuming neither u nor v is zero), define the unit vectors û = u/‖u‖ and v̂ = v/‖v‖,
with ε = v̂ − û, so that

|θ(u)− θ(v)| = ∣∣ûTAû− v̂TAv̂
∣∣

=
∣∣ûTAû− ûTAû− εTAû− ûTAε+ εTAε

∣∣
≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖.(A.2)

Now note that

‖ε‖ = ‖v̂ − û‖ =
‖‖u‖v − ‖v‖v + ‖v‖v − ‖v‖u‖

‖u‖‖v‖ ≤ |‖u‖ − ‖v‖|‖u‖ +
‖u− v‖
‖u‖ .

Apply the triangle inequality to obtain |‖u‖−‖v‖| ≤ ‖u−v‖, from which we conclude

(A.3) ‖ε‖ ≤ 2
‖u‖‖u− v‖.
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Since û and v̂ are unit vectors, we alternatively have the coarse bound ‖ε‖ = ‖û−v̂‖ ≤
2, which we can apply to (A.2) to obtain

|θ(u) − θ(v)| ≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖
≤ 2‖ε‖‖A‖+ 2‖ε‖‖A‖ = 4‖A‖‖ε‖.

Now using (A.3), the bound first bound on ‖ε‖,

|θ(u)− θ(v)| ≤ 8
‖A‖
‖u‖ ‖u− v‖.

Substituting this bound into (A.1) gives

‖θ(u)u− θ(v)v‖ ≤ 9‖A‖‖u− v‖,

and, finally, we arrive at the Lipschitz constant∥∥N−1(θ(u)u −Au)−N−1(θ(v)v −Av)
∥∥ ≤ 10

∥∥N−1
∥∥ ‖A‖‖u− v‖.

Thus, we define

(A.4) L = 10
∥∥N−1

∥∥ ‖A‖.
The Rayleigh quotient θ(p) is undefined in the case that p = 0. However, as

‖p‖ → 0, we have that ‖θ(p)p − Ap‖ → 0, and this motivates the definition that
θ(p)p−Ap = 0 if p = 0.

The above analysis excludes the case that u = 0 and/or v = 0, but with our
definition of this singular case we have, e.g., if u = 0, that

‖ (θ(u)u−Au)− (θ(v)v −Av)‖ = ‖(θ(v)v −Av)‖ ≤ 2‖A‖‖v‖ ≤ 10‖A‖‖u− v‖,

and obviously if u = v = 0, we have

‖(θ(u)u −Au)− (θ(v)v −Av)‖ = 0 = 10‖A‖‖u− v‖.

Hence, the Lipschitz constant (A.4) holds for all u and v.
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Abstract. The purpose of this paper is to present a new fictitious domain approach inspired
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1. Introduction. The extended finite element method (Xfem) was introduced
by Moës, Dolbow, and Belytschko in [18] and developed in many papers such as
[5, 16, 19, 23, 28]. The first application of Xfem was done in structural mechanics
when dealing with cracked domains. The specificity of the method is that it combines
a level-set representation of the geometry of the crack (introduced in [25]) with an
enrichment of a finite element space by singular and discontinuous functions. The
enrichment of a finite element space with a singular function has been studied earlier
by Strang and Fix in [26]. The originality of Xfem consists in a particular way
of defining the enrichment via the multiplication by a partition of unity provided
by basis functions of a Lagrange finite element method. Several strategies can be
considered in order to extend or improve the original Xfem. Some of these strategies
are presented in [16]. An a priori error estimate of a variant of Xfem for cracked
domains is presented in [5].

In this work we adapt the techniques of Xfem to develop a new method allowing
computations in domains whose boundaries are independent of the mesh. A similar
attempt was done in [17, 27]. Our goal is to develop a fully optimal method. It
can be considered as a fictitious domain-type method. Its advantage, compared to
existing ones (see, for instance, [11, 13]), is its ability to easily treat complex boundary
conditions. The elementary matrices, however, have to be computed taking into
account the geometry of the real boundary (in a nonlinear framework this disadvantage
disappears since the tangent stiffness matrix has to be frequently recomputed).

Therefore, this method can be of interest for computational domains having mov-
ing boundaries or boundaries with a complex geometry and various conditions on
them (Dirichlet, Neumann, Signorini, . . . ). In this paper, only Dirichlet and Neu-
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mann boundary conditions are considered. An extension to more complex boundary
data is straightforward, at least from the implementation point of view.

The outline of this paper is as follows. In section 1, we introduce the model prob-
lem which is represented by a simple Poisson equation with Neumann and Dirichlet
boundary conditions. In section 2 we describe the new method for a model problem
without any stabilization. Section 3 is devoted to a convergence analysis of this ap-
proach. An abstract result is obtained which gives a convergence rate of order

√
h

under reasonable regularity assumptions on the solution even for high order finite
elements. The main part of this paper is section 4 where a new stabilized method
is introduced. Under appropriate assumptions we prove the stability of this formu-
lation as well as optimal error estimates. In section 5 we briefly mention details on
the computational implementation. Numerical experiments for a model example with
different choices of finite element spaces are presented in section 6. The paper is
completed with three appendices with proofs of trace theorems needed in the text.

2. Setting of the problem. We present a new approach for numerical real-
ization of elliptic problems. The theoretical presentation is made for a two or three-
dimensional simply connected bounded domain Ω with a sufficiently smooth boundary.
Let Ω̃ ⊂ R

d (d = 2 or d = 3) be a rectangular or parallelepiped domain (the ficti-
tious domain) containing Ω in its interior. We consider that the boundary Γ of Ω is
split into two parts Γ

N
and Γ

D
(see Figure 1). It is assumed that Γ

D
has a nonzero

(d− 1)-dimensional Lebesgue measure.
Let us consider the following problem in Ω:

Find u : Ω �→ R such that
−Δu = f in Ω,(1)

u = 0 on Γ
D
,(2)

∂nu = g on Γ
N
,(3)

where f ∈ L2(Ω), g ∈ L2(ΓN ) are given data and n is the outward unit normal vector
to Γ. The weak formulation of such a problem is well known and reads as follows:

(4)
{

Find u ∈ V0 such that
a(u, v) = l(v) ∀v ∈ V0,

where

V = H1(Ω), V0 = {v ∈ V : v = 0 on Γ
D
},

a(u, v) =
∫

Ω

∇u.∇vdΩ, l(v) =
∫

Ω

fvdΩ +
∫

Γ
N

gvdΓ.

.

Ω

Γ
D

n

Γ
N

Ω̃
.

Fig. 1. Fictitious and real domains.
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It is also well known that this problem can be expressed by means of the following
mixed formulation:

(5)

⎧⎨
⎩

Find u ∈ V and λ ∈W such that
a(u, v) + 〈λ, v〉W,X = l(v) ∀v ∈ V,
〈μ, u〉W,X = 0 ∀μ ∈ W,

where X = {w ∈ L2(Γ
D

) : ∃v ∈ V such that w = v|Γ
D

}, W = X ′, and 〈μ, v〉W,X
denotes the duality pairing between W and X . Let

V #
0 =

{
v ∈ V :

∫
Γ

D

vdΓ = 0

}
.

Then a(., .) is coercive on V #
0 (a direct consequence of Peetre–Tartar lemma, see [10]

for instance), i.e., there exists α > 0 such that

(6) a(v, v) ≥ α‖v‖2V ∀v ∈ V #
0 .

From this, the existence and uniqueness of a solution to Problem (5) follows. In
addition, λ = −∂nu on Γ

D
. Problem (5) is also equivalent to the problem of finding

a saddle point of the following Lagrangian on V ×W :

(7) L(v, μ) =
1
2
a(v, v) + 〈μ, v〉W,X − l(v).

3. The new fictitious domain method. The new fictitious domain approach
which will be studied in this paper requires the introduction of two finite dimensional
finite element spaces Ṽ h ⊂ H1(Ω̃) and W̃h ⊂ L2(Ω̃) on the fictitious domain Ω̃. As Ω̃
can be a rectangular or parallelepiped domain, the ones can be defined on the same
structured mesh T h (see Figure 2). Note that in the following, we only use the fact
that the family of meshes is quasi-uniform (in the classical sense of Ciarlet [6, 7]).
Next we shall suppose that

(8) Ṽ h =
{
vh ∈ C

(
Ω̃
)

: vh|T ∈ P (T ) ∀T ∈ T h
}
,

where P (T ) is a finite dimensional space of regular functions such that P (T ) ⊇ Pk(T )
for some k ≥ 1 integer. The mesh parameter h stands for h = maxT∈T h h

T
where h

T

is the diameter of T .

.

Γ
N

Γ
D

.

Fig. 2. Example of a structured mesh.
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Then one can build

V h := Ṽ h|Ω , and Wh := W̃h|Γ
D

,

which are natural discretizations of V and W , respectively. An approximation of
Problem (5) is defined as follows:

(9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find uh ∈ V h and λh ∈Wh such that

a(uh, vh) +
∫

Γ
D

λhvhdΓ = l(vh) ∀vh ∈ V h,∫
Γ

D

μhuhdΓ = 0 ∀μh ∈ Wh.

Similarly to Xfem, where the shape functions of the finite element space are
multiplied with a Heaviside function, this corresponds here to the multiplication of
the shape functions with the characteristic function of Ω.

4. Convergence analysis. Let us define the following space:

(10) V h0 =

{
vh ∈ V h :

∫
Γ

D

μhvhdΓ = 0 ∀μh ∈Wh

}
.

This space can be viewed to be a (nonconforming) discretization of V0. In addition,
we shall suppose that W̃h and Ṽ h are chosen in such a way that the following two
conditions are satisfied for every h > 0:

1|Γ
D

∈ Wh,(11)

μh ∈Wh :
∫

Γ
D

μhvhdΓ = 0 ∀vh ∈ V h =⇒ μh = 0.(12)

Lemma 1. The bilinear form a(·, ·) is uniformly V h0 -elliptic; i.e., there exists
α > 0 independent of h such that

a
(
vh, vh

) ≥ α ∥∥vh∥∥
V
∀vh ∈ V h0 .

Proof. It follows from the fact that V h0 ⊂ V #
0 .

Proposition 1. Suppose that (11) and (12) are satisfied. Then the solution
(uh, λh) to Problem (9) is unique and there exists a constant C > 0 independent of
Ṽ h and W̃h such that1 ∥∥uh∥∥

V
≤ C‖l‖H−1(Ω).

Proof. Since 1|Γ
D

∈ Wh, it follows from the last equality in (9) that uh ∈ V #
0 .

The existence and uniqueness of (uh, λh) now follows from (12) and Lemma 1. The
announced estimate comes from the fact that a(uh, uh) = l(uh).

We prove now the following abstract result (the extension of Cea’s lemma).

1In what follows, the symbol C will be used to denote a generic positive constant which does not
depend on h and which can take different values at different places of its appearance.
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Lemma 2. Let (u, λ) and (uh, λh) be the solution to Problems (5) and (9), respec-
tively. Suppose that (11) and (12) are satisfied. Then there exists a constant C > 0
independent of Ṽ h and W̃h such that

∥∥u− uh∥∥
V
≤ C

(
inf

vh∈V h
0

∥∥u− vh∥∥
V

+ sup
vh∈V h

0 ,v
h �=0

∣∣a (u, vh)− l (vh)∣∣∥∥vh∥∥
V

)
.

Proof. For a given function vh ∈ V h0 one has

α
∥∥uh − vh∥∥2

V
≤ a (uh − vh, uh − vh)
= a

(
u− vh, uh − vh)+ l

(
uh − vh)− a (u, uh − vh) .

Thus,

∥∥uh − vh∥∥
V
≤ C ∥∥u− vh∥∥

V
+ sup
wh∈V h

0 ,w
h �=0

∣∣a (u,wh)− l (wh)∣∣∥∥wh∥∥
V

.

From the triangle inequality ‖u − uh‖V ≤ ‖u − vh‖V + ‖uh − vh‖V we obtain the
result.

Remark 1. The term supvh∈V h
0 ,v

h �=0
|a(u,vh)−l(vh)|

‖vh‖V
is called a consistency error.

Corollary 1. Under the assumptions of Lemma 2, there exists a constant C > 0
independent of Ṽ h and W̃h such that

(13)
∥∥u− uh∥∥

V
≤ C

(
inf

vh∈V h
0

∥∥u− vh∥∥
V

+ inf
μh∈Wh

‖λ− μh‖W
)
.

Proof. Since u is a solution to Problem (5) one has

a
(
u, vh

)
= l
(
vh
)− 〈λ, vh〉

W,X
∀vh ∈ V h0 .

The definition of V h0 yields

a
(
u, vh

)− l (vh) = − 〈λ, vh〉
W,X

=
〈
μh − λ, vh〉

W,X
∀vh ∈ V h0 ∀μh ∈ Wh,

so that ∣∣a (u, vh)− l (vh)∣∣ ≤ inf
μh∈Wh

∥∥λ− μh∥∥
W

∥∥vh∥∥
V
∀vh ∈ V h0 .

This, together with Lemma 2, gives (13).
We establish now the following convergence result.
Proposition 2. Suppose that (11) and (12) are satisfied and, in addition, let the

system {V h0 }, {Wh}, h→ 0+ be dense in V0 and L2(Γ
D

), respectively. Then

uh → u in V, h→ 0+,

where u and uh are the first components of the solution to (5) and (9), respectively.
Proof. From Proposition 1 it follows that∥∥uh∥∥

V
≤ C ∀h > 0.
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Thus, there exists a subsequence, still denoted by the same symbol and an element
u ∈ V such that

(14) uh ⇀ u in V, h→ 0+.

Since {Wh} is dense in L2(Γ
D

), for any μ ∈ L2(Γ
D

) there exists a sequence {μh},
μh ∈ Wh such that

(15) μh → μ in L2(ΓD ), h→ 0+.

Passing to the limit in the last equality in (9), using (14) and (15) we see that∫
Γ

D

μudΓ = 0 ∀μ ∈ L2(Γ
D

),

which is equivalent to u ∈ V0. Let v ∈ V0 be given. Then, by the assumption there
exists a sequence {vh}, vh ∈ V h0 such that

(16) vh → v in V, h→ 0+.

Since uh solves (9) we have

a
(
uh, vh

)
= l
(
vh
)
.

From this, (14), and (16) we see that

a(u, v) = l(v) ∀v ∈ V0,

i.e., u := u solves the original problem. As u is unique, the whole sequence {uh} tends
weakly to u in V . Strong convergence of {uh} to u follows from the fact that

|uh|1,Ω → |u|1,Ω,

which is easy to verify.
In what follows, we shall estimate the first term on the right of (13). To simplify

our presentation we shall consider a purely homogeneous Dirichlet problem, i.e., with
Γ

D
= Γ and such that its solution u belongs to H1+d/2+ε(Ω) ∩H1

0 (Ω) for some ε > 0
(Ω ⊂ R

d). From the embedding theorem it immediately follows that

(17) u ∈ C1
(
Ω
)
.

For δ > 0 given, we denote by Ωδ the subset of Ω:

Ωδ = {x ∈ Ω : dist(x,Γ) > δ}.

Let ηh be a sufficiently smooth cutoff function:

ηh =
{

1 in Ω \ Ω2h,
0 in Ω3h.

In Ω2h \ Ω3h the function ηh is defined in such a way that

(18) ‖∇jηh‖C(Ω) ≤
C

hj
, j = 1, 2.
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The solution u can be split and written in the form

u = ηhu+ (1− ηh)u.

Next, we show that

(19) ‖ηhu‖V ≤ C
√
h, h→ 0+.

Indeed,

(20) ‖ηhu‖2V = ‖u‖21,Ω\Ω2h
+ ‖ηhu‖21,Ω2h\Ω3h

.

From (17) it immediately follows that

‖u‖21,Ω\Ω2h
≤ Ch, h→ 0+.

To get the estimate of the second term on the right of (20) it is sufficient to estimate
the respective seminorm. It holds:

|ηhu|21,Ω2h\Ω3h
≤ C

(∫
Ω2h\Ω3h

|∇ηh|2u2dΩ +
∫

Ω2h\Ω3h

η2
h|∇u|2dΩ

)

≤ Ch, h→ 0+,(21)

making use of (18) and the elementary estimate

(22) max
x∈Ω2h\Ω3h

|u(x)| ≤ Ch,

which holds in view of the fact that u = 0 on Γ. From (21) and (22) we obtain (19).
Let V h00 be a subset of Vh containing functions vanishing in a vicinity of Γ. More

precisely,

V h00 =
{
vh ∈ V h : vh(a) = 0 ∀a ∈ N h

}
,

whereN h is the set of those nodes of T h which lie in Ω\Ω3h/2. Observe that V h00 ⊂ V h0 .
By ΠT v we denote the standard P -Lagrange interpolate of v on an element T ∈

T h, T ⊂ Ω. Since P ⊇ Pk(k ≥ 1) we know that

(23) ‖v −ΠT v‖1,T ≤ ChT
‖v‖2,T

holds for any v ∈ H2(T ), T ∈ T h and T ⊂ Ω.
Proposition 3. Suppose that Ṽ h is defined by (8), let (11) and (12) be satisfied,

and, in addition,

(24) inf
μh∈Wh

∥∥λ− μh∥∥
W
≤ Chβ , for some β ≥ 1/2.

Let the solution u of (4) with Γ = Γ
D

be such that u ∈ H1+d/2+ε(Ω) ∩H1
0 (Ω), ε > 0.

Then ∥∥u− uh∥∥
V
≤ C
√
h, h→ 0+.
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Proof. It is sufficient to estimate the first term on the right of (13). It holds:

inf
vh∈V h

0

∥∥u− vh∥∥
V
≤ inf
vh∈V h

00

∥∥u− vh∥∥
V

= inf
vh∈V h

00

∥∥ηhu+ (1− ηh)u− vh
∥∥
V

≤ ‖ηhu‖V +
∥∥(1 − ηh)u− vh∥∥V ∀vh ∈ V h00.

We construct vh as follows:

vh|T = ΠT

(
(1− ηh)u|T

)
if T ⊂ Ω,

otherwise, we set vh = 0. It is readily seen that vh ∈ V h00 and from (23) it follows that

(25)
∥∥(1− ηh)u− vh∥∥V ≤ Ch‖(1− ηh)u‖2,Ω ≤ Ch‖u‖2,Ω + Ch‖ηhu‖2,Ω.

A direct computation shows that

(26) ‖ηhu‖2,Ω ≤ C√
h
, h→ 0+.

Indeed, the H2(Ω)-seminorm can be estimated by

|ηhu|22,Ω ≤ C
(∥∥∇2ηh

∥∥2

C(Ω)

∫
Ω2h\Ω3h

u2dΩ +
∫

Ω2h\Ω3h

|∇ηh|2|∇u|2dΩ + |u|22,Ω
)
≤ C

h
,

as follows from (18) and (22). Using (26) in (25) we see that∥∥(1− ηh)u− vh∥∥V ≤ C√h, h→ 0+.

From this and (19) we finally arrive at

inf
vh∈V h

0

∥∥u− vh∥∥
V
≤ C
√
h.

The convergence rate given by the previous proposition is only of order
√
h.

The numerical experiments of section 7 show that this result, based on the classical
formulation, is optimal, in general. The aim of the next section is to propose a
stabilization technique to overcome this limitation.

5. A stabilized formulation. In this section we adapt a stabilization technique
presented by Barbosa and Hughes in [2, 3] in order to recover an optimal rate of
convergence. Note that the link between this stabilization technique and the former
Nitsche’s method [20] has been established in [24]. Moreover, it has been recently
used to interface problems with nonmatching meshes in [4] and to elastostatic contact
problems in [14]. We present its symmetric version although the nonsymmetric one
can be considered in the same way. This technique is based on the addition of a
supplementary term involving the normal derivative on Γ

D
. In fact, we need a little

bit more general definition. Let us suppose that we have at our disposal an operator

Rh : V h −→ L2(Γ
D

),

which approximates the normal derivative on Γ
D

, (i.e., for vh ∈ V h converging to a
sufficiently smooth function v, Rh(vh) tends to ∂nv in an appropriate sense). Several
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choices of Rh will be proposed later. We suppose that the following estimate holds
for this operator:

(27) h1/2
∥∥Rh (vh)∥∥

0,Γ
D

≤ C ∥∥∇vh∥∥
0,Ω

∀vh ∈ V h, ∀h > 0.

To obtain the stabilized problem we replace the Lagrangian (7) by the following one:

Lh
(
vh, μh

)
= L (vh, μh)− γ

2

∫
Γ

D

(
μh +Rh

(
vh
))2

dΓ, vh ∈ V h, μh ∈Wh,

where for the sake of simplicity γ := hγ0 is chosen to be a positive constant over Ω (for
nonuniform meshes, an element dependent parameter γ = hT γ0 is a better choice).
The corresponding discrete problem reads as follows:

(28)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find uh ∈ V h and λh ∈Wh such that

a
(
uh, vh

)
+
∫

Γ
D

λhvhdΓ− γ
∫

Γ
D

(
λh +Rh

(
uh
))
Rh
(
vh
)
dΓ = l

(
vh
) ∀vh ∈ V h,∫

Γ
D

μhuhdΓ− γ
∫

Γ
D

(
λh +Rh

(
uh
))
μhdΓ = 0 ∀μh ∈ Wh.

As in [2], let us define the form Bh : (V h ×Wh)2 −→ R by

Bh
(
uh, λh; vh, μh

)
:= a

(
uh, vh

)
+
∫

Γ
D

λhvhdΓ +
∫

Γ
D

μhuhdΓ

− γ
∫

Γ
D

(
λh +Rh

(
uh
)) (

μh +Rh
(
vh
))
dΓ.

Then, (28) is equivalent to

(29)
{

Find uh ∈ V h and λh ∈Wh such that
Bh
(
uh, λh; vh, μh

)
= l
(
vh
)
, ∀ (vh, μh) ∈ V h ×Wh.

Moreover, this formulation is consistent in the sense that the solution (u, λ) to problem
(5) satisfies

(30) Bh
(
u, λ; vh, μh

)
= l
(
vh
)
, ∀vh ∈ V h, ∀μh ∈Wh,

provided that λ ∈ L2(Γ
D

) with Bh having the same definition as Bh but replacing
Rh(u) by ∂nu.

The following hypothesis on the approximation property of Wh will be needed to
get an abstract result. Let P h : L2(Γ

D
) −→ Wh be the L2-projection on Wh. We

suppose that there exists a constant C > 0 independent of h such that

(31)
∥∥P hv − v∥∥

0,Γ
D

≤ Ch1/2‖v‖1/2,Γ
D
, ∀v ∈ H1/2(Γ

D
).

This allows one to establish the following “inf-sup” property of Bh.
Lemma 3. Let hypotheses (11), (27), and (31) be satisfied. Then for γ0 > 0

sufficiently small there exists a constant C > 0 independent of h such that

(32) sup
(0,0) �=(zh,ηh)∈V h×Wh

Bh
(
vh, μh; zh, ηh

)∣∣∥∥(zh, ηh)∥∥∣∣ ≥ C ∣∣∥∥(vh, μh)∥∥∣∣ ,
where |‖(zh, ηh)‖|2 := ‖zh‖2V + h−1‖zh‖20,Γ

D
+ h‖ηh‖20,Γ

D
.
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Proof. The proof is an adaptation of the one in [24], Lemma 5. First of all, for
(vh, μh) ∈ V h ×Wh arbitrary, γ0 > 0 sufficiently small, and from (27) one has

Bh
(
vh, μh; vh,−μh) =

∥∥∇vh∥∥2

0,Ω
+ γ0h

∥∥μh∥∥2

0,Γ
D

− γ0h
∥∥Rh (vh)∥∥2

0,Γ
D

≥ C
(∥∥∇vh∥∥2

0,Ω
+ h

∥∥μh∥∥2

0,Γ
D

)
.(33)

Next, from (27) and the Young inequality we get for μh := h−1P hvh:

Bh
(
vh, μh; 0, μh

)
=
∫

Γ
D

μhvhdΓ− γ
∫

Γ
D

(
μh +Rh

(
vh
))
μhdΓ

≥ h−1
∥∥P hvh∥∥2

0,Γ
D

−C
(∥∥∇vh∥∥

0,Ω
+ h1/2

∥∥μh∥∥
0,Γ

D

)
h−1/2

∥∥P hvh∥∥
0,Γ

D

≥ h−1
∥∥P hvh∥∥2

0,Γ
D

− C
2

2

(∥∥∇vh∥∥
0,Ω

+ h1/2
∥∥μh∥∥

0,Γ
D

)2

− h−1

2

∥∥P hvh∥∥2

0,Γ
D

≥ h−1

2

∥∥P hvh∥∥2

0,Γ
D

− C
(∥∥∇vh∥∥2

0,Ω
+ h

∥∥μh∥∥2

0,Γ
D

)
.(34)

We now take (zh, ηh) = (vh,−μh + δμh) in (32) with δ > 0. Using (33), (34), and δ
sufficiently small one has

Bh
(
vh, μh; zh, ηh

)
= Bh

(
vh, μh, vh,−μh)+ δBh

(
vh, μh, 0, μh

)
≥ C

(∥∥∇vh∥∥2

0,Ω
+ h−1

∥∥P hvh∥∥2

0,Γ
D

+ h
∥∥μh∥∥2

0,Γ
D

)
.(35)

Since {1} ⊂Wh, then for the L2-projection of vh on {1} we obtain

(36)
∥∥P hvh∥∥2

0,Γ
D

≥
∫

Γ
D

(
1
|Γ

D
|
∫

Γ
D

vhdΓ

)2

dΓ =
1
|Γ

D
|

(∫
Γ

D

vhdΓ

)2

.

Let β > 0 be sufficiently small. Then it holds:∥∥∇vh∥∥2

0,Ω
+ h−1

∥∥P hvh∥∥2

0,Γ
D

=
∥∥∇vh∥∥2

0,Ω
+ (1− β)h−1

∥∥P hvh∥∥2

0,Γ
D

(37)

+ βh−1
∥∥P hvh − vh + vh

∥∥2

0,Γ
D

≥ ∥∥∇vh∥∥2

0,Ω
+ (1− β)

1
|Γ

D
|diam(Ω)

(∫
Γ

D

vhdΓ

)2

(38)

+ βh−1
(∥∥vh∥∥2

0,Γ
D

− ∥∥P hvh − vh∥∥2

0,Γ
D

)
≥ C

(∥∥vh∥∥2

V
+ βh−1

(∥∥vh∥∥2

0,Γ
D

− h ∥∥vh∥∥2

1/2,Γ
D

))
≥ C

(∥∥vh∥∥2

V
+ h−1

∥∥vh∥∥2

0,Γ
D

)
,(39)

where we used (31), the fact that (‖∇vh‖20,Ω + (1 − β) 1
|Γ

D
|diam(Ω) (

∫
Γ

D

vhdΓ)2)1/2 is
an equivalent norm on V and the trace theorem. Finally, one obtains (32) combining
(35) and (39) together with the fact that |‖(zh, ηh)‖| ≤ C|‖(vh, μh)‖|.
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Remark 2. The inf-sup condition straightforwardly ensures the existence and
uniqueness of a solution to the discrete problem (28) for γ0 > 0 sufficiently small.

Now, we can prove the following abstract error estimate.
Theorem 1. Let (11), (27), and (31) be satisfied and γ0 > 0 be sufficiently

small. If (u, λ) is the solution to Problem (5) such that λ ∈ L2(ΓD ), then there exists
a constant C > 0 independent of h and (u, λ) such that the following estimate holds:

∣∣∥∥(u− uh, λ− λh)∥∥∣∣
≤ C inf

vh∈V h,μh∈Wh

(∣∣∥∥(u− vh, λ− μh)∥∥∣∣+ h1/2
∥∥Rh (vh)− ∂nu∥∥0,Γ

D

)
.

Proof. From (30) it follows that

Bh
(
u, λ, zh, ηh

)
= Bh

(
uh, λh, zh, ηh

) ∀ (zh, ηh) ∈ V h ×Wh.

Thus, for any (vh, μh) ∈ V h ×Wh one has

Bh
(
vh, μh, zh, ηh

)− Bh (u, λ, zh, ηh)
= Bh

(
vh − uh, μh − λh, zh, ηh) ∀ (zh, ηh) ∈ V h ×Wh.

A direct computation leads to

Bh
(
vh, μh; zh, ηh

)− Bh (u, λ; zh, ηh
) ≤ C( ∣∣∥∥(u− vh, λ− μh)∥∥∣∣

+ h1/2
∥∥Rh (vh)− ∂nu∥∥0,Γ

D

) ∣∣∥∥(zh, ηh)∥∥∣∣ .
Further,∣∣∥∥(u− uh, λ− λh)∥∥∣∣ ≤ ∣∣∥∥(u− vh, λ− μh)∥∥∣∣+ ∣∣∥∥(vh − uh, μh − λh)∥∥∣∣

≤ ∣∣∥∥(u− vh, λ− μh)∥∥∣∣
+ C sup

(0,0) �=(zh,ηh)∈V h×Wh

Bh
(
vh − uh, μh − λh; zh, ηh)∣∣∥∥(zh, ηh)∥∥∣∣

≤ C
(∣∣∥∥(u− vh, λ− μh)∥∥∣∣+ h1/2

∥∥Rh (vh)− ∂nu∥∥0,Γ
D

)
holds for any (vh, μh) ∈ V h ×Wh.

In the rest of this section we show how to use the abstract result of Theorem 1 to
establish an optimal a priori error estimate for the following standard finite element
spaces:

(40) Ṽ h =
{
vh ∈ C

(
Ω̃
)

: vh|T ∈ Pku(T ) ∀T ∈ T h
}
, ku ≥ 1,

(41) W̃h =
{
μh ∈ L2

(
Ω̃
)

: μh|T ∈ Pkλ
(T ) ∀T ∈ T h

}
, kλ ≥ 0.

In order to estimate the boundary terms, we shall need the following classical estimate
which is satisfied for any T ∈ T h and any w ∈ H1(T ) provided that Γ

D
is smooth

enough (see Appendix A for the proof):

(42) ‖w‖20,Γ
D
∩T ≤ C

(
h−1

T
‖w‖20,T + hT ‖w‖21,T

)
.
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Let k = min(ku, kλ + 1) and consider two continuous extension operators:

T ku : Hk+1(Ω) −→ Hk+1
(
Ω̃
)
,

T kλ : Hk−1/2(Γ
D

) −→ Hk
(
Ω̃
)
,

where Hk−1/2(Γ
D

) stands for the space of traces on Γ
D

of functions from Hk(Ω). Due
to Calderón’s extension theorem, it is always possible to build such operators provided
that the domain Ω has the uniform cone property (see [1], for instance). This allows
us to define the following interpolation operators on Ṽ h and W̃h:

Π̃k,h
u (v) := Πk,h

(
T ku (v)

) ∀v ∈ Hk+1(Ω),

Π̃k,h
λ (μ) := Πk−1,h

(
T kλ (μ)

) ∀μ ∈ Hk−1/2(Γ
D

),

where Πk,h stands for the standard Lagrange interpolation operator by piecewise
polynomial functions of degree less or equal k defined on the mesh T h. An exception
has to be done for k = 1 when the Lagrange interpolation operator will be replaced
by Clément’s one for the interpolation of the multiplier since functions from H1(Ω̃)
are not generally continuous (see [8]). Due to the known approximation properties
of these operators on regular families of meshes (see [7] and [8]), one has for any
v ∈ Hk+1(Ω): ∥∥∥Π̃k,h

u (v)− v
∥∥∥
V
≤
∥∥∥Π̃k,h

u (v) − T ku (v)
∥∥∥

1,Ω̃

≤ Chk ∥∥T ku (v)
∥∥
k+1,Ω̃

≤ Chk‖v‖k+1,Ω,

and for any μ ∈ Hk−1/2(Γ
D

) taking into account (42):

∥∥∥Π̃k,h
λ (μ)− μ

∥∥∥2

0,Γ
D

≤ C
∑
T∈T h

(
h−1

∥∥∥Π̃k,h
λ (μ)− T kλ (μ)

∥∥∥2

0,T
+ h

∥∥∥Π̃k,h
λ (μ)− T kλ (μ)

∥∥∥2

1,T

)

≤ Ch2k−1
∥∥T kλ (μ)

∥∥2

k,Ω̃
≤ Ch2k−1‖μ‖2k−1/2,Γ

D
.

In the same way one can derive the estimate ‖Π̃k,h
u (v) − v‖0,Γ

D
for v ∈ Hk+1(Ω)

and also obtain the estimate (31) (using Clément’s interpolation operator). Thus,
an a priori error estimate can be derived provided that the following approximation
property of Rh holds:

(43)
∥∥∥Rh (Π̃k,h

u (v)
)
− ∂nv

∥∥∥
0,Γ

D

≤ Chk−1/2‖v‖k+1,Ω.

Theorem 2. Let Ṽ h and W̃h be defined by (40) and (41), respectively. Let
(u, λ) be the solution to Problem (5) such that u ∈ Hk+1(Ω) and λ ∈ Hk−1/2(ΓD ) for
k = min{ku, kλ + 1}. Assume that (27) and (43) are satisfied. Then the following
estimate holds: ∣∣∥∥(u− uh, λ− λh)∥∥∣∣ ≤ Chk‖u‖k+1,Ω,

where (uh, λh) is the solution to Problem (28).
Remark 3. Note that for kλ ≥ 1 the use of W̃h ∩ C(Ω̃) instead of W̃h does not

change the result. Note also that the definition of the norm |‖(u−uh, λ−λh)‖| involves
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a standard error estimate for ‖u− uh‖V . However, it does not provide an estimate of
‖λ− λh‖−1/2,Γ

D
but the one of h1/2‖λ− λh‖0,Γ

D
. An additional optimal estimate of

‖u− uh‖0,Γ
D

is also available without supplementary regularity assumptions. This is
due to the use of the Pitkäranta technique [21]. Error estimates with natural norms
instead of mesh dependent norms are also possible for the stabilized problem (see [3]).

5.1. Case Rh(vh) = ∂nv
h and an additional condition on the mesh. A

natural choice for the operator Rh is of course

Rh
(
vh
)

= ∂nv
h on ΓD ,

which corresponds to the original method of Barbosa and Hughes. In this case, un-
fortunately, the stability condition (27) is verified only under an additional regularity
assumption on the intersection of the mesh with Ω. We denote by T̂ a reference ele-
ment such that T = τT (T̂ ) for all T ∈ T h, where τT is a regular affine transformation
in R

d. The assumption on the mesh can be expressed as follows (see [21] for a similar
one):

(44)
There exists a radius ρ̂ > 0 independent of h such that for any
T ∈ T h, T ∩ Ω �= ∅ the reference element T̂ contains a ball B(ŷ

T
, ρ̂)

which satisfies B(ŷ
T
, ρ̂) ⊂ τ−1

T
(T ∩Ω).

Under this assumption, inequality (27) is satisfied for Ṽ h defined by (40) (see the
proof in Appendix B). Moreover, the following lemma says that (43) is also satisfied.

Lemma 4. Let Ṽ h be defined by (40), Rh(vh) = ∂nv
h on Γ

D
and assume that

(44) is satisfied. Then (43) is satisfied as well.
Proof. Recall that k = min(ku, kλ + 1). Using (42) and standard interpolation

error estimates one has for any v ∈ Hk+1(Ω):

∥∥∥Rh (Π̃k,h
u (v)

)
− ∂nv

∥∥∥2

0,Γ
D

≤
∑
T∈T h

∥∥∥∇Π̃k,h
u (v) −∇v

∥∥∥2

0,Γ
D
∩T

≤ C
∑
T∈T h

(
h−1

∥∥∥∇Π̃k,h
u (v) −∇T ku (v)

∥∥∥2

0,T

+ h
∥∥∥∇Π̃k,h

u (v)−∇T ku (v)
∥∥∥2

1,T

)

≤ C
∑
T∈T h

(
h−1

(
hk
∥∥T ku (v)

∥∥
k+1,T

)2

+ h
(
hk−1

∥∥T ku (v)
∥∥
k+1,T

)2
)

≤ Ch2k−1‖v‖2k+1,Ω.

We can deduce that if Rh(vh) = ∂nv
h on Γ

D
, the estimate of Theorem 2 holds

provided that (44) is satisfied. This assumption, however, restricts the use of our
fictitious domain approach. Indeed if, for instance, one wants to approximate an
evolving boundary, the intersection of elements with the real domain will be arbitrary.
The aim of the next section is to introduce an operator Rh with a reinforced stability,
enabling us to work with an arbitrary domain.
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.

ΓD

Ω
“good” element

“bad” element
T

T ′

.

Fig. 3. The choice of T ′ for an element T having a small intersection with Ω. In this case,
it is more stable to evaluate the normal derivative from a natural extension of vh from T ′ on T
because smaller is the thickness of this intersection; poorer approximation of the normal derivative
on T ∩ ∂Ω is obtained using vh

|T .

.

l
T ′

l
T ′

T ′

Td

.

Fig. 4. Prolongation of T ′.

5.2. Operator Rh with a reinforced stability. We give here an example of
how to construct an operator Rh ensuring both the approximation property (43) as
well as the stability property (27) for an arbitrary intersection of the mesh T h with
the domain Ω. The proposed construction is only local and quite simple to implement.

Let ρ̂ > 0 be an a priori given small radius (ρ̂ << 1). For each element T ∈ T h
such that T ∩ Ω �= ∅, we will designate by T ′ either the element T itself if there is a
ball B(ŷ

T
, ρ̂) ⊂ τ−1

T
(T ∩ Ω) (a “good” element) or any neighbor element possessing

this property if T itself does not satisfy it (T is a “bad” element).
The proposed operator Rh will simply be equal to ∂nvhT ′,T where vhT ′,T is either

vh|T if T ′ = T or the natural extension of vh|T ′ onto T if T ′ �= T . Of course, ρ̂ > 0
has to be sufficiently small such that T ′ always exists, which is not a big constraint.

It is not difficult to see that the stability condition (27) is satisfied with such a
choice of the operator Rh (see Appendix C for the sketch of the proof). The following
lemma establishes that (43) is also satisfied so that the estimate of Theorem 2 holds,
again.

Lemma 5. Let Ṽ h be defined by (40), and Rh(vh) := ∂nv
h
T ′,T on Γ

D
. Then (43)

is satisfied.
Proof. Suppose that T is a “bad” element, i.e., T ∩ Ω is “thin” and let T ′ be a

“good” neighbor element as described above (see also Figure 3). We prolong T ′ and
construct the new element Td as shown in Figure 4. The interpolation on Td is defined
by the interpolation on T ′. More precisely:

let v ∈ Hk+1
loc

(
R
d
)

and vT ′ := v|T ′ .



1488 JAROSLAV HASLINGER AND YVES RENARD

By ΠT ′vT ′ we denote the Pk-Lagrange interpolant of vT ′ constructed on T ′ (i.e., using
degrees of freedom in T ′) but with the domain of definition being the whole R

d. The
interpolation of v on Td is defined as

ΠTd
v := ΠT ′vT ′|Td

.

Classical arguments based on the fact that v − ΠTd
v vanishes for all polynomials

of degree less or equal k lead to the following approximation property (see [6], for
instance):

‖v −ΠTd
v‖m,Td

≤ Chk+1−m
Td

‖v‖k+1,Td

(
h

Td
≤ 2h

T ′

)
.

Analogically to Lemma 6 (see Appendix A) it holds:

‖v‖20,Γ
D
∩Td
≤ C

(
h−1

Td
‖v‖20,Td

+ h
Td
‖v‖21,Td

)
.

To get (43) we proceed as in Lemma 4. Only we have to sort all elements into
“good” and “bad” ones and to use either ΠT or ΠTd

.

6. Some practical details for implementation. The implementation of the
proposed method requires one to overcome a certain number of difficulties. First of
all, one has to select bases of the spaces V h and Wh from the ones of Ṽ h and W̃h. As
far as V h is concerned, the task is rather easy because it suffices to select the basis
functions among the ones of Ṽ h which are not identically equal to zero in Ω (one
can eventually remove those for which the intersection of their support with Ω is too
small). It is a little more difficult to find a basis of the spaceWh. Indeed, the traces on
Γ

D
of basis functions of W̃h may be linearly dependent, especially if Γ

D
is rectilinear.

A possible way to overcome this difficulty is to eliminate the redundant functions by
analyzing the elementary mass matrices whose components are

∫
Γ

D
∩T ψiψjdΓ, where

{ψi} are the shape functions of W̃h.
Another difficulty concerns the numerical integration: one needs to build inte-

gration formulas on the intersection of elements with the domain Ω as well as on the
intersection of elements with Γ

D
. Our finite element library, Getfem++ [22], uses

splitting of elements into simplices in a conformal way with respect to ∂Ω and then
it applies a standard integration formula on each subelement. If ∂Ω is curved, then
some curved subelements can be used. One obtains an integration formula on Γ

D
by

considering the faces of the subelements lying on ΓD .
The natural extension of functions on “bad” elements which is needed to obtain

the fully stabilized method described in section 5.2 consists in seeking information in a
“good” nearby element. This can be a handicap for certain finite element codes where
calculations are done only elementwise. A possible remedy is to precompute a global
discrete extension operator which gives the solution extended to “bad” elements from
the original one. Then, the matrices involving Rh(vh) are obtained as a composition
of classical matrices with this discrete extension operator.

The Xfem method is often associated with the use of some level-sets of functions
defined on the mesh. This is particularly useful when, for instance, one needs to
represent an evolving interface. In our case such a level-set can be utilized to represent
the boundary of Ω. The implementation in Getfem++ uses this strategy. Generally,
this involves an additional approximation of Ω. In our numerical tests presented in
the next section, the level-set functions are piecewise second degree polynomials. In
this case the level-set approach has no influence on the rate of convergence of the used
finite element methods which are of the first and second order.
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.

ΓN

ΓD

.

Fig. 5. Test domain and a triangular struc-
tured mesh.

Fig. 6. Exact solution.

Fig. 7. Approximated solution on a rough mesh with the P2/P1 method. Only the elements
intersecting Ω are depicted. The black curve is the boundary of Ω and the white curve is the zero
level-set of the approximated solution.

7. Numerical experiments. In this section, we present 2D-numerical tests.
The fictitious domain is Ω̃ = ] − 1/2, 1/2[2. The exact solution is u(x) = R4 −
|x|4(5+3 sin(7θ+ 7π

36 ))/2, where R = 0.47 and θ(x) = arctan(x2/x1). The real domain
is Ω = {x ∈ R

2 : u(x) < 0}, and the Dirichlet and Neumann boundary conditions are
defined on Γ

D
= Γ ∩ {x ∈ R

2 : x2 < 0} and Γ
N

= Γ ∩ {x ∈ R
2 : x2 > 0}.

The domain Ω is represented in Figure 5 with an example of a triangular struc-
tured mesh. The exact solution is shown in Figure 6 while a computed solution on a
rough mesh is depicted in Figure 7.
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7.1. Without stabilization. First, we present numerical tests without any sta-
bilization. We tested several choices of the finite element spaces Ṽh and W̃h.

In order to avoid the locking phenomena, the couple of selected finite element
spaces should satisfy as much as possible a discrete mesh independent inf-sup condition
since the stabilization is not used. For instance, it is known that the P1/P0 method
for the discretization of u, λ, respectively, does not satisfy such a condition. The linear
system to be solved is of the form

(45)
(
K B

T

B 0

)(
U
Λ

)
=
(
L
0

)
,

where U and Λ are the degrees of freedom of uh and λh, respectively, and the com-
ponents of K,B, and L are

Kij =
∫

Ω

∇ϕi.∇ϕjdΩ, Bij =
∫

Γ
D

ψiϕjdΓ, Li =
∫

Ω

fϕidΩ +
∫

Γ
N

gϕidΓ,

with {ϕi}, {ψj} being the selected basis functions of Ṽh, W̃h, respectively. In our
experiments, this system is solved using the library Superlu [9] (a direct LU solver for
sparse matrices).

The test program can be downloaded on the Getfem++ web site [22]. It allows
one to test many other couples of elements and to treat also 3D problems.

The couples of spaces tested are the following: P1/P0, P1+/P0 (a standard contin-
uous P1 element for u enriched by a cubic bubble function and a standard P0 element
for the multiplier), Q1/Q0 (standard continuous Q1 and discontinuous Q0 elements
on quadrilaterals), P2/P1, P2/P0, and Q2/Q1.

Rates of convergence are presented in Figure 8. One can see that in all experiments
the rate of convergence in the H1(Ω)-norm is better than the theoretical one given
by Proposition 3 except for the P1/P0 case which is a little bit slower than h1/2. The
choice P1/P0 suffers of course from the non-satisfaction of a mesh-independent inf-sup
condition. It has to be stressed that in all the experiments without stabilization, and
particularly for the P1/P0 case, a singular linear system can be obtained. However,
in all examples, presented here, we selected some cases with a non-singular linear
system. It is also seen that convergence of the multiplier is not generally obtained,
especially for degree one methods. Figure 9 illustrates a poor quality of the multiplier
for the P1/P0 method. The P2/P1 method gives slightly better results (see Figure 10
still with some oscillations in parts where the intersection of the element with the
domain Ω is very small).

7.2. The stabilized method with Rh(vh) = ∂nv
h. The numerical experi-

ments are now done using the standard Barbosa–Hughes stabilization technique (with
γ = 0.1). It has been proven in section 5.1 that this method is optimal whenever the
intersection of elements with the domain Ω is not too small. This is not easy to satisfy
in computations. Of course, one way to avoid small intersections would be to move a
little bit some mesh nodes, at least when a structured mesh is not required. We did
not test this possibility.

Unlike (45), the linear system to be solved is now of the form

(
Kγ B

T

γ

Bγ −Mγ

)(
U
Λ

)
=
(
L
0

)
,
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Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Fig. 8. Rates of convergence for some couples of finite element spaces with no stabilization.

where the components of Kγ , Bγ , and Mγ are

(Kγ)ij =
∫

Ω

∇ϕi.∇ϕjdΩ− γ
∫

Γ
D

Rh(ϕi)Rh(ϕj)dΓ,

(Bγ)ij =
∫

Γ
D

ψi
(
ϕj − γRh(ϕj)

)
dΓ,

(Mγ)ij = γ

∫
Γ

D

ψiψjdΓ,

respectively. Note that Kγ is invertible provided that γ is sufficiently small. The
whole matrix of the system is invertible as well whatever is Bγ .

Rates of convergence are presented in Figure 11 for the same couples of elements
as in the previous section. The stabilization significantly improves the convergence
of the P1/P0 choice (the stabilization with bubble functions is no longer necessary)
and the convergence of quadratic elements. Moreover, the linear system is guaranteed
to be invertible. Figure 12 shows that also the approximation of the multiplier is
considerably improved. The convergence rate is improved by the stabilization, but
some problems remain with too small intersections of elements with Ω even for degree
two methods (see Figure 13).
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Fig. 9. Multiplier on ΓD with no stabilization for the P1/P0 method (h = 0.05).

Fig. 10. Multiplier on ΓD with no stabilization for the P2/P1 method (h = 0.05).

7.3. The fully stabilized method. We now consider the fully stabilized method
described in section 5.2. An element T is considered to be “bad” when |T ∩Ω| is less
than one percent of |T |. The convergence curves given in Figure 14 are rather the
same than with the standard Barbosa–Hughes stabilization used in the previous sec-
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Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Fig. 11. Rates of convergence for some couples of finite element spaces with the Barbosa–
Hughes stabilization.

Fig. 12. Multiplier on ΓD with the Barbosa–Hughes stabilization for the P1/P0 method (h =
0.05).
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Fig. 13. Multiplier on ΓD with the Barbosa–Hughes stabilization for the P2/P1 method (h =
0.05).

Rate of convergence ‖u− uh‖0,Ω. Rate of convergence ‖u− uh‖1,Ω.

Rate of convergence ‖λ− λh‖0,Γ
D

.

Fig. 14. Rates of convergence for some couples of finite element spaces with the fully stabilized
method.
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Fig. 15. Multiplier on ΓD with the fully stabilized method for the P1/P0 method (h = 0.05).

Fig. 16. Multiplier on ΓD with the fully stabilized method for the P2/P1 method (h = 0.05).

tion. However, we see that the multipliers behave in a more regular way than before
(see Figures 15 and 16). The difference lies only on the elements having a too small
intersection with the domain.

8. Concluding remarks. In this paper, we combined the Xfem approach to-
gether with the Barbosa–Hughes stabilized formulation to get a new fictitious domain
method. This method is quite simple to implement since all the variables (multipliers
and primal variables) are defined on a single mesh independent of the computational
domain. Moreover, it potentially allows one to treat complex boundary conditions
(such as contact and friction).

The fully stabilized method introduced in section 5.2 leads to a robust method in
the sense that it converges whatever is the intersection of the domain with the mesh.
This is not the case if the Barbosa–Hughes stabilization technique is used alone, for
which the quality of the approximation of the multiplier cannot be guaranteed on the
elements having a too small intersection with the domain. Note that in [21] a similar
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approach is presented. However, the error estimate is given under the assumption (44)
and the definition of multipliers requires the construction of a quasi-uniform family
of meshes on the boundary.

Appendix A. In this appendix we prove the trace inequality (42). For a proof
in a more classical framework see, for instance, [12]. The proof is done by scaling with
respect to a reference element T̂ .

We recall that for all T ∈ T h one has T = τT (T̂ ), where τT is an affine and
invertible mapping in R

d. We make the following hypotheses:
(a) ΓD is a Lipschitz-continuous boundary.
(b) there exists a constant C2 > 0 independent of h and T ∈ T h such that
‖∇τ

T
‖∞,T ≤ C2hT

and ‖∇τ−1
T̂
‖∞,T ≤ C2h

−1
T

.
These two hypotheses are satisfied for regular families of meshes provided that ΓD is
Lipschitz-continuous.

Lemma 6. Let (a) and (b) be satisfied. Then there exists a constant C > 0
independent of h and T ∈ T h such that

‖v‖20,Γ
D
∩T ≤ C

(
h−1

T
‖v‖20,T + h

T
‖v‖21,T

)
, ∀v ∈ H1(T ).

Proof. Since C∞(T ) is dense in H1(T ) one can confine to functions v ∈ C∞(T ).
Denoting Γ̂

D
= τ−1

T
(Γ

D
∩ T ) and n̂ a unit normal vector to Γ̂

D
, one has∫

Γ
D
∩T

v2dΓ =
∫

Γ̂
D

v̂2|det(∇τT )| ∥∥∇τ−1
T

n̂
∥∥ dΓ̂ ≤ Chd−1

T

∫
Γ̂

D

v̂2dΓ̂,

where v̂ = v ◦ τ
T
. Let us prove now that the following trace inequality:

(46)
∫

Γ̂
D

v̂2dΓ̂ ≤ C3‖v̂‖21,T̂ ∀v̂ ∈ C∞
(
T̂
)
,

is such that the constant C3 > 0 does not depend on the position of Γ̂D inside of
T̂ . This has been proved for a straight intersection in [11]. Let us consider the case
Γ̂

D
curved. For a sufficiently small mesh parameter h the curve Γ̂

D
is a graph of a

function over a segment l̂ contained in T̂ . Without loss of generality we may assume
that l̂ coincides with the x̂-axis (after appropriate shift and rotation of T̂ ). Then Γ

D

can be parametrized by the mean of a function (x̂, a(x̂)), x̂ ∈ l̂ and one has

v̂(x̂, a(x̂)) = v̂(x̂, 0) +
∫ a(x̂)

0

∂

∂y
v̂(x̂, τ)dτ.

Thus,

v̂2(x̂, a(x̂)) ≤ C
(
v̂2(x̂, 0) +

∫ a(x̂)

0

(
∂

∂y
v̂(x̂, τ)

)2

dτ

)
,

where C > 0 is an absolute constant. Integrating over l̂ we obtain

∫
l̂

v̂2(x̂, a(x̂))dx̂ ≤ C
(∫

l̂

v̂2(x̂, 0)dx̂+
∫
T̂

(
∂

∂y
v̂(x̂, τ)

)2

dτdx̂

)

≤ C‖v‖1,T̂
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using the result for the straight segment l̂. Now, we can conclude by the fact that∫
Γ̂

D

v̂2dΓ̂ =
∫
l̂

v̂2(x̂, a(x̂))
√

1 + (a′(x̂))2dx̂

≤ max
l̂

√
1 + (a′(x̂))2

∫
l̂

v̂2(x̂, a(x̂))dx̂,

since ΓD is assumed to be Lipschitz-continuous.
Using now (46) and ‖∇v̂‖∞,T̂ ≤ Ch

T
‖∇v‖∞,T we can establish the estimate of

the lemma:

‖v‖20,Γ
D
∩T ≤ Chd−1

T

∫
T̂

(
v̂2 +

∣∣∣∇̂v̂∣∣∣2) dx̂
≤ Ch−1

T

∫
T̂

(
v̂2 +

∣∣∣∇̂v̂∣∣∣2) |det(∇τ
T
)|dx̂

≤ Ch−1
T

∫
T

v2dx+ Ch
T

∫
T

|∇v|2dx.

Appendix B. We prove the discrete trace inequality (27) when Rh(vh) = ∂nv
h

provided that (44) is satisfied under the same hypotheses on the family of meshes and
on ΓD as in Appendix A. First we prove the following auxiliary result.

Lemma 7. Let vh be defined on T ∈ T h by vh(x) := v̂(τ−1
T

(x)) with v̂ ∈ Pk(Rd)
and suppose that (44) is satisfied. Then there exists a constant C > 0 independent of
h, T , and v̂ such that ∫

Γ
D
∩T

(
vh
)2
dΓ ≤ Ch−1

T

∫
Ω∩T

(
vh
)2
dx.

Proof. Because of the equivalence of norms on Pk(Rd), one has

‖v̂‖2∞,T̂ ≤ ‖v̂‖2∞,B(ŷT
,2) = ‖v̂ ◦ t(−ŷ

T
)‖2∞,B(0,2)

≤ C‖v̂ ◦ t(−ŷT )‖20,B(0,ρ̂) = C‖v̂‖2
0,B(ŷT

,ρ̂) ≤ C
∫
τ−1

T
(T∩Ω)

v̂2dx̂,

where t(−ŷ
T

) is the translation defined by t(−ŷ
T

)(x) = x−ŷ
T
. Thus, still with notations

of Appendix A:∫
Γ

D
∩T

(
vh
)2
dΓ =

∫
Γ̂

D

v̂2|det(∇τ
T
)| ∥∥∇τ−1

T
n̂
∥∥ dΓ̂ ≤ Chd−1

T
‖v̂‖2∞,T̂

∣∣∣Γ̂D

∣∣∣
≤ C h

d−1
T

hd
T

∫
τ−1

T
(T∩Ω)

v̂2|det(∇τ
T
)|dx̂ = Ch−1

T

∫
T∩Ω

(
vh
)2
dx.

Now, summing up the previous estimate over elements of T h one obtains the
following result.

Lemma 8. Let vh be defined on Ω by vh(x)|T = v̂
T
(τ−1

T
(x)), v̂

T
∈ Pk(Rd),

T ∈ T h, and suppose that (44) is satisfied. Then the following estimate holds with a
constant C > 0 independent of h and vh:

h

∫
Γ

D

(
vh
)2
dΓ ≤ C

∫
Ω

(
vh
)2
dx.
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The discrete trace inequality (27) can be now easily deduced since ‖∂nvh‖0,Γ
D
≤

‖∇vh‖0,Γ
D

, and for a quasi-uniform family of meshes the previous lemma can be
applied to ∇vh componentwise.

Appendix C. We now adapt the proof of Appendix B to the operator Rh(vh)
defined in section 5.2. The difference comes from those elements T ∈ T h having a
too small intersection with Ω (“bad” elements) and for which a neighbor element T ′

has been selected to make a natural extension of functions. For such an element,
the proof of Appendix B has to be modified because we evaluate the polynomial on
a larger zone than T̂ = τ−1

T ′ (T ′), namely, on T̂T,T ′ = τ−1
T ′ (T ′ ∪ (T ∩ Ω)). With the

quasi-uniform assumption for the meshes, it is readily seen that this zone is included
in T̂ρ

R
= {x ∈ R

d : dist(x, T̂ ) ≤ ρ
R
} for some ρ

R
> 0 independent of h, T and

T ′. Lemma 7 can be easily adapted remarking that there exists a constant C > 0
independent of h such that

‖v̂‖∞,T̂ρ
R

≤ C‖v̂‖∞,T̂ ∀v̂ ∈ Pk
(
R
d
)
,

using again that all norms are equivalent in Pk(Rd). From this the estimate∫
Γ

D
∩T

(
vh
)2
dΓ ≤ Ch−1

T

∫
Ω∩T ′

(
vh
)2
dx,

where vh(x) := v̂(τ−1
T ′ (x)), x ∈ R

d follows. Thus, (27) can be established remarking
that the element T ′ can be selected as a neighbor element only a finite number times
independently of h still due to the quasi-uniform property of the meshes.
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[17] N. Moës, E. Béchet, and M. Tourbier, Imposing Dirichlet boundary conditions in the eX-
tended Finite Element Method, Internat. J. Numer. Methods Engng., 12 (2006), pp. 354–381.
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[27] N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by
level sets in the extended finite element method, Comput. Methods Appl. Mech. Eng., 46
(2001), pp. 6183–6200.
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Abstract. In this paper we consider numerical approximations of a constraint minimization
problem, where the object function is a quadratic Dirichlet functional for vector fields and the
interior constraint is given by a convex function. The solutions of this problem are usually referred
to as harmonic maps. The solution is characterized by a nonlinear saddle point problem, and the
corresponding linearized problem is well-posed near strict local minima. The main contribution of
the present paper is to establish a corresponding result for a proper finite element discretization in
the case of two space dimensions. Iterative schemes of Newton type for the discrete nonlinear saddle
point problems are investigated, and mesh independent preconditioners for the iterative methods are
proposed.
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1. Introduction. The solutions of many systems of linear partial differential
equations can be characterized as minimizers of quadratic functionals over a set of
linear constraints. Examples of such systems are the linear Stokes system for fluid
flow, the Reissner–Mindlin plate model, and the so-called mixed formulation of second
order elliptic equations. The discretizations of these systems lead to linear systems
with a saddle point structure, and conditioning of the systems deteriorates as the mesh
becomes finer. As a consequence, substantial research on preconditioned iterative
methods for the corresponding discrete systems has taken place; cf., for example, [2, 3]
or [18, Chapter 6]. The purpose of the present paper is to perform a corresponding
analysis for a nonlinear problem. We will study a simple variant of the problem
characterizing harmonic maps with respect to a compact manifold. In particular, we
will focus on stability and error estimates for the discretization and on preconditioning
of the linear saddle point systems arising in a Newton iteration.

For a bounded Lipschitz domain Ω ⊂ R
d, we shall consider the problem of finding

local minima of a constrained minimization problem of the form

(1.1) min
v∈H1

g(Ω;M)
E(v) =

1
2

∫
Ω

|∇v|2dx.
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Here H1
g(Ω;M) is the set of vector fields with values in a smooth compact manifoldM

in R
d, with function values and first derivatives in L2(Ω), and such that the elements

v of H1
g(Ω;M) satisfies v|∂Ω = g for fixed vector field g defined on the boundary ∂Ω.

We will further assume that the target manifoldM is implicitly given in the form

M = {v ∈ R
d |F (v) = 0 },

where the function F : R
d → R

k is a smooth function, and it will be assumed that
the compatibility condition F (g) = 0 holds. More specific assumptions on F and the
boundary data g will be given later. Problems of the form (1.1) arise, for example, in
liquid crystal and superconductor simulations. The solutions of the problem (1.1) are
frequently referred to as harmonic maps [7]. In the present paper we will restrict our
study to the case k = 1, i.e., M is of dimension d − 1. We will focus on a nonlinear
saddle point approach to compute the solutions of the problem (1.1).

For a review of results on the continuous harmonic map problem, we refer to
[7, 24, 29, 30]. The purpose of the present paper is to discuss a finite element method
for approximating the constraint minimization problem (1.1). For the simplest case
of (1.1), with interior constraint given by |v| = 1, several numerical approaches have
been discussed; cf., for example, [1, 4, 5, 13, 14, 15, 16, 20, 21, 25, 26, 32]. Variants of
the projection method are proposed and analyzed in [1, 5, 16]. However, the standard
projection method applies only to the simplest model. Moreover, it was illustrated
in [5] that the projection method converges only for very special regular and quasi-
uniform triangulations for the discretized harmonic map problem. The relaxation
method of [13, 21, 25] is using point relaxation with the constraint required at each
grid point. Both convergence analysis and numerical experiments are supplied in
[25]. An advantage with the relaxation method is that it is very easy to implement.
However, disadvantages are that the relaxation parameter has to be chosen properly
to obtain convergence and that the convergence of such fixed point iterations is slow.
Another commonly used approach for harmonic map problems is to use penalization
methods; cf. [4, 14, 15, 16, 20]. It is even often combined with the gradient decent
method, which produces some time evolution equations; cf. [4, 11, 12, 14, 15, 16, 20].
The approach and analysis given in [4] even work for general p-harmonic problems,
with p close to 1. The analysis of [14, 15] is also valid for problems coupling harmonic
maps with Navier–Stokes equations.

The main contribution of the present paper is to discuss the use of a saddle point
approach for the construction of numerical methods for the constraint minimization
problem (1.1). We will show that the corresponding saddle point problem is stable
near exact local minima. This is achieved by verifying the standard stability con-
ditions for linear saddle point problems. This verification has the extra difficulty in
that the coercivity condition will not hold, in general, but only on the kernel of the
linearized constraint. Using the standard stability conditions for the corresponding
discrete saddle point problem, we will construct finite element methods such that the
corresponding discrete solutions admit an optimal error estimate in the energy norm.
Due to some technical difficulties, caused by the use of inverse inequalities to handle
some nonlinear terms, this analysis of the finite element discretization is restricted to
two space dimensions, i.e., d = 2. In this case we also establish that any critical point
of the functional E with respect to H1

g(Ω;M) is indeed a local minimum. Compared
with other approaches [4, 11, 14, 15], our estimates do not depend on extra artifi-
cial parameters like a weight parameter for the penalty method or a step size for a
gradient flow. We will also study Newton’s method for the discrete nonlinear saddle
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point problem and propose a simple and efficient preconditioner for the linear systems
arising during the iterations. Numerical tests will be given to show the efficiency of
the proposed method.

The outline of the paper is as follows. In section 2, the notations and assumption
will be specified. In section 3, the continuous problem is studied. The problem (1.1) is
formally transformed to a saddle point problem, and stability results will be proved for
the continuous model. In section 4 we first describe a finite element discretization for
(1.1), and then the discrete stability conditions are established. Using these stability
conditions, the existence, local uniqueness, and the error estimates are derived in
section 5. Variants of Newton’s method are analyzed in section 6, while numerical
experiments are presented in section 7.

2. Notation and preliminaries. Throughout this paper we will use c and C
to denote generic positive constants, not necessarily the same at different occurrences.
It is assumed that the constants are independent of the mesh size h, which will be
introduced later. For vectors v,w ∈ R

d, we use v ·w to denote the Euclidian inner
product, while the notation A : B is used to denote the Frobenius inner product
of two matrices A,B ∈ R

d×d. The corresponding norms are given by |v| and |A|,
respectively. For a vector or matrix A, At is the transpose of A. In the special case
of vectors v = (v1, v2) in R

2 we will use v⊥ = (−v2, v1) to denote the corresponding
vector obtained by a rotation of 90 degrees.

For m ≥ 0, we will use Hm = Hm(K) to denote the real valued L2-based Sobolev
spaces on domain K ⊂ R

d, the corresponding norm by ‖ · ‖m,K , and | · |m,K is the
seminorm involving only the mth order derivatives. The subspace Hm

0 is the closure
in Hm of C∞0 (K), while H−m is the dual of Hm

0 with respect to an extension of
the L2 inner product 〈·, ·〉. The corresponding L∞-based Sobolev spaces are denoted
Wm,∞(K), with associated norm ‖ · ‖m,∞,K . For all the Sobolev norms, we will
omit K in case K = Ω. In general, we will use boldface symbols for vector or
matrix valued functions. The gradient operator with respect to the spatial variable
x = (x1, x2, . . . , xd) is denoted ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xd)t. Furthermore, the
gradient of a vector valued function v = (v1, v2, . . . vd)t, ∇v, is the matrix valued
function obtained by taking the gradient rowwise, i.e., (∇v)ij = ∂vi/∂xj .

In order to specify the properties of the constraint functional F : R
d → R,

defining the constraint manifold M, we will use DF to denote the gradient of F ,
i.e., DF (v) = (∂F/∂v1, . . . , ∂F/∂vd)t and the corresponding Hessian by D2F (v) =
(∂2F/∂vi∂vj)di,j=1. Throughout this paper we will assume that the constraint func-
tional F satisfies the following:

(i) F is convex and smooth. Furthermore, there exist constants c0 and c1 such
that

(2.1) c0|v|2 ≤ D2F (ξ)v · v ≤ c1|v|2, ξ,v ∈ R
d.

(ii) F (0) < 0 and DF (0) = 0.
(iii) There exists an � > 0 such that the matrix function D2F satisfies

(2.2) |D2F (ξ1)−D2F (ξ2)| ≤ �|ξ1 − ξ2|, ξ1, ξ2 ∈ R
d.

The analysis below will still hold if the assumptions (2.1) and (2.2) are only valid for
all ξ, ξ1, ξ2 in a neighborhood of a continuous true solution.

For the boundary function g of (1.1), we assume that it has been extended into
the interior of Ω such that g ∈ H1(Ω). Corresponding to g, we let

H1
g(Ω) = {v ∈ H1(Ω) : v = g on ∂Ω}.
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If v : Ω→ R
d is a smooth vector field, then it follows from the chain rule that

(2.3) ∇F (v) = (∇v)tDF (v),

where the product on the right-hand side is the ordinary matrix-vector product. Fur-
thermore, we have

(2.4) ∇DF (v) = D2F (v)∇v.

From assumptions (i)–(ii) and the Taylor expansion we obtain the following estimate:

(2.5) 2c−1
1 |F (0)| ≤ |v(x)|2 ≤ 2c−1

0 |F (0)|, x ∈ Ω

for any v satisfying F (v) ≡ 0 in Ω. Similarly, we derive

(2.6) |DF (v)| ≥ c0|v|
for any v, and hence |DF (v(x))| > 0 if v(x) ∈M.

Let us note that the interior constraint in (1.1), given by v(x) ∈M, implies that
a local minimum of (1.1) satisfies u ∈ H1

g(Ω) ∩ L∞(Ω). In fact, if we restrict the
analysis to the case d = 2, with the manifold M taken to be the unit circle S1, and
we assume that the boundary ∂Ω and the boundary data g are sufficiently regular,
then there is a unique smooth global minimizer of (1.1) under the condition that the
degree of g is zero; cf. [7, Theorem 12] and [22]. However, this result is not true for
more general harmonic map problems [30, 24].

We will first consider the characterization of critical points of the functional E
over H1

g(Ω;M). The outline below follows a standard Langrange multiplier approach
to constrained optimization; cf., for example, [6] for the finite-dimensional case or
[17, 19] in the infinite-dimensional case. A vector field u ∈ H1

g(Ω;M) is such a
critical point if it satisfies

(2.7) 〈∇u,∇v〉 = 0

for any v in the tangent space of H1
g(Ω;M) at u, i.e., for any v ∈ H1

0(Ω) such that
DF (u) · v ≡ 0. In the saddle point approach which we shall consider here we will
view the critical points u as elements of the larger space H1

g(Ω). Assume that u has
the extra regularity property that

(2.8) u ∈ H1
g(Ω) ∩W1,∞(Ω).

Then any such u is a critical point if and only if there is a λ ∈ L2(Ω) such that the
pair (u, λ) satisfies the first order conditions

(2.9) 〈∇u,∇v〉 + 〈DF (u) · v, λ〉 = 0, v ∈ H1
0(Ω),

〈F (u), μ〉 = 0, μ ∈ H−1(Ω).

To see this we assume that u is a critical point satisfying (2.8), and let z = DF (u)/|DF
(u)|. For any v ∈ H1

0(Ω), let vτ = v − (v · z)z. As a consequence DF (u) · vτ = 0,
and, by (2.7),

0 = 〈∇u,∇vτ 〉 = 〈∇u,∇v〉 − 〈∇u,∇(v · z)z〉.
From (2.3), the constraint implies that (∇u)tz = 0. Therefore, the final inner product
above can be rewritten as

〈∇u,∇(v · z)z〉 = 〈∇u : ∇z,v · z〉.
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Hence, the system (2.9) holds with

(2.10) λ = −∇u : ∇z/|DF (u)| = −∇u : ∇DF (u)/|DF (u)|2,
where the last identity again is a consequence of the constraint. Note that it follows
from (2.8) that the multiplier λ is actually in L∞(Ω).

The variational problem (2.9) is the Euler–Lagrangian equation for the con-
strained minimization problem (1.1), and the system is a weak formulation of the
problem

(2.11)
−Δu + λDF (u) = 0 in Ω,

F (u) = 0 in Ω.

In the simplest case whenM = Sd−1, i.e., the unit disc in R
d, we have λ = −|∇u|2 and

−Δu− |∇u|2u = 0 in Ω u = g on ∂Ω.

In the present paper we will restrict our attention to the critical points u of E over
H1

g(Ω;M) that are local minimizers. So assume that the pair (u, λ) is a solution of
(2.9), satisfying the regularity property (2.8), and let w = w(t) be a smooth curve
in H1

g(Ω;M), defined for t in a neighborhood of the origin such that w(0) = u and
w′(0) = v. Hence, since F (w(t)) ≡ 0, we must have DF (u) · v = 0, and

(2.12) DF (u) ·w′′(0) = −D2F (u)v · v.
Furthermore, if we define a real valued function φ = φ(t) by

φ(t) = E(w(t)) =
1
2
〈∇w(t),∇w(t)〉,

then

φ′(t) = 〈∇w(t),∇w′(t)〉 and φ′′(t) = 〈∇w′(t),∇w′(t)〉+ 〈∇w(t),∇w′′(t)〉.
Hence, it follows from the system (2.9) that φ′(0) = 〈∇u,∇v〉 = 0, and if u corre-
sponds to a local minimum of E over H1

g(Ω;M), then the second order condition

φ′′(0) = 〈∇v,∇v〉 + 〈∇u,∇w′′(0)〉 ≥ 0

must hold. However, by using the system (2.9) and (2.12), we obtain that

〈∇u,∇w′′(0)〉 = −〈DF (u) · ∇w′′(0), λ〉 = 〈D2F (u)v · v, λ〉.
Therefore, the second order condition takes the form

(2.13) φ′′(0) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ 0.

In fact, let us refer to a local minimum u of E over H1
g(Ω;M) as a strict local minimum

if there is a positive constant β such that

d2

dt2
E(w(t))|t=0 ≥ β‖v‖21

for any smooth curve w = w(t) in H1
g(Ω;M) satisfying w(0) = u and w′(0) = v. It

follows from the calculation above that the function φ(t) = E(w(t)) satisfies

(2.14) φ′′(0) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ β‖v‖21
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for all v ∈ H1
0(Ω) satisfying DF (u) · v = 0. As we shall see below this condition is

closely tied to a stability condition for a linearization of the system (2.9).
The saddle point approach can be regarded as the limiting case of the penalty

method. In the commonly used penalty approach, cf. [4, 14, 15, 16, 20], one is seeking
a local minimizer of the following regularized problem:

min
v∈H1

g(Ω)
E(v) +

1
2ε

∫
Ω

|F (v)|2dx,

where the penalty parameter ε > 0 has to be properly chosen. The saddle point
system (2.9) is formally obtained in the limit as ε tends to zero. The advantage of the
saddle point approach is that the standard mixed finite element theory, cf. [9], tells
us how to choose the finite element spaces properly to avoid possible instabilities, and
there is no need to choose a penalty parameter.

3. Stability of the linearized problem. Throughout the rest of this paper
we will assume that the pair (u, λ) is a solution of the system (2.9), corresponding to
a local minimum of E over H1

g(Ω;M) and satisfying the regularity property

(3.1) u ∈ H1
g(Ω) ∩W1,∞(Ω), λ ∈ L∞(Ω).

In particular, u and λ are related by (2.10), and the second order condition (2.13)
holds, i.e.,

a(u, λ;v,v) ≥ 0

for all v ∈ Zu, where the bilinear form a(u, λ; ·, ·) is given by

a(u, λ;v, v̂) = 〈∇v,∇v̂〉+ 〈D2F (u)v · v̂, λ〉
and

Zu = {v ∈ H1
0(Ω) : 〈DF (u) · v, μ〉 = 0, μ ∈ L2(Ω)}.

For the analysis below, it will be useful to consider linearization of the saddle point
system (2.9). More precisely, we consider systems of the following form:

Find (v, μ) ∈ H1
0(Ω)×H−1(Ω) such that

(3.2)
a(u, λ;v, v̂) + 〈DF (u) · v̂, μ〉 = 〈f ,v〉, v̂ ∈ H1

0(Ω),
〈DF (u) · v, μ̂〉 = 〈σ, μ〉, μ̂ ∈ H−1(Ω),

where (u, λ) is the exact solution of (2.9) satisfying (3.1). Here f ∈ H−1(Ω) and
σ ∈ H1

0 (Ω) represent data.
Our goal is to show that this linear system is well-posed, i.e., we will show that

the map

(f , σ) ∈ H−1(Ω)×H1
0 (Ω) → (v, μ) ∈ H1

0(Ω)×H−1(Ω)

is well defined and bounded. This will be established by verifying the standard sta-
bility conditions for saddle points systems; cf. [8] or [9]. We will first establish the
so-called inf-sup condition.

Theorem 3.1. Let (u, λ) satisfy (3.1) and be related by (2.10). Then there is a
positive constant β1, depending on u, such that

(3.3) inf
μ∈H−1(Ω)

sup
v∈H1

0(Ω)

〈DF (u) · v, μ〉
‖v‖1‖μ‖−1

≥ β1.
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Proof. For any μ ∈ H−1(Ω), there exists a ϕ ∈ H1
0 (Ω) such that

(3.4)
〈μ, ϕ〉
‖ϕ‖1 = ‖μ‖−1.

Define v = ϕ w
|w|2 , where w = DF (u). Then, by Leibniz’ rule, there exists a c > 0,

depending on u, such that

‖∇v‖0 ≤ c‖ϕ‖1.

Furthermore,

〈DF (u) · v, μ〉 = 〈ϕ, μ〉 = ‖ϕ‖1‖μ‖−1.

Hence, the desired inequality holds with β1 = 1/c.
Next we need to consider the properties of the bilinear form a(u, λ; ·, ·). It is

straightforward to check that this bilinear form is bounded in the sense that

(3.5) a(u, λ;v, v̂) ≤ C(u, λ)|v|1|v̂|1, v, v̂ ∈ H1
0(Ω),

where the constant C(u, λ) depends on the norms of u and λ indicated by (3.1).
The final key property for the stability analysis of the linear system (3.2) is the

requirement that the bilinear form a(u, λ; ·, ·) is coercive on the linearized constraint
space Zu. It should be noted that this bilinear form is, in general, not coercive on
the entire space H1

0(Ω). For example, in the simplest case when M = Sd−1, we have

a(u, λ;v,v) =
∫

Ω

(|∇v|2 − |∇u|2|v|2) dx.

On the other hand, the stability theory of [8] requires only that

(3.6) a(u, λ;v,v) ≥ β‖v‖21, v ∈ Zu

for a suitable positive constant β, and this is exactly the strict minimum condition
(2.14). Therefore, if u is a strict local minimum, then the linear system (3.2) is
well-posed.

Furthermore, if we restrict to two space dimensions, i.e. d = 2, then the coercivity
condition (3.6) always holds. This is a consequence of the following theorem, which
implies that in this case every critical point (u, λ) satisfying (3.1) is a strict local
minimum, and the corresponding problem (3.2) is well-posed.

Theorem 3.2. Assume that d = 2. Let (u, λ) satisfy (3.1) and be related by
(2.10). Then there is a positive constant β2, depending on u, such that

(3.7) a(u, λ;v,v) = 〈∇v,∇v〉 + 〈D2F (u)v · v, λ〉 ≥ β2‖v‖21, v ∈ Zu.

Remark 3.1. The result of this theorem will not be true, in general, if the target
manifold M is of higher dimension. However, in [23] a sufficient condition on u and
M, referred to as the “cut locus condition,” is given, which ensures that the operator
associated with the bilinear form a(u, λ; ·, ·), restricted to the tangent space Zu, is
invertible, and hence the linear system (3.2) will be well-posed.

Before we give the proof of the theorem we will establish an auxiliary result.



SADDLE POINT APPROACH FOR HARMONIC MAPS 1507

Lemma 3.1. Assume that the conditions given in Theorem 3.2 hold and define
w = (w1, w2)t = DF (u). Then,

λD2F (u)w⊥ ·w⊥ = −w
2
1 |∇w2|2 + w2

2 |∇w1|2 − 2w1w2∇w1 · ∇w2

|w|2 .

Proof. It follows from (2.10) that the multiplier λ can be expressed as λ = −∇u :
∇w/|w|2. Hence,

(3.8) λD2F (u)w⊥ ·w⊥ =
∇u : ∇w
|w|2 (F11w

2
2 + F22w

2
1 − 2F12w1w2),

where Fij = ∂2F/∂ui∂uj. Furthermore, since ∇F (u) ≡ 0, we have from (2.3) that

w1∇u1 + w2∇u2 = 0,

while (2.4) implies that

∇wi = Fi1∇u1 + Fi2∇u2.

By combining these identities, we obtain

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u1 · ∇w1

= w2
2(F11∇u1 + F12∇u2) · ∇w1 − w1w2(F22∇u2 + F12∇u1) · ∇w1

= w2
2 |∇w1|2 − w1w2∇w1 · ∇w2.

A similar argument shows that

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u2 · ∇w2 = w2

1|∇w2|2 − w1w2∇w1 · ∇w2,

and hence the desired identity follows from (3.8).
Proof of Theorem 3.2. As above we let w = DF (u). For any v ∈ Zu, there exists

an α such that v = αw⊥. In fact, we have

(3.9) α =
v ·w⊥
|w|2 .

From the estimates (2.5)–(2.6) and condition (3.1), we see that α ∈ H1
0 (Ω). The key

identity we will use is the pointwise relation

(3.10) |∇v|2 + λD2F (u)v · v = |∇(α|w|)|2.

In order to verify this identity note that

∇(α|w|) = |w|∇α +
α

|w| (w1∇w1 + w2∇w2).

Hence,

|∇(α|w|)|2 = |w|2|∇α|2 +
|α|2
|w|2 |w1∇w1 + w2∇w2|2

+ 2α(w1∇α · ∇w1 + w2∇α · ∇w2).
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On the other hand,

|∇v|2 = |w|2|∇α|2 + α2|∇w|2 + 2α(w1∇α · ∇w1 + w2∇α · ∇w2).

Therefore,

|∇v|2 − |∇(α|w|)|2 = α2

(
|∇w|2 − |w1∇w1 + w2∇w2|2

|w|2
)

=
α2

|w|2 (w2
1 |∇w2|2 + w2

2 |∇w1|2 − 2w1w2∇w1∇w2)

= −λD2F (u)v · v,

where the last identity follows from Lemma 3.1. Hence, we have verified (3.10).
Let μ = α|w|. Then v = μ

|w|w
⊥, and hence

∇v =
1
|w|w

⊥ · ∇μ+ μ∇
(

w⊥

|w|
)
.

Therefore, since u satisfies (3.1), Poincaré’s inequality implies that

‖∇v‖0 ≤ c(‖∇μ‖0 + ‖μ‖0) ≤ c‖∇(α|w|)‖0,

where the constant c depends on u. Together with (3.10) this implies the desired
inequality of the theorem.

4. A stable discretization. The purpose of this section is to analyze a finite
element discretization of the constrained minimization problem (1.1). Due to some
technical difficulties caused by the use of inverse inequlities to treat some nonlinear
terms, cf. (4.3) below, the analysis given here is restricted to the case d = 2. As a
consequence, the bilinear form a(u, λ; ·, ·) will satisfy the coercivity bound given in
Theorem 3.2.

So, for the rest of the paper, we assume that d = 2 and that Ω ⊂ R
2 is a polygonal

domain. Given a shape regular and quasi–uniform family of triangulation {Th} of Ω,
with a mesh size h < 1, let Nh denote the set of nodes associated with Th. We use Vh
to denote the space of continuous piecewise linear functions and Vh,0 = Vh ∩H1

0 (Ω).
The notations Vh and Vh,0 will be used for the vector version of the corresponding
spaces. We will use πh to denote the usual nodal interpolation operators onto the
spaces Vh and Vh. Standard approximation properties of spaces of piecewise linear
functions will be used below. In particular, we will use the estimates

(4.1) ‖(I − πh)v‖1 ≤ Ch|v|2, v ∈ H2(Ω),

and

(4.2) ‖(I − Ph)v‖−1 ≤ Ch‖v‖0, v ∈ L2(Ω).

Here, Ph : L2(Ω) → Vh,0 is the L2 projection. Due to the quasi-uniformity of the
mesh, the operator Ph can be extended to a uniformly bounded operator on H−1.
Moreover, the following inverse inequalities hold:

(4.3) ‖v‖∞ ≤ C log(h−1)‖v‖1, ‖v‖1 ≤ Ch−1‖v‖0, v ∈ Vh.
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Set gh = πhg (on ∂Ω). We define

Vh,g = {v ∈ Vh : v|∂Ω = gh}.
We will consider the following discretized minimization problem:

(4.4) min
v∈Vh,g

E(v) subject to F (v) = 0 on Nh.

The Lagrange functional L : Vh,g × Vh,0 → R is

(4.5) L(v, μ) = E(v) +
∫

Ω

μπhF (v)dx (v, μ) ∈ Vh,g × Vh,0.

The first order condition defining the critical points of L leads to the following discrete
counterpart of the nonlinear saddle point problem (2.9):

Find (uh, λh) ∈ Vh,g × Vh,0 such that

〈∇uh,∇v〉 + 〈πh[DF (uh) · v], λh〉 = 0, v ∈ Vh,0,
〈πhF (uh), μ〉 = 0, μ ∈ Vh,0.(4.6)

However, we shall first analyze the discrete counterpart of the linearized system (3.2).
For a given (û, λ̂) ∈ Vh,g × Vh,0, let us define the bilinear form ah(û, λ̂; ·, ·) to be

ah(û, λ̂;v, v̂) = 〈∇v,∇v̂〉+ 〈πh[D2F (û)v · v̂], λ̂〉.
Similarly, as in (3.2) for the continuous problem, the linearized problem for (4.6) is
to find (v, μ) ∈ Vh,0 × Vh,0 such that

(4.7) ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], μ〉 = 〈f , v̂〉, v̂ ∈ Vh,0

〈πh[DF (û) · v], μ̂〉 = 〈σ, μ̂〉, μ̂ ∈ Vh,0.
For a given û ∈ Vh,g, define

Zh,û = {v ∈ Vh,0 : DF (û) · v = 0 on Nh}.
Lemma 4.1. Let Φ : R

2 × R
2 × · · · × R

2 → R
2 be a smooth function. Then we

have the following estimates for all v1,v2, . . . ,vk ∈ Vh:

|πhΦ(v1,v2, . . . ,vk)|1 ≤ C
k∑
i=1

‖DviΦ‖0,∞|vi|1;(4.8)

‖(πh − I)Φ(v1,v2, . . . ,vk)‖0 ≤ Ch
k∑
i=1

‖DviΦ‖0,∞|vi|1.(4.9)

Above, the constant C is independent of h, Φ, and vi. The norm ‖DviΦ‖0,∞
stands for ‖DviΦ(v1,v2, . . . ,vk)‖0,∞, with DviΦ(v1,v2, . . . ,vk) = ∂Φ(v1,v2, . . . ,vk)/
∂vi.

Proof. For clarity, we shall only give the proof for k = 2. The extension of the
proof for general cases is straightforward.

For an element e ∈ Th, let pi, i = 1, 2, 3 be the vertices of e. Under the condition
that the finite element mesh Th is regular and quasi-uniform, we have the following
equivalent H1 norms for v ∈ Vh:

(4.10) |v|1,e ∼=
3∑

i,j=1

|v(pi)− v(pj)|2, v ∈ Vh, e ∈ Th.
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In particular,

|πhΦ(v1,v2)|21,e ≤
3∑

i,j=1

|Φ(v1(pi),v2(pi))− Φ(v1(pj),v2(pj))|2.

Thus, we get (4.8) from the following estimate:

|πhΦ(v1,v2)|21,e ≤ 2
3∑

i,j=1

(
|Φ(v1(pi),v2(pi))− Φ(v1(pj),v2(pi))|2

+ |Φ(v1(pj),v2(pi))− Φ(v1(pj),v2(pj))|2
)

≤ 2
3∑

i,j=1

(
‖Dv1Φ‖20,∞,e|v1(pi)− v1(pj)|2 + ‖Dv2Φ‖20,∞,e|v2(pi)− v2(pj)|2

)
.

Next, we estimate (4.9). By the definition of the interpolation operator πh, we have

(πh − I)Φ(v1,v2)(p) =
3∑
i=1

[Φ(v1(pi),v2(pi))− Φ(v1(p),v2(p))]χi(p) p ∈ e,

where {χi}3i=1 are the barycentric coordinates on e. From this, we see that

‖(πh − I)Φ(v1,v2)‖20,e ≤ C
3∑
i=1

∫
e

|(Φ(v1(pi),v2(pi))− Φ(v1,v2)
)
χi|2

≤ C
3∑

i,j=1

∫
e

(‖Dv1Φ‖20,∞,e|v1(pi)− v1|2 + ‖Dv2Φ‖20,∞,e|v2(pi)− v2|2
)

(4.11)

≤ Ch2
3∑

i,j=1

(|Dv1Φ|20,∞,e|v1|21,e + |Dv2Φ|20,∞,e|v2|21,e
)
.

Thus, the estimate (4.9) is verified.
For the lemma above, it is essential that the functions vi are finite element func-

tions. If v1 ∈W1,∞(Ω) and v2 ∈ Vh, then we obtain

(4.12) ‖(πh − I)Φ(v1,v2)‖0 ≤ Ch(‖Dv1Φ‖0,∞|v1|1,∞ + ‖Dv2Φ‖0,∞|v2|1).

The next result, which is essential for our analysis, is a discrete version of Theorem
3.2. As in the previous section, (u, λ) is a solution of (2.9) satisfying (3.1).

Theorem 4.1. There exists positive constants γ0 and h0 such that, for (û, λ̂) ∈
Vh,g × Vh,0 satisfying

(4.13) ‖û− πhu‖1 + ‖λ̂− Phλ‖−1 ≤ γ/ log2(h−1)

with h ≤ h0 and γ ≤ γ0, we have

(4.14) ah(û, λ̂;v,v) ≥ β3‖v‖21, v ∈ Zh,û.

Here the constants γ0, h0, β3 depend on u.
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In order to prove the above theorem, we need to derive some auxiliary results.
The main idea is to relate (4.14) to the continuous problem, and then use Theorem
3.2 and some approximate properties of the operators πh and Ph. As before, we shall
use w = DF (u), with u being the true solution; see (3.1). Given a (û, λ̂) satisfying
(4.13), we define ŵ = DF (û). For any v ∈ Zh,û, let us define

(4.15) α(pi) =
v(pi) · ŵ⊥(pi)
|ŵ(pi)|2 , pi ∈ Nh.

From the above definition, it is clear that

α = πh

(
v · ŵ⊥
|ŵ|2

)
∈ Vh,0 , v = πh(αŵ⊥).

We have used the relation ŵ ·v = 0 on Nh in getting the last equality. Corresponding
to the true solution u and a given û ∈ Zh,û, let εh ∈ H1

0(Ω) be the function given by
εh = αw⊥ − v. We see clearly that

(4.16) εh + v ∈ Zu.

For a given û satisfying (4.13), one can verify by assumption (i) on the constraint
function F , cf. (2.1), and the inverse estimate (4.3) that

|w(p)− ŵ(p)| = |DF (û(p))−DF (πhu(p))| ≤ c1γ, p ∈ Nh.

Thus, by choosing γ small enough, one can guarantee that

(4.17) 0 < c|w(p)| ≤ |ŵ(p)| ≤ C|w(p)|, p ∈ Nh.
Hence, we conclude that (4.13) implies that there is a constant C, depending only on
u, such that

(4.18) ‖û‖1, ‖û‖0,∞ ≤ C.

Lemma 4.2. Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then we have the estimate∣∣∣∣πh
(
ϕ

ŵ
|ŵ|2

)∣∣∣∣
1

≤ C|ϕ|1, ϕ ∈ Vh,0,

where the constant C depends on u.
Proof. Let ψ = πh(ϕ ŵ

|ŵ|2 ). Using (4.10), we see that

(4.19)

|ψ|21,e ≤ C
∑
i,j

∣∣∣∣ϕ(pi)
ŵ(pi)
|ŵ(pi)|2 − ϕ(pj)

ŵ(pj)
|ŵ(pj)|2

∣∣∣∣
2

≤ C
∑
i,j

[
|ϕ(pi)− ϕ(pj)|2
|ŵ(pi)|2 + |ϕ(pj)|2 ·

∣∣∣∣ ŵ(pi)
|ŵ(pi)|2 −

ŵ(pj)
|ŵ(pj)|2

∣∣∣∣
2
]
.

It follows from (4.10) and (4.17)–(4.18) that

(4.20)
∑
i,j

|ϕ(pi)− ϕ(pj)|2
|ŵ(pi)|2 ≤ C|ϕ|21,e.
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On the other hand, we have by (4.17)–(4.18) and assumption (iii) on the constraint
function F , cf. (2.2),∣∣∣ ŵ(pi)
|ŵ(pi)|2 −

ŵ(pj)
|ŵ(pj)|2

∣∣∣2 ≤ C|ŵ(pi)− ŵ(pj)|2 ≤ C|û(pi)− û(pj)|2
≤ C|(û− πhu)(pi)− (û− πhu)(pj)|2 + |πhu(pi)− πhu(pj)|2.

Thus, we get by the inverse estimate (4.3) and (4.13) that

∑
i,j

[
|ϕ(pj)|2 ·

∣∣∣∣ ŵ(pi)
|ŵ(pi)|2 −

ŵ(pj)
|ŵ(pj)|2

∣∣∣∣
2
]

≤ C‖ϕ‖20,∞,e · |û− πhu|21,e + ‖ϕ‖20,e · ‖πhu‖21,∞,e(4.21)

≤ C(γ2 + ‖u‖21,∞,e)‖ϕ‖21,e.
Substituting (4.20)–(4.21) into (4.19), we obtain the desired bound.

Remark 4.1. If we apply Lemma 4.1 on the function ψ defined by ψ = πh(ϕ ŵ
|ŵ|2 ),

we will get that

|ψ|1 ≤ C log(h−1)|ϕ|1.
The result we are getting here is better. We have removed the factor log(h−1).

Lemma 4.3. Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then, there exist positive
constants h0 and γ0, depending on u, such that

a(u, λ;v,v) ≥ β2

2
‖v‖21, v ∈ Zh,û

for 0 < h ≤ h0 and 0 < γ ≤ γ0.
Proof. For any v ∈ Zh,û, let α and εh be defined as in (4.15) and (4.16). From

πh(απhw⊥) = πh(αw⊥), we have

(4.22) εh = (I − πh)(αw⊥) + πh[απh(w − ŵ)⊥].

From (4.12) and also using the inverse inequality (4.3), we get that

|(I − πh)(αw⊥)|21 ≤ Ch2
(‖w⊥‖20,∞|α|21 + ‖α‖20,∞‖w⊥‖21,∞

)
≤ Ch2 log2(h−1)‖u‖21,∞|α|21.(4.23)

Note that there exists a ξ such that

πh[απh(w − ŵ)⊥] = πh

[
απh

(
πhD2F (ξ)(πhu− û)

)⊥]
.

A repeated application of (4.8) and (4.3) gives

(4.24) |πh[απh(w − ŵ)⊥]|21 ≤ C log4(h−1)|α|21|πhu− û|21.
From Lemma 4.2, we see that

(4.25) |α|1 ≤ C|v|1.
Combining (4.23)–(4.25) with (4.13), we see that

(4.26) |εh|21 ≤ C(h2 log2(h−1)‖u‖21,∞ + γ2)|α|21 ≤ C(h2 log2(h−1)‖u‖21,∞ + γ2)|v|21.
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The following estimate follows from (3.5) and (3.7):

(4.27)
a(u, λ;v,v) = a(u, λ;v + εh,v + εh)− a(u, λ;v, εh) + a(u, λ; εh, εh)

≥ C(β2‖v + εh‖21 − |v|1|εh|1 − |εh|21).

Choosing h and γ small enough, we obtain the desired result from (4.26) and
(4.27).

Proof of Theorem 4.1. In the proof, we always assume that h and γ are small.
Note that

ah(û, λ̂;v,v) − a(u, λ;v,v) = 〈πh[D2F (û)v · v], λ̂〉 − 〈D2F (u)v · v, λ〉
= 〈πh[D2F (û)v · v], λ̂− λ〉+ 〈(πh − I)[D2F (û)v · v], λ〉(4.28)

+ 〈(D2F (û)−D2F (u))v · v, λ〉 = I1 + I2 + I3.

The meaning of Ii is self-explainable. Since λ ∈ L2(Ω), we obtain from (4.13) that

‖λ̂h − λ‖−1 ≤ ‖λ̂h − Phλ‖−1 + ‖Phλ− λ‖−1

≤ γ/ log2(h−1) + Ch‖λ‖0.

Using Lemma 4.1, we see that

|πh[D2F (û)v · v]|1 ≤ C(|D2F (û) · v|0,∞|v|1 + ‖v‖20,∞‖D3F (û)‖0,∞|û|1)
≤ C log2(h−1)‖v‖21.

For a small h, a combination of the above two inequalities leads to

|I1| = |(πh[D2F (û)v·v], λ̂h−λ)| ≤ C log2(h−1)‖v‖21(γ/ log2(h−1)+Ch‖λ‖0) ≤ Cγ‖v‖21.

Similarly, we use Lemma 4.1 to prove that

|I2| = |((πh − I)[D2F (û)v · v], λ)|
≤ ‖(πh − I)[D2F (û)v · v]‖0 · ‖λ‖0 ≤ Ch log2(h−1)‖v‖21

and

|I3| = |((D2F (û)−D2F (u))v · v, λ)|
≤ ‖(D2F (û)−D2F (u))v · v‖0 · ‖λ‖0 ≤ Cγ‖v‖21.

Choosing h and γ small enough, we obtain the desired result from Lemma 4.3 and
the estimates above of the three terms appearing in (4.28).

Theorem 4.2. Assume that (û, λ̂) ∈ Vh,g × Vh,0 satisfies the condition (4.13).
There exists a constant β4 > 0, which depends on u, such that

(4.29) inf
μ∈Vh,0

sup
v∈Vh,0

〈πh[DF (û) · v], μ〉
‖μ‖−1‖v‖1 ≥ β4.

Proof. For the ϕ given in (3.4), let ϕh = Phϕ. Then, we see that

〈μh, ϕh〉
‖ϕh‖1 ≥ β1‖μh‖−1.
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Define vh = πh[ϕh
DF (û)
|DF (û)|2 ]. Then,

〈πh[DF (û) · vh], μh〉 = 〈μh, ϕh〉.
From Lemma 4.2, one gets that |vh|1 ≤ C|ϕh|1. By collecting these estimates, the
theorem is established.

Together with the Theorems 4.1 and 4.2, the saddle point theory given in [8] or
[9] assures existence, stability, and uniqueness of the solution of the linearized saddle
point system (4.7), as long as (û, λ̂) satisfies (4.13). In the next section, we shall use
these properties to prove some results for the corresponding nonlinear systems.

Remark 4.2. If we replace Vh,0 by Vh in (4.29), the inf-sup condition (4.29) may
not be satisfied. This is why we use the Vh,0, instead of Vh, as finite element space
for the Lagrange multiplier.

5. The discrete nonlinear problem. The main purpose of this section is to
establish existence and uniqueness of solutions of the discretized nonlinear saddle point
problem (4.6) in a neighborhood of a continuous solution (u, λ) of the system (2.9).
As above, we assume that (u, λ) corresponds to a local minimum of the functional
E over H1

g(Ω;M) and that the regularity assumption (3.1) holds. Furthermore, we
will show that the discrete solutions converge to the continuous solution with a linear
rate with respect to the mesh parameter h. However, we start by summarizing some
properties of the linearized saddle point system.

For notational simplicity, we shall use X , Xh, and Xh,g defined by X = H1
0(Ω)×

H−1(Ω), Xh = Vh,0 × Vh,0, and Xh,g = Vh,g × Vh,0. Let ‖ · ‖X denote the norm on
the product space H1

0(Ω)×H−1(Ω), and let ‖·‖X∗ denote the norm on the dual space
X∗ = H−1(Ω)×H1

0 (Ω). The norm ‖ · ‖L(X,X∗) will be used to denote the norm of a
bounded linear operator from X to X∗. The spaces Xh and Xh,g are equipped with
the norm of X , while X∗h is equal to Xh as a set, but equipped with the dual norm
of X with respect to the L2 inner products. Similarly, the norm ‖ · ‖L(Xh,X∗

h) is the
associated operator norm.

Let x = (u, λ) be a solution of (2.9). Corresponding to x, let G(x) ∈ X∗ be given
by

〈G(x), y〉 = 〈∇u,∇v〉 + 〈DF (u) · v, λ〉 + 〈F (u), μ〉, y = (v, μ) ∈ X.
As usual, 〈·, ·〉 is the duality pairing which extends the standard L2 inner product.
Associated with G, we define a mapping G′(x) : X → X∗ by

(5.1) 〈G′(x) · y, ŷ〉 = a(u, λ;v, v̂) + 〈DF (u) · v̂, μ〉+ 〈DF (u) · v, μ̂〉
for all y = (v, μ), ŷ = (v̂, μ̂) ∈ X = H1

0(Ω)×H−1(Ω). The operator G′(x) is formally
the Fréchet differential of G at x.

Recall from the saddle point theory given in [8, 9] that Theorems 3.2–3.1 imply
that the system (3.2) has a unique solution (v, μ), which depends continuously on
(f , σ) ∈ X∗. Thus we have the following result.

Theorem 5.1. If (u, λ) satisfies the regularity assumption (3.1), then the map
G′(x) defined by (5.1) is an isomorphism from X = H1

0(Ω) × H−1(Ω) to X∗ =
H−1(Ω)×H1

0 (Ω).
For the discretized saddle point problem, let Gh : Xh,g → X∗h be the map defined

by (4.6). For any x̂ = (û, λ̂) ∈ Xh,g, Gh(x̂) is the operator that satisfies

〈Gh(x̂), ŷ〉 = 〈∇û,∇v̂〉+ 〈πh[DF (û) · v̂], λ̂)〉+ 〈πhF (û), μ̂〉, ŷ = (v̂, μ̂) ∈ Xh.
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Thus, problem (4.6) is, in fact, to find xh = (uh, λh) ∈ Xh,g such that

(5.2) 〈Gh(xh), y〉 = 0, y = (v̂, μ̂) ∈ Xh.

Let G′h(x̂) be the Fréchet derivative of Gh at x̂ = (û, λ̂) ∈ Xh,g. Then, G′h(x̂) : Xh →
X∗h is the linear operator given by

(5.3) 〈G′h(x̂)y, ŷ〉 = ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], μ〉+ 〈πh[DF (û) · v], μ̂〉,
y = (v, μ) ∈ Xh, ŷ = (v̂, μ̂) ∈ Xh.

By Theorems 4.1–4.2, the following result is a consequence of the theory given in
[8, 9].

Theorem 5.2. Assume that x̂ = (û, λ̂) ∈ Xh,g satisfies the condition (4.13).
For sufficiently small h and γ, the map G′h(x̂) is an isomorphism from Xh to X∗h.
Moreover,

(5.4) ‖G′h(x̂)−1‖L(X∗
h,Xh) ≤M,

where M is a constant independent of h and x̂ = (û, λ̂).
Define x∗ = (πhu, Phλ), and set y∗ = Gh(x∗). We can use similar techniques as

for Theorems 4.1 to prove the following lemma.
Lemma 5.1. For any x̂ = (û, λ̂) ∈ Xh,g satisfying (4.13), we have

‖G′h(x̂)−G′h(x∗)‖L(Xh,X∗
h) ≤ C log(h−1)‖x̂− x∗‖X ,

where C depends on u and λ.
Proof. By the definition of G′h, we have, for any y = (v, μ) ∈ Xh and ŷ = (v̂, μ̂) ∈

Xh,

(5.5)

〈(G′h(x̂)−G′h(x∗))y, ŷ〉 = 〈πh[D2F (û)v · v̂], λ̂− Phλ〉
+ 〈πh[(D2F (û)−D2F (πhu))v · v̂], Phλ〉
+ 〈πh[(DF (û)−DF (πhu)) · v̂], μ〉
+ 〈πh[(DF (û)−DF (πhu)) · v], μ̂〉.

It is clear that

(5.6) 〈πh[D2F (û)v · v̂], λ̂− Phλ〉 ≤ ‖πh[D2F (û)v · v̂]‖1 ‖λ̂− Phλ‖−1.

As in the proof of Lemma 4.1, we deduce

‖πh[D2F (û)v · v̂]‖1 ≤ C‖D2F (û)v‖0,∞ · ‖v̂‖1
+ C‖D2F (û)‖0,∞ · ‖v‖1 · ‖v̂‖0,∞
+ C‖D2F (û)‖0,∞ · ‖v‖0,∞ · ‖v̂‖0,∞.

Then, we further get by the inverse inequality (4.3)

‖πh[D2F (û)v · v̂]‖1 ≤ C log3(h−1)‖v‖1 · ‖v̂‖1.

Plugging this in (5.6), together with (4.13), leads to

〈πh[D2F (û)v · v̂], λ̂− Phλ〉 ≤ Cγ log(h−1)‖v‖1‖v̂‖1.
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Similarly, we deduce by (2.2), the inverse inequality (4.3), and (4.13)

‖πh[(D2F (û)−D2F (πhu))v · v̂]‖1
≤ C� log3(h−1)‖û− πhu‖1 · ‖v‖1 · ‖v̂‖1
≤ C�γ log(h−1)‖v‖1‖v̂‖1.

Estimating the last two terms in (5.5) by Lemma 4.1, (4.3), and (4.13), we obtain the
result. The constants C in the estimates depend on u and λ.

At this point, we need to recall the implicit function theorem as, for example,
given in Lemma 1 of [10]. From the implicit function theorem, we can conclude that
if there is a δ > 0 such that

(5.7) x̂ ∈ Xh, ‖x̂− x∗‖X ≤ δ implies ‖G′h(x̂)−G′h(x∗)‖L(Xh,X∗
h) ≤ 1

2M
,

then the equation

(5.8) Gh(x̂) = ŷ

has a unique solution for all ŷ satisfying

‖ŷ − y∗‖X∗ ≤ δ

2M
.

Here M is the positive constant appearing in Theorem 5.2. From Lemma 5.1, we see
that the condition (5.7) is fulfilled if we choose δ = 1/(2MC log(h−1)). Hence, we
have that (5.8) has a unique solution x̂ satisfying

‖x̂− x∗‖X ≤ 1
2MC log(h−1)

for all ŷ such that

‖ŷ − y∗‖X∗ ≤ 1
4M2C log(h−1)

.

Furthermore, we can conclude from Lemma 1 of [10] that

(5.9) ‖x̂− x∗‖X ≤ 2M‖ŷ− y∗‖X∗ .

Note that our desired equation is Gh(x) = 0. Thus, if we can verify that

(5.10) ‖Gh(x∗)‖X∗ = ‖y∗‖X∗ ≤ 1
4M2C log(h−1)

,

we can conclude existence and uniqueness of the solution of this equation. If we
assume more smoothness on u, this is a consequence of the following lemma.

Lemma 5.2. Assume that u ∈ H2(Ω) ∩W1,∞(Ω). Then we have

‖Gh(x∗)‖X∗ ≤ Ch, with x∗ = (πhu, Phλ).

Proof. It suffices to prove that

(5.11) |〈Gh(x∗), x̂〉| ≤ Ch‖x̂‖X , x̂ = (v, μ) ∈ Xh.
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We have by (2.9) and the definition of Gh

(5.12)
〈Gh(x∗), x̂〉 = 〈∇(πhu− u),∇v〉 + 〈πhF (πhu), μ〉 − 〈F (u), μ〉

+ 〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉.
It is clear that

(5.13) |〈∇(πhu− u),∇v〉| ≤ |πhu− u|1 · |v|1 ≤ Ch‖u‖2 · |v|1.

Note that since πhF (πhu) = πhF (u), we obtain from (4.1) that
(5.14)
|〈πhF (πhu), μ〉 − 〈F (u), μ〉| = |〈πh − I)F (u), μ〉|

≤ ‖(πh − I)F (u)‖1 · ‖μ‖−1 ≤ Ch‖F (u)‖2 · ‖μ‖−1.

Furthermore, by the assumptions on F and the estimates (4.1), (4.2), and (4.12), we
get

(5.15)

|〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉|
≤ |〈(πh − I)[DF (u) · v], Phλ〉| + |〈DF (u) · v, Phλ− λ〉|
≤ ‖(πh − I)[DF (u) · v]‖0 · ‖Phλ‖0 + ‖DF (u) · v‖1 · ‖Phλ− λ‖−1

≤ Ch‖DF (u) · v‖1 · ‖λ‖0 ≤ Ch‖DF (u)‖1,∞ · ‖λ‖0 · ‖v‖1.

Substituting (5.13)–(5.15) into (5.12), gives (5.11).
From this lemma, we see that y∗ satisfies (5.10) for small h. Thus, there exists a

unique solution for (4.6). Moreover, the solution satisfies the estimate (5.9). We state
this conclusion more clearly in the following theorem.

Theorem 5.3. Assume that u ∈ H2(Ω)∩W1,∞(Ω). Then, for sufficiently small
h, there exists a unique saddle point (uh, λh) ∈ Xh for (4.6) in a small neighborhood
of (πhu, Phλ). Moreover, the following error estimate holds:

‖uh − u‖1 + ‖λh − λ‖−1 ≤ Ch.
6. Preconditioned iterative methods. We shall combine a preconditioning

technique with the classical Newton’s method; cf., for example [27, chapter 7], to
solve the nonlinear saddle point problem (4.6) or equivalently (5.2). Of course, New-
ton’s method will only converge if the initial value is close enough to the true solu-
tion. Therefore, in practical computations, it is often necessary to use another global
method to obtain an appropriate initial value. A systematic study of such techniques
is beyond the scope the present work. However, some alternatives to supply a good
initial value are given in the example in section 7.2 below.

Let x0 = (u0
h, λ

0
h) ∈ Xh be a suitable initial guess. The Newton iteration is given

by

xn+1 = xn −G′h(xn)−1Gh(xn), n = 0, 1, . . . .(6.1)

Assume that the initial guess (u0
h, λ

0
h) satisfies (4.13), with a small γ. Using Theorem

5.2, combined with Lemma 5.1 and the standard properties of Newton’s method, it
follows that all xn = (unh, λ

n
h) satisfy (4.13), with the same γ, and all the operators

G′h(xn) are invertible. Moreover, the sequence {(unh, λnh)} converges with almost order
2, i.e.,

‖un+1
h − uh‖1 + ‖λn+1

h − λh‖−1 ≤ C log2(h−1)(‖unh − uh‖1 + ‖λnh − λh‖−1)2.
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For the iteration (6.1), we need to invert G′h(xn), i.e., we need to solve the system

(6.2) G′h(xn)(xn+1 − xn) = −Gh(xn).

From Theorem 5.2, we obtain that G′h(xn) is an isomorphism from Xh to X∗h. More-
over, ‖G′h(xn)‖L(Xh,X∗

h) is bounded, and the bound is independent of h and n if the
initial value is chosen close enough to the true solution. Hence, based on precondi-
tioning theory as in [2, 3], we see that any isomorphism from X∗h to Xh is an optimal
preconditioner for system (6.2). Due to this, we can construct some efficient precon-
ditioners for (6.2). Let Δh and Δh be the finite element discretizations for the vector
and scalar Laplacian operators Δ and Δ on Vh,0 and Vh,0, respectively. To be precise,
Δh : Vh,0 → Vh,0 is the mapping defined by

〈Δhuh,v〉 = −〈∇uh,∇v〉, v ∈ Vh,0.

Then the operator

Th =
( −Δ−1

h 0
0 −Δh

)

is an isomorphism from X∗h to Xh, with associated operator norm bounded indepen-
dently of h. Thus, Th ◦ G′h(xn) maps Xh to Xh, with condition numbers bounded
independently of h and n. However, in order to make the preconditioner efficient,
it is necessary to simplify the evaluation of the operator Th. We therefore replace
Δ−1
h by another spectral equivalent operator, i.e., by a preconditioner for the discrete

Laplacian using domain decomposition or multigrid methods [31, 33]. The linear sys-
tem (6.2) is then solved by the preconditioned minimum residual method, with the
modified Th operator T̃h as the preconditioner; cf. [28] or [18, Chapter 6]. Since the
condition number of the operator T̃h ◦G′h(xn) is bounded independent of h and n, so
is the convergence of the iteration.

7. Numerical experiments. Numerical experiments for the harmonic map
problem with M = S1, i.e., the unit circle, will be done. The domain Ω is always
a square. The domain is triangulated by first dividing it into h × h squares. Then,
each square is divided into two triangles by the diagonal with a negative slope of Ω,
which is further divided into triangles by the diagonal with a negative slope. The
finite element problem (4.6) is to find (uh, λh) ∈ Vh,g × Vh,0 such that

(7.1)
〈∇uh,∇v̂h〉+ 〈πh(uh · v̂h), λh〉 = 0, v̂h ∈ Vh,0,

〈πh(|uh|2 − 1), μ̂h〉 = 0, μ̂h ∈ Vh,0.
For the finite element method, we need to integrate over each element e ∈ Th. If we
use the three vertices of e as the integration points, then the mass matrix reduces to
a diagonal matrix. Correspondingly, the system (7.1) reduces to

−Lhuh + λhuh = 0 on Nh,
|uh|2 − 1 = 0 on Nh.(7.2)

Above Lh is the standard five-point finite difference discrete Laplacian approximation.
For the Newton iteration (6.1), we need to solve the system

(7.3)
( −Lh + Λn diag(un)

diag(un)t 0

)(
un+1 − un
λn+1 − λn

)
=
(

Lhun − λnun
(1− |un|2)/2

)
on Nh.
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Here and below, we use the simplified notation (un, λn) instead of (unh, λ
n
h). Further-

more, Λn and diag(un) are the matrix representations of the operators v → πh(λnv)
and μ → πh(μun), respectively. From Theorem 5.2, it is interesting to observe that
the block-diagonal matrix Th = diag(L−1

h , Lh) is a uniform preconditioner for the
matrix of system (7.3).

For the Newton iteration (7.3) with the preconditioner

Th = diag(L−1
h , Lh),

the matrix L−1
h in Th is replaced by a symmetric and spectrally equivalent multi-

grid operator, while the matrix Lh is simply a discrete Laplacian with homogeneous
Dirichlet boundary conditions. By doing so, no matrix needs to be inverted during
the iterations. The cost per iteration is O(N), where N is the degree of freedom for
the discretization.

In the following, we will investigate if it is possible to replace Newton’s method
with a modified method where the linear system (6.2) is only solved to a given ac-
curacy. More precisely, we shall compare the behavior of the exact and an inexact
Newton solver:

• The exact Newton solver: This refers to the scheme where we solve the lin-
ear system (6.2) with a preconditioned minimum residual method, which is
terminated when the residual is reduced by a factor of 1010.
• The inexact Newton solver: This refers to the scheme where the Newton

iterations (6.2) are terminated when the residual is reduced by a factor of
102.

In the tables, we show the numerical errors en versus the iteration number n,
where en is defined as

(7.4) en = ‖unh − uh‖H1
h

+ ‖λnh − λh‖H−1
h
,

where ‖xh‖2H1
h

= (πhxh)t(I − Lh)πhxh and ‖yh‖2H−1
h

= (πhyh)t(I − Lh)−1πhyh.

7.1. A smooth harmonic map. In the first example we consider a smooth
harmonic map

u = (sin(θ(x, y)), cos(θ(x, y))),

with θ = k log(
√

(x− a)2 + (y − b)2) and λ = −|∇u|2 on Ω = [0, 1]× [0, 1]. We have
used a = b = −0.1 and k = 3. The initial guess was u0 = 2(πhu + ε), where ε is a
random noise vector field with values between −0.3 and 0.3 and λ0 = 0.

When using the inexact Newton solver, the stop criterion is obtained in less
than 20 iterations, with a few exceptions in the first nonlinear iterations where the
maximum was 80. For the exact Newton solver, the stop criterion is obtained in less
than 50 iterations with a few exceptions in the first nonlinear iterations where as
much as 300 iterations were required on the finest mesh. Hence, except for the first
iterations, the required number of iterations seems to be bounded independent of the
mesh size. This is due to the property of the preconditioner.

In Table 1 we estimate the convergence of the L2 and H1 norms of the error of
u−uh in terms of h. We observe linear convergence in H1 and quadratic convergence
in L2, respectively. The convergence in H1 is in accordance with the error estimate
of Theorem 5.1. The improved rate of convergence in L2 has not been justified in
this paper, but this effect is in agreement with standard linear theory. Also, in the
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Table 1

The L2 and H1 error of u and the L2 error of λ with respect to h.

h 2−2 2−3 2−4 2−5 2−6

‖u − uh‖0 6.7e-1 3.6e-2 9.4e-3 2.4e-3 6.0e-4
‖u − uh‖1 4.6 1.1 5.7e-1 2.9e-1 1.4e-1
‖λ− λh‖0 4.2e-1 2.2e-2 1.6e-3 1.5e-4 1.2e-5

Table 2

Convergence for the exact and inexact Newton solver with h = 2−4.

e1 e2 e3 e4 e5 e6 e7 e8
Exact 3.2e+1 9.3 1.7 2.3e-1 4.0e-3 3.4e-6 2.6e-9 -
Inexact 3.2e+1 9.5 1.7 2.4e-1 3.5e-3 1.1e-5 1.0e-7 2.7e-9

Table 3

Convergence for the the inexact Newton solver.

h\it. e1 e2 e3 e4 e5 e6 e7 e8

2−2 9.2 2.6 4.7e-1 2.8e-2 1.9e-4 9.9e-7 7.7e-9 7.6e-10

2−3 1.6e+1 4.7 9.1e-1 7.6e-2 8.8e-4 4.0e-6 7.9e-8 1.4e-9

2−4 3.2e+1 9.5 1.7 2.4e-1 3.5e-3 1.1e-5 1.0e-7 2.7e-9

2−5 6.4e+1 2.4e+1 3.6 9.6e-1 1.5e-2 4.7e-5 1.5e-6 6.6e-9

present example the observed convergence for λ−λh is better than that Theorem 5.1
predicts.

A comparison of the exact Newton and inexact Newton solvers is shown in Ta-
ble 2 for mesh size h = 2−4. The convergence for other mesh sizes is similar. These
tests indicate that the inexact Newton solver is nearly as efficient as the exact New-
ton solver. In Table 3, the convergence of the inexact Newton solver with different
mesh sizes is shown. It shows the mesh independence property of the preconditioned
iterative solver.

7.2. A harmonic map with singularity. As it is well known, the solution
of the harmonic map problem is generally not unique and may have singularities
even with smooth data. In order to show the applicability of our algorithms for
these problems, we test a problem with a singular solution, i.e., u = (x/r, y/r), with
r = k

√
x2 + y2 and λ = −|∇u|2 on Ω = [−0.5, 0.5] × [0.5, 0.5]. The pair (u, λ)

corresponds to a classical solution of the saddle point system away from the origin,
but ‖u‖1 = ∞. Therefore, this example is not covered by our theoretical results,
but we include the example to illustrate additional effects. The Dirichlet boundary
conditions are obtained from the analytical solution, while the initial value for λ is
λ0 = 0 everywhere except in (0, 0), where λ = 1. The initial value for u is shown in
Figure 1(a). The computed solution is shown in Figure 1(b). The numerical errors
are given in Table 4. The errors indicate that both uh and λh converge linearly to the
solution when measured in L2. It is interesting to observe that we get convergence
for ‖ u− uh‖0 and ‖λ− λu‖0 even without mesh refinement around the singularity.

For this example, the Newton solvers are unstable and do not always converge.
Thus, we have used the following iteration to produce the initial value for the Newton
solvers:

(7.5)
( −Lh diag(un)

diag(un)t 0

)(
un+1 − un
λn+1 − λn

)
=
(

Lhun − λnun
(1 − |un|2)/2

)
.
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(a) (b)

(c) (d)

Fig. 1. Plot of the initial solutions and the computed solutions. (a) The first initial solution.
(b) The solution for (a). (c) The second initial solution. (d) The solution for (c).

Table 4

Errors with respect to h for the singular problem.

h 2−3 2−4 2−5 2−6

‖u − uh‖0 2.2e-1 1.3e-1 7.4e-2 4.0e-2
‖λ− λh‖0 8.3e-1 4.1e-1 2.1e-1 1.0e-1

Table 5

Convergence for the inexact Newton solver for the singular problem.

e1 e5 e10 e11 e12 e13 e14
1.1e+1 6.4e-1 1.1e-1 8.1e-2 9.7e-4 2.4e-7 1.2e-8

Compared with (7.3), the matrix Λn has been dropped. This iterative scheme is
globally convergent and is normally slower than the Newton solvers. Its convergence
properties will be analyzed and discussed elsewhere. We do ten iterations of (7.5),
and the inexact Newton solver is then turned on. The results are shown in Table 5 for
h = 2−4, where it is clear that we have quadratic convergence in the last iterations.

For the smooth problem tested in section 7.1, it seems that the iterative solution
always converges to the same solution no matter what kind of initial solution we
use. For the problem here, we have noticed that the saddle point problem may have
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multiple solutions. With another initial solution, as shown in Figure 1(c), we obtain
another solution, which is shown in Figure 1(d).
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